
contributed articles

76 COMMUNICATIONS OF THE ACM | APRIL 2014 | VOL. 57 | NO. 4

THOUGH IT ORIGINATED as an academic research
project, Scala has seen rapid dissemination in industry
and open source software development. Here, we
give a high-level introduction to Scala and look to
explain what makes it appealing for developers. The
conceptual development of Scala began in 2001 at
École polytechnique fédérale de Lausanne (EPFL) in
Switzerland. The first internal version of the language
appeared in 2003 when it was also taught in an
undergraduate course on functional programming.
The first public release was in 2004, and the 2.x series

in 2006, with slightly redesigned lan-
guage and a new compiler, written
completely in Scala itself. Shortly there-
after, an ecosystem of open-source
software began to form around it, with
the Lift Web framework as an early
crystallization point. Scala also began
to be used in industry. A well-known
adoption was Twitter, which aimed (in
2008) to rewrite its own message queue
implementation in Scala. Since then,
much of its core software has been
written in Scala. Twitter has contribut-
ed back to open source in more than 30
released projects24 and teaching mate-
rials.25 Many other companies have fol-
lowed suit, including LinkedIn, where
Scala drives the social graph service,
Klout, which uses a complete Scala
stack, including the Akka distributed
middleware and Play Web framework,
and Foursquare, which uses Scala as
the universal implementation lan-
guage for its server-side systems. Large
enterprises (such as Intel, Juniper Net-
works, and Morgan Stanley) have also
adopted the language for some of their
core software projects.

Gaining broad adoption quickly is
rare for any programming language,
especially one starting in academic
research. One can argue that at least
some of it could be due to circumstan-
tial factors, but it would still be inter-
esting to ponder what properties of the
language programmers find so attrac-
tive. There are two main ingredients:
First, Scala is a pragmatic language. Its
main focus is to make developers more
productive. Productivity needs access
to a large set of libraries and tools and
is why Scala was designed from the
start to interoperate well with Java and
run efficiently on the JVM. Almost all

Unifying
Functional
and Object-
Oriented
Programming
with Scala

DOI:10.1145/2591013

Scala unifies traditionally disparate
programming-language philosophies to develop
new components and component systems.

BY MARTIN ODERSKY AND TIARK ROMPF

 key insights

 Scala shows that functional and object-
oriented programming fit well together.

 This combination allows a smooth
transition from modeling to efficient code.

 Scala also offers an impressive
toolbox for expressing concurrency
and parallelism.

http://dx.doi.org/10.1145/2591013

APRIL 2014 | VOL. 57 | NO. 4 | COMMUNICATIONS OF THE ACM 77

P
H

O
T

O
G

R
A

P
H

 B
Y

 G
I

L
L

E
S

 D
U

B
O

C
H

E
T

Java libraries are accessible from Scala
without needing wrappers or other glue
code. Designing Scala libraries so they
can be accessed from Java code is also
relatively straightforward. Moreover,
Scala is a statically typed language that
compiles to the same bytecodes as Java
and runs at comparable speed.6

Several necessary compromises fol-
lowed from the interoperability goal;
for instance, Scala adopts Java’s meth-
od overloading scheme, even though
one could say multi-methods in the
style of Fortress1 would have been
cleaner. Another is that Scala allows
null pointers, called by their origi-
nator, Tony Hoare, the “billion-dollar
mistake.” This is again important for
interoperability with Java. However, in
pure Scala code null pointers are usu-
ally avoided in favor of the standard
Option type.

The second ingredient for Scala’s
impressive adoption history is that it
rides, and to a certain degree drives,
the emerging trend of combining func-
tional and object-oriented program-
ming. Functional programming has
emerged since the mid-2000s as an at-
tractive basis for software construction.
One reason is the increasing impor-
tance of parallelism and distribution
in computing. In the world of software
development where updates require
logs or replication for consistency, it is
often more efficient to use replayable
operations on immutable data instead;
prominent examples are parallel tool-
kits like Akka18 and Spark.2

Scala unifies areas of computing
that were traditionally disparate (see
the figure here). Its integration of
functional and object-oriented con-
cepts leads to a scalable language,
in the sense that the same concepts
work well for very small, as well as
very large, programs. Scala was voted
the most popular scripting language
on the JVM at the JavaOne conference
2012. This was surprising, as script-
ing languages are usually dynamically
typed, whereas Scala has an expres-
sive, precise static type system, relying
on local type inference14,16 to obviate

Scala stairs at École polytechnique fédérale de Lausanne inspired the Scala logo
(http://www.scala-lang.org) designed by Gilles Dubochet.

contributed articles

78 COMMUNICATIONS OF THE ACM | APRIL 2014 | VOL. 57 | NO. 4

combinators. Compared to equiva-
lent Java code, the Scala version is
much more succinct. While brevity is
not universally good, the difference
in cognitive overhead in this example
is striking.

Instead of objects and inheritance,
traditional functional languages often
have algebraic data types that can be
decomposed with pattern matching.
An algebraic data type consists of a
fixed number of alternatives, each with
a different constructor. Scala allows
pattern matches over class instances,
obviating the need for another funda-
mental type constructor besides class-
es while keeping the language simpler
and more uniform.

As an example, consider the task
of writing a type named Try that con-
tains either a returned value or an ex-
ception. A standard usage of a type like
Try is to communicate exceptions
across thread or machine boundaries.
Consider a small use case: Assume we
have a function checkAge that checks
whether a person is of legal age and
throws an exception if not. We may
want to use Try like this:

Try {
 checkAge(person)
 fetchRestrictedContent()
}

At a glance, this code looks similar
to familiar try/catch exception han-
dling. However, the catch block is
missing, and the result of the whole ex-
pression is either a Success instance
carrying the result of fetchRes-
trictedContent or a Failure car-
rying an exception. While try/catch
decouples the handling of error con-
ditions from the location of the error
in the program, Try also decouples
the handling from the time the error
occurred and its physical location; if
failures happen on, say, a Web server
in response to a client request, we can
collect all failures relating to the re-
quest, batch them up, and send them
back to the client.

Here is a possible definition of type
Try followed by an explanation of the
Try { ... } syntax:

trait Try[T] {
 def get: T
}

the need for most annoying type an-
notations. The type system and good
performance characteristics of its
implementation make it suitable for
large mission-critical back-end appli-
cations, particularly those involving
parallelism or concurrency.

Every piece of data in Scala is con-
ceptually an object and every operation
a method call. This is in contrast to
functional languages in the ML family
that are stratified into a core language
and a module system. Scala’s approach
leads to an economy of features, keep-
ing the language reasonably small in
spite of its multi-paradigm nature. The
functional object system also enables
construction of high-level, flexible li-
braries that are easy for programmers to
use; for instance, its hierarchy of collec-
tion classes provides a uniform frame-
work12 for sequences, sets, and maps
that systematically cover multiple di-
mensions, from immutable to mutable
and sequential to parallel17 and (for se-
quences) from strict to lazy evaluation.

Here, we demonstrate Scala
through a series of examples, starting
with simple program fragments for
how it identifies features from func-
tional and object-oriented program-
ming, then how its object model ab-
sorbs common concepts from module
systems to achieve modularity and ab-
straction. This also demonstrates how
Scala programmers can progress from
a simple, high-level model to efficient
sequential and parallel implementa-
tions of the model.

Combining Features
Scala combines features from the
object-oriented and functional para-
digms in new and interesting ways.
As an example of the object-oriented
style, consider the following definition
of a simple class of Persons:

class Person(val name:
String, val age: Int) {
 override def toString =

s”$name ($age)”
}

An instance of this class include
fields name and age and provides an
overridden toString implementa-
tion that returns a String describing
the object. The syntax s"..." denotes
an interpolated string that can contain
computed expressions following the es-
cape character $. As an example of the
functional style, here is a way to split a
list of persons according to their age:

val persons: List[Person] = ...
val (minors, adults) = per-
sons.partition(_ .age < 18)

The partition method takes a se-
quence and a predicate and returns a
pair of sequences, one consisting of
elements that satisfy the predicate, the
other of elements that do not. The no-
tation _ .age < 18 is shorthand for the
anonymous function x => x.age < 18.

This is just one of many ways one
can act on collections of objects
through powerful purely functional

Scala as unifier.

Agile, with lightweight syntax

Safe and performant, with strong static typing

Object-Oriented Scala

Parallel

Sequential

Functional

contributed articles

APRIL 2014 | VOL. 57 | NO. 4 | COMMUNICATIONS OF THE ACM 79

Scala’s integration
of functional and
object-oriented
concepts leads
to a scalable
language, in
the sense that
the same concepts
work well for
very small,
as well as very
large, programs.

case class Success[T](value: T)
extends Try[T] {
 def get = value
}
case class Failure[T](ex: Ex-
ception) extends Try[T] {
 def get = throw ex
}

A “trait” is a generalization of Java’s
interface that can contain both ab-
stract and concrete methods. The trait
Try in this code defines a single ab-
stract method get; we add more meth-
ods to it later. The trait is parameter-
ized with a type parameter T meant to
indicate the type of any returned value.

Two subclasses extend Try: Suc-
cess and Failure. The case modifier
in the class definitions enables pattern
matching and also adds convenience
methods to these classes. The Success
class takes as a parameter the returned
value, and the Failure class takes as
parameter the thrown exception.

Consider the following client code
that processes a Try value:

val x: Try[Int] = ...
x match {
 case Success(v) =>
 println(s”OK: $v”)
 case Failure(ex: IOException)
=>
 println(s”I/O error”)
 case Failure(ex) =>
 println(s”Other error $ex”)
}

Pattern matching in Scala is done
in match expressions, which are
conceptually generalizations of the
switch statement in C and Java.
A selector value (the x to the left of
match) is matched against a number
of cases, each consisting of a pattern
followed by an arrow => and an ex-
pression that defines the result value
in case the pattern matches. The ex-
pression here includes three patterns:
The first matches any value of form
Success(x) where x is arbitrary; the
second matches any value of form
Success(ex) where ex is of type IO-
Exception; and the third matches all
other Failures. In all three, the re-
sult expression is a println invo-
cation. The return type of println is
Unit, which is inhabited by the single
atomic value ().

The pattern-matching syntax and
semantics is standard for a functional
language. New is that pattern match-
ing applies to object types, not alge-
braic data types; for instance, the sec-
ond pattern matches at the same time
on a Failure alternative with an em-
bedded IOException value. Dealing
with open types (such as exceptions)
has been a headache for standard
functional pattern matching, which
applies only to closed sums with a
fixed number of alternatives. Scala
sidesteps this issue by matching on
object hierarchies instead. Having
alternatives like Success and Fail-
ure be first-class types (as opposed
to only Try) gives the dual benefits of
uniformity and expressiveness.

A possible criticism against this
scheme is that the open-world as-
sumption means one cannot conclu-
sively verify that a pattern match is
exhaustive, or contains a pattern for
every possible selector value. Scala
caters to this case by allowing sealed
classes. We thus could have declared
Try like this:

sealed trait Try[T] ...

In this case all immediate sub-
classes of Try need to be defined
together with it, and exhaustiveness
checking for Try expressions would
be enabled; that is, a sealed trait with
some extending case classes behaves
like an algebraic data type.

Another criticism levied against
Scala’s scheme is that a set of case class
definitions tends to be more verbose
than the definition of an algebraic data
type. This is true but must be weighed
against the fact that in a typical real-
world system the amount of type defi-
nitions should be small compared to
the amount of code that operates on
the types.

We have seen the definition of type
Try but still lack a convenient way of
creating Try values from expressions
that can throw exceptions, as in, say:

Try { readFile(file) }

We can achieve this through the follow-
ing definition:

object Try {
def apply[T](expr: => T) =

contributed articles

80 COMMUNICATIONS OF THE ACM | APRIL 2014 | VOL. 57 | NO. 4

trait Function1[S, T] {
 def apply(x: S): T
}

One characteristic of good func-
tional programming style is the defi-
nition of combinator libraries that
take a data type and compose it in in-
teresting ways. What are useful com-
binators for Try values? One obvious
choice is the combinator onSuccess,
which takes a Try value and runs an-
other Try, returning function on its
result, if the value was a success. A
failure, on the other hand, would be
returned directly.

The classic object-oriented way
of implementing apply would rely
on dynamic dispatch: Define an ab-
stract method in trait Try and one
implementing method in each sub-
class. Alternatively, we can use pat-
tern matching, defining the onSuc-
cess operator as a single method on
trait Try:

sealed trait Try[T] {
 def onSuccess[U](f: T =>
Try[U]): Try[U] = this match
{
 case Success(x) => f(x)
 case failure => failure
 }
 ...
}

The onSuccess combinator meth-
od can be used like this:

Try(x/y).onSuccess(z => Try(1/z))

Here, the argument to the onSuc-
cess call is an anonymous function
that takes its parameter z to the left of
the double arrow => and returns the
result of evaluating the expression to
the right of the arrow. Evaluation of
the whole expression first divides x
by y and, if successful, returns a Suc-
cess value containing the inverse
of the result z. Any arithmetic excep-
tions lead to Failure results. The
code is thus equivalent to:

Try { val z = x/y; 1/z } ===
Try(1/(x/y))

More generally, x.onSuccess
(z=>Try(f(z))) is equivalent to
Try(f(x.get)). Both notational vari-

 try Success(expr)
 catch {
 case ex: Throwable =>
Failure(ex)
 }
}

It includes several noteworthy
points, and what gets defined is an ob-
ject named Try. An object is a single-
ton instance that implements a set of
definitions; in the example, Try imple-
ments a method apply. Object defini-
tions are Scala’s replacement of the
concept of static members, which, de-
spite being a common feature, are de-
cidedly non-object-oriented. Instead of
defining static values in a class, we de-
fine a singleton object containing the
same values. A common pattern in Sca-
la combines an object definition and a
class or trait definition with the same
name in a single source file. In this
case, the object members are treated
like the static members of a Java class.

The Try object defines a method
apply that takes a type parameter T
and a value parameter expr of type
=> T that describes a computation of
type T. The type syntax => T describes
“by-name” parameters. As indicated
by the syntax, such parameters can
be thought of as functions without an
argument list. Expressions passed to
them will not be evaluated at the call
site; instead, they will be evaluated
each time the parameter is derefer-
enced in the called function. Here is
an example:

Try.apply(x / y)

In this case, the expression x / y will
be passed unevaluated into the apply
method. The apply method will then
evaluate it at the point where the expr
parameter is referenced as part of its
Success result. If y is zero, this evalu-
ation yields a division-by-zero error
that will be caught in the enclosing try/
catch expression and a Failure value
will be returned.

The Try expression can be written
even shorter, like this:

Try(x / y)

Or, if blocks of multiple statements are
used, like this:

Try { ... }

This code makes it look as if Try is a
function that can be applied to an argu-
ment and that yields a value of type Try.
It also makes use of another corner-
stone of Scala: Every object with an apply
method can be used as a function value.
This is Scala’s way of making functions
first class; they are simply interpreted as
objects with apply methods.

Scala includes function types, writ-
ten in double-arrow notation (such
as Int => String is the type of func-
tions from Int to String). But this
type is simply a syntactic abbreviation
for the object type Function1[Int,
String]. Function1 is defined as a
trait along the following lines:

Code section 1: Graph signature.

trait Graphs {
 type Node
 type Edge
 def pred(e: Edge): Node
 def succ(e: Edge): Node
 type Graph <: GraphSig
 trait GraphSig {
 def nodes: Set[Node]
 def edges: Set[Edge]
 def outgoing(n: Node): Set[Edge]
 def incoming(n: Node): Set[Edge]
 def sources: Set[Node]
 def topSort: Seq[Node]
 def subGraph(nodes: Set[Node]): Graph =
 newGraph(nodes, edges filter (e =>
 (nodes contains pred(e)) &&
 (nodes contains succ(e))))
 }
 def newGraph(nodes: Set[Node], edges: Set[Edge]): Graph
}

contributed articles

APRIL 2014 | VOL. 57 | NO. 4 | COMMUNICATIONS OF THE ACM 81

ants are useful for various purposes.
The onSuccess combinator is most
useful when we want to combine sev-
eral operations to feed into each other,
without assigning explicit names to
the intermediate results; onSuccess
corresponds to the pipe operator in
Unix-like shells. We can define an
exec command to launch processes:

def exec(cmd: String): (in:
Buffer) => Try[Buffer] = ...

And use onSuccess to connect in-
puts and outputs, given some fixed in-
put data stdin:

stdin.onSuccess(exec(“ls”))
 .onSuccess(exec(“grep ^.*\.scala”))
 .onSuccess(exec(“xargs scalac”))

The simple all-or-nothing failure
model is different from actual OS
pipes; here, each command either suc-
ceeds after producing its output or fails
without producing output. There is no
failure after producing partial output,
and output cannot be read by the next
process until the previous process has
terminated with success or failure.
However, these features are easy to add
with a level of indirection. Those famil-
iar with the Haskell school of function-
al programming8 will notice that Try
implements the exception monad and
onSuccess “bind” operation.

Syntactically, most Scala program-
mers would write the expression a bit
differently, like this:

(stdin onSuccess exec(“ls”)
 onSuccess exec(“grep
.̂*\.scala”)
 onSuccess exec(“xargs
scalac”))

This style makes use of another per-
vasive Scala principle: Any binary infix
operator is expanded to a method call
on one of its arguments. Most opera-
tors translate to a method call with the
left operand as receiver; the only excep-
tion are operators ending in :, which
are resolved to the right. An example
is the list cons operator ::, which pre-
pends an element to the left of a list, as
in 1::xs.

The main benefit of this Scala con-
vention is its regularity. There are no
special operators in the Scala syntax.

Even operators (such as + and -) are
conceptually method calls. So we could
redefine onSuccess using the pipe
char | as follows:

stdin | exec(“ls”) |
exec(“grep .̂*\.scala”) |
exec(“xargs scalac”)

Scaling Up
The previous section explored the com-
bination of functional and object-ori-
ented programming in a limited exam-
ple where we defined one concrete type
and several operations. Here, we show
how Scala also applies to larger pro-
gram structures, including interfaces,
high-level models for specifications,
and lower-level implementations.

The task is to find a general model
for graphs. Abstractly, a graph is a
structure consisting of nodes and edg-
es. In practice, there are many kinds of
graphs that differ in the types of infor-
mation that are attached to the nodes
and edges; for example, nodes might be
cities and edges roads, or nodes might
be persons and edges relationships.

We would like to capture what
graphs have in common using one ab-
stract structure that can then be aug-
mented with models and algorithms in
a modular way.

Code section 1 shows a trait for
graphs. Simple as it is, the definition
of this trait is conceptually similar to
how the social graph is modeled in
Scala at LinkedIn.

The trait has two abstract type mem-
bers: Node and Edge. Scala is one of
the few languages where objects can

have not only fields and methods but
also types as members. The type dec-
larations postulate that concrete sub-
classes of the trait Graphs will con-
tain some definitions of types Node
and Edge. The definitions themselves
are arbitrary, as long as implementa-
tions of the other abstract members of
Graphs exist for them.

Next come two abstract method
definitions specifying that every Graph
will define methods pred and succ
that take an Edge to its predecessor
and successor Node. The definition of
the methods is deferred to concrete
subclasses.

The type of Graph itself is then
specified. This is an abstract type that
has as upper bound the trait Graph-
Sig; that is, we require that any con-
crete implementation of type Graph
conforms to the trait. GraphSig de-
fines a set of fields and methods that
apply to every graph; the two essential
ones are the set of nodes and the set
of edges. Furthermore, here are three
convenience methods:

 ! For each node the set of outgoing
and incoming edges;

 ! The set of sources, or nodes that
do not have incoming edges; and

 ! A method subGraph that takes a
set of nodes and returns a new graph
consisting of these nodes and any
edges of the original graph that con-
nect them.

To show some more interesting al-
gorithmic treatment of graphs, we also
include a method topSort for the to-
pological sorting of an acyclic graph.
The method returns in a list a total

Code section 2: Graph model.

abstract class GraphsModel extends Graphs {
 class Graph(val nodes: Set[Node], val edges: Set[Edge])
 extends GraphSig {
 def outgoing(n: Node) = edges filter (pred(_) == n)
 def incoming(n: Node) = edges filter (succ(_) == n)
 lazy val sources = nodes filter (incoming(_).isEmpty)
 def topSort: Seq[Node] =
 if (nodes.isEmpty) List()
 else {
 require(sources.nonEmpty)
 sources.toList ++
 subGraph(nodes -- sources).topSort
 }
 }
 def newGraph(nodes: Set[Node], edges: Set[Edge]) =
 new Graph(nodes, edges)
}

contributed articles

82 COMMUNICATIONS OF THE ACM | APRIL 2014 | VOL. 57 | NO. 4

 ! xs map f, which applies a function
f to each element of a collection xs
and forms a collection of the results;
and

 ! xs flatMap f, which applies the
collection-valued function f to each el-
ement of a collection xs and combines
its results in a new collection using a
concat or union operation.

The next definition defines sources
as a lazy val, meaning the defining
expression for sources will not be ex-
ecuted at object initialization but the
first time somebody accesses the value
of sources (possibly never). However,
after the first access, the value will be
cached, so repeated evaluations of
sources are avoided. Lazy evaluation
is a powerful technique for saving work
in purely functional computations.
The Haskell programming language
makes laziness the default everywhere.
Since Scala can be both imperative and
functional, it has instead opted for an
explicit lazy modifier.

The topSort method is a bit lon-
ger but still straightforward. If the
graph is empty, the result is the empty
list; otherwise, the result consists of a
list containing all sources of the graph,
followed by the topological sort of the
subgraph formed by all other nodes.
The ++ operation concatenates two
collections. The implementation in
code section 2 follows this specifica-
tion to the word and is therefore obvi-
ously correct.

One case that still needs consider-
ation is what to return if the graph con-
tains cycles. No topological sorting can
exist in it. We model this case through a
require clause in the topSort meth-
od, specifying that every non-empty
graph to be sorted must have a non-
empty set of sources. If this require-
ment does not hold at any stage of the
recursive algorithm, a graph with only
cycles is left, and require will throw
an exception. For implementations in
the following sections, a restriction to
acyclic graphs is no longer explicitly
checked. Rather, we assume it as part
of the implicit contract of topSort.

The final method to define is new-
Graph, trivial once the definition of
Graph is fixed.

At the level of GraphsModel, there
is still no definition of the Node and
Edge types; they can be arbitrary. Here
is a concrete object myGraphModel

ordering of nodes in the graph consis-
tent with the partial ordering implied
by the graph edges; that is, nodes are
ordered in the list in such a way the
predecessor of every graph edge ap-
pears before its successor.

Unlike Java interfaces, Scala traits
can have abstract, as well as concrete,
members; to illustrate, trait Graph-
Sig defines subGraph as a concrete
method, whereas the other methods
and fields are left abstract.

Finally, Graphs declares an ab-
stract factory method newGraph
that constructs an instance of type
Graph from a set of nodes and a set
of edges. Note because no concrete
definition of Graph is given, new-
Graph cannot be defined as a con-
crete method at the level of Graphs
because one does not know at this
level how to construct a Graph. The
method must be abstract.

How can Graphs be implemented?
A wide range of solutions is possible.
We start with a high-level model given
in code section 2.

GraphsModel defines two concrete
members: the Graph class and the
newGraph factory method.

The Graph class takes as param-
eters the sets of nodes and edges
that make up the graph. Note both
parameters are prefixed with val.
This syntax turns each parameter
into a class field that serves as con-
crete definition of the correspond-
ing parameter in GraphSig. With
nodes and edges given, the incom-
ing and outgoing methods can be
defined as simple filter operations
on sets. As the name implies, a fil-
ter operation on a collection forms
a new collection that retains all ele-
ments of the original collection that
satisfy a certain predicate. Note the
shorthand method syntax used in
these predicates where the under-
score marks a parameter position; for
instance (pred(_) == n) is short-
hand for the anonymous function x
=> pred(x) == n.

Here are two other commonly used
collection transformers:

Code section 3: Graph implementation.

abstract class GraphsImpl extends Graphs {
 class Graph(val nodes: Set[Node],
 val edges: Set[Edge]) extends GraphSig {
 private val outEdges, inEdges =
 new mutable.HashMap[Node, Set[Edge]] {
 override def default(key: Node) = Set()
 }
 for (e <- edges) {
 inEdges(succ(e)) += e
 outEdges(pred(e)) += e
 }
 def outgoing(n: Node) = outEdges(n)
 def incoming(n: Node) = inEdges(n)
 def topSort: Seq[Node] = {
 val indegree = new mutable.HashMap[Node,Int]
 val sorted = new mutable.ArrayBuffer[Node]
 for (x <- nodes) {
 indegree(x) = inEdges(x).size
 if (indegree(x) == 0) sorted += x
 }
 var frontier = 0
 while (frontier < sorted.length) {
 for (e <- outEdges(sorted(frontier))) {
 val x = succ(e)
 indegree(x) -= 1
 if (indegree(x) == 0) sorted += x
 }
 frontier += 1
 }
 sorted
 }
 }
 def newGraph(nodes: Set[Node], edges: Set[Edge]) =
 new Graph(nodes, edges)
}

contributed articles

APRIL 2014 | VOL. 57 | NO. 4 | COMMUNICATIONS OF THE ACM 83

that inherits from GraphsModel, de-
fines the Node type to be a Person,
and defines the Edge type to be a pair
of persons.

object myGraphModel extends
GraphsModel {
 type Node = Person
 type Edge = (Person, Person)
 def succ(e: Edge) = { val (s,
p) = e; s }
 def pred(e: Edge) = { val (s,
p) = e; p }
}

The situation where edges are pairs
of nodes, for whatever the definition
of node is, appears quite common. To
avoid repetitive code, we can factor
out this concept into a separate trait
like this:

trait EdgesAsPairs extends
Graphs {
 type Edge = (Node, Node)
 def succ(e: Edge) = { val (s,
p) = e; s }
 def pred(e: Edge) = { val (s,
p) = e; p }
}

Trait EdgesAsPairs extends Graphs
with a definition of Edge as a pair of
Node and the corresponding defini-
tions of pred and succ. Using this
trait we can now shorten the definition
of myGraphModel as follows:

object myGraphModel extends
GraphsModel with EdgesAsPairs {
 type Node = Person
}

The combination of two traits with
the with connective is called “mixin
composition.” An important aspect
of mixin composition in Scala is that
it is multi-way; that is, any trait taking
part in the composition can define the
abstract members of any other trait,
independent of the order in which the
traits appear in the composition. For
instance, the myGraphModel object in
the composition defines the type Node,
referred to in EdgesAsPairs, whereas
the latter trait defines Edge, referred to
in GraphsModel. In this sense, mixin
composition is symmetric in Scala.
Order of traits still matters for deter-
mining initialization order, resolving

super calls, and overriding concrete
definitions. As usual, they are defined
through a linearization of the mixin
composition graph.11

More efficient implementation.
The GraphsModel class is concise and
correct by construction but would win
no speed record. Code section 3 pres-
ents a much faster implementation
of Graphs, satisfying the same purely
functional specification as GraphsMo-
del yet relies on mutable state inter-
nally. This illustrates an important
aspect of the Scala “philosophy”: State
and mutation are generally considered
acceptable as long as one keeps the
state local. If no one can observe state
changes, it is as if they did not exist.

The idea to speed up graph opera-
tions in GraphsImpl is to do some
preprocessing. Incoming and outgoing
edges of a node are kept in two maps—
inEdges and outEdges—initialized
when the graph is created. The type
of these maps is a mutable HashMap
from Node to Set[Edge], defining a
default value for keys that were not en-
tered explicitly; these keys are assumed
to map to the empty set of nodes.

The first statements in the body of
class Graph in code section 3 define
and populate the inEdges and out-
Edges maps. Class initialization state-
ments in Scala can be written directly
in the class body; no separate construc-
tor is necessary. This has the advantage
that immutable values can be defined
directly using the usual val x = expr
syntax; no initializing assignments
from within a constructor are necessary.

The final interesting definition in
code section 3 is the one for topSort
implemented as an imperative algo-
rithm using a while loop that main-

tains at each step the in-degree of all
nodes not yet processed. The algorithm
starts by initializing the indegree
map and the output buffer sorted.
The output list initially contains the
Graphs’s sources, or the nodes with in-
degree zero. When an element is added
to the output list, the stored in-degree
value of all its successors is reduced.

Whenever the in-degree of a node
reaches zero, the node is appended
to the output list. This is achieved
through a single while loop that tra-
verses the (growing) sorted buffer
from the left, with variable frontier
indicating the extent of nodes already
processed, while elements are simul-
taneously added at the right. Intui-
tively, the while loop progresses the
same way as the recursive calls in code
section 2.

Going parallel. The GraphsImpl
implementation from code section 3
is efficient on a single processor core.
While this may be good enough for
small- and mid-size problems, once in-
put data exceeds a certain size we want
to use all available processing power
and parallelize the algorithm to run on
multiple CPU cores.

Parallel programming has a repu-
tation for being difficult and error-
prone. Here, we consider a few alter-
natives of parallelizing the topSort
algorithm and see how Scala’s high-
level abstractions allow us to restruc-
ture the algorithm to make good use of
the available resources.

Scala provides a set of parallel col-
lection classes. Each of them (such as
Seq, Set, and Map) has a parallel coun-
terpart (such as ParSeq, ParSet, and
ParMap), respectively. The contract
is that operations on a parallel collec-

Code section 4: Parallel topSort using AtomicInteger.

import java.util.concurrent.atomic.AtomicInteger
def topSort: Seq[Node] = {
 val indegree = nodes.map(n =>
 (n, new AtomicInteger(inEdges(n).size))).toMap
 def sort(frontier: ParSet[Node]): ParSeq[ParSet[Node]] =
 if (frontier.isEmpty)
 ParSeq()
 else
 frontier +: sort (
 frontier.flatMap(x =>
 outgoing(x).par.map(succ).filter(y =>
 indegree(y).decrementAndGet == 0)))
 sort(sources.par).flatten.seq
}

contributed articles

84 COMMUNICATIONS OF THE ACM | APRIL 2014 | VOL. 57 | NO. 4

celebrities have tens of millions; for
example, in February 2014, Charlie
Sheen had 10.7 million followers,
Barack Obama 41.4 million, and Jus-
tin Bieber 49.6 million.

If we were to run an algorithm over
cyclic graphs but implemented it in a
style similar to the one in code section
4 on Twitter’s graph, then for every one
of Justin Bieber’s almost 50 million
followers, we would have to execute
compare-and-swap operations on the
very AtomicInteger used to hold
Bieber’s indegree. Individual hubs in
the graph thus become bottlenecks
and impede scalability.

This means we need to try a differ-
ent strategy. The key is to restructure
the access patterns so no two threads
ever write to the same memory location
concurrently. If we achieve that, we can
remove the synchronization and thus
the bottlenecks.

The new code is in code section
5. Like the previous version in code
section 4, we use a recursive method
but instead of a Map that holds At-
omicInteger objects use a separate
Counters data structure to hold the
indegrees. Instead of directly decre-
menting the indegree of each target
node we encounter, we first group
the edges by their successor field,
like this:

val m = frontier.
flatMap(outgoing).groupBy(succ)

The flatMap and groupBy opera-
tions are executed as two data-parallel
steps since frontier is a ParIter-
able. We can use this more general
type here instead of ParSet in code
section 5 because the groupBy op-
eration already ensures unique keys.
The result m of the operation is a Par-
Map that maps each node in the next
frontier to the set of its incoming
edges. The algorithm proceeds by
performing another parallel iteration
over its elements that adjusts the in-
degree counters.

The key innovation is that all paral-
lel operations iterate over subsets of
nodes, and all writes from within par-
allel loops go to the indegree map
at the loop index. Since loop indices
are guaranteed to be disjoint, there
can be no write conflicts if the Coun-
ters implementation is designed to

tion class (such as ParSeq) may be
executed in parallel, and transformer
operations (such as map and filter)
will again return a parallel collection.

This way, a chain of operations my-
seq.map(f).map(g) on a ParSeq ob-
ject myseq will synchronize after each
step, but f and g on their own may be
applied to elements of the collection in
parallel. Methods .par and .seq can
be used to convert a sequential into a
parallel collection and vice versa.

A first cut at parallelizing topSort
could start with the imperative code
from code section 3 and add coarse-
grain locks to protect the two shared
data structures—the indegree map
and the result buffer. Unfortunately,
however, this approach does not scale,
as every access to one of these objects
will need to acquire the correspond-
ing lock. The second attempt would
be to use locks on a finer-grain level.
Rather than protect the indegree
map with one global lock, we could
use a ConcurrentHashMap or roll
our own by storing AtomicInteger
objects instead of Ints in the map;
the corresponding code is shown in
code section 4. The AtomicInte-
gers add a layer of indirection, each
of which can be changed individually
through an atomic decrementAnd-

Get operation without interfering
with the other nodes.

The second point of contention
is the result buffer. In code section 4
we switch back to a more functional
style. The topSort method now takes
the frontier of the currently processed
graph as argument and returns a se-
quence of sets of node. Each set repre-
sents a cut through the graph of nodes
at the same distance from one of the
original sources. The +: operation is
the generalization of the list cons op-
erator to arbitrary sequences; it forms
a new sequence from a leading ele-
ment and a trailing sequence. The se-
quence of sets is flattened (in parallel)
at the end of the method.

While this implementation is a
nice improvement over coarse-grain
locking, it would not exhibit very good
performance for many real-world
inputs. The problem is that, empiri-
cally, most graph problems are scale-
free; the degree distribution often fol-
lows a power law, meaning the graph
has a low diameter (longest distance
between two nodes), and most nodes
have only a few connections, but a
few nodes have an extremely large
number of connections. On Twitter,
for example, most people have close
to zero followers, even though a few

Code section 5: Parallel topSort using groupBy.

def topSort = {
 val indegree = new Counters(nodes.par)(inEdges(_).size)
 def sort(frontier: ParIterable[Node]): ParSeq[ParIterable[Node]] =
 if (frontier.isEmpty)
 ParSeq()
 else
 frontier +: sort {
 val m = frontier.flatMap(outgoing).groupBy(succ)
 for ((s, es) <- m if indegree.decr(s, es.size) == 0) yield s
 }
 sort(sources.par).flatten.seq
}

Power consumption for typical components.Performance evaluation.

Nodes Listing 2 Listing 3 Listing 4 Listing 5

2,000 27.5056 0.0082 0.0454 0.1006

20,000 — 0.1150 0.1714 0.1686

200,000 — 1.9078 1.3472 1.0096

Running time in seconds for code sections 2–5 on graphs of various sizes. Graphs have 10x as many edges
as nodes. The optimized implementations are orders of magnitude faster than the straightforward model.
Parallelization adds overhead for small graphs but yields speedup up to 1.9x for large graphs.

contributed articles

APRIL 2014 | VOL. 57 | NO. 4 | COMMUNICATIONS OF THE ACM 85

The key is
to restructure
the access patterns
so no two threads
ever write
to the same
memory location
concurrently.

allow concurrent writes to disjoint
elements. In this case, no fine-grain
synchronization is necessary because
synchronization happens at the level
of bulk operations.

The Counters class is a general ab-
straction implemented like this:

class Counters[T](base:
ParSet[T])(init: T => Int) {
 private val index = base.
zipWithIndex.toMap
 private val elems = new
Array[Int](index.size)
 for (x <- base)
elems(index(x)) = init(x)
 def decr(x: T, delta: Int):
Int = {
 val idx = index(x)
 elems(idx) -= delta
 elems(idx)
 }
}

The constructor takes a parallel set
base and an initializer init and uses
zipWithIndex to assign a unique in-
teger index to each element in base.
The following toMap call turns the
result set of (T, Int) pairs into a paral-
lel map index with type ParMap[T,
Int]. The actual counters are stored
in an integer array elems. The method
decr, which decrements the counter
associated with object x, first looks up
the index of x, then modifies the corre-
sponding slot in elems. Counters for
different elements can thus be written
to concurrently without interference.

The result buffer handling in code
section 5 is similar to the previous im-
plementation in code section 4. Nodes
are added en bloc, and the result buf-
fer is flattened (in parallel) at the end of
method topSort.

We have thus explored how Sca-
la’s concepts apply to larger program
structures and how the language and
the standard library support a scalable
development style, enabling program-
mers to start with a high-level, “obvi-
ously correct” implementation that
can be refined gradually into more so-
phisticated versions.

A quick performance evaluation
is outlined in the table here. For a
small graph with just 2,000 nodes and
20,000 edges, the naïve implementa-
tion takes 27 seconds on an eight-
core Intel X5550 CPU at 2.67 GHz,

whereas the fast sequential version
(code section 3) runs in under 0.01
seconds. Compared to the optimized
sequential version, parallelization ac-
tually results in up to 10x slower per-
formance for small graphs but yields
speedups of up to 1.9x for a graph
with 200,000 nodes and two million
edges. All benchmarks were run 10
times; the numbers reported in the
table are averages of the last five runs.
Input graphs were created using the
R-Mat algorithm,5 reversing conflict-
ing edges to make the graphs acyclic.
The overall achievable performance
and parallel speedups depend a lot
on the structure of the input data;
for example, picking a sparser input
graph with two million nodes and
only 20,000 edges yields speedups of
up to 3.5x compared to the optimized
sequential version.

Finally, how can we convince our-
selves that the efficient implementa-
tions actually conform to the high-
level model? Since all versions are
executable code with the same inter-
face, it is easy to implement automat-
ed test suites using one of the available
testing frameworks.

Conclusion
We have offered a high-level introduc-
tion to Scala, explaining what makes
it appealing to developers, especially
its focus on pragmatic choices that
unify traditionally disparate program-
ming-language philosophies (such as
object-oriented and functional pro-
gramming). The key lesson is these
philosophies need not be contradic-
tory in practice. Regarding functional
and object-oriented programming,
one fundamental choice is where to
define pieces of functionality; for ex-
ample, we defined pred and succ on
the level of Graphs so they are func-
tions from edges to nodes. A more
object-oriented approach would be
to put them in a bound of the edge
type itself; that is, every edge would
have parameterless pred and succ
methods. One thing to keep in mind
is that this approach would have pre-
vented defining type Edge = (Node,
Node) because tuples do not have
these methods defined. Neither of
the variants is necessarily better than
the other, and Scala gives program-
mers the choice. Choice also involves

contributed articles

86 COMMUNICATIONS OF THE ACM | APRIL 2014 | VOL. 57 | NO. 4

11. Odersky, M. The Scala Language Specification, Version
2.9. EPFL, Lausanne, Switzerland, Feb. 2011; http://
www.scala-lang.org/docu/manuals.html

12. Odersky, M. and Moors, A. Fighting bit rot with types
(experience report: Scala collections). In Proceedings
of the Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, Vol.
4 of LIPIcs Leibniz International Proceedings in
Informatics, R. Kannan and K.N. Kumar, Eds. (Kanpur,
India, Dec. 15–17). Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2009, 427–451.

13. Odersky, M. and Zenger, M. Scalable component
abstractions. In Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
R.E. Johnson and R.P. Gabriel, Eds. (San Diego, Oct.
16–20). ACM Press, New York, 2005, 41–57.

14. Odersky, M., Zenger, M., and Zenger, C. Colored local
type inference. In Proceedings of the 28th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, C. Hankin and D. Schmidt,
Eds. (London, Jan. 17–19). ACM Press, New York,
2001, 41–53.

15. Oliveira, B.C.d.S., Moors, A., and Odersky, M. Type
classes as objects and implicits. In Proceedings of
the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, W.R. Cook, S. Clarke, and M.C. Rinard,
Eds. (Reno, NV, Oct. 17–21). ACM Press, New York,
2010, 341–360.

16. Pierce, B.C. and Turner, D.N. Local type inference.
In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
D.B. McQueen and L. Cardelli, Eds. (San Diego, Jan.
19–21). ACM Press, New York, 1998, 252–265.

17. Prokopec, A., Bagwell, P., Rompf, T., and Odersky, M. A
generic parallel collection framework. In Proceedings
of the 17th International Conference on Parallel
Processing, Vol. 6853 of Lecture Notes in Computer
Science, E. Jeannot, R. Namyst, and J. Roman, Eds.
(Bordeaux, France, Aug. 29–Sept. 2). Springer, New
York, 2011, 136–147.

18. Roestenburg, R. and Bakker, R. Akka in Action.
Manning Publications Co., Shelter Island, NY, 2013.

19. Rompf, T., Amin, N., Moors, A., Haller, P., and Odersky,
M. Scala-virtualized: Linguistic reuse for deep
embeddings. Higher-Order and Symbolic Computation
(Sept. 2013),1–43.

20. Rompf, T. and Odersky, M. Lightweight modular
staging: A pragmatic approach to runtime code
generation and compiled DSLs. Commun. ACM 55, 6
(June 2012), 121–130.

21. Rompf, T., Sujeeth, A.K., Amin, N., Brown, K.,
Jovanovic, V., Lee, H., Jonnalagedda, M., Olukotun, K.,
and Odersky, M. Optimizing data structures in high-
level programs. In Proceedings of the 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, R. Giacobazzi and R. Cousot,
Eds. (Rome, Italy, Jan. 23–25). ACM Press, New York,
2013, 497–510.

22. Schärli, S. Ducasse, Nierstrasz, O., and Black, A.P.
Traits: Composable units of behaviour. In Proceedings
of the 17th European Conference on Object-Oriented
Programming, Vol. 2743 of Lecture Notes in Computer
Science, L. Cardelli, Ed. (Darmstadt, Germany, July
21–25). Springer, New York, 2003, 248–274.

23. Sujeeth, A.K., Rompf, T., Brown, K.J., Lee, H., Chafi, H.,
Popic, V., Wu, M., Prokopec, A., Jovanovic, V., Odersky,
M., and Olukotun, K. Composition and reuse with
compiled domain-specific languages. In Proceedings
of the 27th European Conference on Object-Oriented
Programming, Vol. 7920 of Lecture Notes in Computer
Science, G. Castagna, Ed. (Montpellier, France, July
1–5). Springer, New York, 2013, 52–78.

24. Twitter. Open source projects; http://twitter.github.com
25. Twitter. Scala-school!; http://twitter.github.com/

scala.school

Martin Odersky (martin.odersky@epfl.ch) is a professor
of computer science at EPFL in Lausanne, Switzerland,
co-founder of Typesafe, creator of the Scala language, and
a fellow of the ACM.

Tiark Rompf (tiark.rompf@epfl.ch) is a researcher at
Oracle Labs and EPFL in Lausanne, Switzerland.

Copyright held by Owner(s)/Author(s).

responsibility, and in many cases
novice Scala programmers need guid-
ance to develop an intuitive sense of
how to structure programs effectively.
Premature abstraction is a common
pitfall. Ultimately though, every piece
of data is conceptually an object and
every operation is a method call. All
functionality is thus a member of
some object. Research branches of
the language19 go even further, defin-
ing control structures (such as condi-
tionals, loops, and pattern matching)
as method calls.

The focus on objects and modu-
larity makes Scala a library-centric
language; since everything is an ob-
ject, everything is a library module.
Consequently, Scala makes it easy for
programmers to define high-level and
efficient libraries and frameworks—
important for scaling programs from
small scripts to large software sys-
tems. Its syntactic flexibility, paired
with an expressive type system, makes
Scala a popular choice for embedding
domain-specific languages (DSLs).
The main language constructs for
component composition are based on
traits that can contain other types, in-
cluding abstract ones, as members.13
Scala’s traits occupy some middle
ground between mixins3 and Schärli’s
traits.22 As in the latter, they support
symmetric composition so mutual
dependencies between traits are al-
lowed, but, as with traditional mixins,
Scala traits also allow stackable modi-
fications that are resolved through a
linearization scheme. Another impor-
tant abstraction mechanism in Scala
is implicit parameters that let one
emulate the essential capabilities of
Haskell’s type classes.15

Performance scalability is another
important dimension. We have seen
how we can optimize and parallelize
programs using libraries included in
the standard Scala distribution. Cli-
ents of the graph abstraction did not
need to be changed when the internal
implementation was replaced with a
parallel one. For many real-world ap-
plications this level of performance
is sufficient. However, we cannot
expect to squeeze every last drop of
performance out of modern hard-
ware platforms, as with dedicated
graph-processing languages (such as
GraphLab10 and Green Marl7). With

a bit more effort, though, program-
mers can achieve even these levels of
performance by adding runtime com-
pilation and code generation to their
programs. Lightweight modular stag-
ing (LMS)20 and Delite4,9 are a set of
techniques and frameworks that en-
able embedded DSLs and “active” li-
braries that generate code from high-
level Scala expressions at runtime,
even for heterogeneous low-level tar-
get languages (such as C, CUDA, and
OpenCL). DSLs developed through
Delite have been shown to perform
competitively with hand-optimized C
code. For graph processing, the Op-
ti-Graph DSL23 (embedded in Scala)
performs on par with the standalone
language Green Marl. Many Scala fea-
tures are crucial for LMS and Delite to
implement compiler optimizations in
a modular and extensible way.21

Scala’s blend of traditionally dis-
parate philosophies provides benefits
greater than the sum of all these parts.

References
1. Allen, E.E., Hallett, J.J., Luchangco, V., Ryu, S., and

Steele, G.L., Jr. Modular multiple dispatch with
multiple inheritance. In Proceedings of the 2007
ACM Symposium on Applied Computing, Y. Cho, R.L.
Wainwright, H. Haddad, S.Y. Shin, and Y.W. Koo, Eds.
(Seoul, Mar. 11–15). ACM Press, New York, 2007,
1117–1121.

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz,
R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A.,
Stoica, I., and Zaharia, M. A view of cloud computing.
Commun. ACM 53, 4 (Apr. 2010), 50–58.

3. Bracha, G. and Cook, W.R. Mixin-based inheritance.
In Proceedings of OOPSLA/ECOOP, A. Yonezawa, Ed.
(Ottawa, Oct. 21–25). ACM Press, New York, 1990,
303–311.

4. Brown, K.J., Sujeeth, A.K., Lee, H., Rompf, T., Chafi,
H., Odersky, M., and Olukotun, K. A heterogeneous
parallel framework for domain-specific languages. In
Proceedings of the 20th International Conference on
Parallel Architectures and Compilation Techniques
(Galveston Island, TX, Oct. 10–14), IEEE Computer
Society Press, 2011, 89–100.

5. Chakrabarti, D., Zhan, Y., and Faloutsos, C. R-MAT: A
recursive model for graph mining. In Proceedings of
the Fourth SIAM International Conference on Data
Mining, M.W. Berry, U. Dayal, C. Kamath, and D.B.
Skillicorn, Eds. (Lake Buena Vista, FL, Apr. 22–24).
SIAM, 2004, 442–446.

6. Fulgham, B. The Computer Language Benchmark
Game, 2013; http://benchmarksgame.alioth.debian.
org/

7. Hong, S., Chafi, H., Sedlar, E., and Olukotun, K. Green-
marl: A DSL for easy and efficient graph analysis. In
Proceedings of the 17th International Conference on
Architectural Support for Programming Languages
and Operating Systems (London, Mar. 3–7). ACM
Press, New York, 2012, 349–362.

8. Hudak, P. The Haskell School of Expression: Learning
Functional Programming Through Multimedia.
Cambridge University Press, Cambridge, U.K., 2000.

9. Lee, H., Brown, K.J., Sujeeth, A.K., Chafi, H., Rompf,
T., Odersky, M., and Olukotun, K. Implementing
domain-specific languages for heterogeneous parallel
computing. IEEE Micro 31, 1 (Jan.-Feb. 2011), 42–53.

10. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin,
C., and Hellerstein, J.M. Graphlab: A new framework
for parallel machine learning. In Proceedings of
the 26th Conference on Uncertainty in Artificial
Intelligence, P. Grünwald and P. Spirtes, Eds. (Catalina
Island, CA, July 8–11). AUAI Press, 2010, 340–349.

