
Sign in (or register)English

Technical topics Evaluation software Community Events

UML basics: The class diagram
An introduction to structure diagrams in UML 2

Donald Bell (bellds@us.ibm.com), IT Architect, IBM Corporation

Summary: from The Rational Edge: As the most important example of the new structure diagram type in UML 2, the class diagram can be
used by analysts, business modelers, developers, and testers throughout the software development lifecycle. This article offers a comprehensive
introduction.

Date: 15 Sep 2004
Level: Introductory
Also available in: Korean Vietnamese

Activity: 1068364 views
Comments: 20 (View | Add comment - Sign in)

 Average rating (2425 votes)
Rate this article

This is the next installment in a series of articles about the essential diagrams used within the Unified
Modeling Language, or UML. In my previous article on sequence diagrams, I shifted focus away
from the UML 1.4 spec to OMG's Adopted 2.0 Draft Specification of UML (a.k.a. UML 2). In this
article, I will discuss Structure Diagrams, which is a new diagram category that has been introduced
in UML 2. Because the purpose of this series is to educate people about the notation elements and
their meanings, this article focuses mainly on the class diagram. The reason for this will soon
become clear. Subsequent articles will cover other diagrams included in the structure category.

I also want to remind readers that this series is about UML notation elements, and that these articles
are not meant to provide guidance on the best approach for modeling, or how to determine what
things should be modeled in the first place. Instead, the purpose of this article and of the series in general is to help with a basic understanding
of notation elements — their syntax and their meanings. With this knowledge you should be able to read diagrams and create your own
diagrams using the proper notation elements.

This article assumes you have a rudimentary understanding of object-oriented design. For those of you who need a little assistance with OO
concepts, you might try the Sun brief tutorial Object-Oriented Programming Concepts. Reading the sections "What Is a Class?" and "What Is
Inheritance?" should give you enough understanding to make this article useful. In addition, David Taylor's book, Object-Oriented
Technologies: A Manager's Guide, offers an excellent, high-level explanation of object-oriented design without requiring an in-depth
understanding of computer programming.

The yin and yang of UML 2

Resources we think you'll like
Free 90 day trial of IBM UML tools
UML to/from Java
UML to/from WSDL, JEE, C++, and more
Working with large UML models
Demo: Structural analysis diagrams
IBM Academic Initiative
Drive your UML modeling process with the new IBM Rational Software Architect Version 8.0 solution
IBM Rational Software Architect wiki
Conversion of Elements in UML and BPMN Models in RSA

In UML 2 there are two basic categories of diagrams: structure diagrams and behavior diagrams. Every UML diagram belongs to one these two
diagram categories. The purpose of structure diagrams is to show the static structure of the system being modeled. They include the class,
component, and or object diagrams. Behavioral diagrams, on the other hand, show the dynamic behavior between the objects in the system,
including things like their methods, collaborations, and activities. Example behavior diagrams are activity, use case, and sequence diagrams.

Structure diagrams in general

As I have said, structure diagrams show the static structure of the system being modeled. focusing on the elements of a system, irrespective of
time. Static structure is conveyed by showing the types and their instances in the system. Besides showing system types and their instances,

http://www.ibm.com/developerworks/dwwi/DWAuthRouter?m=loginpage&lang=en&d=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Frational%2Flibrary%2Fcontent%2FRationalEdge%2Fsep04%2Fbell%2Findex.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#SELECTLANG
http://www.ibm.com/developerworks/
http://www.ibm.com/developerworks/topics/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/community/
http://www.ibm.com/developerworks/events/
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#author1
mailto:bellds@us.ibm.com?subject=The%20class%20diagram&cc=robinw@us.ibm.com
http://www.ibm.com/developerworks/kr/library/sep04/bell/
http://www.ibm.com/developerworks/vn/library/bell/
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#icomments
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#iratings
http://www.ibm.com/developerworks/rational/library/3101.html
http://java.sun.com/docs/books/tutorial/java/concepts/
http://www-01.ibm.com/software/rational/offerings/architecture/
http://www.ibm.com/developerworks/rational/library/08/1202_berfeld/
https://www.ibm.com/developerworks/wikis/display/RSA/Articles
http://www.ibm.com/developerworks/rational/library/10/comparing-and-merging-uml-models-in-ibm-rational-software-architect/index.html
http://public.dhe.ibm.com/software/dw/richmedia/architecture/kits/archkit1/Boulder/demos/rsa4_structural/RSA_Structural_Analysis.html?S_TACT=105AGX78&S_CMP=ARCHLP
https://www.ibm.com/developerworks/university/academicinitiative/
http://www.ibm.com/developerworks/rational/library/10/update-uml-modeling-features-in-rsa-v8-part1/index.html
https://www.ibm.com/developerworks/wikis/display/RSA/Home/
http://www.ibm.com/developerworks/rational/library/model-element-conversion-wizard/index.html

structure diagrams also show at least some of the relationships among and between these elements and potentially even show their internal
structure.

Structure diagrams are useful throughout the software lifecycle for a variety of team members. In general, these diagrams allow for design
validation and design communication between individuals and teams. For example, business analysts can use class or object diagrams to model
a business's current assets and resources, such as account ledgers, products, or geographic hierarchy. Architects can use the component and
deployment diagrams to test/verify that their design is sound. Developers can use class diagrams to design and document the system's coded (or
soon-to-be-coded) classes.

The class diagram in particular

UML 2 considers structure diagrams as a classification; there is no diagram itself called a "Structure Diagram." However, the class diagram
offers a prime example of the structure diagram type, and provides us with an initial set of notation elements that all other structure diagrams
use. And because the class diagram is so foundational, the remainder of this article will focus on the class diagram's notation set. By the end of
this article you should have an understanding of how to draw a UML 2 class diagram and have a solid footing for understanding other structure
diagrams when we cover them in later articles.

The basics

As mentioned earlier, the purpose of the class diagram is to show the types being modeled within the system. In most UML models these types
include:

a class
an interface
a data type
a component.

UML uses a special name for these types: "classifiers." Generally, you can think of a classifier as a class, but technically a classifier is a more
general term that refers to the other three types above as well.

Class name

The UML representation of a class is a rectangle containing three compartments stacked vertically, as shown in Figure 1. The top compartment
shows the class's name. The middle compartment lists the class's attributes. The bottom compartment lists the class's operations. When drawing
a class element on a class diagram, you must use the top compartment, and the bottom two compartments are optional. (The bottom two would
be unnecessary on a diagram depicting a higher level of detail in which the purpose is to show only the relationship between the classifiers.)
Figure 1 shows an airline flight modeled as a UML class. As we can see, the name is Flight, and in the middle compartment we see that the
Flight class has three attributes: flightNumber, departureTime, and flightDuration. In the bottom compartment we see that the Flight class has
two operations: delayFlight and getArrivalTime.

Figure 1: Class diagram for the class Flight

Class attribute list

The attribute section of a class (the middle compartment) lists each of the class's attributes on a separate line. The attribute section is optional,
but when used it contains each attribute of the class displayed in a list format. The line uses the following format:

name : attribute type

flightNumber : Integer

Continuing with our Flight class example, we can describe the class's attributes with the attribute type information, as shown in Table 1.

Table 1: The Flight class's attribute names with their associated types
Attribute Name Attribute Type
flightNumber Integer
departureTime Date
flightDuration Minutes

In business class diagrams, the attribute types usually correspond to units that make sense to the likely readers of the diagram (i.e., minutes,

dollars, etc.). However, a class diagram that will be used to generate code needs classes whose attribute types are limited to the types provided
by the programming language, or types included in the model that will also be implemented in the system.

Sometimes it is useful to show on a class diagram that a particular attribute has a default value. (For example, in a banking account application
a new bank account would start off with a zero balance.) The UML specification allows for the identification of default values in the attribute
list section by using the following notation:

name : attribute type = default value

For example:

balance : Dollars = 0

Showing a default value for attributes is optional; Figure 2 shows a Bank Account class with an attribute called balance, which has a default
value of 0.

Figure 2: A Bank Account class diagram showing the balance attribute's value defaulted to zero dollars

Class operations list

The class's operations are documented in the third (lowest) compartment of the class diagram's rectangle, which again is optional. Like the
attributes, the operations of a class are displayed in a list format, with each operation on its own line. Operations are documented using the
following notation:

name(parameter list) : type of value returned

The Flight class's operations are mapped in Table 2 below.

Table 2: Flight class's operations mapped from Figure 3
Operation Name Parameters Return Value Type
delayFlight Name Type

numberOfMinutes Minutes N/A
getArrivalTime N/A Date

Figure 3 shows that the delayFlight operation has one input parameter — numberOfMinutes — of the type Minutes. However, the delayFlight
operation does not have a return value. [Note: The delayFlight does not have a return value because I made a design decision not to have one.
One could argue that the delay operation should return the new arrival time, and if this were the case, the operation signature would appear as
delayFlight(numberOfMinutes : Minutes) : Date.] When an operation has parameters, they are put inside the operation's parentheses;
each parameter uses the format "parameter name : parameter type".

Figure 3: The Flight class operations parameters include the optional "in" marking

When documenting an operation's parameters, you may use an optional indicator to show whether or not the parameter is input to, or output
from, the operation. This optional indicator appears as an "in" or "out" as shown in the operations compartment in Figure 3. Typically, these
indicators are unnecessary unless an older programming language such as Fortran will be used, in which case this information can be helpful.
However, in C++ and Java, all parameters are "in" parameters and since "in" is the parameter's default type according to the UML specification,
most people will leave out the input/output indicators.

Inheritance

A very important concept in object-oriented design, inheritance, refers to the ability of one class (child class) to inherit the identical

functionality of another class (super class), and then add new functionality of its own. (In a very non-technical sense, imagine that I inherited
my mother's general musical abilities, but in my family I'm the only one who plays electric guitar.) To model inheritance on a class diagram, a
solid line is drawn from the child class (the class inheriting the behavior) with a closed, unfilled arrowhead (or triangle) pointing to the super
class. Consider types of bank accounts: Figure 4 shows how both CheckingAccount and SavingsAccount classes inherit from the BankAccount
class.

Figure 4: Inheritance is indicated by a solid line with a closed, unfilled arrowhead pointing at the super class

In Figure 4, the inheritance relationship is drawn with separate lines for each subclass, which is the method used in IBM Rational Rose and
IBM Rational XDE. However, there is an alternative way to draw inheritance called tree notation. You can use tree notation when there are two
or more child classes, as in Figure 4, except that the inheritance lines merge together like a tree branch. Figure 5 is a redrawing of the same
inheritance shown in Figure 4, but this time using tree notation.

Figure 5: An example of inheritance using tree notation

Abstract classes and operations

The observant reader will notice that the diagrams in Figures 4 and 5 use italicized text for the BankAccount class name and withdrawal
operation. This indicates that the BankAccount class is an abstract class and the withdrawal method is an abstract operation. In other words, the
BankAccount class provides the abstract operation signature of withdrawal and the two child classes of CheckingAccount and SavingsAccount
each implement their own version of that operation.

However, super classes (parent classes) do not have to be abstract classes. It is normal for a standard class to be a super class.

Associations

When you model a system, certain objects will be related to each other, and these relationships themselves need to be modeled for clarity.
There are five types of associations. I will discuss two of them — bi-directional and uni-directional associations — in this section, and I will
discuss the remaining three association types in the Beyond the basics section. Please note that a detailed discussion of when to use each type of
association is beyond the scope of this article. Instead, I will focus on the purpose of each association type and show how the association is
drawn on a class diagram.

Bi-directional (standard) association

An association is a linkage between two classes. Associations are always assumed to be bi-directional; this means that both classes are aware of
each other and their relationship, unless you qualify the association as some other type. Going back to our Flight example, Figure 6 shows a
standard kind of association between the Flight class and the Plane class.

Figure 6: An example of a bi-directional association between a Flight class and a Plane class

A bi-directional association is indicated by a solid line between the two classes. At either end of the line, you place a role name and a
multiplicity value. Figure 6 shows that the Flight is associated with a specific Plane, and the Flight class knows about this association. The
Plane takes on the role of "assignedPlane" in this association because the role name next to the Plane class says so. The multiplicity value next
to the Plane class of 0..1 means that when an instance of a Flight exists, it can either have one instance of a Plane associated with it or no Planes
associated with it (i.e., maybe a plane has not yet been assigned). Figure 6 also shows that a Plane knows about its association with the Flight
class. In this association, the Flight takes on the role of "assignedFlights"; the diagram in Figure 6 tells us that the Plane instance can be
associated either with no flights (e.g., it's a brand new plane) or with up to an infinite number of flights (e.g., the plane has been in commission
for the last five years).

For those wondering what the potential multiplicity values are for the ends of associations, Table 3 below lists some example multiplicity
values along with their meanings.

Table 3: Multiplicity values and their indicators
Potential Multiplicity Values
Indicator Meaning
0..1 Zero or one
1 One only
0..* Zero or more
* Zero or more
1..* One or more
3 Three only
0..5 Zero to Five
5..15 Five to Fifteen

Uni-directional association

In a uni-directional association, two classes are related, but only one class knows that the relationship exists. Figure 7 shows an example of an
overdrawn accounts report with a uni-directional association.

Figure 7: An example of a uni-directional association: The OverdrawnAccountsReport class knows about the BankAccount class, but
the BankAccount class does not know about the association

A uni-directional association is drawn as a solid line with an open arrowhead (not the closed arrowhead, or triangle, used to indicate
inheritance) pointing to the known class. Like standard associations, the uni-directional association includes a role name and a multiplicity
value, but unlike the standard bi-directional association, the uni-directional association only contains the role name and multiplicity value for
the known class. In our example in Figure 7, the OverdrawnAccountsReport knows about the BankAccount class, and the BankAccount class
plays the role of "overdrawnAccounts." However, unlike a standard association, the BankAccount class has no idea that it is associated with the
OverdrawnAccountsReport. [Note: It may seem strange that the BankAccount class does not know about the OverdrawnAccountsReport class.
This modeling allows report classes to know about the business class they report, but the business classes do not know they are being reported
on. This loosens the coupling of the objects and therefore makes the system more adaptive to changes.]

Packages

Inevitably, if you are modeling a large system or a large area of a business, there will be many different classifiers in your model. Managing all
the classes can be a daunting task; therefore, UML provides an organizing element called a package. Packages enable modelers to organize the
model's classifiers into namespaces, which is sort of like folders in a filing system. Dividing a system into multiple packages makes the system
easier to understand, especially if each package represents a specific part of the system. [Note: Packages are great for organizing your model's
classes, but it's important to remember that your class diagrams are supposed to easily communicate information about the system being
modeled. In cases where your packages have lots of classes, it is better to use multiple topic-specific class diagrams instead of just producing
one large class diagram.]

There are two ways of drawing packages on diagrams. There is no rule for determining which notation to use, except to use your personal
judgement regarding which is easiest to read for the class diagram you are drawing. Both ways begin with a large rectangle with a smaller
rectangle (tab) above its upper left corner, as seen in Figure 8. But the modeler must decide how the package's membership is to be shown, as
follows:

If the modeler decides to show the package's members within the large rectangle, then all those members need to be placed within the
rectangle. [Note: It's important to understand that when I say "all those members," I mean only the classes that the current diagram is
going to show. A diagram showing a package with contents does not need to show all its contents; it can show a subset of the contained
elements according to some criterion, which is not necessarily all the package's classifiers.] Also the package's name needs to be placed
in the package's smaller rectangle (as show n in Figure 8).
If the modeler decides to show the package's members outside the large rectangle then all the members that will be shown on the diagram
need to be placed outside the rectangle. To show what classifiers belong to the package, a line is drawn from each classifier to a circle
that has a plus sign inside the circle attached to the package (Figure 9).

Figure 8: An example package element that shows its members inside the package's rectangle boundaries

Figure 9: An example package element showing its membership via connected lines

Importance of understanding the basics

It is more important than ever in UML 2 to understand the basics of the class diagram. This is because the class diagram provides the basic
building blocks for all other structure diagrams, such as the component or object diagrams (just to name a few).

Beyond the basics

At this point, I have covered the basics of the class diagram, but do not stop reading yet! In the following sections, I will address more
important aspects of the class diagram that you can put to good use. These include interfaces, the three remaining types of associations,
visibility, and other additions in the UML 2 specification.

Interfaces

Earlier in this article, I suggested that you think of classifiers simply as classes. In fact, a classifier is a more general concept, which includes
data types and interfaces.

A complete discussion of when and how to use data types and interfaces effectively in a system's structure diagrams is beyond the scope of this
article. So why do I mention data types and interfaces here? There are times when you might want to model these classifier types on a structure
diagram, and it is important to use the proper notation in doing so, or at least be aware of these classifier types. Drawing these classifiers
incorrectly will likely confuse readers of your structure diagram, and the ensuing system will probably not meet requirements.

A class and an interface differ: A class can have an actual instance of its type, whereas an interface must have at least one class to implement it.
In UML 2, an interface is considered to be a specialization of a class modeling element. Therefore, an interface is drawn just like a class, but
the top compartment of the rectangle also has the text "«interface»", as shown in Figure 10. [Note: When drawing a class diagram it is
completely within UML specification to put «class» in the top compartment of the rectangle, as you would with «interface»; however, the UML
specification says that placing the "class" text in this compartment is optional, and it should be assumed if «class» is not displayed.]

Figure 10: Example of a class diagram in which the Professor and Student classes implement the Person interface

In the diagram shown in Figure 10, both the Professor and Student classes implement the Person interface and do not inherit from it. We know
this for two reasons: 1) The Person object is defined as an interface — it has the "«interface»" text in the object's name area, and we see that the
Professor and Student objects are class objects because they are labeled according to the rules for drawing a class object (there is no additional
classification text in their name area). 2) We know inheritance is not being shown here, because the line with the arrow is dotted and not solid.
As shown in Figure 10, a dotted line with a closed, unfilled arrow means realization (or implementation); as we saw in Figure 4, a solid arrow
line with a closed, unfilled arrow means inheritance.

More associations

Above, I discussed bi-directional and uni-directional associations. Now I will address the three remaining types of associations.

Association class

In modeling an association, there are times when you need to include another class because it includes valuable information about the
relationship. For this you would use an association class that you tie to the primary association. An association class is represented like a
normal class. The difference is that the association line between the primary classes intersects a dotted line connected to the association class.
Figure 11 shows an association class for our airline industry example.

Figure 11: Adding the association class MileageCredit

In the class diagram shown in Figure 11, the association between the Flight class and the FrequentFlyer class results in an association class
called MileageCredit. This means that when an instance of a Flight class is associated with an instance of a FrequentFlyer class, there will also
be an instance of a MileageCredit class.

Aggregation

Aggregation is a special type of association used to model a "whole to its parts" relationship. In basic aggregation relationships, the lifecycle of
a part class is independent from the whole class's lifecycle.

For example, we can think of Car as a whole entity and Car Wheel as part of the overall Car. The wheel can be created weeks ahead of time,
and it can sit in a warehouse before being placed on a car during assembly. In this example, the Wheel class's instance clearly lives
independently of the Car class's instance. However, there are times when the part class's lifecycle is not independent from that of the whole
class — this is called composition aggregation. Consider, for example, the relationship of a company to its departments. Both Company and
Departments are modeled as classes, and a department cannot exist before a company exists. Here the Department class's instance is dependent
upon the existence of the Company class's instance.

Let's explore basic aggregation and composition aggregation further.

Basic aggregation
An association with an aggregation relationship indicates that one class is a part of another class. In an aggregation relationship, the child class
instance can outlive its parent class. To represent an aggregation relationship, you draw a solid line from the parent class to the part class, and
draw an unfilled diamond shape on the parent class's association end. Figure 12 shows an example of an aggregation relationship between a Car
and a Wheel.

Figure 12: Example of an aggregation association

Composition aggregation
The composition aggregation relationship is just another form of the aggregation relationship, but the child class's instance lifecycle is
dependent on the parent class's instance lifecycle. In Figure 13, which shows a composition relationship between a Company class and a
Department class, notice that the composition relationship is drawn like the aggregation relationship, but this time the diamond shape is filled.

Figure 13: Example of a composition relationship

In the relationship modeled in Figure 13, a Company class instance will always have at least one Department class instance. Because the
relationship is a composition relationship, when the Company instance is removed/destroyed, the Department instance is automatically
removed/destroyed as well. Another important feature of composition aggregation is that the part class can only be related to one instance of
the parent class (e.g. the Company class in our example).

Reflexive associations

We have now discussed all the association types. As you may have noticed, all our examples have shown a relationship between two different
classes. However, a class can also be associated with itself, using a reflexive association. This may not make sense at first, but remember that
classes are abstractions. Figure 14 shows how an Employee class could be related to itself through the manager/manages role. When a class is
associated to itself, this does not mean that a class's instance is related to itself, but that an instance of the class is related to another instance of
the class.

Figure 14: Example of a reflexive association relationship

The relationship drawn in Figure 14 means that an instance of Employee can be the manager of another Employee instance. However, because
the relationship role of "manages" has a multiplicity of 0..*; an Employee might not have any other Employees to manage.

Visibility

In object-oriented design, there is a notation of visibility for attributes and operations. UML identifies four types of visibility: public, protected,
private, and package.

The UML specification does not require attributes and operations visibility to be displayed on the class diagram, but it does require that it be
defined for each attribute or operation. To display visibility on the class diagram, you place the visibility mark in front of the attribute's or
operation's name. Though UML specifies four visibility types, an actual programming language may add additional visibilities, or it may not
support the UML-defined visibilities. Table 4 displays the different marks for the UML-supported visibility types.

Table 4: Marks for UML-supported visibility types
Mark Visibility type
+ Public
Protected
- Private
~ Package

Now, let's look at a class that shows the visibility types indicated for its attributes and operations. In Figure 15, all the attributes and operations
are public, with the exception of the updateBalance operation. The updateBalance operation is protected.

Figure 15: A BankAccount class that shows the visibility of its attributes and operations

UML 2 additions

Now that we have covered the basics and the advanced topics, we will cover some of the new notations added to the class diagram from UML
1.x.

Instances

When modeling a system's structure it is sometimes useful to show example instances of the classes. To model this, UML 2 provides the
instance specification element, which shows interesting information using example (or real) instances in the system.

The notation of an instance is the same as a class, but instead of the top compartment merely having the class's name, the name is an underlined
concatenation of:

Instance Name : Class Name

For example:

Donald : Person

Because the purpose of showing instances is to show interesting or relevant information, it is not necessary to include in your model the entire
instance's attributes and operations. Instead it is completely appropriate to show only the attributes and their values that are interesting as
depicted in Figure 16.

Figure 16: An example instance of a Plane class (only the interesting attribute values are shown)

However, merely showing some instances without their relationship is not very useful; therefore, UML 2 allows for the modeling of the
relationships/associations at the instance level as well. The rules for drawing associations are the same as for normal class relationships,
although there is one additional requirement when modeling the associations. The additional restriction is that association relationships must
match the class diagram's relationships and therefore the association's role names must also match the class diagram. An example of this is
shown in Figure 17. In this example the instances are example instances of the class diagram found in Figure 6.

Figure 17: An example of Figure 6 using instances instead of classes

Figure 17 has two instances of the Flight class because the class diagram indicated that the relationship between the Plane class and the Flight
class is zero-to-many. Therefore, our example shows the two Flight instances that the NX0337 Plane instance is related to.

Roles

Modeling the instances of classes is sometimes more detailed than one might wish. Sometimes, you may simply want to model a class's
relationship at a more generic level. In such cases, you should use the role notation. The role notation is very similar to the instances notation.
To model a class's role, you draw a box and place the class's role name and class name inside as with the instances notation, but in this case you
do not underline the words. Figure 18 shows an example of the roles played by the Employee class described by the diagram at Figure 14. In
Figure 18, we can tell, even though the Employee class is related to itself, that the relationship is really between an Employee playing the role
of manager and an Employee playing the role of team member.

Figure 18: A class diagram showing the class in Figure 14 in its different roles

Note that you cannot model a class's role on a plain class diagram, even though Figure 18 makes it appear that you can. In order to use the role
notation you will need to use the Internal Structure notation, discussed next.

Internal Structures

One of the more useful features of UML 2 structure diagrams is the new internal structure notation. It allows you to show how a class or
another classifier is internally composed. This was not possible in UML 1.x, because the notation set limited you to showing only the
aggregation relationships that a class had. Now, in UML 2, the internal structure notation lets you more clearly show how that class's parts
relate to each other.

Let's look at an example. In Figure 18 we have a class diagram showing how a Plane class is composed of four engines and two control
software objects. What is missing from this diagram is any information about how airplane parts are assembled. From the diagram in Figure 18,
you cannot tell if the control software objects control two engines each, or if one control software object controls three engines and the other
controls one engine.

Figure 19: A class diagram that only shows relationships between the objects

Drawing a class's internal structure will improve this situation. You start by drawing a box with two compartments. The top compartment
contains the class name, and the lower compartment contains the class's internal structure, showing the parent class's part classes in their
respective roles, as well as how each particular class relates to others in that role. Figure 19 shows the internal structure of Plane class; notice
how the internal structure clears up the confusion.

Figure 20: An example internal structure of a Plane class

In Figure 20 the Plane has two ControlSoftware objects and each one controls two engines. The ControlSoftware on the left side of the diagram
(control1) controls engines 1 and 2. The ControlSoftware on the right side of the diagram (control2) controls engines 3 and 4.

Conclusion

There are at least two important reasons for understanding the class diagram. The first is that it shows the static structure of classifiers in a
system; the second reason is that the diagram provides the basic notation for other structure diagrams prescribed by UML. Developers will
think the class diagram was created specially for them; but other team members will find them useful, too. Business analysts can use class
diagrams to model systems from the business perspective. As we will see in other articles in this series on UML basics, other diagrams —
including the activity, sequence, and statechart diagrams — refer to the classes modeled and documented on the class diagram.

Next in this series on UML basics: The component diagram.

http://www.ibm.com/developerworks/rational/library/dec04/bell/index.html

Resources

Learn

Understand more about how the new functionality of the UML Modeler component common to both IBM Rational Software Architect
Standard Edition Version 7.5 and IBM Rational Software Architect for WebSphere Software Version 7.5 by reading this article Using the
new features of UML Modeler in IBM Rational Software Architect Version 7.5.

Understand more about the new functionality of Rational Software Architect for WebSphere Software Version 7.5 by reading this article
Overview of Rational Software Architect for WebSphere Software Version 7.5.

Learn about Rational Tau.

Learn about other applications in the IBM Rational Software Delivery Platform, including collaboration tools for parallel development
and geographically dispersed teams, plus specialized software for architecture management, asset management, change and release
management, integrated requirements management, process and portfolio management, and quality management. You can find product
manuals, installation guides, and other documentation in the IBM Rational Online Documentation Center.

Visit the Rational software area on developerWorks for technical resources and best practices for Rational Software Delivery Platform
products.

Explore Rational computer-based, Web-based, and instructor-led online courses. Hone your skills and learn more about Rational tools
with these courses, which range from introductory to advanced. The courses on this catalog are available for purchase through computer-
based training or Web-based training. Some of the "Getting Started" courses are available free of charge.

Subscribe to the IBM developerWorks newsletter, a weekly update on the best of developerWorks tutorials, articles, downloads,
community activities, webcasts and events.

Browse the technology bookstore for books on these and other technical topics.

Get products and technologies

Download a trial version of Rational Software Modeler.

Download a trial version of Rational Software Architect standard edition.

Download Rational Software Architect for Websphere Software.

Download Other IBM product evaluation versions and get your hands on application development tools and middleware products from
DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

Discuss

Check out developerWorks blogs and get involved in the developerWorks community.

Join the Development Tools forum on developerWorks to discuss Rational Application Developer, Rational Software Architect, and
Rational Software Modeler.

Join the Rational Tau forum on developerWorks.

About the author

Donald Bell is an IT architect for IBM Rational software, where he works with clients to define and adopt effective software delivery practices
and tools.

Close [x]

developerWorks: Sign in
IBM ID:
Need an IBM ID?
Forgot your IBM ID?

http://www.ibm.com/developerworks/rational/library/08/0926_diu/index.html
http://www.ibm.com/developerworks/rational/library/08/0926_arnold/index.html
http://www.ibm.com/developerworks/rational/products/tau/
http://www.ibm.com/software/info/developer/index.html
http://www.ibm.com/software/rational/support/documentation/
http://www.ibm.com/developerworks/rational
http://www.ibm.com/training/us/catalog/rational
https://www.ibm.com/developerworks/newsletter/
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/downloads/r/rswm/
http://www.ibm.com/developerworks/downloads/r/rsd/
http://www.ibm.com/developerworks/downloads/r/rswa/learn.html
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=430
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1505
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#
http://www.ibm.com/developerworks/dwwi/jsp/WSHelp.jsp?lang=en_US

Password:
Forgot your password?
Change your password

 Keep me signed in.

By clicking Submit, you agree to the developerWorks terms of use.

Submit Cancel

The first time you sign into developerWorks, a profile is created for you. Select information in your developerWorks profile is displayed to
the public, but you may edit the information at any time. Your first name, last name (unless you choose to hide them), and display name
will accompany the content that you post.

All information submitted is secure.

Close [x]

Choose your display name
The first time you sign in to developerWorks, a profile is created for you, so you need to choose a display name. Your display name
accompanies the content you post on developerWorks.

Please choose a display name between 3-31 characters. Your display name must be unique in the developerWorks community and should
not be your email address for privacy reasons.

Display name: (Must be between 3 – 31 characters.)

By clicking Submit, you agree to the developerWorks terms of use.

Submit Cancel

All information submitted is secure.

 Average rating (2425 votes)

1 star 1 star
2 stars 2 stars
3 stars 3 stars
4 stars 4 stars
5 stars 5 stars

Submit

Add comment:

Sign in or register to leave a comment.

Note: HTML elements are not supported within comments.

Notify me when a comment is added1000 characters left

Post

Total comments (20) Show: Most recent comments

Good article

Posted by jpava on 05 October 2012

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#
https://www.ibm.com/developerworks/community/terms/
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#
https://www.ibm.com/developerworks/community/terms/
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#
http://www.ibm.com/developerworks/dwwi/DWAuthRouter?m=register&lang=en&d=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Frational%2Flibrary%2Fcontent%2FRationalEdge%2Fsep04%2Fbell%2Findex.html%23icomments
http://www.ibm.com/developerworks/forums/profile.jspa?userID=236818

Print this page Share this page Follow developerWorks

About

Help

Contact us

Submit content

Feeds and apps

Newsletters

Report abuse

Terms of use

IBM privacy

IBM accessibility

Faculty

Students

Business Partners

Report abuse

Thanks, that's great

Posted by dohuutien on 29 September 2012

Report abuse

Great overview. However was only indirectly helpful on a second usage of the circle + notation as seen in Figure 9. The RSA class diagram
editor generated a + circle relationship when creating a model of existing Java code. Maybe there is another article that explained this second
usage. The F1 dynamic help was not useful either.

It turns out the + circle also indicates a private class within the parent class. Had to dig where else into the code to find the answer. Searches
turned up nothing. Now makes sense as the parent class is a package of sorts containing other classes but actually remains a class itself.

Posted by MikePotter(DFS) on 23 July 2012

Report abuse

Thanks a lot for such a nice article!
Easy to understand and to the core.

Posted by Informatik on 07 May 2012

Report abuse

@dthunt: It appears that you are confusing the definition of a Java Interface with the definition of a UML Interface. UML is programming
language independent and therefore fields on an interface is acceptable.

A person can visualize programming language constructs with UML, but you can also visualize logical concepts that are an abstraction above
various implementations. Hence the language independence and the additional flexibility.

Hope that helps.

Posted by bellds on 28 August 2011

Report abuse

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html#
http://www.ibm.com/developerworks/aboutdw/
https://www.ibm.com/developerworks/feedback
http://www.ibm.com/developerworks/aboutdw/contacts.html
https://www.ibm.com/developerworks/ideas
http://www.ibm.com/developerworks/feeds/
https://www.ibm.com/developerworks/newsletter/
https://www.ibm.com/developerworks/community/report/
https://www.ibm.com/developerworks/community/terms/
http://www.ibm.com/privacy/
http://www.ibm.com/accessibility/
http://www.ibm.com/developerworks/university/academicinitiative/
http://www.ibm.com/developerworks/university/students/
http://www.ibm.com/isv/
https://www.ibm.com/developerworks/community/report?lang=en&referingURL=http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html&mymessage=Comment:%20Good%20article%0DPosted%20by%20jpava%20on%2005%20October%202012%0D%0D---%20Add%20any%20comments%20below%20this%20line%20---
http://www.ibm.com/developerworks/forums/profile.jspa?userID=567387
https://www.ibm.com/developerworks/community/report?lang=en&referingURL=http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html&mymessage=Comment:%20Thanks%2C%20that's%20great%0DPosted%20by%20dohuutien%20on%2029%20September%202012%0D%0D---%20Add%20any%20comments%20below%20this%20line%20---
http://www.ibm.com/developerworks/forums/profile.jspa?userID=551604
https://www.ibm.com/developerworks/community/report?lang=en&referingURL=http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html&mymessage=Comment:%20Great%20overview.%20However%20was%20only%20indirectly%20helpful%20on%20a%20second%20usage%20of%20the%20circle%20%2B%20notation%20as%20seen%20in%20Figure%209.%20The%20RSA%20class%20diagram%20editor%20generated%20a%20%2B%20circle%20relationship%20when%20creating%20a%20model%20of%20existing%20Java%20code.%20Maybe%20there%20is%20another%20article%20that%20explained%20this%20second%20usage.%20The%20F1%20dynamic%20help%20was%20not%20useful%20either.It%20turns%20out%20the%20%2B%20circle%20also%20indicates%20a%20private%20class%20within%20the%20parent%20class.%20Had%20to%20dig%20where%20else%20into%20the%20code%20to%20find%20the%20answer.%20Searches%20turned%20up%20nothing.%20Now%20makes%20sense%20as%20the%20parent%20class%20is%20a%20package%20of%20sorts%20containing%20other%20classes%20but%20actually%20remains%20a%20class%20itself.%0DPosted%20by%20MikePotter(DFS)%20on%2023%20July%202012%0D%0D---%20Add%20any%20comments%20below%20this%20line%20---
http://www.ibm.com/developerworks/forums/profile.jspa?userID=361291
https://www.ibm.com/developerworks/community/report?lang=en&referingURL=http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html&mymessage=Comment:%20Thanks%20a%20lot%20for%20such%20a%20nice%20article!Easy%20to%20understand%20and%20to%20the%20core.%0DPosted%20by%20Informatik%20on%2007%20May%202012%0D%0D---%20Add%20any%20comments%20below%20this%20line%20---
http://www.ibm.com/developerworks/forums/profile.jspa?userID=127558
https://www.ibm.com/developerworks/community/report?lang=en&referingURL=http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html&mymessage=Comment:%20%40dthunt%3A%20It%20appears%20that%20you%20are%20confusing%20the%20definition%20of%20a%20Java%20Interface%20with%20the%20definition%20of%20a%20UML%20Interface.%20%20UML%20is%20programming%20language%20independent%20and%20therefore%20fields%20on%20an%20interface%20is%20acceptable.A%20person%20can%20visualize%20programming%20language%20constructs%20with%20UML%2C%20but%20you%20can%20also%20visualize%20logical%20concepts%20that%20are%20an%20abstraction%20above%20various%20implementations.%20%20Hence%20the%20language%20independence%20and%20the%20additional%20flexibility.Hope%20that%20helps.%0DPosted%20by%20bellds%20on%2028%20August%202011%0D%0D---%20Add%20any%20comments%20below%20this%20line%20---

