
© 2005, W. Pree 1

Architectural styles
(according to CMU’s SEI)

© 2005, W. Pree 2

Architecture description based on
architectural styles

 Data-centered:
 Repository
 Blackboard

 Data-flow:
 Pipes & filters
 Batch/sequential

 Call-and-return:
 Top down
 OO
 layered

» Virtual machine:
– Interpreter
– Rule-based

» Independent
components:

– Communicating
processes

– Event systems
– implicit

invocation
– explicit

invocation

© 2005, W. Pree 3

Data-centered (I)

Access to shared data represents the core characteristic of
data-centered architectures. The data integrability forms the
principal goal of such systems.

Shared Data

Client Client

passive data

computational
component / object

data flow

Legend:

© 2005, W. Pree 4

Data-centered (II)

The means of communication between the components
distinguishes the subtypes of the data-centered architectural
style:

 Repository: passive data (see schematic representation
of previous slide)

 Blackboard: active data
A blackboard sends notification to subscribers when
relevant data change (→ Observer pattern)

© 2005, W. Pree 5

Data-centered (III)

+ clients are quite independent of each other
=> clients can be modified without affecting others
coupling between clients might increase performance but
lessen this benefit

+ new clients can be easily added

No rigid separation of styles: When clients are independently
executing processes: client/server architectural style

© 2005, W. Pree 6

Data-flow

The system consists of a series of transformations on
successive pieces of (input) data. Reuse and modifiability form
the principal goals of such architectures.

Validate

process

data flow

Legend:

Sort Report
Tape Tape Tape Page

© 2005, W. Pree 7

Data-flow substyles

 Batch sequential (→ sample on previous slide)
 components (= processing steps) are independent programs
 each step runs to completion before the next step starts,

i.e., each batch of data is transmitted as a whole between
steps

 Pipe-and-filter (→ UNIX pipes & filters)
 incremental transformation of data based on streams
 filters are stream transducers and use little contextual

information and retain no state information between
instantiations

 pipes are stateless and just move data between filters

© 2005, W. Pree 8

Pros and cons of pipes-and-filters

+ no complex component interactions to manage
+ filters are black boxes
+ pipes and filters can be hierarchically composed

– batch mentality => hardly suitable for interactive applications
– filter ordering can be difficult; filters cannot interact cooperatively

to solve a problem
– performance is often poor

parsing/unparsing overhead due to lowest common denominator
data representation

– filters which require all input for output production have to create
unlimited buffers

© 2005, W. Pree 9

Virtual machine (I)

Virtual machines simulate some functionality that is not
native to the hardware/software on which it is
implemented. This supports achieving the quality attribute of
portability.

Examples:
 interpreters
 command language processors
 rule-based systems

© 2005, W. Pree 10

Virtual machine (II)

Schematic representation:

Data
(program state)

Program being
interpreted

Interpretation
Engine Internal state

inputs

outputs

program
instructions

state data

selected instruction

selected data

data
updates

© 2005, W. Pree 11

Call-and-return

Call-and-return architectures rely on the well-known
abstraction of procedures/functions/methods. Shaw and
Garlan discern between the following substyles:

 main-program-and-subroutine style

 remote-procedure-call systems also
belong to this category but are
decomposed in parts that live on
computers connected via a network

 object-oriented or abstract-data-type style
 layered style

© 2005, W. Pree 12

Layered style

Components belong to layers. In pure layered systems each level
should communicate only with its immediate neighbors.

Each successive layer is built on its predecessor, hiding the lower
layer and providing some services that the upper layers make use
of. Upper layers often form virtual machines.

User interface

Basic utilities

Core system

© 2005, W. Pree 13

Event systems

Publish/subscribe (observer) pattern: Components can register an
interest in notifications.

Example: coupling between JavaBeans

© 2005, W. Pree 14

Heterogeneous styles (I)

Example: event system + layered style

© 2005, W. Pree 15

Heterogeneous styles (II)

In general, the presented architectural styles do not clearly
categorize architectures. Styles exist as cognitive aids and
communication cues.

 The data-centered style, composed out of thread-
independent clients is like an independent component
architecture.

 The layers in a layered architecture might be objects/ADTs.
 The components in a pipe-and-filter architecture are usually

independently operating processes and thus also correspond
to an independent component architecture.

 Commercial client/server systems with a CORBA-based
infrastructure could be described as layered object-based
process systems, i.e., a hybrid of three styles.

© 2005, W. Pree 16

Architecture
description

© 2005, W. Pree 17

Architectural styles are often insufficient to
describe a system‘s architecture

Architectural styles do not clearly categorize architectures. Thus
they do not suffice to describe architectures as a whole.

Consider the following sample cases:
 The layers in a layered architecture might be objects/ADTs.
 Commercial client/server systems with a CORBA-based

infrastructure could be described as layered object-based
process systems, i.e., a hybrid of three styles.

© 2005, W. Pree 18

Choose an appropriate mix of various
notations + informal description

As a consequence, one has to decide on the appropriate description,
which will be a mix of the following principal options:

 schematic representation according to CMU/SEI
 4+1 View Model of Architecture (Kruchten , 1995)
 UML:

 subsystem/package-diagrams
 class-diagrams
 interaction-/object-diagrams
 state-diagrams

 any schematic figures that help; informal text as glue
 source code fragments of coarse-grained components or

component interfaces
 formal specifications, eg, with architecture description languages

© 2005, W. Pree 19

Sample architectural description of
JavaSpaces

JavaSpaces characteristics (from an architectural
point of view):
 data-centered, mainly a repository

architectural style, sometimes black-board
architectural style

 main design goals
 extensibility through loose coupling of distributed

processes and distributed Java components
 simplicity from a reuser‘s point of view

© 2005, W. Pree 20

JavaSpaces architecture overview

© 2005, W. Pree 21

Characteristics of JavaSpaces (JS)

 high-level coordination tool for gluing processes and
components together in a distributed system without message
passing and remote method invocation

 a space is a shared, network-accessible repository for
objects

 instead of communicating directly, JS apps consist of processes
that coordinate by exchanging objects through spaces

© 2005, W. Pree 22

Sample JS use scenarios (I)

Example isn‘t another way to teach, it is the only way to
teach (Albert Einstein)

(1) Space acting as “auction room“:
Sellers deposit for-sale items with descriptions and
asking prices as objects into the space.
Buyers monitor the space for items that interest them. If
an item interest them they put bid objects into the space.
Sellers monitor the space for bids.
etc.

© 2005, W. Pree 23

Sample JS use scenarios (II)

(2) Compute-intensive jobs
A series of tasks—for example, rendering a frame in a
computer animation represents a task—are written into a
space.
Participating graphic workstations search the space for
rendering tasks. Each one finding tasks to be done,
removes it, accomplishes it, writes the result back into
the space.

© 2005, W. Pree 24

Interfaces of JS key abstractions
and their usage

The rest of the architecture description could be a series
of documented source code and commented UML class
and interaction diagrams that illustrate the simplicity of
reusing the JS architecture.

public calls SampleMsg implements Entry { // empty JS interface
...

}

// putting an object into a space
SampleMsg msg= new SampleMsg();
JavaSpace space= SpaceAccessor.getSpace();
space.write(msg, ...); // other parameters omitted
...

© 2005, W. Pree 25

Architecture analysis:
The SAAM

© 2005, W. Pree 26

When and Why To Analyze
Architecture -1

 Analyzing for system qualities early in the life cycle allows for a
comparison of architectural options.

 When building a system
 Architecture is the earliest artifact where trade-offs are

visible.
 Analysis should be done when deciding on architecture.
 The reality is that analysis is often done during damage

control, later in the project.

© 2005, W. Pree 27

When and Why To Analyze
Architecture -2.

 When acquiring a system
 Architectural analysis is useful if the system will

have a long lifetime within organization.
 Analysis provides a mechanism for

understanding how the system will evolve.
 Analysis can also provide insight into other

visible qualities.

© 2005, W. Pree 28

Qualities Are Too Vague for Analysis
 Is the following system modifiable?
 Background color of the user interface is changed

merely by modifying a resource file.
 Dozens of components must be changed to

accommodate a new data file format.

 A reasonable answer is

 yes with respect to changing background color

 no with respect to changing file format

© 2005, W. Pree 29

Qualities Are Too Vague for Analysis
 Qualities only have meaning within a context.

 SAAM specifies context through scenarios.

© 2005, W. Pree 30

Scenarios

 A scenario is a brief description of a stakeholder’s
interaction with a system.

 When creating scenarios, it is important to consider all
stakeholders, especially
 end users
 developers
 maintainers
 system administrators

© 2005, W. Pree 31

Steps of a SAAM Evaluation

 Identify and assemble stakeholders
 Develop and prioritize scenarios
 Describe candidate architecture(s)
 Classify scenarios as direct or indirect
 Perform scenario evaluation
 Reveal scenario interactions
 Generate overall evaluation

© 2005, W. Pree 32

Step 1: Identify and Assemble
Stakeholders -1

Stakeholder Interest
Customer Schedule and budget; usefulness of
 system; meeting customers’ (or

 market’s) expectations
End user Functionality, usability
Developer Clarity and completeness of

 architecture; high cohesion and
 limited coupling of parts;
 clear interaction mechanisms

Maintainer Maintainability; ability to locate
 places of change

© 2005, W. Pree 33

Step 1: Identify and Assemble
Stakeholders -2

Stakeholder Interest
System Ease in finding sources of
administrator operational problems
Network Network performance,
administrator predictability
Integrator Clarity and completeness of

 architecture; high cohesion and
 limited coupling of parts;
 clear interaction mechanisms

© 2005, W. Pree 34

Step 1: Identify and Assemble
Stakeholders -3.

Stakeholder Interest
Tester Integrated, consistent error-

handling; limited component
coupling; high component cohesion;
conceptual integrity
Application Architectural clarity, completeness;
builder (if interaction mechanisms; simple
product line tailoring mechanisms
architecture)
Representative Interoperability
of the domain

© 2005, W. Pree 35

Step 2: Stakeholders Develop and
Prioritize Scenarios

 Scenarios should be typical of the kinds of
evolution that the system must support:
 functionality
 development activities
 change activities

 Scenarios also can be chosen to give insight into
the system structure.

 Scenarios should represent tasks relevant to all
stakeholders.

 Rule of thumb: 10-15 prioritized scenarios

© 2005, W. Pree 36

Step 3: Describe Candidate
Architectures

 It is frequently necessary to elicit appropriate
architectural descriptions.

 Structures chosen to describe the architecture will
depend on the type of qualities to be evaluated.

 Code and functional structures are primarily used
to evaluate modification scenarios.

© 2005, W. Pree 37

Step 4: Classify Scenarios

 There are two classes of scenarios.
 Direct scenarios are those that can be executed by

the system without modification.
 Indirect scenarios are those that require

modifications to the system.
 The classification depends upon both the scenario

and the architecture.
 For indirect scenarios we gauge the order of difficulty

of each change: e.g. a person-day, person-week,
person-month, person-year.

© 2005, W. Pree 38

Step 5: Perform Scenario Evaluation

 For each indirect scenario
 identify the components, data connections,

control connections, and interfaces that must be
added, deleted, or modified

 estimate the difficulty of modification
 Difficulty of modification is elicited from the

architect and is based on the number of
components to be modified and the effect of the
modifications.

 A monolithic system will score well on this step,
but not on next step.

© 2005, W. Pree 39

Step 6: Reveal Scenario Interactions
 When multiple indirect scenarios affect the same

components, this could indicate a problem.
 could be good, if scenarios are variants of each other
 change background color to green
 change background color to red

 could be bad, indicating a potentially poor separation
of concerns
 change background color to red
 port system to a different platform

© 2005, W. Pree 40

Step 7: Generate Overall Evaluation
 Not all scenarios are equal.

 The organization must determine which scenarios are
most important.

 Then the organization must decide as to whether the
design is acceptable “as is” or if it must be modified.

© 2005, W. Pree 41

Interaction of SAAM Steps

classification
of scenarios

individual
evaluation
of indirect
scenarios

assessment
of scenario
interaction

overall
evaluation

scenario
development
architecture
description

© 2005, W. Pree 42

Example: SAAM Applied to
Revision Control System

 “WRCS” is a large, commercially-available revision
control system.

 No documented system architecture existed prior to
the evaluation.

 The purpose of the evaluation was to assess the
impact of anticipated future changes.

 Three iterations were required to develop a satisfactory
representation, alternating between
 development of scenarios
 representation of architecture

© 2005, W. Pree 43

Architectural Representation of WRCS

visdiff
ctrls

win31

OWLfmext

fntext
main

report

wrcs hook

bcext

mcext

vbext

pvcs2rcs

sccs2rcs

msarn200

make

diff

diff

bindiff

nwcalls

nwspxipx
nwnim

© 2005, W. Pree 44

Scenarios Used in WRCS

 User scenarios
 compare binary file representations
 configure the product’s toolbar

 Maintainer
 port to another operating system
 make minor modifications to the user interface

 Administrator
 change access permissions for a project
 integrate with a new development environment

© 2005, W. Pree 45

Scenario Classification

 User scenarios
 compare binary file representations: indirect
 configure the product’s toolbar: direct

 Maintainer
 port to another operating system: indirect
 make minor modifications to the user interface:

indirect
 Administrator
 change access permissions for a project: direct
 integrate with a new development environment:

indirect

© 2005, W. Pree 46

Scenario Interactions

 Each indirect scenario necessitated a change in some
modules. This can be represented either tabularly or
visually.

 The number of scenarios that affected each module can
be shown with a table or graphically, with a fish-eye view.

 A fish-eye view uses size to represent areas of interest.

© 2005, W. Pree 47

Scenario Interaction Table

Module No. changes
main 4
wrcs 7
diff 1
bindiff 1
pvcs2rcs 1
sccs2rcs 1
nwcalls 1
nwspxipx 1
nwnlm 1
hook 4
report 1
visdiff 3
ctrls 2

© 2005, W. Pree 48

Scenario Interaction Fish-Eye

 visdiff
ctrls

fmext

fntext

 wrcs
 hook

pvcs2rcs

sccs2rcs

msarn200

make

diff

diff

bindiff

nwcalls

nwspxipx

win31

OWL

bcext

mcext

vbext

nwnim

report

 main

© 2005, W. Pree 49

Lessons Learned from WRCS

 Granularity of architectural description

 Interpretation of scenario interactions

© 2005, W. Pree 50

Proper Granularity of Architectural
Description

 The level of detail of architectural description is
determined by the scenarios chosen.

 The next slide shows what an architect thought was an
appropriate level of detail.

 Components are annotated with the numbers of indirect
scenarios that affect them.

© 2005, W. Pree 51

Original Representation of WRCS

visdiff
11

11
diff

msarn200
12

make
12

11,12

ctrls

main
11,12,13

report
13

fmext
13

fntext
13

© 2005, W. Pree 52

The “main” Scenario Interactions

 Possibilities:
 Scenarios are all

of the same class.
 Scenarios are of

different classes
and “main”
cannot be
subdivided.

 Scenarios are of
different classes,
and “main” can
be subdivided.

visdiff
11

11
diff

msarn200
12

make
12

11,12
 ctrls

main
11,12,13

report
13

fmext
13

fntext
13

main1
11

main2
12

main3
13

© 2005, W. Pree 53

WRCS: What did we learn?
 We identified severe limitations in achieving the desired

portability and modifiability. A major system redesign
was recommended.

 The evaluation itself obtained mixed results.
 Senior developers/managers found it important and

useful.
 Developers regarded this as just an academic

exercise.
 SAAM allowed insight into capabilities and limitations

that weren’t easily achieved otherwise.
 This was accomplished with only scant knowledge of

the internal workings of WRCS.

© 2005, W. Pree 54

Lessons from SAAM -1

 Direct scenarios provide a
 first-order differentiation mechanism for

competing architectures
 mechanism for eliciting and understanding

structures of architectures (both static and
dynamic)

 It is important to have stakeholders present at
evaluation meetings.
 Stakeholders find it to be educational.
 Architectural evaluators may not have the

experience to keep presenters “honest.”

© 2005, W. Pree 55

Lessons from SAAM -2.

 SAAM and traditional architectural metrics
 Coupling and cohesion metrics do not represent

different patterns of use.
 High scenario interaction shows low cohesion.
 A scenario with widespread hits shows high coupling.
 Both are tied to the context of use.
 SAAM provides a means of sharpening the use of

coupling and cohesion metrics.

© 2005, W. Pree 56

Summary

 A SAAM evaluation produces
 technical results: provides insight into system

capabilities
 social results
 forces some documentation of architecture
 acts as communication vehicle among

stakeholders

