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This is the next installment in a series of articles about the essential diagrams used within the Unified
Modeling Language, or UML. In my previous article on the UML's class diagram, (The Rational Edge,
September 2004), I described how the class diagram's notation set is the basis for all UML 2's structure
diagrams. Continuing down the track of UML 2 structure diagrams, this article introduces the component
diagram.

The diagram's purpose

The component diagram's main purpose is to show the structural relationships between the components of a

system. In UML 1.1, a component represented implementation items, such as files and executables. Unfortunately, this conflicted with the more
common use of the term component," which refers to things such as COM components. Over time and across successive releases of UML, the
original UML meaning of components was mostly lost. UML 2 officially changes the essential meaning of the component concept; in UML 2,
components are considered autonomous, encapsulated units within a system or subsystem that provide one or more interfaces. Although the
UML 2 specification does not strictly state it, components are larger design units that represent things that will typically be implemented using
replaceable" modules. But, unlike UML 1.x, components are now strictly logical, design-time constructs. The idea is that you can easily reuse
and/or substitute a different component implementation in your designs because a component encapsulates behavior and implements specified
interfaces. [Note: The physical items that UML1 x called components are now called "artifacts" in UML 2. An artifact is a physical unit, such
as a file, executable, script, database, etc. Only artifacts live on physical nodes; classes and components do not have "location." However, an
artifact may manifest components and other classifiers (i.e., classes). A single component could be manifested by multiple artifacts, which
could be on the same or different nodes, so a single component could indirectly be implemented on multiple nodes.]
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In component-based development (CBD), component diagrams offer architects a natural format to begin modeling a solution. Component
diagrams allow an architect to verify that a system's required functionality is being implemented by components, thus ensuring that the eventual
system will be acceptable.

In addition, component diagrams are useful communication tools for various groups. The diagrams can be presented to key project stakeholders
and implementation staff. While component diagrams are generally geared towards a system's implementation staff, component diagrams can
generally put stakeholders at ease because the diagram presents an early understanding of the overall system that is being built.

Developers find the component diagram useful because it provides them with a high-level, architectural view of the system that they will be
building, which helps developers begin formalizing a roadmap for the implementation, and make decisions about task assignments and/or
needed skill enhancements. System administrators find component diagrams useful because they get an early view of the logical software
components that will be running on their systems. Although system administrators will not be able to identify the physical machines or the
physical executables from the diagram, a component diagram will nevertheless be welcomed because it provides early information about the
components and their relationships (which allows sys-admins to loosely plan ahead).

The notation
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The component diagram notation set now makes it one of the easiest UML diagrams to draw. Figure 1 shows a simple component diagram
using the former UML 1.4 notation; the example shows a relationship between two components: an Order System component that uses the
Inventory System component. As you can see, a component in UML 1.4 was drawn as a rectangle with two smaller rectangles protruding from
its left side.

Figure 1: This simple component diagram shows the Order System's general dependency using UML 1.4 notation
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The above UML 1.4 notation is still supported in UML 2. However, the UML 1.4 notation set did not scale well in larger systems. For that
reason, UML 2 dramatically enhances the notation set of the component diagram, as we will see throughout the rest of this article. The UML 2
notation set scales better, and the notation set is also more informative while maintaining its ease of understanding.

Let's step through the component diagram basics according to UML 2.

The basics

Drawing a component in UML 2 is now very similar to drawing a class on a class diagram. In fact, in UML 2 a component is merely a
specialized version of the class concept. Which means that the notation rules that apply to the class classifier also apply to the component
classifier. (If you read and understood my previous article [http://www-
106.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index .html] regarding structure diagrams in general, and class
diagrams in particular, you are well under way to understanding component diagrams.)

In UML 2, a component is drawn as a rectangle with optional compartments stacked vertically. A high-level, abstracted view of a component in
UML 2 can be modeled as just a rectangle with the component's name and the component stereotype text and/or icon. The component
stereotype's text is «component»" and the component stereotype icon is a rectangle with two smaller rectangles protruding on its left side (the
UML 1 4 notation element for a component). Figure 2 shows three different ways a component can be drawn using the UML 2 specification.

Figure 2: The different ways to draw a component's name compartment
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When drawing a component on a diagram, it is important that you always include the component stereotype text (the word "component" inside
double angle brackets, as shown in Figure 2) and/or icon. The reason? In UML, a rectangle without any stereotype classifier is interpreted as a
class element. The component stereotype and/or icon distinguishes this rectangle as a component element.

Modeling a component's interfaces Provided/Required

The Order components drawn in Figure 2 all represent valid notation elements; however, a typical component diagram includes more
information. A component element can have additional compartments stacked below the name compartment. As mentioned earlier, a
component is an autonomous unit that provides one or more public interfaces. The interfaces provided represent the formal contract of services
the component provides to its consumers/clients. Figure 3 shows the Order component having a second compartment that denotes what
interfaces the Order component provides and requires. [Note: Even though components are autonomous units they still may depend on the
services provided by other components. Because of this, documenting a component's required interfaces is useful.]

Figure 3: The additional compartment here shows the interfaces that the Order component provides and requires
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In the example Order component shown in Figure 3, the component provides the interfaces of OrderEntry and AccountPayable. Additionally,
the component also requires another component that provides the Person interface. [Note: Figure 3 does not show the Order component in its
complete context. In a real-world model the OrderEntry, AccountPayable, and Person interfaces would be present in the system's model.]

Another approach to modeling a component's interfaces
UML 2 has also introduced another way to show a component's provided and required interfaces. This second way builds off the single

rectangle, with the component's name in it, and places what the UML 2 specification calls interface symbols" connected to the outside of the
rectangle. This second approach is illustrated in Figure 4.

Figure 4: An alternative approach (compare with Figure 3) to showing a component's provided/required interfaces using interface
symbols
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In this second approach the interface symbols with a complete circle at their end represent an interface that the component provides — this
lollipop" symbol is shorthand for a realization relationship of an interface classifier. Interface symbols with only a half circle at their end (a k.a.
sockets) represent an interface that the component requires (in both cases, the interface's name is placed near the interface symbol itself). Even
though Figure 4 looks much different from Figure 3, both figures provide the same information — i.e., the Order component provides two
interfaces: OrderEntry and AccountPayable, and the Order component requires the Person interface.

Modeling a component's relationships
When showing a component's relationship with other components, the lollipop and socket notation must also include a dependency arrow (as

used in the class diagram). On a component diagram with lollipops and sockets, note that the dependency arrow comes out of the consuming
(requiring) socket and its arrow head connects with the provider's lollipop, as shown in Figure 5.

Figure 5: A component diagram that shows how the Order System component depends on other components
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Figure 5 shows that the Order System component depends both on the Customer Repository and Inventory System components. Notice in
Figure 5 the duplicated names of the interfaces CustomerLookup" and ProductAccessor." While this may seem unnecessarily repetitive in this
example, the notation actually allows for different interfaces (and differing names) on each component depending on the implementation
differences (e.g., one component provides an interface that is a subclass of a smaller required interface).

Subsystems

In UML 2 the subsystem classifier is a specialized version of a component classifier. Because of this, the subsystem notation element inherits



all the same rules as the component notation element. The only difference is that a subsystem notation element has the keyword of subsystem"
instead of component," as shown in Figure 6.

Figure 6: An example of a subsystem element
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The UML 2 specification is quite vague on how a subsystem is different from a component. The specification does not treat a component or a
subsystem any differently from a modeling perspective. Compared with UML 1 .x, this UML 2 modeling ambiguity is new. But there's a reason.
In UML 1 x, a subsystem was considered a package, and this package notation was confusing to many UML practitioners; hence UML 2
aligned subsystems as a specialized component, since this is how most UML 1.x users understood it. This change did introduce fuzziness into
the picture, but this fuzziness is more of a reflection of reality versus a mistake in the UML 2 specification.

So right now you are probably scratching your head wondering when to use a component element versus a subsystem element. Quite frankly, I
do not have a direct answer for you. I can tell you that the UML 2 specification says that the decision on when to use a component versus a
subsystem is up to the methodology of the modeler. I personally like this answer because it helps ensure that UML stays methodology
independent, which helps keep it universally usable in software development.

Beyond the basics

The component diagram is one of the easier-to-understand diagrams, so there is not much to cover beyond the basics. However, there is one
area you may consider somewhat advanced.

Showing a component's internal structure

There will be times when it makes sense to display a component's internal structure. In my previous article on the class diagram, I showed how
to model a class's internal structure; here I will focus on how to model a component's internal structure when it is composed of other
components.

To show a component's inner structure, you merely draw the component larger than normal and place the inner parts inside the name

compartment of the encompassing component. Figure 7 show's the Store's component inner structure.

Figure 7: This component's inner structure is composed of other components
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Using the example shown in Figure 7, the Store component provides the interface of OrderEntry and requires the interface of Account. The
Store component is made up of three components: Order, Customer, and Product components. Notice how the Store's OrderEntry and Account
interface symbols have a square on the edge of the component. This square is called a port. In a simplistic sense, ports provide a way to model
how a component's provided/required interfaces relate to its internal parts. [Note: In actuality, ports are applicable to any type of classifier (i.e.,
to a class or some other classifier your model might have). To keep this article simple, I refer to ports in their use on component classifiers.

By using a port, our diagram is able to de-couple the internals of the Store component from external entities. In Figure 7, the OrderEntry port
delegates to the Order component's OrderEntry interface for processing. Also, the internal Customer component's required Account interface is
delegated to the Store component's required Account interface port. By connecting to the Account port, the internals of the Store component
(e.g. the Customer component) can have a local representative of some unknown external entity which implements the port's interface. The
required Account interface will be implemented by a component outside of the Store component. [Note: Typically, when you draw a
dependency relationship between a port and an interface, the dependent (requiring) interface will handle all the processing logic at execution
time. However, this is not a hard and fast rule — it is completely acceptable for the encompassing component (e.g., the Store component in our
example) to have its own processing logic instead of merely delegating the processing to the dependant interface.]

You will also notice in Figure 7 that the interconnections between the inner components are different from those shown in Figure 5. This is
because these depictions of internal structures are really collaboration diagrams nested inside the classifier (a component, in our case), since



collaboration diagrams show instances or roles of classifiers. The relationship modeled between the internal components is drawn with what
UML calls an assembly connector." An assembly connector ties one component's provided interface with another component's required
interface. Assembly connectors are drawn as lollipop and socket symbols next to each other. Drawing these assembly connectors in this manner
makes the lollipop and socket symbols very easy to read.

Conclusion

The component diagram is a very important diagram that architects will often create early in a project. However, the component diagram's
usefulness spans the life of the system. Component diagrams are invaluable because they model and document a system's architecture. Because

component diagrams document a system's architecture, the developers and the eventual system administrators of the system find this work
product-critical in helping them understand the system.

Resources
Learn
e Understand more about how the new functionality of the UML Modeler component common to both IBM Rational Software Architect
Standard Edition Version 7.5 and IBM Rational Software Architect for WebSphere Software Version 7.5 by reading this article Using the
new features of UML Modeler in IBM Rational Software Architect Version 7.5.

o Understand more about the new functionality of Rational Software Architect for WebSphere Software Version 7.5 by reading this article
Overview of Rational Software Architect for WebSphere Software Version 7.5.

e Learn about Rational Tau.

e Learn about other applications in the IBM Rational Software Delivery Platform, including collaboration tools for parallel development
and geographically dispersed teams, plus specialized software for architecture management, asset management, change and release
management, integrated requirements management, process and portfolio management, and quality management. You can find product

manuals, installation guides, and other documentation in the IBM Rational Online Documentation Center.

o Visit the Rational software area on developerWorks for technical resources and best practices for Rational Software Delivery Platform
products.

o Explore Rational computer-based, Web-based, and instructor-led online courses. Hone your skills and learn more about Rational tools
with these courses, which range from introductory to advanced. The courses on this catalog are available for purchase through computer-

based training or Web-based training. Some of the "Getting Started" courses are available free of charge.

e Subscribe to the IBM developerWorks newsletter, a weekly update on the best of developerWorks tutorials, articles, downloads,
community activities, webcasts and events.

e Browse the technology bookstore for books on these and other technical topics.

Get products and technologies

e Download a trial version of Rational Software Modeler.
e Download a trial version of Rational Software Architect standard edition.
e Download Rational Software Architect for Websphere Software.

e Download Other IBM product evaluation versions and get your hands on application development tools and middleware products from
DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

Discuss
e Check out developerWorks blogs and get involved in the developerWorks community.

e Join the Development Tools forum on developerWorks to discuss Rational Application Developer, Rational Software Architect, and
Rational Software Modeler.

e Join the Rational Tau forum on developerWorks.
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@giustin - Both could be appropriate - it will depend on what you are trying to capture in the diagram.

If you are trying to capture the functional side of the interact then the component model would be the most appropriate. If you are wanting to
show how they interact when they are deployed you would use the deployment model.

I don't know exactly what you are trying to capture, but my guess is probably the component model.

Let me also give you some unsolicited advice to question you have not asked. If you are wanting to model specific instances of these CRM
components for a specific deployment you should check out RSA v7.5's topology modeling. I personally find the topology deployment models
a lot nicer than the UML Deployment Diagrams. The topology models are not UML based, but I find them useful. You can find out more
information in the RSA tutorial or a little more advance information in this dW article

http://www .ibm.com/developerworks/rational/library/09/creatingphysicaltopologydiagramrsa/index.html
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I'm a little confused between component and deployment diagram. I need to describe a UML modelling of a integration between two
applications (social networking and CRM), and I don't know what is the most apropriated to create it. I read this article (http://bit.ly/dnVs26) in
the developer.com website and appear that component diagram is the correct, but when I read your previous article (http://bit.ly/4s9Ih) I did
understand that the deployment is the corrrect to use. What do you think about? Thank you so much.

Posted by giustin on 02 May 2010
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