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THOUGH IT ORIGINATED  as an academic research 
project, Scala has seen rapid dissemination in industry 
and open source software development. Here, we 
give a high-level introduction to Scala and look to 
explain what makes it appealing for developers. The 
conceptual development of Scala began in 2001 at 
École polytechnique fédérale de Lausanne (EPFL) in 
Switzerland. The first internal version of the language 
appeared in 2003 when it was also taught in an 
undergraduate course on functional programming. 
The first public release was in 2004, and the 2.x series 

in 2006, with slightly redesigned lan-
guage and a new compiler, written 
completely in Scala itself. Shortly there-
after, an ecosystem of open-source 
software began to form around it, with 
the Lift Web framework as an early 
crystallization point. Scala also began 
to be used in industry. A well-known 
adoption was Twitter, which aimed (in 
2008) to rewrite its own message queue 
implementation in Scala. Since then, 
much of its core software has been 
written in Scala. Twitter has contribut-
ed back to open source in more than 30 
released projects24 and teaching mate-
rials.25 Many other companies have fol-
lowed suit, including LinkedIn, where 
Scala drives the social graph service, 
Klout, which uses a complete Scala 
stack, including the Akka distributed 
middleware and Play Web framework, 
and Foursquare, which uses Scala as 
the universal implementation lan-
guage for its server-side systems. Large 
enterprises (such as Intel, Juniper Net-
works, and Morgan Stanley) have also 
adopted the language for some of their 
core software projects. 

Gaining broad adoption quickly is 
rare for any programming language, 
especially one starting in academic 
research. One can argue that at least 
some of it could be due to circumstan-
tial factors, but it would still be inter-
esting to ponder what properties of the 
language programmers find so attrac-
tive. There are two main ingredients: 
First, Scala is a pragmatic language. Its 
main focus is to make developers more 
productive. Productivity needs access 
to a large set of libraries and tools and 
is why Scala was designed from the 
start to interoperate well with Java and 
run efficiently on the JVM. Almost all 
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Java libraries are accessible from Scala 
without needing wrappers or other glue 
code. Designing Scala libraries so they 
can be accessed from Java code is also 
relatively straightforward. Moreover, 
Scala is a statically typed language that 
compiles to the same bytecodes as Java 
and runs at comparable speed.6 

Several necessary compromises fol-
lowed from the interoperability goal; 
for instance, Scala adopts Java’s meth-
od overloading scheme, even though 
one could say multi-methods in the 
style of Fortress1 would have been 
cleaner. Another is that Scala allows 
null pointers, called by their origi-
nator, Tony Hoare, the “billion-dollar 
mistake.” This is again important for 
interoperability with Java. However, in 
pure Scala code null pointers are usu-
ally avoided in favor of the standard 
Option type. 

The second ingredient for Scala’s 
impressive adoption history is that it 
rides, and to a certain degree drives, 
the emerging trend of combining func-
tional and object-oriented program-
ming. Functional programming has 
emerged since the mid-2000s as an at-
tractive basis for software construction. 
One reason is the increasing impor-
tance of parallelism and distribution 
in computing. In the world of software 
development where updates require 
logs or replication for consistency, it is 
often more efficient to use replayable 
operations on immutable data instead; 
prominent examples are parallel tool-
kits like Akka18 and Spark.2 

Scala unifies areas of computing 
that were traditionally disparate (see 
the figure here). Its integration of 
functional and object-oriented con-
cepts leads to a scalable language, 
in the sense that the same concepts 
work well for very small, as well as 
very large, programs. Scala was voted 
the most popular scripting language 
on the JVM at the JavaOne conference 
2012. This was surprising, as script-
ing languages are usually dynamically 
typed, whereas Scala has an expres-
sive, precise static type system, relying 
on local type inference14,16 to obviate 

Scala stairs at École polytechnique fédérale de Lausanne inspired the Scala logo  
(http://www.scala-lang.org) designed by Gilles Dubochet.  
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combinators. Compared to equiva-
lent Java code, the Scala version is 
much more succinct. While brevity is 
not universally good, the difference 
in cognitive overhead in this example 
is striking. 

Instead of objects and inheritance, 
traditional functional languages often 
have algebraic data types that can be 
decomposed with pattern matching. 
An algebraic data type consists of a 
fixed number of alternatives, each with 
a different constructor. Scala allows 
pattern matches over class instances, 
obviating the need for another funda-
mental type constructor besides class-
es while keeping the language simpler 
and more uniform. 

As an example, consider the task 
of writing a type named Try that con-
tains either a returned value or an ex-
ception. A standard usage of a type like 
Try is to communicate exceptions 
across thread or machine boundaries. 
Consider a small use case: Assume we 
have a function checkAge that checks 
whether a person is of legal age and 
throws an exception if not. We may 
want to use Try like this: 

Try {
   checkAge(person)
   fetchRestrictedContent()
}

At a glance, this code looks similar 
to familiar try/catch exception han-
dling. However, the catch block is 
missing, and the result of the whole ex-
pression is either a Success instance 
carrying the result of fetchRes-
trictedContent or a Failure car-
rying an exception. While try/catch 
decouples the handling of error con-
ditions from the location of the error 
in the program, Try also decouples 
the handling from the time the error 
occurred and its physical location; if 
failures happen on, say, a Web server 
in response to a client request, we can 
collect all failures relating to the re-
quest, batch them up, and send them 
back to the client. 

Here is a possible definition of type 
Try followed by an explanation of the 
Try { ... } syntax: 

trait Try[T] { 
 def get: T 
} 

the need for most annoying type an-
notations. The type system and good 
performance characteristics of its 
implementation make it suitable for 
large mission-critical back-end appli-
cations, particularly those involving 
parallelism or concurrency. 

Every piece of data in Scala is con-
ceptually an object and every operation 
a method call. This is in contrast to 
functional languages in the ML family 
that are stratified into a core language 
and a module system. Scala’s approach 
leads to an economy of features, keep-
ing the language reasonably small in 
spite of its multi-paradigm nature. The 
functional object system also enables 
construction of high-level, flexible li-
braries that are easy for programmers to 
use; for instance, its hierarchy of collec-
tion classes provides a uniform frame-
work12 for sequences, sets, and maps 
that systematically cover multiple di-
mensions, from immutable to mutable 
and sequential to parallel17 and (for se-
quences) from strict to lazy evaluation. 

Here, we demonstrate Scala 
through a series of examples, starting 
with simple program fragments for 
how it identifies features from func-
tional and object-oriented program-
ming, then how its object model ab-
sorbs common concepts from module 
systems to achieve modularity and ab-
straction. This also demonstrates how 
Scala programmers can progress from 
a simple, high-level model to efficient 
sequential and parallel implementa-
tions of the model. 

Combining Features 
Scala combines features from the 
object-oriented and functional para-
digms in new and interesting ways. 
As an example of the object-oriented 
style, consider the following definition 
of a simple class of Persons: 

class Person(val name: 
String, val age: Int) { 
    override def toString = 

s”$name ($age)” 
} 

An instance of this class include 
fields name and age and provides an 
overridden toString implementa-
tion that returns a String describing 
the object. The syntax s"..." denotes 
an interpolated string that can contain 
computed expressions following the es-
cape character $. As an example of the 
functional style, here is a way to split a 
list of persons according to their age: 

val persons: List[Person] = ... 
val (minors, adults) = per-
sons.partition( _ .age < 18) 

The partition method takes a se-
quence and a predicate and returns a 
pair of sequences, one consisting of 
elements that satisfy the predicate, the 
other of elements that do not. The no-
tation _ .age < 18 is shorthand for the 
anonymous function x => x.age < 18. 

This is just one of many ways one 
can act on collections of objects 
through powerful purely functional 
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Scala’s integration 
of functional and 
object-oriented 
concepts leads  
to a scalable 
language, in  
the sense that  
the same concepts 
work well for  
very small,  
as well as very 
large, programs. 

case class Success[T](value: T) 
extends Try[T] { 
 def get = value 
} 
case class Failure[T](ex: Ex-
ception) extends Try[T] { 
 def get = throw ex 
} 

A “trait” is a generalization of Java’s 
interface that can contain both ab-
stract and concrete methods. The trait 
Try in this code defines a single ab-
stract method get; we add more meth-
ods to it later. The trait is parameter-
ized with a type parameter T meant to 
indicate the type of any returned value. 

Two subclasses extend Try: Suc-
cess and Failure. The case modifier 
in the class definitions enables pattern 
matching and also adds convenience 
methods to these classes. The Success 
class takes as a parameter the returned 
value, and the Failure class takes as 
parameter the thrown exception. 

Consider the following client code 
that processes a Try value: 

val x: Try[Int] = ... 
x match { 
  case Success(v) => 
    println(s”OK: $v”) 
  case Failure(ex: IOException) 
=> 
    println(s”I/O error”) 
  case Failure(ex) => 
    println(s”Other error $ex”) 
} 

Pattern matching in Scala is done 
in match expressions, which are 
conceptually generalizations of the 
switch statement in C and Java. 
A selector value (the x to the left of 
match) is matched against a number 
of cases, each consisting of a pattern 
followed by an arrow => and an ex-
pression that defines the result value 
in case the pattern matches. The ex-
pression here includes three patterns: 
The first matches any value of form 
Success(x) where x is arbitrary; the 
second matches any value of form 
Success(ex) where ex is of type IO-
Exception; and the third matches all 
other Failures. In all three, the re-
sult expression is a println invo-
cation. The return type of println is 
Unit, which is inhabited by the single 
atomic value (). 

The pattern-matching syntax and 
semantics is standard for a functional 
language. New is that pattern match-
ing applies to object types, not alge-
braic data types; for instance, the sec-
ond pattern matches at the same time 
on a Failure alternative with an em-
bedded IOException value. Dealing 
with open types (such as exceptions) 
has been a headache for standard 
functional pattern matching, which 
applies only to closed sums with a 
fixed number of alternatives. Scala 
sidesteps this issue by matching on 
object hierarchies instead. Having 
alternatives like Success and Fail-
ure be first-class types (as opposed 
to only Try) gives the dual benefits of 
uniformity and expressiveness. 

A possible criticism against this 
scheme is that the open-world as-
sumption means one cannot conclu-
sively verify that a pattern match is 
exhaustive, or contains a pattern for 
every possible selector value. Scala 
caters to this case by allowing sealed 
classes. We  thus could have declared 
Try like this: 

sealed trait Try[T] ... 

In this case all immediate sub-
classes of Try need to be defined 
together with it, and exhaustiveness 
checking for Try expressions would 
be enabled; that is, a sealed trait with 
some extending case classes behaves 
like an algebraic data type. 

Another criticism levied against 
Scala’s scheme is that a set of case class 
definitions tends to be more verbose 
than the definition of an algebraic data 
type. This is true but must be weighed 
against the fact that in a typical real-
world system the amount of type defi-
nitions should be small compared to 
the amount of code that operates on 
the types. 

We have seen the definition of type 
Try but still lack a convenient way of 
creating Try values from expressions 
that can throw exceptions, as in, say: 

Try { readFile(file) } 

We can achieve this through the follow-
ing definition: 

object Try { 
def apply[T](expr: => T) = 
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trait Function1[S, T] { 
 def apply(x: S): T 
} 

One characteristic of good func-
tional programming style is the defi-
nition of combinator libraries that 
take a data type and compose it in in-
teresting ways. What are useful com-
binators for Try values? One obvious 
choice is the combinator onSuccess, 
which takes a Try value and runs an-
other Try, returning function on its 
result, if the value was a success. A 
failure, on the other hand, would be 
returned directly. 

The classic object-oriented way 
of implementing apply would rely 
on dynamic dispatch: Define an ab-
stract method in trait Try and one 
implementing method in each sub-
class. Alternatively, we can use pat-
tern matching, defining the onSuc-
cess operator as a single method on 
trait Try: 

sealed trait Try[T] { 
 def onSuccess[U](f: T => 
Try[U]): Try[U] = this match 
{ 
   case Success(x) => f(x) 
   case failure => failure 
 } 
 ... 
} 

The onSuccess combinator meth-
od can be used like this: 

Try(x/y).onSuccess(z => Try(1/z)) 

Here, the argument to the onSuc-
cess call is an anonymous function 
that takes its parameter z to the left of 
the double arrow => and returns the 
result of evaluating the expression to 
the right of the arrow. Evaluation of 
the whole expression first divides x 
by y and, if successful, returns a Suc-
cess value containing the inverse 
of the result z. Any arithmetic excep-
tions lead to Failure results. The 
code is thus equivalent to: 

Try { val z = x/y; 1/z } === 
Try(1/(x/y))

More generally, x.onSuccess 
(z=>Try(f(z))) is equivalent to 
Try(f(x.get)). Both notational vari-

  try Success(expr) 
  catch { 
    case ex: Throwable => 
Failure(ex) 
  } 
} 

It includes several noteworthy 
points, and what gets defined is an ob-
ject named Try. An object is a single-
ton instance that implements a set of 
definitions; in the example, Try imple-
ments a method apply. Object defini-
tions are Scala’s replacement of the 
concept of static members, which, de-
spite being a common feature, are de-
cidedly non-object-oriented. Instead of 
defining static values in a class, we de-
fine a singleton object containing the 
same values. A common pattern in Sca-
la combines an object definition and a 
class or trait definition with the same 
name in a single source file. In this 
case, the object members are treated 
like the static members of a Java class. 

The Try object defines a method 
apply that takes a type parameter T 
and a value parameter expr of type 
=> T that describes a computation of 
type T. The type syntax => T describes 
“by-name” parameters. As indicated 
by the syntax, such parameters can 
be thought of as functions without an 
argument list. Expressions passed to 
them will not be evaluated at the call 
site; instead, they will be evaluated 
each time the parameter is derefer-
enced in the called function. Here is 
an example: 

Try.apply(x / y) 

In this case, the expression x / y will 
be passed unevaluated into the apply 
method. The apply method will then 
evaluate it at the point where the expr 
parameter is referenced as part of its 
Success result. If y is zero, this evalu-
ation yields a division-by-zero error 
that will be caught in the enclosing try/
catch expression and a Failure value 
will be returned. 

The Try expression can be written 
even shorter, like this: 

Try(x / y) 

Or, if blocks of multiple statements are 
used, like this: 

Try { ... } 

This code makes it look as if Try is a 
function that can be applied to an argu-
ment and that yields a value of type Try. 
It also makes use of another corner-
stone of Scala: Every object with an apply 
method can be used as a function value. 
This is Scala’s way of making functions 
first class; they are simply interpreted as 
objects with apply methods. 

Scala includes function types, writ-
ten in double-arrow notation (such 
as Int => String is the type of func-
tions from Int to String). But this 
type is simply a syntactic abbreviation 
for the object type Function1[Int, 
String]. Function1 is defined as a 
trait along the following lines: 

Code section 1: Graph signature.  

trait Graphs {
  type Node
  type Edge
  def pred(e: Edge): Node
  def succ(e: Edge): Node
  type Graph <: GraphSig
  trait GraphSig {
    def nodes: Set[Node]
    def edges: Set[Edge]
    def outgoing(n: Node): Set[Edge]
    def incoming(n: Node): Set[Edge]
    def sources: Set[Node]
    def topSort: Seq[Node]
    def subGraph(nodes: Set[Node]): Graph =
      newGraph(nodes, edges filter (e =>
        (nodes contains pred(e)) &&
        (nodes contains succ(e))))
  }
  def newGraph(nodes: Set[Node], edges: Set[Edge]): Graph
}
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ants are useful for various purposes. 
The onSuccess combinator is most 
useful when we want to combine sev-
eral operations to feed into each other, 
without assigning explicit names to 
the intermediate results; onSuccess 
corresponds to the pipe operator in 
Unix-like shells. We can define an 
exec command to launch processes: 

def exec(cmd: String): (in: 
Buffer) => Try[Buffer] = ...

And use onSuccess to connect in-
puts and outputs, given some fixed in-
put data stdin: 

stdin.onSuccess(exec(“ls”)) 
     .onSuccess(exec(“grep ^.*\.scala”)) 
     .onSuccess(exec(“xargs scalac”)) 

The simple all-or-nothing failure 
model is different from actual OS 
pipes; here, each command either suc-
ceeds after producing its output or fails 
without producing output. There is no 
failure after producing partial output, 
and output cannot be read by the next 
process until the previous process has 
terminated with success or failure. 
However, these features are easy to add 
with a level of indirection. Those famil-
iar with the Haskell school of function-
al programming8 will notice that Try 
implements the exception monad and 
onSuccess “bind” operation. 

Syntactically, most Scala program-
mers would write the expression a bit 
differently, like this: 

(stdin onSuccess exec(“ls”) 
       onSuccess exec(“grep 
.̂*\.scala”)
       onSuccess exec(“xargs 
scalac”))

This style makes use of another per-
vasive Scala principle: Any binary infix 
operator is expanded to a method call 
on one of its arguments. Most opera-
tors translate to a method call with the 
left operand as receiver; the only excep-
tion are operators ending in :, which 
are resolved to the right. An example 
is the list cons operator ::, which pre-
pends an element to the left of a list, as 
in 1::xs. 

The main benefit of this Scala con-
vention is its regularity. There are no 
special operators in the Scala syntax. 

Even operators (such as + and -) are 
conceptually method calls. So we could 
redefine onSuccess using the pipe 
char | as follows: 

stdin | exec(“ls”) | 
exec(“grep .̂*\.scala”) | 
exec(“xargs scalac”) 

Scaling Up 
The previous section explored the com-
bination of functional and object-ori-
ented programming in a limited exam-
ple where we defined one concrete type 
and several operations. Here, we show 
how Scala also applies to larger pro-
gram structures, including interfaces, 
high-level models for specifications, 
and lower-level implementations. 

The task is to find a general model 
for graphs. Abstractly, a graph is a 
structure consisting of nodes and edg-
es. In practice, there are many kinds of 
graphs that differ in the types of infor-
mation that are attached to the nodes 
and edges; for example, nodes might be 
cities and edges roads, or nodes might 
be persons and edges relationships. 

We would like to capture what 
graphs have in common using one ab-
stract structure that can then be aug-
mented with models and algorithms in 
a modular way. 

Code section 1 shows a trait for 
graphs. Simple as it is, the definition 
of this trait is conceptually similar to 
how the social graph is modeled in 
Scala at LinkedIn. 

The trait has two abstract type mem-
bers: Node and Edge. Scala is one of 
the few languages where objects can 

have not only fields and methods but 
also types as members. The type dec-
larations postulate that concrete sub-
classes of the trait Graphs will con-
tain some definitions of types Node 
and Edge. The definitions themselves 
are arbitrary, as long as implementa-
tions of the other abstract members of 
Graphs exist for them. 

Next come two abstract method 
definitions specifying that every Graph 
will define methods pred and succ 
that take an Edge to its predecessor 
and successor Node. The definition of 
the methods is deferred to concrete 
subclasses. 

The type of Graph itself is then 
specified. This is an abstract type that 
has as upper bound the trait Graph-
Sig; that is, we require that any con-
crete implementation of type Graph 
conforms to the trait. GraphSig de-
fines a set of fields and methods that 
apply to every graph; the two essential 
ones are the set of nodes and the set 
of edges. Furthermore, here are three 
convenience methods: 

 ! For each node the set of outgoing 
and incoming edges; 

 ! The set of sources, or nodes that 
do not have incoming edges; and

 ! A method subGraph that takes a 
set of nodes and returns a new graph 
consisting of these nodes and any 
edges of the original graph that con-
nect them. 

To show some more interesting al-
gorithmic treatment of graphs, we also 
include a method topSort for the to-
pological sorting of an acyclic graph. 
The method returns in a list a total 

Code section 2: Graph model. 

abstract class GraphsModel extends Graphs {
  class Graph(val nodes: Set[Node], val edges: Set[Edge])
        extends GraphSig {
    def outgoing(n: Node) = edges filter (pred(_) == n)
    def incoming(n: Node) = edges filter (succ(_) == n)
    lazy val sources = nodes filter (incoming(_).isEmpty)
    def topSort: Seq[Node] =
      if (nodes.isEmpty) List()
      else {
        require(sources.nonEmpty)
        sources.toList ++
        subGraph(nodes -- sources).topSort
      }
  }
  def newGraph(nodes: Set[Node], edges: Set[Edge]) =
    new Graph(nodes, edges)
}
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 ! xs map f, which applies a function 
f to each element of a collection xs 
and forms a collection of the results; 
and 

 ! xs flatMap f, which applies the 
collection-valued function f to each el-
ement of a collection xs and combines 
its results in a new collection using a 
concat or union operation. 

The next definition defines sources 
as a lazy val, meaning the defining 
expression for sources will not be ex-
ecuted at object initialization but the 
first time somebody accesses the value 
of sources (possibly never). However, 
after the first access, the value will be 
cached, so repeated evaluations of 
sources are avoided. Lazy evaluation 
is a powerful technique for saving work 
in purely functional computations. 
The Haskell programming language 
makes laziness the default everywhere. 
Since Scala can be both imperative and 
functional, it has instead opted for an 
explicit lazy modifier. 

The topSort method is a bit lon-
ger but still straightforward. If the 
graph is empty, the result is the empty 
list; otherwise, the result consists of a 
list containing all sources of the graph, 
followed by the topological sort of the 
subgraph formed by all other nodes. 
The ++ operation concatenates two 
collections. The implementation in 
code section 2 follows this specifica-
tion to the word and is therefore obvi-
ously correct. 

One case that still needs consider-
ation is what to return if the graph con-
tains cycles. No topological sorting can 
exist in it. We model this case through a 
require clause in the topSort meth-
od, specifying that every non-empty 
graph to be sorted must have a non-
empty set of sources. If this require-
ment does not hold at any stage of the 
recursive algorithm, a graph with only 
cycles is left, and require will throw 
an exception. For implementations in 
the following sections, a restriction to 
acyclic graphs is no longer explicitly 
checked. Rather, we assume it as part 
of the implicit contract of topSort. 

The final method to define is new-
Graph, trivial once the definition of 
Graph is fixed. 

At the level of GraphsModel, there 
is still no definition of the Node and 
Edge types; they can be arbitrary. Here 
is a concrete object myGraphModel 

ordering of nodes in the graph consis-
tent with the partial ordering implied 
by the graph edges; that is, nodes are 
ordered in the list in such a way the 
predecessor of every graph edge ap-
pears before its successor. 

Unlike Java interfaces, Scala traits 
can have abstract, as well as concrete, 
members; to illustrate, trait Graph-
Sig defines subGraph as a concrete 
method, whereas the other methods 
and fields are left abstract. 

Finally, Graphs declares an ab-
stract factory method newGraph 
that constructs an instance of type 
Graph from a set of nodes and a set 
of edges. Note because no concrete 
definition of Graph is given, new-
Graph cannot be defined as a con-
crete method at the level of Graphs 
because one does not know at this 
level how to construct a Graph. The 
method must be abstract. 

How can Graphs be implemented? 
A wide range of solutions is possible. 
We start with a high-level model given 
in code section 2. 

GraphsModel defines two concrete 
members: the Graph class and the 
newGraph factory method. 

The Graph class takes as param-
eters the sets of nodes and edges 
that make up the graph. Note both 
parameters are prefixed with val. 
This syntax turns each parameter 
into a class field that serves as con-
crete definition of the correspond-
ing parameter in GraphSig. With 
nodes and edges given, the incom-
ing and outgoing methods can be 
defined as simple filter operations 
on sets. As the name implies, a fil-
ter operation on a collection forms 
a new collection that retains all ele-
ments of the original collection that 
satisfy a certain predicate. Note the 
shorthand method syntax used in 
these predicates where the under-
score marks a parameter position; for 
instance (pred( _ ) == n) is short-
hand for the anonymous function x 
=> pred(x) == n. 

Here are two other commonly used 
collection transformers: 

Code section 3: Graph implementation. 

abstract class GraphsImpl extends Graphs {
  class Graph(val nodes: Set[Node],
              val edges: Set[Edge]) extends GraphSig {
    private val outEdges, inEdges =
      new mutable.HashMap[Node, Set[Edge]] {
        override def default(key: Node) = Set()
      }
    for (e <- edges) {
      inEdges(succ(e)) += e
      outEdges(pred(e)) += e
    }
    def outgoing(n: Node) = outEdges(n)
    def incoming(n: Node) = inEdges(n)
    def topSort: Seq[Node] = {
      val indegree = new mutable.HashMap[Node,Int]
      val sorted   = new mutable.ArrayBuffer[Node]
      for (x <- nodes) {
        indegree(x) = inEdges(x).size
        if (indegree(x) == 0) sorted += x
      }
      var frontier = 0
      while (frontier < sorted.length) {
        for (e <- outEdges(sorted(frontier))) {
          val x = succ(e)
          indegree(x) -= 1
          if (indegree(x) == 0) sorted += x
        }
        frontier += 1
      }
      sorted
    }
  }
  def newGraph(nodes: Set[Node], edges: Set[Edge]) =
    new Graph(nodes, edges)
}
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that inherits from GraphsModel, de-
fines the Node type to be a Person, 
and defines the Edge type to be a pair 
of persons. 

object myGraphModel extends 
GraphsModel {
 type Node = Person
 type Edge = (Person, Person)
 def succ(e: Edge) = { val (s, 
p) = e; s }
 def pred(e: Edge) = { val (s, 
p) = e; p }
}

The situation where edges are pairs 
of nodes, for whatever the definition 
of node is, appears quite common. To 
avoid repetitive code, we can factor 
out this concept into a separate trait 
like this: 

trait EdgesAsPairs extends 
Graphs { 
 type Edge = (Node, Node) 
 def succ(e: Edge) = { val (s, 
p) = e; s } 
 def pred(e: Edge) = { val (s, 
p) = e; p } 
}

Trait EdgesAsPairs extends Graphs 
with a definition of Edge as a pair of 
Node and the corresponding defini-
tions of pred and succ. Using this 
trait we can now shorten the definition 
of myGraphModel as follows: 

object myGraphModel extends 
GraphsModel with EdgesAsPairs {
   type Node = Person
}

The combination of two traits with 
the with connective is called “mixin 
composition.” An important aspect 
of mixin composition in Scala is that 
it is multi-way; that is, any trait taking 
part in the composition can define the 
abstract members of any other trait, 
independent of the order in which the 
traits appear in the composition. For 
instance, the myGraphModel object in 
the composition defines the type Node, 
referred to in EdgesAsPairs, whereas 
the latter trait defines Edge, referred to 
in GraphsModel. In this sense, mixin 
composition is symmetric in Scala. 
Order of traits still matters for deter-
mining initialization order, resolving 

super calls, and overriding concrete 
definitions. As usual, they are defined 
through a linearization of the mixin 
composition graph.11 

More efficient implementation. 
The GraphsModel class is concise and 
correct by construction but would win 
no speed record. Code section 3 pres-
ents a much faster implementation 
of Graphs, satisfying the same purely 
functional specification as GraphsMo-
del yet relies on mutable state inter-
nally. This illustrates an important 
aspect of the Scala “philosophy”: State 
and mutation are generally considered 
acceptable as long as one keeps the 
state local. If no one can observe state 
changes, it is as if they did not exist. 

The idea to speed up graph opera-
tions in GraphsImpl is to do some 
preprocessing. Incoming and outgoing 
edges of a node are kept in two maps—
inEdges and outEdges—initialized 
when the graph is created. The type 
of these maps is a mutable HashMap 
from Node to Set[Edge], defining a 
default value for keys that were not en-
tered explicitly; these keys are assumed 
to map to the empty set of nodes. 

The first statements in the body of 
class Graph in code section 3 define 
and populate the inEdges and out-
Edges maps. Class initialization state-
ments in Scala can be written directly 
in the class body; no separate construc-
tor is necessary. This has the advantage 
that immutable values can be defined 
directly using the usual val x = expr 
syntax; no initializing assignments 
from within a constructor are necessary. 

The final interesting definition in 
code section 3 is the one for topSort 
implemented as an imperative algo-
rithm using a while loop that main-

tains at each step the in-degree of all 
nodes not yet processed. The algorithm 
starts by initializing the indegree 
map and the output buffer sorted. 
The output list initially contains the 
Graphs’s sources, or the nodes with in-
degree zero. When an element is added 
to the output list, the stored in-degree 
value of all its successors is reduced. 

Whenever the in-degree of a node 
reaches zero, the node is appended 
to the output list. This is achieved 
through a single while loop that tra-
verses the (growing) sorted buffer 
from the left, with variable frontier 
indicating the extent of nodes already 
processed, while elements are simul-
taneously added at the right. Intui-
tively, the while loop progresses the 
same way as the recursive calls in code 
section 2. 

Going parallel. The GraphsImpl 
implementation from code section 3 
is efficient on a single processor core. 
While this may be good enough for 
small- and mid-size problems, once in-
put data exceeds a certain size we want 
to use all available processing power 
and parallelize the algorithm to run on 
multiple CPU cores. 

Parallel programming has a repu-
tation for being difficult and error-
prone. Here, we consider a few alter-
natives of parallelizing the topSort 
algorithm and see how Scala’s high-
level abstractions allow us to restruc-
ture the algorithm to make good use of 
the available resources. 

Scala provides a set of parallel col-
lection classes. Each of them (such as 
Seq, Set, and Map) has a parallel coun-
terpart (such as ParSeq, ParSet, and 
ParMap), respectively. The contract 
is that operations on a parallel collec-

Code section 4: Parallel topSort using AtomicInteger. 

import java.util.concurrent.atomic.AtomicInteger
def topSort: Seq[Node] = {
  val indegree = nodes.map(n =>
    (n, new AtomicInteger(inEdges(n).size))).toMap
  def sort(frontier: ParSet[Node]): ParSeq[ParSet[Node]] =
    if (frontier.isEmpty)
      ParSeq()
    else
      frontier +: sort (
        frontier.flatMap(x =>
          outgoing(x).par.map(succ).filter(y =>
            indegree(y).decrementAndGet == 0)))
  sort(sources.par).flatten.seq
}
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celebrities have tens of millions; for 
example, in February 2014, Charlie 
Sheen had 10.7 million followers, 
Barack Obama 41.4 million, and Jus-
tin Bieber 49.6 million. 

If we were to run an algorithm over 
cyclic graphs but implemented it in a 
style similar to the one in code section 
4 on Twitter’s graph, then for every one 
of Justin Bieber’s almost 50 million 
followers, we would have to execute 
compare-and-swap operations on the 
very AtomicInteger used to hold 
Bieber’s indegree. Individual hubs in 
the graph thus become bottlenecks 
and impede scalability. 

This means we need to try a differ-
ent strategy. The key is to restructure 
the access patterns so no two threads 
ever write to the same memory location 
concurrently. If we achieve that, we can 
remove the synchronization and thus 
the bottlenecks. 

The new code is in code section 
5. Like the previous version in code 
section 4, we use a recursive method 
but instead of a Map that holds At-
omicInteger objects use a separate 
Counters data structure to hold the 
indegrees. Instead of directly decre-
menting the indegree of each target 
node we encounter, we first group 
the edges by their successor field, 
like this: 

val m = frontier.
flatMap(outgoing).groupBy(succ) 

The flatMap and groupBy opera-
tions are executed as two data-parallel 
steps since frontier is a ParIter-
able. We can use this more general 
type here instead of ParSet in code 
section 5 because the groupBy op-
eration already ensures unique keys. 
The result m of the operation is a Par-
Map that maps each node in the next 
frontier to the set of its incoming 
edges. The algorithm proceeds by 
performing another parallel iteration 
over its elements that adjusts the in-
degree counters. 

The key innovation is that all paral-
lel operations iterate over subsets of 
nodes, and all writes from within par-
allel loops go to the indegree map 
at the loop index. Since loop indices 
are guaranteed to be disjoint, there 
can be no write conflicts if the Coun-
ters implementation is designed to 

tion class (such as ParSeq) may be 
executed in parallel, and transformer 
operations (such as map and filter) 
will again return a parallel collection. 

This way, a chain of operations my-
seq.map(f).map(g) on a ParSeq ob-
ject myseq will synchronize after each 
step, but f and g on their own may be 
applied to elements of the collection in 
parallel. Methods .par and .seq can 
be used to convert a sequential into a 
parallel collection and vice versa. 

A first cut at parallelizing topSort 
could start with the imperative code 
from code section 3 and add coarse-
grain locks to protect the two shared 
data structures—the indegree map 
and the result buffer. Unfortunately, 
however, this approach does not scale, 
as every access to one of these objects 
will need to acquire the correspond-
ing lock. The second attempt would 
be to use locks on a finer-grain level. 
Rather than protect the indegree 
map with one global lock, we could 
use a ConcurrentHashMap or roll 
our own by storing AtomicInteger 
objects instead of Ints in the map; 
the corresponding code is shown in 
code section 4. The AtomicInte-
gers add a layer of indirection, each 
of which can be changed individually 
through an atomic decrementAnd-

Get operation without interfering 
with the other nodes. 

The second point of contention 
is the result buffer. In code section 4 
we switch back to a more functional 
style. The topSort method now takes 
the frontier of the currently processed 
graph as argument and returns a se-
quence of sets of node. Each set repre-
sents a cut through the graph of nodes 
at the same distance from one of the 
original sources. The +: operation is 
the generalization of the list cons op-
erator to arbitrary sequences; it forms 
a new sequence from a leading ele-
ment and a trailing sequence. The se-
quence of sets is flattened (in parallel) 
at the end of the method. 

While this implementation is a 
nice improvement over coarse-grain 
locking, it would not exhibit very good 
performance for many real-world 
inputs. The problem is that, empiri-
cally, most graph problems are scale-
free; the degree distribution often fol-
lows a power law, meaning the graph 
has a low diameter (longest distance 
between two nodes), and most nodes 
have only a few connections, but a 
few nodes have an extremely large 
number of connections. On Twitter, 
for example, most people have close 
to zero followers, even though a few 

Code section 5: Parallel topSort using groupBy. 

def topSort = {
  val indegree = new Counters(nodes.par)(inEdges(_).size)
  def sort(frontier: ParIterable[Node]): ParSeq[ParIterable[Node]] =  
 if (frontier.isEmpty)
  ParSeq()
    else
      frontier +: sort {
        val m = frontier.flatMap(outgoing).groupBy(succ)
        for ((s, es) <- m if indegree.decr(s, es.size) == 0) yield s
      }
  sort(sources.par).flatten.seq
}

Power consumption for typical components.Performance evaluation. 

# Nodes Listing 2 Listing 3 Listing 4 Listing 5

2,000 27.5056 0.0082 0.0454  0.1006

20,000 — 0.1150 0.1714 0.1686 

200,000 — 1.9078 1.3472 1.0096 

Running time in seconds for code sections 2–5 on graphs of various sizes. Graphs have 10x as many edges 
as nodes. The optimized implementations are orders of magnitude faster than the straightforward model. 
Parallelization adds overhead for small graphs but yields speedup up to 1.9x for large graphs. 
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The key is  
to restructure  
the access patterns  
so no two threads  
ever write 
to the same 
memory location 
concurrently. 

allow concurrent writes to disjoint 
elements. In this case, no fine-grain 
synchronization is necessary because 
synchronization happens at the level 
of bulk operations. 

The Counters class is a general ab-
straction implemented like this: 

class Counters[T](base: 
ParSet[T])(init: T => Int) {
  private val index = base.
zipWithIndex.toMap
  private val elems = new 
Array[Int](index.size)
  for (x <- base) 
elems(index(x)) = init(x)
  def decr(x: T, delta: Int): 
Int = {
    val idx = index(x)
    elems(idx) -= delta
    elems(idx)
 }
}

The constructor takes a parallel set 
base and an initializer init and uses 
zipWithIndex to assign a unique in-
teger index to each element in base. 
The following toMap call turns the 
result set of (T, Int) pairs into a paral-
lel map index with type ParMap[T, 
Int]. The actual counters are stored 
in an integer array elems. The method 
decr, which decrements the counter 
associated with object x, first looks up 
the index of x, then modifies the corre-
sponding slot in elems. Counters for 
different elements can thus be written 
to concurrently without interference. 

The result buffer handling in code 
section 5 is similar to the previous im-
plementation in code section 4. Nodes 
are added en bloc, and the result buf-
fer is flattened (in parallel) at the end of 
method topSort. 

We have thus explored how Sca-
la’s concepts apply to larger program 
structures and how the language and 
the standard library support a scalable 
development style, enabling program-
mers to start with a high-level, “obvi-
ously correct” implementation that 
can be refined gradually into more so-
phisticated versions. 

A quick performance evaluation 
is outlined in the table here. For a 
small graph with just 2,000 nodes and 
20,000 edges, the naïve implementa-
tion takes 27 seconds on an eight-
core Intel X5550 CPU at 2.67 GHz, 

whereas the fast sequential version 
(code section 3) runs in under 0.01 
seconds. Compared to the optimized 
sequential version, parallelization ac-
tually results in up to 10x slower per-
formance for small graphs but yields 
speedups of up to 1.9x for a graph 
with 200,000 nodes and two million 
edges. All benchmarks were run 10 
times; the numbers reported in the 
table are averages of the last five runs. 
Input graphs were created using the 
R-Mat algorithm,5 reversing conflict-
ing edges to make the graphs acyclic. 
The overall achievable performance 
and parallel speedups depend a lot 
on the structure of the input data; 
for example, picking a sparser input 
graph with two million nodes and 
only 20,000 edges yields speedups of 
up to 3.5x compared to the optimized 
sequential version. 

Finally, how can we convince our-
selves that the efficient implementa-
tions actually conform to the high-
level model? Since all versions are 
executable code with the same inter-
face, it is easy to implement automat-
ed test suites using one of the available 
testing frameworks. 

Conclusion 
We have offered a high-level introduc-
tion to Scala, explaining what makes 
it appealing to developers, especially 
its focus on pragmatic choices that 
unify traditionally disparate program-
ming-language philosophies (such as 
object-oriented and functional pro-
gramming). The key lesson is these 
philosophies need not be contradic-
tory in practice. Regarding functional 
and object-oriented programming, 
one fundamental choice is where to 
define pieces of functionality; for ex-
ample, we defined pred and succ on 
the level of Graphs so they are func-
tions from edges to nodes. A more 
object-oriented approach would be 
to put them in a bound of the edge 
type itself; that is, every edge would 
have parameterless pred and succ 
methods. One thing to keep in mind 
is that this approach would have pre-
vented defining type Edge = (Node, 
Node) because tuples do not have 
these methods defined. Neither of 
the variants is necessarily better than 
the other, and Scala gives program-
mers the choice. Choice also involves 
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responsibility, and in many cases 
novice Scala programmers need guid-
ance to develop an intuitive sense of 
how to structure programs effectively. 
Premature abstraction is a common 
pitfall. Ultimately though, every piece 
of data is conceptually an object and 
every operation is a method call. All 
functionality is thus a member of 
some object. Research branches of 
the language19 go even further, defin-
ing control structures (such as condi-
tionals, loops, and pattern matching) 
as method calls. 

The focus on objects and modu-
larity makes Scala a library-centric 
language; since everything is an ob-
ject, everything is a library module. 
Consequently, Scala makes it easy for 
programmers to define high-level and 
efficient libraries and frameworks—
important for scaling programs from 
small scripts to large software sys-
tems. Its syntactic flexibility, paired 
with an expressive type system, makes 
Scala a popular choice for embedding 
domain-specific languages (DSLs). 
The main language constructs for 
component composition are based on 
traits that can contain other types, in-
cluding abstract ones, as members.13 
Scala’s traits occupy some middle 
ground between mixins3 and Schärli’s 
traits.22 As in the latter, they support 
symmetric composition so mutual 
dependencies between traits are al-
lowed, but, as with traditional mixins, 
Scala traits also allow stackable modi-
fications that are resolved through a 
linearization scheme. Another impor-
tant abstraction mechanism in Scala 
is implicit parameters that let one 
emulate the essential capabilities of 
Haskell’s type classes.15 

Performance scalability is another 
important dimension. We have seen 
how we can optimize and parallelize 
programs using libraries included in 
the standard Scala distribution. Cli-
ents of the graph abstraction did not 
need to be changed when the internal 
implementation was replaced with a 
parallel one. For many real-world ap-
plications this level of performance 
is sufficient. However, we cannot 
expect to squeeze every last drop of 
performance out of modern hard-
ware platforms, as with dedicated 
graph-processing languages (such as 
GraphLab10 and Green Marl7). With 

a bit more effort, though, program-
mers can achieve even these levels of 
performance by adding runtime com-
pilation and code generation to their 
programs. Lightweight modular stag-
ing (LMS)20 and Delite4,9 are a set of 
techniques and frameworks that en-
able embedded DSLs and “active” li-
braries that generate code from high-
level Scala expressions at runtime, 
even for heterogeneous low-level tar-
get languages (such as C, CUDA, and 
OpenCL). DSLs developed through 
Delite have been shown to perform 
competitively with hand-optimized C 
code. For graph processing, the Op-
ti-Graph DSL23 (embedded in Scala) 
performs on par with the standalone 
language Green Marl. Many Scala fea-
tures are crucial for LMS and Delite to 
implement compiler optimizations in 
a modular and extensible way.21 

Scala’s blend of traditionally dis-
parate philosophies provides benefits 
greater than the sum of all these parts.  
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