Grasshopper Programmer’s Guide

Release 2.2

IKV++ GmbH

Bernburger Strasse 24-25
10963 Berlin, Ger many
http://www.grasshopper .de

Copyright (c) 1999 IKV++ GmbH Informations- und Kommunikationssysteme
All Rights Reserved.
Grasshopper Release 2.2 Programmer’s Guide, Marz 2001

TheGrasshopper Programmer’s Guidgcopyrighted and all rights are reserved. Information in this
document is subject to change without notice and does not represent a commitment on the part of
IKV++ GmbH. The document may not, in whole or in part, be copied, photocopied, reproduced,
translated, or reduced to any el ectronic medium or machine-readable form without prior consent, in
writing, from IKV++ GmbH.

Javaand all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Microsoft, Windows, and Windows NT are trademarks or registered trademarks of Microsoft
Corporation in the U.S. and other countries.

All other names are used for identification purposes only and are trademarks or registered trademarks
of their respective companies.

Grasshopper Release 2.2 is based on Grasshopper Release 1.x which is copyrighted by the Research
Institute for Open Communication Systems (FOKUS), adepartment of the National Research Center
for Information Technology (GMD), Germany.

IKV++ GmbH

Informations- und Kommunikationssysteme
Bernburger Strasse 24-25

D-10963 Berlin

Germany

Emalil: ikv@ikv.de

URL: http://www.ikv.de

CONTENTS

Contents
R = = To R 1
1.1 About thiSDOCUMENL.........ccoiiiieie e 1
1.2 DOCUMENE SIFUCLUIE........eeiieiiiieiieeeiee e e 1
1.3 Related DOCUMENES.......coociiiiiii et 2
1.4 Notational CONVENLIONS.........ccoviuireeriieeiiesie e ssre e eee s 3
141 FONES....ooiiiiiiieee e s 3
14,2 TCONS....eiiiieeee ettt 3
1.5 HOW O GELiN CONLACE.......cccuviiiriirie e 4
g1 8 oo 13 ot o o RSSO PTRRR 5
HEIO AQENT! ..t 13
3.1 Example: HEIOAQENt ... 19
3.2 SUMME@IY .eetiiiiiiiee ittt sab e s snbe e sne e e snnneeeens 20
Creation and Removal of AQENtS........ccceveeiiiieeseeie e 23
v/ AN o (< | QO 1 o o [P 23
4.2 AQENt REMOVAEL ..o 25
4.3 Example: PrintStringAgeNtccoocveveereeie e 26
A4 SUMIMAIY ..eeeeieeiiieesieeeesiieeessieessssres s ssaeessreessbeee s sseessseessssneesans 29
Agent Related INformationcccccovveereececceesece e 31
5.1 1dentifiCationceeueieiiiieie e 35
5.2 Namesand DeSCripLioNS.........cccocereererreesiensie e 36
53 CodeDESEcooiireei s 37
5.4 Grasshopper Addresses and LOCations...........cccceeevveeveeeseeeennee. 40
55 Statesand Life CyCles.......coiiiiiiiiineee e 42
5.6 Example: PrintinfOAQENLccovviviiieieeie et 44
5.7 SUMMAY et sneas 46
B IMOVEIMEL ... e et sae e 49
6.1 Strong vs. Weak Migrationccoceeveeieenennieesinseesee e 49
6.2 TheMigration ProCedUre...........ccooueiieeieeiiesie e 51
6.3 The Data State: Mobile Informationcceeeverieenenenieeins 52

PROGRAMMER'’S GUIDE

6.4 Structuring an Agent’s Life.........cccoeeeiiiiiiiiiiiii e 54
6.5 Example: BoomerangAgeNnt........ccuiiieiiiieiiiieiiiiiee e 55
6.6 SUMMAIYiiiiiiiiie e e e 58
A X £ o o PSP 61
7.1 Example: ACHONAGENT.......cuuiiiiiiie et 61
A S 1 V11 01 0 = 1Y PP 64
I O [0 1S F=TaTo I @o o] == USSR 67
8.1 EXxample: COPYAGENT.....ccoeeiiiiiiee e 68
8.2 SUMMAIY ...ttt e e e e e e e eeees 73
9 TheCommuNICAtiON SEIVICE.....cccuieeieeieeieie e ee s 75
9.1 Implementing the Server Side.........ccoovveviiiiiiiiiii e 77
9.2 Creating Proxy ODJECEScoiiiieiiiiiiiceee e 77
9.2.1 Manual Proxy Generation............cccoeevvvvviiinieeeeeeeeeeiiiinnn 78
9.2.1.1 Usage of the Stub Generatorcccecereeereeneeenne. 79
9.2.2 Dynamic Proxy Generationccuuuvvrieeeeeieeeeeuiennnnnnns 80
9.2.3 Issues of Mixed JDK ENVIronMeNtsS..............eevvevvveennnnnnns 80
9.3 Implementing the Client Side............cccoovviiiiiiiiiiiiiiieeeeeeeee, 81
9.4 Simple Communication SCENANO.........cceeeeiieeiiiiiiieie e 83
9.4.1 Example: ServerAgent........couuuieiiieeeeeeeeeiiiiie e e e eeeeeeanans 83
9.4.2 Example: ClIientAgentccooeevvivieiviiiiiie e 85
9.4.3 RUNNING the SCENANO........uuiiiiiiiiiiiiiiiiee e 87
9.4.4 SUMMAIY .. iitiieiiiee ettt e e e e e e e e eaa e ee 89
9.5 Sync. vs. Async. COmMmMUNICALIONucvviiieeeiiiiiiiiiiee e e e eeeeeeainnns 90
9.5.1 Asynchronous Provision of Results..........cccccooeevvvviieeennns 91
9.6 Asynchronous Communication Scenario.............cccceeevvvvvvvnnnnnnn. 97
9.6.1 Example: AsyncServerAgentcccccccvveeeeeeeeeeeeeeiininnnnn 98
9.6.2 Example: AsyncClientAgent.........ccccceeiiieeeeeveeeiiinnnnnn. 100
9.6.3 RUNNING the SCEeNArIO........ccovveieiiiieiiiiie e 109
9.6.4 SUMMAIY .. ittt ettt e e e e eaa s 112
9.7 Static vs. Dynamic Method Invocation...........cccccceeeeeeieeieeeennns 112
9.8 Dynamic Communication SCENArioccceevvrervvriinieeeeeeeennnns 114

CONTENTS

9.8.1 Example: DynamicServerAgentcccevvevieeveeseennenns 115
9.8.2 Example: DynamicClientAgent.........ccceeevvieeeeseesnnnne. 118
9.8.3 Running the SCenario.........cccoveereeneeneenie e 125
O9.8.4 SUMMEAIY ..coiiiiiiiiiie ettt 127
9.9 Unicast vs. Multicast CommUNICALIONccccereereerereerennnenn 127
9.10 Multicast Communication SCENAIOcccververrveereenieerieeeene 131
9.10.1Example: MulticastServerAgent........cccevvevveeieeieennenns 131
9.10.2Example: MulticastClientAgent..........cccevevceceeveesnenne 132
9.10.3RuNning the SCeNario..........cccoveereereenienie e 136
O.10.4 SUMIMAIY ...eoueeneeneeeeeeeeseesessessessessessesteseessesseseenseneesensens 138
9.11 ACCESSING AQENCIES.....cuveeteeteeieeieereesteesteesre e e sreesseereeee s 139
9.11.1Agency Related Information...........ccceveeveeneeneenenneenns 139
9.11.2Interface IAQENtSYStEMc.cocveevieeieeeeee e 141
0.11.3L.0CEI ACCESS.....coitirueeienieriieiesieeie et 144
O0.11.4REMOLE ACCESS......oeireerieeriieesteesiee e see e seeesreesaeeeens 145
9.11.5Listening tO AQENCIEScccveeceeerieerieesieesee e 146
9.11.6 Example: AgencyClientAgentcccceveeeceeceeseesnenne, 149
O.11.7 SUMMEAY ...ttt 162
9.12 Accessing an Agency Domain Servicecoceeeeveeveeeiieenene 163
9.12.1Interface IREQIONccceeeeee e 164
9.12.2Interface IREgIONREGISLIALiONcovveeeeeieeieeneesiee s 165
0.12.3L.0CEI ACCESS.....coitirueeiesieriieiesieeie et 168
9.12.4REMOLE ACCESS......oeireeieieiiieentee et 169
9.12.5Listening to Region RegIStries........cccoceveerieneenenseenne, 170
9.12.6 Example: RegionClientAgentccccecveveevieeveeseennens 173
O.12.7 SUMIMAIY ...eeveeneeneeeeeeeeseeiessessessessessesteseessesseseenseneenensens 180
9.13 Searching Grasshopper COmMpPoNENtS.........ccoceereereeneenseenieenne 180
9.14 Migrating Serversand CHents..........cccevveveeveececceeseese e 187
9.15 Migration SCENAINOcceeiierreerieee e 189
9.15.1 Example: MigratingServerAgentccoceevveeneeseeneens 189

PROGRAMMER'’S GUIDE

10

11

12

13

w

9.15.2Example: MigratingClientAgentcccceveeveevieenenne. 191
9.15.3Running the SCeNario..........cccvvveveeveeseeieeceeseese e 199

O.15. 4 SUMMEIYoeuieeiee ettt et neeeeeas 203

9.16 Interacting with External Applications.........cccccccevvevveieenenne. 204
9.17 External Communication SCENAIioccccovereerereererseneeenne 206
9.17.1Example: External Applicationcccccoveereenennennienne 206
9.17.2Example: External ACCESSAQENTeevevveerieeiecieeee 211
9.17.3Running the SCeNario..........cccvveveeveeseeieeseese e 214

.17 4 SUMMEIYcoeueieieeeeee ettt eae e e e e 216

The PerSIStENCE SEIVICE.......coiieie et s 217
10.1 Example: SIeepYAQENt......coiiiriereerieeee e 219
10.2 SUMIMEAIY oottt sn e s e e 222
SPECIAl PlACES.......oceeeceieie ettt 225
11.1 Example Scenario for Special Places..........cccocevevveceiieieennen, 227
11.1. 1Example: PlaceServiCe. ... 227
11.1.2Example; PlaceACCESSAGENEcevveviecieeie e 228
11.1.3Running the SCeNario..........cceevveveiciecce e 231

THE SECUNITY SEIVICE ..eeieeeceeee ettt ettt ne e 235
12,1 EXtErnal SECUNTY ...covveieeieseeseesiee e 235
12.2 Internal SECUMYcceeeeieeee et 236
12.3 Example: SECretAQeNt........ccoveveeveece e 237
Grasshopper and CORBA ... e 241
13.1 CORBA Enhanced Grasshopper Agents........ccccveereeenereereenne 242
13.1.1Example: CORBA Enhanced Agents.........cccccoeevveenneen. 246

A CTONYIMIS ...ttt e e s be e e sne e e sne e e snneeeas Annex -1
(€101 T USRS Annex - 3
TNAEX e Annex - 21

LIST OF FIGURES

List of Figures

Figure 1: Agent Class Diagram..........cccccviieiieeieeesiecie e see s esae e s 15

Figure 2: AgentInfo Class Diagram..........cccceeeeeeeeiieeiieciesee s see e 31

Figure 3: Agent State Diagramcccceecveieeeiieceecie e e see e eae e s 44

Figure 4: Agent Migrationccoceeieeneeiienee s e s s 50

Figure 5: Structure of an Agent’s live() Methodccvieiiiiiiiiiiiiinnnnn. 54
Figure 6: BoomerangAgent SCENANO.........uuiiiieeiiiieiiiiiiie et eeeeeeeees
Figure 7: ACIONAQENT SCENAIIOccuvviiiiie e e e e e e e aeanns
Figure 8: COPYAQENT SCENAIIO.......cceuuuiiieieeeeee e e e e e e e e e e e e e eeeaaens
Figure 9: Communication Via ProXIi€Scccvvviiiiiiiiiiieeeeeeeeiiiiie e e e eeeeeennns
Figure 10:Simple Communication SCEeNAriO...........cceviiieeiiiieiiiiiiee e eeeeeeeaens
Figure 11:Asynchronous Communication SCenario..........cccceeuvvvvniieeeeeennn. 110
Figure 12:Dynamic Communication SCENANOuuuvviireeerieiiriiiiineeeenn 126
Figure 13:Multicast Communication SCeNario.............cccevvvevvvvviieeeeeeeeennnn, 137
Figure 14:Agencyinfo Class Diagram...........ccccccvvuviiiiiiieeeeieeeciiee e, 140
Figure 15:1AgentSystem Class Diagramccooovvviiiiiiieeeeeeiiiiiiciee e, 141
Figure 16:Listening Mechanism for AQencCIescccovvvviviviiiiiiiiniieeeeeeee, 149
Figure 17:AgencyClientAgent SCeNArio...........cceeuuvviiiieieeeeeeeeiiiee e 161
Figure 18:IRegion Class Diagramcooiiiiiiiiiiiiiiiiinn et 164
Figure 19:IRegionRegistration Class Diagram..............cccceeevvvvviinieeeeennnen, 166
Figure 20:Listening Mechanism for Region Registries...........cccccoeeeeeeenee. 173
Figure 21:RegionClientAgent SCENAriO...........ccovvvvviiiiiiiee e 179
Figure 22:Synchronous Migration SCeNArio.............ueeiiieeeeiiiiiiiiiiiieeeeeeenn 201
Figure 23:Asynchronous Migration SCenario..........cccceeevieeeiiiiiiiiiinineeeeenn, 202
Figure 24:External Application SCenariocccceevvieiiiiiiiiiiiiiie e 215
Figure 25:CORBA Object Creation and Connection Establishment......... 244
Figure 26:Migration of a CORBA Server Agent..........cccvvvvvvviieeeeeeeeeennnnns 245
Figure 27:Connection Re-establishment by CORBA Client Agent.......... 246

PROGRAMMER'’S GUIDE

Figure 28:CORBA Agent Scenario

Vi

LIST OF TABLES

List of Tables

Table 1: NOtational CONVENTIONS.ueeeeeeeeeeeeeeeeeeee e e e e e e e eeeeereeeeeeesseseeaanans 3
LI o LR (oo LTS 3
Table 3: FIEr KEYS ..ot 182

Vii

PROGRAMMER'’S GUIDE

viii

LIST OF EXAMPLES

List of Examples

Example LHEHIOAGENLcooeece e e 19
Example 2:PrintStriNgAQENT.........oove e 27
Example 3:PrintINfOAQENT........coe e 45
Example 4:Bo0merangAgENTocueiiiriiiie ettt 55
EXampPle S:ACHONAGENT ..ot 61
EXaMPIe 6:COPYAGENT ..ottt 70
EXaMpPIe 7:SerVEIAQENT ..ot 84
EXampPle 8:1SErVEIAGENLccveeieee e 84
EXample Q:CHENTAQGENToceece e 85
Example 10:ASYyNCSEIVETATENTcooeeieie ettt 98
Example 111 ASYNCSEIVEIAQENTocceeeeeeeeetee e 100
Example 12: AsyncSerVerEXCERLiON........ccooirieeiieeniesee e 100
Example 13:AsynCCHENtAGENTccoeeeeeee e 104
Example 14:DynamiCServerAgentcoveieeeeeceeeseese e e 115
Example 15:IDyNnamiCSerVErAQENL.......cccvcieeieeeeeeeese et 116
Example 16: TestDataPacKetccooerierieiieeiieree e 117
Example 17:DynamiCClentAQeNnt........cooveieeieerieeiienee e 122
Example 18:MultiCastServerAgent.........ccoeeereeneeneeneesee e 131
Example 19:IMulticastServerAgentcccveveeveeseeneeseeseesee e 132
Example 20:MulticastClientAgeNtccoovveveecieceesee e 133
Example 21:AgencyClEentAgeNnt........ccooveieeve e 152
Example 22: 1 LiSteniNgAGENT........cooviieeeeeeeiee e e 155
EXamMpPle 23:GHLISIENEN ..o 157
Example 24:RegionClIentAgentcooveererieirieseeree e 175
Example 25:MigratingSerVerAgent.........cccceeveeceeeseeseeseesee s see e 189
Example 26:IMigratingServerAgentccceeveeveeveeneeseesee s 191
Example 27:MigratingClIentAGeNtcccoveeveeiieesiesee e e 194

PROGRAMMER'’S GUIDE

Example 28:Externa AppliCationcccveveeveeceeiiesece e 207
Example 29:ServerODJECL.........ccve i 210
Example 30:1ServerObJeCtccoocvevieiice e 211
Example 3L EXternal ACCESSAGENToovirieeieeee e 212
Example 32: | EXternal ACCESSAGENE........cvrieriieieeriee et 214
Example 33:S gDy AGENT ... s 220
EXxample 34:PIaCeSEIVICE.coiee et 227
Example 35:IPlaCESEIVICE.cccviieeeeeie e 228
Example 36:Place Property File........ccoooveieeie e 228
Example 37:PlaCeACCESSAGENToovieieeie e 229
Example 38:Keytool Usage: Generate Key.........ccveeierierieenenneenieesieene 237
Example 39:Keytool Usage: List KEYS......coooveieiiinnenieeeeeesee e 238
Example 40:Keytool Usage: EXPOrt Keycccevveveeveeve e 238
Example 41:Cl_CORBASEIVETAGENT.......cccverererierierienieneeieseeseeseeeesensens 247
Example 42:CORBA SEIVETAGENT.......ccooveireeeeeeeeiesie e sie e seeseeneeseeneas 248
Example 43:CORBACHENTAGENTc.ooveeieeeeieree e 253

CHAPTER 1: PREFACE

1 Preface

This chapter provides information about this document itself as well as about
the remaining parts of the Grasshopper manual.

1.1 About this Document

This document describes how to implement mobile and stationary agents on
top of the Grasshopper platform. Every fundamental implementation aspect is
handled, such as mobility, local/remote communication, agent localization,
CORBA support, and security.

Simple example agents are introduced and enhanced step by step throughout
the whole document, starting as 'minimal agents’ and ending as rather com-
plex agents that make use of most of the Grasshopper functionality.

1.2 Document Sructure

This document is subdivided into the following chapters.

CHAPTER 1: Preface, this part of the document, gives an overview of this
manual and its background.

CHAPTER 2: Introduction, provides a general description about running the
examples that are described in the scope of this document.

CHAPTER 3: Hello Agent!, provides basic information that enables you to
implement a first, simple agent on top of Grasshopper. The supported agent
types, their class structure, and their functionality is introduced, and the chap-
ter ends with an example that shows a minimal Grasshopper agent.

CHAPTER 4: Creation and Removal of Agents, explains how to create and re-
move Grasshopper agents via the platform’s programming and user interfaces.
Special emphasis lies on the provision of creation parameters to a new agent.

CHAPTER 5: Agent Related Information, describes the set of information that
characterizes a Grasshopper agent, such as an agent’s identifier, location,
name, type, code base, and state.

CHAPTER 6: Move Me!, provides detailed information about the mobility as-
pect of Grasshopper agents. Special emphasis lies on the introduction of an
agent’s data state and the structure of an agenve() method.

PROGRAMMER'’S GUIDE

CHAPTER 7: Action!, describes how auser can trigger arunning agent viathe
platform’s user interfaces in order to force the agent to perform a certain ac-
tion.

CHAPTER 8: Clones and Copies, explains how to create a copy of a Grass-
hopper agent.

CHAPTER 9: The Communication Service, describes how Grasshopper
agents can communicate with each other, with remote agencies, and with reg-
istration servers.

CHAPTER 10: The Persistence Service, explains how agents can take advan-
tage of the persistence mechanism of the hosting agency.

CHAPTER 11: Special Places, describes how single places within an agency
can be enhanced with additional functionality.

CHAPTER 12: The Security Service, shows the impacts of the security mech-
anisms of an agency on the execution of agents.

CHAPTER 13: Grasshopper and CORBA, explains how Grasshopper agents
can act as CORBA servers and/or clients.

ANNEX A: Acronyms
ANNEX B: Glossary
ANNEX C: Index

1.3 Related Documents

The whole Grasshopper manual comprises four parts:

Basics and Concepts. This part covers an introduction to mobile agent tech-
nology and to the Grasshopper platform.

User’s Guide. This part describes the platform installation and its usage via
graphical and command line interfaces.

Programmer’s Guide. This part explains how to realize mobile and station-
ary agents on top of the Grasshopper platform.

Release Notes. This part lists modifications and enhancements compared to
the previous release of Grasshopper.

CHAPTER 1: PREFACE

1.4 Notational Conventions

Several notational conventions are used throughout the whole document in or-
der to improve the readability and to support you in finding specific informa-
tion.

1.4.1 Fonts

The following font types are used within this manual:

Proportional font Used for standard text

Proportional italic font Used either to emphasize words or to in-
dicate the first appearance of new terms.

Fi xed font Used for source code, E-mail addresses
and http addresses.

Fi xed, bold font Used to emphasize parts of source code,
such as class or method names

Fi xed bold italic Used to emphasize comments inside

font source code

Table 1: Notational Conventions

1.4.2 Ilcons

Thefollowing icons are placed at the page marginsin order to indicate certain
types of information:

Unix This icon indicates information that is specific for Unix op-
& D erating systems.

Windows Thisicon indicates information that is specific for Windows
& D operating systems.

Table 2: Icons

PROGRAMMER'’S GUIDE

EE: Thisicon indicates paragraphsthat provide some background

= information about a specific topic. Thisinformation isnot re-
quired for the understanding of the respective section and
may be skipped. However, it may be interesting for you if
you want to know more about the concepts of Grasshopper
Development System. This background information is addi-
tionally highlighted by means of a shaded frame.

Thisicon indicates useful tips and tricksthat facilitate the us-
age of the product.

tance and that should be read in any case, even if you want to

This icon indicates paragraphs that are of particular impor-
& go through the document as soon as possible.

Thisicon is used to indicate examples.

Table 2: Icons

1.5 Howto Get in Contact

To make suggestions, critics, or even compliments, please contact us by send-
ing an E-mail to gr asshopper @ kv. de

In order to retrieve the comments of other Grasshopper users and participate
in discussions, please visit our Web site

http://ww. grasshopper. de/ conmuni ty
and subscribe to the discussion groups you are interested in.

Additional information can be retrieved from the following Web site:
http://ww. grasshopper . de

CHAPTER 2: INTRODUCTION

2 Introduction

This document describes how to implement mobile and stationary agents on
top of the Grasshopper platform. Every fundamental implementation aspect is
handled, such as mobility, local/remote communication, agent localization,
CORBA support, and security.

Simple example agents are introduced and enhanced step by step throughout
the whole document, starting as 'minimal agents’ and ending as rather com-
plex agents that make use of most of the Grasshopper functionality.

Installation Requirements

We recommend that you take a look at the examples provided in this manual.
The following requirements have to be fulfilled in order to run them.

1. The Java Development Kit JDK 1.2 (or higher) as well as the Grasshopper
platform V2.2 is needed for all examples. Concerning JDK 1.3, Grasshop-
per takes advantage of improved reflection mechanisms: With JDK 1.3, it
is not anymore required to manually create proxy classes for using the
Grasshopper communication service.

2. In order to compile and run examples that are accessing CORBA function-
ality, a CORBA environment must have been installed. Please refer to the
User’s Guide to get information about the CORBA environments that are
supported by Grasshopper. If your installed CORBA implementation is not
initially supported by Grasshopper, please refer to the User’'s Guide in
order to see how to adapt Grasshopper to your CORBA implementation.

3. In order to compile and run the examples that make use of the security fea-
tures of Grasshopper, a security add-on must have been installed. For
detailed information about this add-on, please refer to the User’s Guide.

API Specification

Grasshopper provides a large set of classes and interfaces that can be used by
agents for accessing the functionality of the platform. This document focuses
on the introduction of the platform functionality in terms of textual descrip-
tions and programming examples. It does not provide an entire specification
of the platform API. If a specific method is mentioned in this document, its
concrete parameters are usually left out. For instance, the method

Agent I nfo createAgent (
java.l ang. String cl assNane,
java.l ang. String codeBase,
java.l ang. String pl aceNane,

PROGRAMMER'’S GUIDE

java.l ang. Qbj ect[] argunents)

issimply mentioned as

createAgent(...)
Anentire API specificationisprovided in HTML format as part of your Grass-
hopper instalation (see directory <GH HOMVE>/ doc/api, where
<CGH _HOME> istheroot directory of your Grasshopper installation).

Example Scenarios

The examples that are introduced in the following chapters are part of the
Grasshopper release. Their source code can be found in the directory
<GH_HOME>/ exanpl es/ sr ¢, and the corresponding class files are stored
in the directory <GH_HOVE>/ exanpl es/ cl asses of your Grasshopper
installation.

The examples are arranged in Java packages. The root package is named ex -
anpl es, and the inner packages correspond to the sections of this document:

» Packagexanpl es. si npl e

This package comprises all examples that consist of single agents:

Hel | oAgent (see Example 1 on page 19). This example represents
the minimal Grasshopper agent that just prints a variation of the proba-
bly most famous example message.

PrintStringAgent (see Example 2 on page 27). This example
shows how to provide creation arguments to an agent and how to
remove an agent.

PrintlnfoAgent (see Example 3 on page 45). This example
describes the set of information that characterizes an agent, and
explains the way how an agent can get access to this information.

Booner angAgent (see Example 4 on page 55). This example agent
migrates to a user-defined location and returns back to its home loca-
tion.

Act i onAgent (see Example 5 on page 61). This example shows how
a user can trigger an agent via the agency’s user interfaces.

CopyAgent (see Example 6 on page 70). This example agent pro-
duces copies of itself inside all running agencies.

Agencyd i ent Agent (see Example 21 on page 152). This example
shows how an agent gets access to the functionality of local and remote
agencies. It needs the following additional classes from the package
examples.util: GHLi st ener, | Li st eni ngAgent, I Li stenin-

CHAPTER 2: INTRODUCTION

gAgent P.

* Regi onCl i ent Agent (see Example 24 on page 175). This example
shows how an agent gets access to a Grasshopper agency domain ser-
vice. It needs the following additional classes from the package exam-
ples.util:

GHLi st ener, | Li st eni ngAgent, | Li st eni ngAgent P.

» Sl eepyAgent (see Example 33 on page 220): This example shows
the usage of the persistence service.

o Packageexanpl es. si npl eCom

This package comprises the agents belonging to the simple communica-
tion scenario as described in Section 9.4 on page 83. The scenario
describes the communication basics of the Grasshopper platform. The
package consists of the following classes:

* Server Agent (see Example 7 on page 84)
* | Server Agent (see Example 8 on page 84)

» | Server Agent P. This class has been generated by using the Grass-
hopper stub generator. The class is needed by the ClientAgent for creat-
ing proxies of the ServerAgent, if a JDK 1.2 environment is used.
Please refer to Section 9.2 for detailed information about Grasshopper
proxy objects and the stub generator.

« Cient Agent (see Example 9 on page 85)
» Packagexanpl es. asyncCom

This package comprises the agents belonging to the asynchronous commu-
nication scenario as described in Section 9.6 on page 97. The scenario
explains how an agent can use the communication service for asynchro-
nous method invocations and describes different result handling mecha-
nisms. The package consists of the following classes:

 AsyncServer Agent (see Example 10 on page 98)
* | AsyncSer ver Agent (see Example 11 on page 100)

* | AsyncSer ver Agent P. This class has been generated by using the
Grasshopper stub generator. The class is needed by the AsyncClient-
Agent for creating proxies of the AsyncServerAgent, if a JDK 1.2 envi-
ronment is used. Please refer to Section 9.2 for detailed information
about Grasshopper proxy objects and the stub generator.

* AsyncServer Excepti on (see Example 12 on page 100)
 Asyncd i ent Agent (see Example 13 on page 104)

PROGRAMMER'’S GUIDE

» Packagexanpl es. dynam cCom

This package comprises the agents belonging to the dynamic communica-
tion scenario as described in Section 9.8 on page 114. The scenario shows
how a client agent can contact a server agent without having access to the
server proxy. The package consists of the following classes:

 Dynam cServer Agent (see Example 14 on page 115)
* | Dynam cSer ver Agent (see Example 15 on page 116)

* | Dynam cSer ver Agent P. This class has been generated by using
the Grasshopper stub generator. The class is needed by the DynamicCli-
entAgent for creating proxies of the DynamicServerAgent, if a JDK 1.2
environment is used. Please refer to Section 9.2 for detailed information
about Grasshopper proxy objects and the stub generator.

» Test Dat aPacket (see Example 16 on page 117)
« Dynam cC i ent Agent (see Example 17 on page 122)
» Packageexanpl es. mul ti cast Com

This package comprises the agents belonging to the multicast communica-
tion scenario as described in Section 9.10 on page 131. The scenario
shows how a client agent can add a set of server agents to a multicast
group and invoke methods on this group. The package consists of the fol-
lowing classes:

« Multicast Server Agent (see Example 18 on page 131)
I Multicast Server Agent (see Example 19 on page 132)

I Multicast Server Agent P. This class has been generated by
using the Grasshopper stub generator. The class is needed by the Multi-
castClientAgent for creating proxies of the MulticastServerAgent, if a
JDK 1.2 environment is used. Please refer to Section 9.2 for detailed
information about Grasshopper proxy objects and the stub generator.

« Multicastdient Agent (see Example 20 on page 133)
» Packagexanpl es. m grati ngCom

This package comprises the agents belonging to the migrating communi-

cation scenario as described in Section 9.15 on page 189. The scenario
shows how the communication service forwards method calls and results

to migrating server and client agents. The package consists of the follow-

ing classes:

« M gratingServer Agent (see Example 25 on page 189)
* | MgratingServer Agent (see Example 26 on page 191)

CHAPTER 2: INTRODUCTION

« | MgratingServer Agent P. This class has been generated by
using the Grasshopper stub generator. The class is needed by the
MigratingClientAgent for creating proxies of the MigratingServer-
Agent, if a JDK 1.2 environment is used. Please refer to Section 9.2 for
detailed information about Grasshopper proxy objects and the stub gen-
erator.

« MgratingCdient Agent (see Example 27 on page 194)
» Packagexanpl es. ext er nal Com

This package comprises the agents belonging to the external communica-
tion scenario as described in Section 9.17. The scenario shows how an
external application can interact with Grasshopper components (agents,
agencies, and region registries) by using the Grasshopper communication
service. The external application acts as communication server and client.

» Packagexanpl es. cor baCom

This package comprises the agents belonging to the CORBA communica-
tion scenario as described in Section 13.1.1. The scenario shows how to
implement Grasshopper agents as CORBA server objects and CORBA cli-
ents. Particular focus lies on issues concerning the migration of CORBA-
enhanced mobile agents.

» Packagexanpl es. uti |

This package comprises classes that are commonly used by different
examples agents mentioned above:

* CGHLi st ener (see Example 23 on page 157). This class realizes a lis-
tener object that is able to monitor the events of an agency or a region
registry. It is implemented by the following agergganpl es. si m
pl e. Agent Syst enCCl i ent Agent exanpl es. sim
pl e. Regi ond i ent Agent .

* | Li steni ngAgent (see Example 22 on page 155). This class repre-
sents an interface that is contacted®i.i st ener objects in order to
forward event notifications to listening agents. It is implemented by the
following agents:exanpl es. si npl e. Agent Systenyd i ent -
Agent , exanpl es. si npl e. Regi ond i ent Agent .

* | Li steni ngAgent P. This class has been generated by using the
Grasshopper stub generator. The class is neede@Hbyst ener
objects for creating server proxies of the AgencyClientAgent, if a JDK
1.2 environment is used. Please refer to Section 9.2 for detailed infor-
mation about Grasshopper proxy objects and the stub generator.

Example
output

Known
problem

Fault toler-
ance

PROGRAMMER'’S GUIDE

Running the Examples

Each example consists of one or more agents. To run the examples, at |east one

agency must have been started. Some examples require two agencies and
eventually an agency domain service (i.e., aregion registry or X.500 directory
service). For each example, these requirements are mentioned in this docu-

ment below the corresponding source code. The corresponding paragraphs or
sections are titled ,Running the Example” for examples consisting of a single
agent and ,,Running the Scenario” for examples consisting of more than one
agent. For detailed information about how to start an agent, an agency, or an
agency domain service, please refer to the User’s Guide.

The example agents display the progress of their execution in terms of textual
messages or graphical components. Note that textual messages, initiated by
l og(String) andl og(String, Throwabl e) statements, are by de-

fault displayed in the terminal window (e.g., XTerm or MS-DOS console win-
dow) in which the agency has been created. If the agency’s GUI is active, a
message console can be activated via the menu item Tools -> Console. In this
case, all outputs frormt dout andst derr are printed in this console. The
log(...) methods are provided by the cldss i kv. gr asshopper . agen-

cy. Agent (see Chapter 3).

Some of the example agents create a simple GUI. This GUI realmadah

dialog which blocks the whole agency GUI. Note that this is not a Grasshop-
per-specific problem, but a general characteristic of modal dialogs. The inter-
nal execution of the agency is not influenced. That means, all internal agency
threads as well as threads of other running agents are not blocked. The only
impact is that the agency GUI does not accept any user inputs until the GUI of
the agent has been closed.

In some cases the GUI of an example agent appears behind the agency GUI.
In this case, the agent GUI is active but cannot be accessed, since the agency
GUI (residing in front of the agent GUI) is blocked by the agent GUI. This
problem could be solved by implementing a more advanced agent GUI. How-
ever, the intention of the example agents is to focus on a specific set of Grass-
hopper functionality and not on GUI design. Thus, the graphical components
have been realized as simple as posdiblerder to avoid all associated prob-

lems, it isrecommended that you start the agencies with their textual interface

(TUI) instead of their GUI if you want to run an example agent that provides

an own GUI.

Note that all examples are meant to show a specific set of Grasshopper func-
tionality. In order to focus on the essential parts of the code and to keep the
code as simple and short as possible, no effort has been spent in making the
example agents stable and fault tolerant. Thus, it may be that an example

10

CHAPTER 2: INTRODUCTION

crashesif it has not been started exactly in the described way.

In order to start an agent, the hosting agency must have accessto all classfiles Classload-
that are required by the agent. There are two possibilities to grant this access: 'Cr;%mg
Either the agent’'s code base must be included in the CLASSPATH environ-
ment variable of the underlying operating system, or the code base must be ex-
plicitly typed in when you start an agent. Note that the above choice influences

the class caching mechanism of the Java virtual machine (JVM) on which the

agency is running:

 If the agent’s code base is included in the CLASSPATH environment vari-
able, the agent’s classes are loaded only once during the entire life time of
the JVM (which is equal to the life time of the agency running on the
JVM). If more than one instance of the same agent is started on one
agency, the JVM uses its internally cached classes for the creation of the
second and all subsequent instances.

 If the agent’s code base is not included in the CLASSPATH environment
variable, you have to provide it when starting a new agent. (For this pur-
pose, a Grasshopper agency offers adequate graphical and textual input
facilities whose usage is explained in the User’s Guide.) In this case, the
agency does not cache the agent code. If more than one instance of the
same agent is started on one agency, the JVM loads the required code from
the specified code base for each new agent.

The explanations above may be of interest for the development of agents:

During the development phase of a new agent, it may be desiahtein- :
clude its code base in the CLASSPATH environment variable. In this case it is
possible to create an instance of the new agent, to modify the agent’s code af-
terwards, and to create another instance of the agent inside the same agency
by using the modified codeithout re-starting the agency. This may be advan-
tageous especially if more than one agency is involved in a scenario, since the
re-start of several agencies (which eventually run on different hosts) is rather
time consuming.

After sufficiently testing an agent, it may be desirable to include its code base
in the CLASSPATH environment variable. In this case, it is not necessary for
you to explicitly type in the code base when creating the agent, since the agen-
cy’s JVM by default accesses the system’s Java classpath.

11

PROGRAMMER'’S GUIDE

12

CHAPTER 3: HELLO AGENT!

3 Hello Agent!

From astatic point of view, a Grasshopper agent isrealized by means of aJava
class or aset of classes. Each agent has exactly one agent class which charac-
terizes the agent and which must be derived from one of the superclasses Mb-
bi | eAgent, StationaryAgent, PersistentMbil eAgent, or
Per si st ent St at i onar yAgent , al provided by the Grasshopper plat-
form.

When implementing a Grasshopper agent, thefirst decision that must be made
is whether the agent is to be stationary or mobile. Mobile agents are able to
migrate autonomously from one agency to another, whereas stationary agents
do not have this ability. Besides, it is not possible for a user to move a station-
ary agent viathe graphical or textual user interfaces (Ul) of the hosting agen-
cy. Thereason for the separation between mobile and stationary agentsis that
the migration of specific agents may cause failures.

For instance, consider an agent that has references or native accessto local re-
sources. In this case, the agent may only be able to run on a specific agency
where the required resources are available. If the agent is moved to another |o-
cation where the required environmental conditions are not provided, the
agent is not ableto run properly. In order to avoid this situation, such an agent
should be stationary.

Usually, Grasshopper mobile agents are derived from the class
de. i kv. grasshopper. agent . Mobi | eAgent, while dtationary
agents are derived from de. i kv. gr asshopper. agent. St at i onar -
yAgent . Special cases are persistent agents which are mentioned in the fol-

lowing paragraph.
The second decision when implementing a Grasshopper agent is whether the
agent shall be recoverable after a system crash. Grasshopper provides a per-

Sationary
vs. mobile
agents

Per sistent
VS. non-per -
sistent

sistence service in order to enable agencies to persistently store an agentigeasa
state within the local file system. In case of a system crash or simply the ter-
mination of an agency, all persistently stored agents can be recovered when the
agency is restarted. In order to achieve this, two preconditions must be ful-

filled:

1. The agency must have been started with activated persistence service.
Please refer to the User’s Guide for detailed information about how to start

an agency.

2. The agents that are to be recoverable must have been implemented with
enabled persistence. This is achieved by deriving the agent class from one

13

Grasshop-
per agent
types

PROGRAMMER'’S GUIDE

of the superclasses de. i kv. gr asshopper. agent . Per si st ent -

Mobi | eAgent or de. i kv. grasshopper. agent. Per si st ent -

St at i onar yAgent .

Note that the persistence service stores al persistence-supporting agents (i.e.,
agents derived from one of the classes Per si st ent Mobi | eAgent or
Persi stent St ati onaryAgent). The more persistence-supporting
agents are running, the more processing power isrequired by the hosting agen-
cy for maintaining their internal information. Even an agency without any run-
ning agents is slower if the persistence service is active. This fact should be
considered for evaluating if an agent needs persistence-support or not. Further
information about the persistence service can be found in Chapter 10.

Summarizing, Grasshopper supports four kinds of agents:

Mobile agents. instances of classes that are derived from
de. i kv. grasshopper . agent . Mobi | eAgent

Sationary agents. instances of classes that are derived from
de. i kv. grasshopper. agent. St ati onar yAgent

Persistent mobile agents. instances of classes that are derived from
de. i kv. grasshopper. agent. Per si st ent Mobi | eAgent. In
contrast to usual mobile agents, persistent mobile agents are able to use the
Grasshopper persistence service (see Chapter 10).

Persistent stationary agents. instances of classes that are derived from
de. i kv. grasshopper. agent. Persi stent Stati onary-

Agent . In contrast to usual stationary agents, persistent stationary agents
are able to use the Grasshopper persistence service (see Chapter 10).

As shown in Figure 1, all Grasshopper agents have the common superclass
de. i kv. grasshopper . agency. Agent .

14

CHAPTER 3: HELLO AGENT!

<<Interface>>
IStationaryAgent

(from agent)

7

StationaryAgent
getType()

/ o\

PersistentStationaryAgent

PersistentStationaryAgent()
save()

flush()

beforeSave()

beforeFlush()

afterLoad()

setSawvelnterval()
getSawvelnterval()
setFlushTimeout()
getFlushTimeout()

<<Interface>>
IAgent

getinfo()
setProperties()
getProperties()
setProperty()
getProperty()

A\

Agent

live()
action()
log()

copy()
remove()

beforeCopy ()
afterCopy/()
beforeRemove()
init()

getinfo()
getAgentSystem()
getRegion()
getName()
getType()
getDescription()
setProperties()
getProperties()
setProperty()
getProperty()

<<Interface>>
IP ersistent

save()

flush()
setSawelnterval()
getSavelnterval()
setFlushTimeout()
getFlushTimeout()

<<Interface>>
IMobileAgent

(from agent)

MobileAgent
move()
beforeMowve()
afterMove()
getType()

/ o\

PersistentMobileAgent

PersistentMobileAgent ()
sawe()

,_|flush()
| beforeSawe()

beforeFlush()
afterLoad()
setSavelnterval()
getSavelinterval()
setFlushTimeout()
getFlushTimeout()

Figure 1. Agent Class Diagram

Viaits superclass Agent , each Grasshopper agent has accessto thefollowing class Agent

methods:

e action() : Thismethod is automatically invoked by the agency if a user
performs a double-click on the corresponding agent entry in the agency
GUI or types in the ’invoke’ command in the TUI. For example, this

15

PR

OGRAMMER'’S GUIDE

16

method can be used to activate an agent's own GUI on request of a user.
Please refer to Chapter 7 for more information.

af t er Copy(. . .): This method is automatically invoked by the hosting
agency on the copy of an agent right after its creation. The method may be
overridden by agent programmers when implementing an agent class.
Please refer to Chapter 8 for more information.

bef or eCopy(. . .): This method is automatically invoked by the host-

ing agency before an agent is copied and may be overridden by agent pro-
grammers when implementing an agent class. Its purpose is to enable the
agent to prepare its copying, e.g., by performing specific initializations. By
throwing aVet oExcept i on inside thebef or eCopy() method, an
agent may even prohibit its copying. Please refer to Chapter 8 for detailed
information.

bef or eRenove(. . .): This method is automatically invoked before an
agent is removed. Its purpose is to enable the agent to prepare its removal,
e.g., by releasing resources and references. Please refer to Section 4.2 for
detailed information.

copy(...): This method enables an agent to create a copy of itself.
Detailed information about its usage is provided in Chapter 8.

get Agent Syst en(. ..) : This method enables the agent to access the
functionality of the local agency by returning the interfaégent Sys-

t em For detailed information about the concept of Grasshopper proxy
objects, please refer to Chapter 9. Please refer to Section 9.11 in order to
learn about an agency’s APl and about how an agent can access this API.

get Descri pti on() : This method returns the textual description of the
agent which can be specified by the agent programmer during the imple-
mentation phase or by the user when creating the agent, provided that this
is supported by the agent implementation (see Section 5.2). The purpose of
the description is to provide information about the agent’s capabilities to
the user.

getl nfo(...): This method returns a set of information that is associ-
ated with the agent. Among others, this set of information comprises the
agent’s identifier, type, and name. For detailed information, please refer to
Chapter 5.

get Name() : This method returns the name of the agent. In contrast to the
unique agent identifier which is automatically generated by an agency dur-
ing the creation of an agent, the name can be specified by the agent pro-
grammer during the implementation phase or by the user when creating
the agent, provided that this is supported by the agent implementation (see

CHAPTER 3: HELLO AGENT!

Section 5.2).

getPlace(): As explained in Chapter 11, an agency user can allocate addi-
tional functionality to specific places. With this method, an agent can get
access to the functionality of the place in which the agent is currently run-
ning.

get Properties(): Optionally, a set of properties can be provided to
an agent, either during the agent’s creation, or during its runtime. This
method returns the complete list of an agent’s properties. Please refer to
Chapter 5 for further information about agent properties.

get Property(...): Optionally, a set of properties can be provided to
an agent, either during the agent’s creation, or during its runtime. This
method returns the value of one single property, specified by the property
key. Please refer to Chapter 5 for further information about agent proper-
ties.

get Regi on(...): This method enables the agent to access the func-
tionality of an agency domain service by returning the interfdge-

gi on. For detailed information about the concept of Grasshopper proxy
objects, please refer to Chapter 9. Please refer to Section 9.12 in order to
learn about an agency domain service’s APl and about how an agent can
access this API.

get Type(...): This method returns the type of the agent. Please refer
to Chapter 5 for detailed information.

init(...): This method is automatically called by the hosting agency
when an agent is created. It offers the possibility to provide creation argu-
ments to the agent. For detailed information, please refer to Chapter 4.

live(...): Thisis the most fundamental method of each Grasshopper
agent, since its implementation realizes the agent’s active, autonomous
behavior. Note that this is the only method timast be overridden by an
agent programmer when implementing an agent class. A first implementa-
tion of this method is provided by the example in Section 3.1. A detailed
guideline for the design of tHa ve(...) method for mobile agents is
given in Chapter 6.

log(...): Twolog(...) methods are provided by the superclass
Agent in order to enable an agent to print textual messages onto the text
console of the local agency. The metham(St ri ng) directs outputs

to st dout, while the method og(Stri ng, Throwabl e) directs
outputs tost derr.

r enmove() : This method allows an agent to remove itself. Please refer to

17

class M o-
bileAgent

class Sa-
tionary-
Agent

Per sistent
agents

PROGRAMMER'’S GUIDE

Section 4.2 for detailed information.

set Properti es(): Optionally, a set of properties can be provided to
an agent, either during the agent’s creation, or during its runtime. This
method sets the complete list of an agent’s properties. Please refer to
Chapter 5 for further information about agent properties.

set Property(...): Optionally, a set of properties can be provided to
an agent, either during the agent’s creation, or during its runtime. This
method sets the value of one single property, specified by the property key.
Please refer to Chapter 5 for further information about agent properties.

Via its superclaskbbi | eAgent , each Grasshopper mobile agent has access
to the following methods:

af ter Move(.. .): This method is automatically invoked by the hosting
agency after an agent has arrived in a new agency after a migration proce-
dure. The method may be overridden by agent programmers when imple-
menting an agent class. For instance, the agent may want to adapt itself to
the new environment, e.g., by allocating new references or resources.
Please refer to Section 6.2 for more information.

bef oreMove(. . .): This method is automatically invoked by the host-
ing agency before an agent is moved. This method is of particular interest,
if the agent’s migration is not triggered by the agent itself, but by some
other software component. In this case, the agent may want to prepare its
migration, e.g., by releasing references or resources. By throwing a
Vet oExcept i on inside thebef or eMbve() method, an agent may
even prohibit its migration. Please refer to Section 6.2 for more informa-
tion.

get Type(...): This method returns the type of the agent. Please refer
to Chapter 5 for detailed information.

nmove(...): Via this method, an agent is able to migrate to another
agency/place. Please refer to Chapter 6 for more information.

Via its superclasst at i onar yAgent , each Grasshopper stationary agent
has access to the following methods:

get Type(. . .): This method returns the type of the agent. Please refer
to Chapter 5 for detailed information.

For information about the classBer si st ent Mobi | eAgent andPer -
si st ent St ati onar yAgent , please refer to Chapter 10 where the persis-
tence service is described.

18

CHAPTER 3: HELLO AGENT!

Beside the classes mentioned above, Figure 1 shows four Java interfaces. Remotely

| Agent , | Mobi | eAgent, | StationaryAgent, and |Persis- ggcefﬁggh_
t ent . Theseinterfaces cover those methodsthat are accessiblelocally andre- ods
motely by other software components, whereas the remaining class methods

areonly accessible for the derived agent classitself. A detailed explanation of

the external access of agent methods (which is realized with the Grasshopper

communication service and proxy objects) is given in Chapter 9.

By definition, a software agent is an active, autonomously acting component. Agentsas
In Grasshopper, this fundamental characteristic is released by defining an [M"€ads
agent as Java thread. The entire thread handling is performed by the hosting

agency (i.e., the Java process in which multiple agents may run concurrently).

Usually, the active behavior of a Java thread is specified inside the thread’s
run() method which is declared in thava. | ang. Runnabl e interface.

Concerning Grasshopper, than() method of the agent threads is declared
final inside the superclagggent . The reason is that the agency has to per-
form several checks and operations before an agent is allowed to start its actual
task.

Instead of the originalun() method, each Grasshopper agent has to imglee()
ment a method namdd ve() . This method (which is declared abstract in

the agent’s superclass) defines the active behavior of the agent, i.e., the control
flow that is performed inside the agent’s own thread.|Tihee() method is

the only method that is mandatory for each agent.

3.1 Example: HelloAgent

With the knowledge that has been provided so far, you are able to implement
your first Grasshopper agent:

The HelloAgent has a rather short life which ends right after a single print
statement. After performing this statement,lthee() method as well as the
agent thread'sun() method terminate.

Example 1: HelloAgent N

@
package exanpl es. si npl e; ?

i nport de.ikv.grasshopper. agent. Mobi | eAgent;
public class Hell oAgent extends Mobil eAgent

{
public void live() {

19

PROGRAMMER'’S GUIDE

log("Hello Agent!");

}
}

Reguirements:

* One running agency
Running the example:

Create the HelloAgent inside the running agency via the agency’s Ul and
have a look at the agency’s console window.

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a exanpl es. si npl e. Hel | oAgent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

Once thd i ve() method of an agent has terminated, also the agent’s thread
terminates, and the agent remains inside the hosting agency just as a passive
Java object. The methods of the agent can still be accessed by other objects/
agents, but the agent itself is not active anymore. The only possibility to re-
animate the agent is to move it to another agency. In this case, the agent’s
thread is re-started at its new location.

In order to keep the agent living, the termination ofithee() method must

be avoided. This can be achieved for example via endless loops Distate-

ments. However, in some cases it may be desired that an agent migrates ac-
tively to another agency and after this just acts as a passive server object for
other entities. In this case, it is advisable to terminatéitvee() method in

order to save resources.

3.2 Summary

» A Grasshopper agent is statically represented by a Java class that is either
derived from one of the classbbbi | eAgent , St at i onar yAgent ,
Per si st ent Mobi | eAgent , orPer si st ent St at i onar yAgent .

» A Grasshopper agent is realized as Java thread. dimg€) method of the
agent’s thread is not accessible for agent programmers. iTe()
method has to be used instead.

« Each Grasshopper agent has to implementl thee() method whose

20

CHAPTER 3: HELLO AGENT!

control flow is performed inside the agent’'s thread and thus defines the
agent’s active behavior.

* When thel i ve() method terminates, the agent is not removed, but
remains in the hosting agency as passive object.

21

PROGRAMMER'’S GUIDE

22

CHAPTER 4. CREATION AND REMOVAL OF AGENTS

4 Creation and Removal of Agents

This section describes how to create and remove a Grasshopper agent. Con-
cerning the creation, special emphasisis given to the provision of creation pa-
rameters.

4.1 Agent Creation

The first method that runs when a usual Java object is created is the object’s
constructor. Beside the default constructor, it is possible to specify additional
constructors in order to deliver initial parameters to the object.

Also a Grasshopper agent may require initial input parameters. However, in
contrast to a usual Java object, these arguments cannot be delivered via a spe-
cific constructor. In order to explain the reason for this, the agent creation pro-
cess has to be described in more detail:

Grasshopper agents are generally created inside an agency. A Grasshagpeere-
agency supports two different ways for creating agents: a user interface aHd'a
programming interface:

Human users can create agents via the graphical or the textual user intervécde Ul
(UI) of an agency. (Please refer to the User’s Guide for detailed information
about the GUI and TUI usage.)

Software components, such as other agents/objects, can create an agent vigallee
application programming interface (API) of an agemyontrast to the cre-

ation of usual Java objects, this cannot be achieved properly via a ‘'new’
statement(!), such as'HelloAgent hAgent = new HelloAgent()’

Instead, an agency provides the method createAgent...) that is of- newvs cre-
fered by the interface de.ikv.grasshopper.agency.lAgentSys- ateAgent()
tem and that has to be used for creating agents viathe API.

The reason for thisway of agent creation (which may seem to be abit strange
for Java programmers) is that an agency hasto perform severa internal tasks
during the creation procedure:

» The agency registers the agent in the agency’s internal database.

» The agency registers the agent inside the agency domain service, if this
component is available.

» The agency enables the agent to access the agency’s functionality by deliv-
ering fundamental object references.

23

cre-
ateAgent(...)
usage

About agent
constructors

init(...)

PROGRAMMER'’S GUIDE

The agency creates important information objects that are containing data
associated with the agent and that are required for management purposes.

The agency initiates the agent’s thread handling, among others by starting
the agent’s thread inside an own thread group. Reason: Additionally to its
initial thread, an agent may create further threads. An own thread group is
created for each agent in order to ensure that all threads created by the
agent terminate when the agent is removed.

The execution of all these procedures is triggered by the invocation of the
creat eAgent (. ..) method. By using a simpleew’ statement instead,
the agent is not able to run.

The createAgent(...) method requires the following parameters.

the name of the agent class, i.e., the Java class that containsveg)
method of the agent.

the code base from which the agent classes can be retrieved (see Section
5.3). Note that this value can be initialized with an empty string if the
agent classes are maintained in the Java classpath of the local agency.

the name of the place in which the agent shall be created. If this value is
initialized with an empty string, the agent is created in the default place
InformationDesk which exists by default in every Grasshopper agency.

a set of creation arguments, represented as Object[]. This array is used as
parameter of the agent'sii t (. . .) method which is explained below.

optionally, a set of properties. These properties are stored in the agent’s
Agentinfo structure and can be read and modified during the agent’s run-
time. Note that properties can only be provided to an agent if the agent is
created via the agency’s API. The agency’s Ul does not offer this possibil-

ity.

When creating a new agent, an agency always invokes the atgéail con-
structor, i.e., a constructor without arguments. Thus, any additional construc-
tor that may have been defined by the agent programmer will never be
invoked. If creation arguments are to be provided to the agenththg Ob-

j ect[]) method has to be used instead of a constructor.

Tasks that have to be performed by the agent only once, i.e., right after the
agent’s initial creation, should be implemented inside the agemit’s (Ob-
ject[]) method. This method is defined in the agent’s superéigssat

and may be overridden by any agent subclass. It is automatically invoked by
the agency right after creating the agent and can be considered as substitute of
the agent’s constructor.

24

CHAPTER 4. CREATION AND REMOVAL OF AGENTS

Thei nit (Obj ect[]) method can be used by the agent to receive and an- Deli\t/_ering
FCE : : creation pa-

dyzeinitial parameters. In thisway, this method can be handled by agent pro- | cter Spto

grammers as replacement of a specific constructor. The only thing that hasto an agent...

be considered by the programmer isthat the Obj ect [] arguments haveto be

converted to appropriate typesinside thei ni t method.

When an agent is created by a software component via the cre- ..viathe
at eAgent (. ..) method of the agency’s API, ti@j ect [] arguments AP

are provided as one parameter of this method. If no parameters are to be pro-
vided, theObj ect [] value must be set taul | inside the parameter list of

thecr eat eAgent (.. .) method.

When an agent is created by a user, the creation parameters are typed in.gitéthe Ul
via a graphical dialog window when using the GUI, or via a command line
when using the TUI. If more than one parameter is provided, a blank character

has to be used as separator. If one single parameter contains a blank character,
the complete parameter has to be included in quotation marks. (Please refer to
the User’s Guide for detailed information).

vokes the agentsni t (Qbj ect[]) method by usingtri ng[] as pa-
rameter type! Thus, whenever an agent is implemented that requires i
parameters and that is to be created via the Ui, rniné¢ (Cbj ect[]) meth-

od has to expe@t ri ng[] as parameter type and perform the cast to actu-
ally needed types internally.

Note that, when an agent is created by a human user, the agency always fE

Never invoke the agentsove(...), copy(...), orrenmove(...)
method inside theni t (. ..) method. This may lead to an unpredictablﬁ
behavior.

4.2 Agent Removal

Three possibilities exist for the removal of an agent:

» The agent can remove itself by invoking the methedrove() of its
superclasggent .

» The agent can be removed by external software entities via the API of the
agency that is hosting the agent (meth@ioveAgent (...) of the
agency proxyl Agent Syst em). Please refer to Section 9.11 where the
functionality of agencies is explained.

» The agent can be removed by a user via the agency’s Ul. Please refer to the
User’s Guide for information about the usage of an agency.

25

before Re-
move()

init(...)

live()

PROGRAMMER'’S GUIDE

A Grasshopper agent isrealized as a Javathread that runsinsideits own thread

group. That means, if an agent itself creates several threads, they are also run-

ning in the agent's thread group. Since the removal of an agent includes the
removal of its thread group, all threads that have been created by the agent are
also removed.

After receiving the request to remove an agent, the hosting agency automati-
cally invokes the agent’s methbeéf or eRenove() which is defined in the
superclasg&gent . An agent programmer may override this method in order

to enable the agent to prepare its removal, e.g., by releasing occupied referenc-
es. This is of particular importance if the agent is removed by other entities in-
stead of initiating its removal by itself.

4.3 Example: PrintStringAgent

The agent in the following example expects two creation arguments: a string
to be printed, and an integer number specifying how often the string has to be
printed. These parameters are provided to the agent by the hosting agency via
the agent’s ni t (Obj ect[]) method.

Note that the parameters are to be provided via the agency’s Ul. Since the user
interfaces interpret every input 86r i ng, the agent has to handle tGe-

ject[] arguments ofthenit(...) method astri ng[] (see the con-
version. . . (String)creati onArgs. .. inthe example code). Besides,

the second parameter has to be converteato

After converting the creation arguments to the appropriate data types, the
agent checks whether it has a property with the key ,generation®. Initially, this
IS not the case, and thus the agent adds this property with the value ,first".

If the ,generation” property has the value ,first“ (which is the case if you have
created the agent via the agency’s Ul), the PrintinfoAgent creates a new in-
stance of itself, using ther eat eAgent (. ..) method that has been ex-
plained in Section 4.1. As creation arguments (see the fourth parameter of the
method), the agent specifies its own creation arguments, i.e., the string to be
printed and the number of repetitions. Additionally, the PrintinfoAgent pro-
vides a ,generation“ property with value ,second* to tle e-

at eAgent (.. .) method (see fifth parameter). This property value causes
the newly created agent not to create further agents.

After printing the string, the agent removes itself. Note that invoking ¢he
nove() method causes the agency to automatically invoke the me#iod
f or eRenove() . The purpose of this method is to enable the agent to

26

CHAPTER 4. CREATION AND REMOVAL OF AGENTS

prepareitsremoval, e.g., in order to release occupied resources. Thisis of par-
ticular importance if the agent isremoved by other entitiesinstead of initiating
its removal by itself.

Example 2: PrintStringAgent

package exanpl es. si npl e;

i mport de.ikv.grasshopper. agent. Mbi | eAgent;
i nport de.ikv.grasshopper. agency. *;

//
//
//
/7
//
//

This class realizes an agent that prints a
user-defined string.

Its purpose is to show how creation argunments can
be provided to an agent.

After printing the user-defined string,

t he agent renoves itself.

public class PrintStringAgent extends Mbil eAgent

{

String printThis;

/
/
/

nt nmax;

/ Creation argunent:
/ args[0] = User-defined string
/ args[1] = Nunber of print repetitions

public void init(Cbject[] creationArgs) {

}

if (creationArgs == null ||
creationArgs.length < 2) {

| og(" Creation argunents needed: \\

<string> <nunber>");

log("Exiting.");

t hrow new Runti nmeException();
}
// Paranmeters are provided via GJ as Strings.
// Thus, (String) casting is required.
printThis = new String((String)creationArgs[0]);
max = I nteger.parselnt((String)creationArgs[1]);

// define a new property
if (getProperty("generation") == null)
set Property("generation", "first");

public void beforeRenove() {

log("(" + getProperty("generation") +
"): Renoving...");

27

PROGRAMMER'’S GUIDE

public void live() {
for (int count = 0; count < max; count++)
log("(" + getProperty("generation") + "): " +
print This);

if (getProperty("generation").equals("first")) {
java. util.Properties newProps =
new java. util.Properties();
// Initialize properties for new agent
newPr ops. set Property("generation", "second");
bj ect newArgs[] = new Object][2];
// Initialize creation argunents for new agent
newAr gs[0] = printThis;
newAr gs[1] new I nteger(max).toString();
try {
// Create new agent
log("(" + getProperty("generation") +
"): Creating new agent.");
get Agent Systen() . creat eAgent (
"exanpl es. si npl e. PrintStringAgent",
get I nfo() . get Codebase(),

newAr gs,
newPr ops) ;
}
catch (Agent CreationFail edException e) {
log(" (" + getProperty("generation") +

"): Could not create new agent. ", e);
}
}
try {
remove();
}

catch (Exception e) {
log("(" + getProperty("generation") +
"): Renoval failed. ", e);
}
}
}

Requirements:

* One running agency

Running the example:

Create the PrintStringAgent inside the running agency via the agency’s Ul.

28

CHAPTER 4. CREATION AND REMOVAL OF AGENTS

Type in the string to be printed and the number of repetitions as creation
arguments.

If you are using the textual user interface of the agency, please create the
agent by means of the following command (which is meant only as an
example, concerning the creation arguments):

cr a examples.simple.PrintStringAgent ,Hello User!* 7

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

4.4 Summary

A Grasshopper agent is always created inside an agency.

Using the agency’s API, a Grasshopper agent must be created via the
methodcr eat eAgent (. ..) which is part of the agency’s API. Never
directly use anew statement for creating an agent!

An agency uses the agent’s default constructor for the creation. This con-
structor is also invoked after each migration and copying procedure of the
agent. In contrast to this, the agentisi t (Qbj ect[]) method is per-
formed only once.

The agent'si nit (Object[]) method, provided by the superclass
Agent , can be overridden by agent programmers. This method is auto-
matically invoked by an agency when creating a new agent. Via this
method, initial creation parameters can be delivered to the agent.

The creation of an agent can be triggered in two different ways: by human
users via the agency's Ul and by software entities via dhe-

at eAgent (...) method of the agency’s API. Both possibilities allow
the provision of creation parameters.

When an agent is created via the agency’s Ul, all provided creation param-
eters are transferred to the agent in terms 8f @ ng array. Thus, the
agent has to convert the string values to data types that are actually
required.

Never invoke the agentisove(...),copy(...),orrenmove(...)
method inside thenit (. ..) method. This may lead to an unpredict-
able behavior.

29

PROGRAMMER'’S GUIDE

30

CHAPTER 5: AGENT RELATED INFORMATION

5 Agent Related Information

Every Grasshopper agent carriesinformation about itself that may be accessed
by itself or by other entities. Thisinformation is maintained by an instance of
the class de. i kv. grasshopper.type. Agent I nfo. When a new
agent is created, the creating agency initializes a new Agent | nf o instance
and transfers it to the agent. The agent may access this instance by invoking

the method get | nf o() that isimplemented in its superclass Agent .

Identifier

toByteArray()
equals()
toString()

AgentSpecification

getM ajorVersionNumbe r()
getMinorVersionNumbe r()
getAgentSystem Type()
hasAuth()
getAuthenticator()
getLanguageld()
getSerializationldList ()
getClassQualifierList()
addClass()
addClassQualifier()
toString()

State

Agentinfo

getState()
isActive()
isSuspended()
isFlushed()
toString()

AgentSecurityRelated

getOwnership()
getSignedChallenge()
equals()

toString()

=

AgentPresentation

getAgentType()
getAgentName()
getAgentinterfaceNam e()
getAgentDes cription()
toString()

getldentifier()

getType()

getHome()
getAgentSpecification()
getAgentPresentation()
getAgentSecurityRelated()
getCodebase()
getLocation()
getLastLocation()
getState()

isActive()
isSuspended()
isFlushed()
getProperty()
setProperty()
getProperties()
setProperties()
toString()

Figure 2: Agentinfo Class Diagram

Note that the Agent | nf o object is part of the data state of every Grasshop-

31

Agentinfo

PROGRAMMER'’S GUIDE

per agent. That means, amobile agent carries the content of this object with it
when the agent migrates to anew location. Please refer to Section 6.3 in order
to learn about the data state.

The Agent | nf o class covers the following components:

* Code base: This component maintains the code base of the agent. The
code base can be provided as http address in the Warp: //
<domai n- nane>/ <pat h> or as file address in the forini | e: /
<dri ve>/ <di rect or y>. Detailed information about supported code
base is given in Section 5.3. (Java tyjpava. | ang. Stri ng)

« Homelocation: The Grasshopper address of the agency in which the agent
has been created. The home address has the following fpmot ©-
col >:// <host Nanme>: port Nunber / <agencyNane>. A place
name is not included. Detailed information about addressing agencies and
agents can be found in Section 5.4. (Java tgee:i kv. gr asshop-
per. conmmuni cati on. G asshopper Addr ess)

 ldentifier: Each Grasshopper agent has its own unique identifier that is
generated by the hosting agency during the agent’s creation. Detailed
information about the identification of Grasshopper agents and agencies is
given in Section 5.1. (Java type:de.ikv.grasshop-
per.type.ldentifier)

» Last location: The Grasshopper address of the agency that the agent has
visited right before the current one. Note that this information is only valid
for mobile agents, since stationary agents are not able to change their loca-
tion. The last location has the following form:pr<ot ocol >://
<host Name>: por t Nunber / <agencyNanme>/ <pl aceNane>.

Detailed information about addressing agents can be found in Section 5.4.
(Java typede. i kv. grasshopper. communi cati on. G asshop-
per Addr ess)

» Location: The Grasshopper address of the agency in which the agent is
currently residing. The location information has the following form:
<pr ot ocol >:// <host Nane>: por t Nunber/ <agencyNamne>/
<pl aceNane>. Detailed information about addressing agents can be
found in Section 5.4. (Java typae. i kv. gr asshopper . communi -
cati on. G asshopper Addr ess)

* Properties: An agent can maintain a set of properties, e.g., in order to pro-
vide information about its individual characteristics and capabilities. The
properties field can be initialized with any set of desired key/value pairs. If
a new property is specified whose key already exists in the agent’s proper-
ties field, the old value is replaced with the new one. Note that an initial set

32

CHAPTER 5: AGENT RELATED INFORMATION

of properties can be provided to an agent viathe cr eat eAgent (.. .)
method, as explained in Chapter 4. Example 2 in Section 4.3 and Example
6 in Section 8.1 show a possible usage of the properties. (Java type:
java. util.Properties)

Agent presentation: This component comprises descriptive information
about an agent. The class holds the following information: the agent’s
name, type, textual description, and interface name. (Java type:
de. i kv. grasshopper.type. Agent Present ati on)

* Agent name: Since an agent identifier is a bit uncomfortable to read and
interpret for human users, a programmer can define an individual name
for an agent that may refer to the agent's characteristics. Note that, in
contrast to the identifier, there is no guarantee for the agent name to be
unique in the entire Grasshopper environment. Please have a look at
Section 5.2 for information about how to set an agent name. (Java type:
java.l ang. String)

» Agent type: This component specifies the type of the agent. The follow-
ing agent types are defined as constants in the @tasskv. gr ass-
hopper. util. G asshopper Const ant s:

St at i onar yAgent Type, Mobi | eAgent Type.

o Textual description: In the first place, this component is meant for
human users in order to get information about the capabilities of the
corresponding agent. Please have a look at Section 5.2 for information
about how to set an agent description. (Java type:
java.l ang. String)

* Interface name: This component maintains the full qualified name of
the agent class, i.e., the class name prefixed with the complete package
structure. (Java typg:ava. | ang. Stri ng). The agent class is the
class implementing the agent’sve() method.

Agent security related information: This component maintains a certificate
which defines the owner of a specific agent. Detailed information about
this class can be found in Chapter 12 which describes the security features
of Grasshopper. (Java typee. i kv. grasshopper. type. Agent -

Securi tyRel at ed)

Agent specification: This class is just defined in order to support the
Mobile Agent System Interoperability Facility (MASIF) standard of the

Object Management Group (OME)AIl comprised components have

1. The MASIF specification is available for download on the OMG FTP server. ftp://
ftp.omg.org/pub/docs/orbos/. Please ook for the ORBOS document with the number 97-10-
05.

33

PROGRAMMER'’S GUIDE

been developed in the context of MASIF. For detailed information, please
refer to the MASIF specification. (Java type: de. i kv. grasshop-
per.type. Agent Speci fi cati on)

Note that, in contrast to previous releases of Grasshopper, the current
release does not inherently support MASIF. Instead, a MASIF add-on can
be downloaded from the IKV web site in order to enhance Grasshopper
with MASIF functionality.

Class qualifier list: A class qualifier allows the unique identification of

a class. Apart from the class name itself, additional information, such as
its version, can be provided by means of the discriminator. For detailed
information, please refer to the MASIF specification. (Java type:
de. i kv. grasshopper.type. CassQalifier[])

Agent system type: The type of the MASIF-compliant agent system that
is able to create the agent. For detailed information, please refer to the
MASIF specification. (Java typshort)

Authenticator: This component specifies the authenticator of the agent.
For detailed information, please refer to the MASIF specification. (Java
type:short)

Language identifier: This component contains the identifier of the pro-
gramming language in which the agent has been implemented. For
detailed information, please refer to the MASIF specification. (Java
type:short)

Major version: Major version of the agent system that is able to create
the agent. For detailed information, please refer to the MASIF specifi-
cation. (Java typeshort)

Minor version: Minor version of the agent system that is able to create
the agent. For detailed information, please refer to the MASIF specifi-
cation. (Java typeshort)

Serialization identifier list: This component specifies the kinds of seri-
alization that can be applied to serialize the agent. For detailed informa-
tion, please refer to the MASIF specification. (Java tgpart|[])

« Sate: The following states are defined for Grasshopper agents: active, sus-
pended, and flushed. During its life time, an agent's state may change
numerous times. Please refer to Section 5.5 for more information about
states and life cycles of agents. (Java tyge: i kv. grasshop-
per.type. St at e).

34

CHAPTER 5: AGENT RELATED INFORMATION

The Agent | nf o structureis created and initialized during the creation of the
corresponding agent. Some components of Agent | nf 0, such as the agent’s &
code base and class name, are provided by the agent creator via the ag

Ul or as parameters of the agencyiseat eAgent (. ..) method. Other
components, such as the agent identifier, are automatically generated by the
agency that creates the agent. A third set of components can be initialized in-
side the agentisni t (. . .) method. These components are the agent’s name
and its textual description. Please refer to Section 5.2 for information about
how to initialize these components.

5.1 Identification

A fundamental management requirement of each agent platform is to enable
the unique identification of its distributed components (i.e., agencies and
agents). The identifier of an agent is generated by the hosting agency during
the agent’s creation and afterwards maintained inside the sup&gkss.

A Grasshopper identifier consists of the following components: | dentifier

structure
 a prefix, describing the kind of component that is associated with the iden-

tifier. The prefix has one of the following values:

» Agent: This value indicates that the identifier belongs to a mobile or sta-
tionary agent.

* AgentSystem: This value indicates that the identifier belongs to an
agency.

» Listener: This value is associated with listeners. Note that this prefix is
reserved for internal usage only.

 the Internet address of the host on which the identifier has been created
 the date on which the identifier has been created: "yyyy-mm-dd"

 the time on which the identifier has been created: "hh-mm-ss-msms"

» the number of copies of the corresponding agent

A Grasshopper identifier is maintained by an instance of the class
de. i kv. grasshopper.type.ldentifier. Converted into its string
representation, an identifier has the following form:

<prefix>#<ip-address>#<date>#<time>#<copy-number>
Example of an agent identifier:
"Agent#123.456.789.012#1999-11-19#15:59:59:0#0"

35

PROGRAMMER'’S GUIDE

Thefirst copy of the second copy of the original agent has the following iden-
tifier:
"Agent#123.456.789.012#1999-11-19#15:59:59:0#0.2.1"

A comparison between the two example identifiers shows that the only differ-
enceisthe copy number. That means, the copy of an agent gets the same iden-
tifier as the original agent, suffixed by a new copy number. Detailed
information about copying agentsis given in Chapter 8.

5.2 Namesand Descriptions

As explained above, most of an agent’s information is either generated auto-
matically by the creating agency (e.qg., the identifier) or provided to the agency
by an external entity (human user or software component) via the agency’s Ul
or API (e.g., the code base).

In contrast to this, the agent name and textual description may be defined by
the agent itself. This is achieved by overriding the methed¥Nanme() and
get Descri pti on(), respectively.

The methodget Nane() andget Descri pti on() can be overridden by
agent programmers. These methods return an agent name or textual descrip-
tion, respectively, in form of a Java string. The purpose of both components is
to provide information about the characteristics of a specific agent to human
users. If the methods are not overridden, they both return the default string
~Grasshopper Agent®.

The simplest way to provide an individual name and description is to override
the methods with those returninga@nstant string value.

public String getName() {
return ,MyAgentName®*,

Concerning this example, it is obvious that al instances of the corresponding
agent class have the same name.

If an agent programmer wants to be able to provide different names to differ-
ent instances of one agent class, the name can be provided as parameter of the
agent’sinit(...) method. Inside thenit(...) method, an instance
variable of the agent class has to be initialized with this parameter, and this
variable has to be used as return value of the aggzit’Blane() method.
public class Agent extends Mbil eAgent ({
String agent Nane;
public void init(Cbject[] creationArgs) {

36

CHAPTER 5: AGENT RELATED INFORMATION

agent Nane = (String)creationArgs[O0];
}
public String getName() {

return agent Nane;
}

}
Note that the initialization of the name has to be performed inside the
init(...) method if the name is to be maintained by the Agent | nf o A
structure. The reason isthat only the agency which creates the agent is able to
initializethe Agent | nf o structure. After runningthei ni t (. ..) method,
the creating agency reads the agent name by invoking theget Nane() meth-
od and writes this name into the corresponding component of the Agent | n-
f o structure. Any further modifications of the name variablewill not be stored
withinthe Agent | nf o structure. The Agent | nf o structureisused for reg-
istering the agent inside the local agency and the agency domain service. An
agent’s name can be used as search key in order to enable entities to look for
a specific agent. If the searching entity expects another name than the one
maintained inside thé&gent | nf o object, the searched agent will not be
found.The namethat isused for registering the agent isequal to the name that
has been specified inside the init(...) method, independent whether the name
has been modified afterwards or not. Please have a look at the example in Sec-
tion 5.6 where this mechanism is applied.

The provision of a textual description via the metgetl Descri pti on()
can be handled in a similar way as the provision of a name as explained above.

Note that an agency automatically invokes an aggetNane() andget -

Descri pti on() methods during the agent’s creation. These method in\;ﬁ
cations are performedbefore the agent's security policies have bee
completely initialized. Thus, please do not implement any security-sensitive
operations, such as the access of a file system or system properties, inside the
methodsget Nane() andget Descri pti on() . Otherwise, if the agen-

CYy’s security service is active, the agent’s creation may fail due to a security
exception. Please refer to Chapter 12 for further details about the Grasshopper
security service.

5.3 Codebase

In order to create an agent or to re-instantiate a mobile agent after its arrival in
a new destination agency, the agency must have access to the agent’s class
code. For this purpose, an agent code base can be specified when creating an
agent via the agency API or Ul. If no code base is explicitly provided (or if the

37

Local file
system

PROGRAMMER'’S GUIDE

demanded agent classes are not included in an explicitly provided code base),
the agency looks for the demanded classes in the directories maintained by the
Java CLASSPATH environment variable.

Grasshopper supports two different kinds of code base:

File systems

The classes of an agent may be maintained in the file system of an agency.
In this case, the code base, represented as String, must have the following
format:

file:/<directory-path>

where <di r ect or y- pat h> represents a path that leads to the directory

in which the agent’s class files are stored. Single directories of the path are
separated with slash/ () characters. Note that on Windows machines, the
letter of the maintaining device has to be specified:

file:/<driveLetter>:/<directory-path>
Http servers

The classes of an agent may be maintained on an Http server. In this case,
the code base, represented as String, must have the following format:

htt p: // <domai n- nane>/ <pat h>

where <domai n- nane> and <pat h> are structured in the usua way
(i.e., domain components separated with a do) Character, and path
components separated with a slagh)(Character).

There are different possibilities to grant an agency access to an agent’s code
base:

38

Class code is maintained by all agencies:

The agent’s class files are initially stored in the file system of every poten-
tial destination agency, and additionally these class files are included in the
CLASSPATH environment variable of the running Java environments. In
this case, if an agent migrates to a new agency, the agency already has
access to the agent’s classes without the need of contacting a remote code-
base.

Note: Agent classes that are stored in the system’s classpath are cached by
the agency for its entire runtime. The reason is that the classes are not only
maintained by the agent’s own class loader, but also by the JVM’s system
class loader. That means, the agent classes are loaded only during the first
creation of the agent. When the agent is created for the second time, the
agency uses the internally cached classes instead of accessing the file sys-

CHAPTER 5: AGENT RELATED INFORMATION

tem again. This is also true if the agent’s class files have been re-compiled
before the agent’s second creation.

agency A to agency B where both agencies maintain different versions
the agent class. In this case, the agent will not be able to migrate, si
agency B considers its maintained agent class as different from the agent
class maintained by agency A.

This caching behavior may cause problems if an agent migrates frog

Class code is only maintained by the agent's home agency: Home agen-
cy

Initially, the agent’s classes are only stored in the file system of the agent’s
home agency, i.e., on the host of the agency where the agent was created.
If the agent migrates, each new destination agency has to request the class
code from the home agency.

Note: In this case, a destination agency caches the agent’s classes only
inside the agent’s own class loader (and not in the system class loader).
Thus, if two agents of the same class migrate to the same destination
agency, the agency retrieves the classes both times. That means, the
cached classes of the firstly arrived agent are not used for creating the sec-
ondly arriving agent. Instead, they are loaded again from the agent’s home
agency.

Class code is only maintained by a central Http server: Http server

Initially, the agent’s classes are only stored on a central Http server. In this
case, even the agent's home agency has to retrieve the classes from this
code base in order to create the agent.

Note: In this case, a destination agency caches the agent’s classes only
inside the agent’s own class loader (and not in the system class loader).
Thus, if two agents of the same class migrate to the same destination
agency, the agency retrieves the classes both times. That means, the
cached classes of the firstly arrived agent are not used for creating the sec-
ondly arriving agent. Instead, they are loaded again from the agent’s home
agency.

Class code is only maintained by the previously visited agency: Previous

agency
In certain scenarios, the home agency of an agent is only temporarily con-

nected to the network. For instance, an agent may be created on a note-

book which isto be disconnected from the network right after sending the

agent to another host. Supposed that no central Http server has been speci-

fied as code base and that the agent’s classes are not maintained by the file
systems of potential destination agencies, the agent’s code can be for-

warded from one agency to the next at each time the agent migrates. That

39

Protocol
types

PROGRAMMER'’S GUIDE

means, the agent’'s code base is always represented by the previously vis-
ited agency, and it changes with every migration.

Note: In this case, a destination agency caches the agent’s classes only
inside the agent’s own class loader (and not in the system class loader).
Thus, if two agents of the same class migrate to the same destination
agency, the agency retrieves the classes both times. That means, the
cached classes of the firstly arrived agent are not used for creating the sec-
ondly arriving agent. Instead, they are loaded again from the agent’s home
agency.

An agency accesses the different code bases in the following order:

1. System class loader of currently visited agency (maintaining classes
loaded from the classpath of the local agency)

2. Previously visited agency

3. All locations (file system and/or Http server) specified in the agent’s code
base

4. Home agency

5.4 Grasshopper Addresses and Locations

In the context of Grasshopper, the téogation or address specifies an agency

or place. Every agency contains one or npbaees in which agents can run.
Each place may have specific characteristics (defined by the agency adminis-
trator), such as an own security policy. (Please refer to the User’s Guide for
more information.)

In order to migrate (or to establish a communication connection as explained
in Chapter 9), an agent has to provide information about the desired destina-
tion location. The agent specifies this information in terms of a Grasshopper
address which is an instance of the class

de. i kv. grasshopper. conmuni cat i on. G asshopper Addr ess

A Grasshopper address refers to a communication server of the desired desti-
nation agency, region registry, or external object. If an agency is addressed, a
place name can optionally be specified.

A Grasshopper address covers the following components:

» protocol type: Type of the protocol to be used for the migration. The fol-
lowing protocols are supported:

» socket: plain socket protocol

40

CHAPTER 5: AGENT RELATED INFORMATION

* rmi: Java Remote Method Invocation (RMI) protocol

 iiop: CORBAs Interoperable Inter-ORB Protocol (IIOP). This protocol
is only available if a CORBA runtime environment has been installed.
(Please refer to the User’s Guide for more information.)

» socketsd: plain socket protocol, protected via SSL. This protocol is only
available if the security packages have been installed. (Please refer to
the User’s Guide for more information.)

* rmiss: Java Remote Method Invocation (RMI) protocol, protected via
SSL. This protocol is only available if the security packages have been
installed. (Please refer to the User’s Guide for more information.)

» grasshopperiiop: In contrast to the previously mentioned protocol
types,gr asshopperi i op is ameta protocol that has to be mapped
onto a concrete protocol type. For instance, an agent can try to establish
a communication connection with a remote Grasshopper component by
specifying the remote address in terms ofjraasshopperii op
address of the formgrasshopperiiop://<host Nane>/
<agencyNane>.

In this case, an agency domain service is required in order to determine
the concrete address of the server side, including the real protocol type
and port number.

* host name: Name or IP address of the destination host

» object name: Name of the destination agency, region registry, or external
object

» port number: Number of the port at which the communication server of the
destination agency is listening.

» place name: Name of the destination place. This component is optional. If
no place name is specified, the agent migrates to the default place ,Infor-
mationDesk" which exists in every Grasshopper agency.

The initialization of aG- asshopper Addr ess instance can be performed
either by separately specifying the single components or by specifying all
components in terms of a sin@er i ng object. In the latter case, the address
string has the following syntax:

pr ot ocol : // host Name: por t Nunber / agencyNane/ pl aceNane complete ad-
Note that, in certain cases, a subset of the address components is suffl%riﬁt.
The following examples explain all possible cases:

 If an agency domain service is running and both the source and destination
agencies are registered at this service, the minimal address consists of the

41

PROGRAMMER'’S GUIDE

host hame and agency name:

minimal ad- host Name/ agencyNane

dress In this case, the agency domain service determines all communication
servers of the specified destination agency, automatically selects one of
them, and completes the address. Therefore, this minimal address should
only be used if the migrating agent does not require a specific (e.g., secure)
protocol. Usually, the plain socket protocol is selected.

Note that the agent will migrate to the default place InformationDesk of
the destination agency. If the agent wants to migrate to a specific place, the
place name must be appended to the address:
host Nane/ agencyNane/ pl aceNane
» |If an agency domain service is running and the migrating agent wants to be
transferred via a specific protocol, the following address syntax can be
used:
prot ocol : // host Nanme/ agencyNanme

In this case, the agency domain service checks if the specified destination
agency provides a communication server that uses the desired protocol. If
this is true, the domain service determines the port number and completes
the address.

Note that the agent will migrate to the default place InformationDesk of
the destination agency. If the agent wants to migrate to a specific place, the
place name must be appended to the address:
prot ocol : // host Name/ agencyNamne/ pl aceNane

» If no agency domain service is running, the agent has to specify at least the
protocol type, host name, port number, and agency name:
prot ocol : // host Nane: port Nunber / agencyNane

Note that the agent will migrate to the default place InformationDesk of
the destination agency. If the agent wants to migrate to a specific place, the
place nhame must be appended to the address:

prot ocol : // host Nane: port Nunber / agencyNane/ pl aceNane

5,5 Satesand Life Cycles

At any point of its life time, a Grasshopper agent resides in a well-defined
state. In each state, an agent has certain characteristics. Grasshopper defines
the following state values:

 active: Immediately after its creation, an agent is transferred into the active

42

CHAPTER 5: AGENT RELATED INFORMATION

state. In this state, the agent is executing its task as specified inside the
Iive() method, i.e., the agent’s thread is running. When the agent’s
i ve() method has been finished, the agent remains in the active state
and is still accessible by other entities as passive object. That means, other
software components may invoke public methods of an agent via its proxy
if the agent resides in the active state.

suspended: Suspending an agent means suspending the agent’s thread and
thus interrupting the agent’s active task execution. An agent can be sus-
pended via the hosting agency’s APl (metlsaspendAgent (.. .))

or via the agency’s Ul. In order to transfer a suspended agent back into its
active state, the agent can be resumed via the agency's APl (method
resuneAgent (.. .)) or via the Ul. Note that, in contrast to the active
state, the accessible methods of a suspended agent cannot be invoked by
other components.

Note that a suspended agent is not able to resume itself. Instead, it has to
wait for being resumed by other entities. Thus, dbhependAgent ()

method should be handled with care inside an agent’s code.

flushed: This state is controlled by the agency’s persistence service. When
an agent is flushed, its data state is locally stored, and its instance is
removed from the agency. Usually, the purpose of flushing an agent is to
save system resources in times when the agent’s existence is not required.
A flushed agent is reactivated when another component tries to invoke any
of its accessible methods. Detailed information about flushing agents and
the persistence service in general can be found in Chapter 10.

Note that a flushed agent is not able to re-activate itself. Instead, it has to
wait for being re-activated by the hosting agency. Thus,fthesh-

Agent () method should be handled with care inside an agent’s code.

43

PROGRAMMER'’S GUIDE

The following figure shows the state diagram of a Grasshopper agent.

) flushing
creation]
O active flushed

l

A

. reactivation
(indirectly triggered)

suspension resumption

y

O< - suspended
deletion

Figure 3: Agent State Diagram

In order to change the state of an agent, the hosting agency provides the fol-
lowing methods via its interface de.i kv. grasshopper. agen-
cy. | Agent Syst em

flushAgent (...), fl ushAgent After(...), r el oad-
Agent (...), resunmeAgent (...), saveAgent (...),
saveAgent Every(...),suspendAgent(...).

Detailed information about these methods can be found in Section 9.11.2
which describes the functionality of the interface | Agent Syst em

Never use the set St at e(...) method of the class de. i kv. gr ass-
hopper . t ype. Agent | nf o! This method is just meant to be used inter-

nally by an agency. Invoking this method will not change an agent’s state.
Instead, it will lead to an unpredictable behavior!

5.6 Example: PrintInfoAgent

The following example agent prints information about itself, retrieved from its
Agent | nf o instance. Note that a name and a textual description can be spec-
ified in terms of creation parameters.

As described in Section 5.2, the agent’s name has to be set inside the
init(...) method in order to be inserted into thgent | nf o instance.
This fact may be of particular interest since the agégtent | nf o instance
Is used for registering the agent inside the local agency and the agency domain
service. An agent’s name can be used as search key by other entities. If the
searching entity expects another name than the one maintained inside the

44

CHAPTER 5: AGENT RELATED INFORMATION

Agent | nf o object, the searched agent will not be found. As shown by the

last lines of Example 3, a modification of the agent's name outside the
init(...) method does not modify the corresponding name value that is
maintained by thégent | nf o object. Thus, the name that is used for the
agent’s registration remains the same.

Example 3: PrintinfoAgent N

package exanpl es. si npl e; ?

i nport de.ikv.grasshopper. agent. Mobi |l eAgent;
i nport de.ikv.grasshopper.type. Agent | nfo;

// This class realizes an agent that prints

// information about itself.

// It shows how to nodify an agent’s nane and
// textual description, if desired.

public class PrintlnfoAgent extends Mbbil eAgent
{

String agent Nane, agent Descri ption;

// Creation argunents:

// args[0] = New agent nane

// args[1] = New agent description
public void init(Cbject[] creationArgs) {

agent Name = "PrintlnfoAgent";
agent Description =
"This agent tells you about its secrets.";
if (creationArgs !'= null) {
if (creationArgs.length > 0)
agent Nane = (String)creationArgs[O0];
if (creationArgs.length > 1)
agent Description = (String)creati onArgs[1];
}
}

public String getNane() {
return agent Nane;

}

public String getDescription() {
return agent Descri ption;

}

public void live() {
AgentInfo nylnfo = this.getlnfo();

45

PROGRAMMER'’S GUIDE

log("My nane: " +
myl nf 0. get Agent Present ati on() . get Agent Nane()) ;
log("My id: " +

nyl nfo.getldentifier().toString());
log("MW type: " + nylnfo.getType());
log("My hone: " + nylnfo.getHone());
|l og("My description: " + getDescription());

// Further nodifications of the variable

// ~agent Nanme’ do not have any influence on the
// AgentlInfo structure. Therefore, the

// initialization of this variable has to be
// perfornmed inside the init(...) nethod.

agent Nane = "New nane";
log("My registered nane renmi ns the sanme: " +
myl nf 0. get Agent Present ati on() . get Agent Nane()) ;
}
}
Requirements:

* One running agency
Running the example:

Create the PrintinfoAgent inside the running agency via the agency’s Ul.
The first creation parameter is interpreted as agent name and the second
one as agent description. If less then two parameters are specified, the
missing information is initialized with default values.

If you are using the textual user interface of the agency, please create the
agent by means of the following command (which is meant only as an
example, concerning the creation arguments):

cr a examples.simple.PrintinfoAgent InfoAgent ,Want
some info?*

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

5./ Summary

» Every Grasshopper agent maintain a set of information that describes its
characteristics. This information can be accessed by the agent itself or by
other entities.

46

CHAPTER 5: AGENT RELATED INFORMATION

» Every Grasshopper agent is uniquely identifiable inside the entire Grass-
hopper environment. An identifier describes the type of the associated
component as well as the date, time, and location of the components’s cre-
ation. Exceptions are agent copies which maintain the same identifier as
their original instances, suffixed by a copy number.

» Every Grasshopper agent has a name and a textual description. In contrast
to the identifier which is generated automatically and whose uniqueness is
guaranteed, the name and textual description can be specified by the agent
programmer or by the user (if this has been intended by the programmer
during the implementation) (see Section 5.2).

» During its life time, an agent can reside in different states. lradtiee
state, an agent is performing its task and is accessible by other entities. In
the suspended state, an agent’s thread is suspended. Iflubdeed state, an
agent does not exist any more as runtime instance. Instead, the agent’s data
state is persistently stored in a local database, and the runtime instance is
removed. In this case, the agent is automatically re-instantiated when
another entity tries to access it (see Chapter 10). Note that the ability of
persistently storing agents is only available if the hosting agency runs with
an activated persistence servare if the agents are derived from one of
the classedde. i kv. grasshopper. agent. Persi st enMobi | e-
Agent or de.ikv.grasshopper.agent. PersistentSta-
ti onar yAgent.

47

PROGRAMMER'’S GUIDE

48

CHAPTER 6: MOVE ME!

6 Move Mel

Grasshopper provides three possibilities for moving agents.

* Via the agency’s UIAn agency administrator may move an agent via the
graphical or textual user interface of an agency. This mechanism is associ-
ated with the agency usage rather than with agent programming, and thus
it is not described in this context. Detailed information about the function-
ality of the agency’s user interfaces can be found in the User’s Guide.

* Via the agency's APIA Grasshopper mobile agent can be moved by
another agent or object viathe noveAgent (. ..) method of the hosting
agency. This mechanism is explained in Section 9.11 which deals with the
functionality provided by agencies.

* Via the agent’s API'A Grasshopper mobile agent may move itself by
invoking the move(. ..) method of its own superclass Mbbi | eAgent .
Note that this is the usual way for an agent to actively migrate through the
distributed environmentn contrast to this, the two possibilities described
above just enable externa entities to move an agent.

This section only deals with the third possibility of the above list.

6.1 Srongvs. Weak Migration

A mobile agent is able to perform different parts of its task on different net-
work locations. For example, an agent may need to gather information from
different databases. In order to take advantage of local interactions instead of
remote procedure calls, the agent visits the database hosts one after the other,
accesses the databases, filters the information locally, and just maintains the
most interesting subset of the information before migrating to the next host.

49

Srong mi-
gration; exe-
cution state

Weak mi-
gration;
data state

Restrictions
of Java

PROGRAMMER'’S GUIDE

Figure 4 shows this general procedure.

Task progress Task progress Task progress

Local ressources | | Local ressources | | Local ressources |

Figure 4: Agent Migration

Two different kinds of migration can be separated:

Strong migration means that an agent migrates together with its whole execu-

tion state. An agent’s execution state contains all stack information that is re-
quired to characterize the point of execution that the agent has currently
reached. After a strong migration, the agent continues processing its task ex-
actly at the point at which it has been interrupted before the migration.

Weak migration means that an agent just maintairtaitsstate when travel-

ling from one location to another. An agent’'s data state consists of internal
variable values that are serialized at the agent’s old location, transferred across
the network, and provided to the agent again at the new location. The agent
programmer has to decide which variables are to be part of the data state.

The Java programming language does - by default - not offer the possibility to
capture the execution state of a process or thread. The only possibility to
achieve this is to modify the Java Virtual Machine. However, since one objec-
tive of Grasshopper is to be as open as possible concerning its underlying soft-
ware environment, this possibility was not considered during the development
of the platform. Since Grasshopper has to be executable on all JVMs that are
compliant to the Java specifications of Sun Microsystems, Grasshopper agents
use weak migration for travelling across the network.

The following section shows how strong migration can - with certain restric-
tions - be ,simulated” by using weak migration. This principle is fundamental
for developing mobile agents on top of Grasshopper.

50

CHAPTER 6: MOVE ME!

6.2 TheMigration Procedure

When we speak of agent migration, we mean the travel of an agent’s code and
data state from one agency or place to another. However, from an implemen-
tation-related point of view, an agent is not really travelling. Instead, after each
migration, anew agent instance is created at the destination agency, and the
old agent instance is removed at the source agency. By supplying the new in-
stance with the data state of the old one (including among others the old
agent’s identifier), the agent seems to remain the same.

The ,migration” consists of the following execution steps:

1. The agent’s migration is initiated. This can be done either by the adéatmigra-
itself (via its ownrmove(. . .) method), by other software componen%‘jpepmce
(via thenoveAgent (. ..) method offered by the agency’s API), or by
human users (via the agency’s Ul).

2. The agent'sbef or eMove() method is automatically called by theefore
agency in order to enable the agent to prepare its migration, e.g., by |
ing occupied resources or removing references. This method may be of
particular importance if the agent’s migration is triggered by external enti-
ties (software components or human users), because in this case the migra-
tion request is usually not expected by the agent. If the agent itself triggers
its migration, it has the possibility to prepare the migration already before
invoking itsnmove(. ..) method.

An agent may prohibit its own migration. If the agent does not want toVie@Excep-
moved, the agent can throw thede.ikv.grasshop- Uo°

per. agent. Vet oExcept i on inside itsbef or eMbve() method. If

the move request has been initiated via the agency’s Ul, the user is
informed about the migration rejection via the user interface. If the move
request has been initiated via the agency’s API, the agency forwards the

Vet oExcept i on to the triggering software component.

3. The agent’s execution is interrupted by stopping the agent thread. Since
each agent is created inside its own thread group, additionally all threads
are stopped that have been created by the agent itself.

4. The agent's data state is serialized. That means, all instance variable of the
agent that areot declared asransient, are put into a data stream. Please
refer to Section 6.3 for detailed information about the data state.

5. The agent’s serialized data state as well as additional information are
transferred to the destination agency. Among others, the additional infor-
mation covers the agent class name and its code base. This is required by
the destination agency to create a new instance of the agent.

o1

afterMove()

Definition:
data state

Agentlnfo

class Serial-
izable

PROGRAMMER'’S GUIDE

6. The destination agency creates a new instance of the agent and provides
the agent with its transferred data state. If the agent’s class code is not ini-
tially maintained by the destination agency, it is retrieved via Java class
loading mechanisms by accessing the code base that has been delivered by
the source agency.

7. The destination agency informs the source agency about the successful
creation of the agent. Now the source agency removes the old agent
instance. (Exactly speaking, the agency removes its references to the agent
and thus enables the Java garbage collector to release the agent’s occupied
resources.)

8. The destination agency automatically calls the agextiser Move()
method. In this way, the agent is able to prepare the resumption of its task
execution, e.g., by allocating references and resources. (Note that the
af t er Move() method is also called after an agent’s copying.)

9. The destination agency starts the thread of the agent. Now the agent is able
to continue its task execution.

6.3 TheData Sate: Mobile Information

When implementing a mobile agent, the developer has to determine which
parts of the agent’s internal data has to be maintained when the agent migrates.

An agent’s data state consists of all non-transient instance variables of the
agent class, i.e., the class that is derived from one of the agent super classes
Mobi | eAgent , St at i onar yAgent , Per si st ent Mobi | eAgent , or

Per si st ent St at i onar yAgent 1. Note that the data state also comprises

all non-transient instance variables of the super classes. When a mobile agent
migrates, its data state is serialized at the source location, transferred across
the network, and provided to the migrated agent instance at the destination lo-
cation.

One part of the data state efery Grasshopper agent is tgent | nf o
structure which maintains important information of the agent, such as its iden-
tifier, name, type, and properties. Please refer to Chapter 5 for further details
about the Agentinfo structure.

A general prerequisite for the serialization of Java objects is that the corre-
sponding Java class (or any of its superclasses) implementg athe
va.i 0. Serializable or java.io. Externalizabl e interface.

1. Although every Grasshopper agent maintains adata state, the data state is only of importance
for mobile agents, since it's purpose is to preserve data during an agent’s migration.

52

CHAPTER 6: MOVE ME!

Please refer to the Java documentation for more information about object se-
rialization.

Each Grasshopper agent is by default serializable. However, an agent may in-

stantiate objectsthat do not fulfill the serialization criteria. Since the serializa- A
tion of an agent covers all non-transient instance variables of the agent, all

objects belonging to the agent’s data state have to be serializable.

When implementing a mobile agent, the programmer has to evaluate whiékfofing the
the agent's instance variables are to be part of the data state. Since the S8 3ft®
the data state has a high impact on the migration duration, only a minimal set

of instance variables should be included. The following examples are meant

to explain how a programmer can evaluate which variables have to be includ-

ed into the data state:

1. If, after each migration, the value of an instance variable is modified
before the variable is read by the agent or other components, it is not nec-
essary to transfer the old (and not anymore required) value to the new
location. In this case, the variable should be transient in order to exclude it
from the data state.

Especially if an agent creates its own GUI, the GUI should be declared
transient (or defined inside a method instead as instance variables). Beside
the reduction of the agent’s data state, the main reason for this is that sev-
eral Java GUI classes are dependent on a specific operating system. Thus,
if an agent migrates between agencies that run on different operating sys-
tems and if this agent carries a set of GUI classes, failures may occur due
to incompatibility problems associated with these classes.

2. If an instance variable is semantically bound to the current local system
environment, its value may become invalid after the agent’s migration.
This problem often occurs in a CORBA environment with CORBA
objects referenced by the agent. In this case, the variable should be tran-
sient, and the agent should re-instantiate and initialize it anew after each
migration.

3. If an agent instantiates objects that are (entirely or partly) not serializable,
the agency’s attempt to serialize the agent fails. That means, an agent that
has allocated references to non-transient, non-serializable objects can nei-
ther migrate nor be stored by the agency’s persistence service. To avoid
this, non-serializable objects should be transient.

53

PROGRAMMER'’S GUIDE

6.4 Structuring an Agent’s Life

Due to the explanations in Section 6.1, Grasshopper agents use weak migra-

tion for travelling from one agency to another. Parts of the agent's data state
can be used in order to enable an agenbmtinue its task processing after a
migration instead ofestarting its task from the beginning on. For this pur-
pose, the agentki ve() method can be separated into differexdcution

blocks, each one covering a set of operations that has to be performed at a sin-
gle location. After completing the execution of one block, the agent migrates
to the next location, triggered byrave(. . .) method at the end of the per-
formed block, and starts executing the next block after arriving at the new lo-
cation (Figure 5).

! Starting place!

¥€s | perform block 0 i 1

state = state+1 i 3

no move(place_1) _________________ :
-------------------- =
place_1 <)
yes | perform block 1 ; %.
state = state+1 ; >

no move(place_2) »»»»»»»»»»»»»»»»»»
I place 2 ‘ 5
yes | perform block 2 : g
state = state+1 ; S

move(place_3 ;

no ‘ (place_3) == &
| =
A, Q
| . Q
l ! place_n-1 =
=}

355, perform block n

Figure 5: Structure of an Agent’s live() Method

In Figure 5,’state’ IS a non-transient instance variable, declared in the
agent class. In thisway, state becomes part of the data state. By analyzing
the value of this variable, the agent determines which execution block has to
be performed. Inside the performed execution block, the agent sets state to
anew value beforeinvoking the move(...) method. During the migration,

54

CHAPTER 6: MOVE ME!

the new st at e value is serialized, transferred to the new location, and pro-
vided to the migrated agent instance. Please have alook at Example 4 in Sec-
tion 6.5 which shows an agent that makes use of its data state.

6.5 Example: BoomerangAgent

The following exampleisour first mobile agent that makes use of its mobility

and of itsdata state. After starting the agent, asmall window appears, request-

ing anew destination address from the user. When pressing the OK button, the

agent migratesto the specified location. After itsarrival, the agent asksfor the
permission to migrate back to its home location. The different behavior of the

agent, dependent on its current location, is realized by means of the agent’s
data state that is represented in terms of a single integer variable named
st at e:

« state = O0: This is the initial state, set in the agentisit(...)
method. In this state, the first execution block insidd ihee() method
is performed. The agent asks for a new location, increments the state vari-
able, and migrates.

« state = 1:In this state, the agent does not request the input of a new
location, but just asks for the permission to migrate back to its home loca-
tion. Before the agent travels horseé,at e is set back to 0.

Example 4: BoomerangAgent \ e

package exanpl es. si npl e; ?

i nport de.ikv.grasshopper. agent. Mobi |l eAgent;
i mport de.ikv.grasshopper.comuni cation.*;

i mport javax.sw ng. *;

i nport java.aw.*;

// This class realizes an agent that noves to a renote
// agency and, after this, returns to its origin.
publ i c cl ass BoonerangAgent extends Mbbil eAgent
{
// Alittle data state.
int state;

// No creation argunments needed.

public void init(Cbject[] creationArgs) {
// Initialize data state
state = O;

55

PROGRAMMER'’S GUIDE

56

public String getName() {
return "BoonerangAgent";

public void live() {
String | ocation;

swtch(state) {

case O:
log("Waiting for new |l ocation...");
| ocati on = JOpti onPane. show nput Di al og(
nul I, "Were shall | go?");
if (location !'= null) {
state = 1;
log("Trying to nove...");
try {
// G away!
nmove(new Grasshopper Address(| ocation));
}
catch (Exception e) {
log("Mgration failed: ", e);
}

// The next statenent is only reached
// i f the mgration failed!!!
state = 0O;

}

br eak;

case 1:
log("Arrived at destination!");
JOpt i onPane. showMessageDi al og(

null, "Let ne go hone!");
state = O,
log("Trying to nove...");
try {

// Cone hone!
nove(getl nfo().getHore());

}

catch (Exception e) {
log("Return trip failed: ", e);

}

// The next statenent is only reached
// i f the mgration failed!!!
br eak;

}

log("Termnating nmy life.");

CHAPTER 6: MOVE ME!

}

Reqguirements:

» Optionally a running agency domain service. Note that the domain ser-
vice has to be started before the agencies, and the domain service’s
address has to be specified when starting the agencies in order to regis-
ter them. Please refer to the User’s Guide for information about how to
start agencies and agency domain services.

» At least two running agencies.
Snce the BoomerangAgent creates an own GUI that may block the
agency GUI, it is recommended that you do not activate the agency
GUI. Instead, start the agencies just with their textual interface (com-
mand option -tui). Please refer to the paragraphs titled ,Running the
Examples® at the beginning of Chapter 2 in order to get a detailed
explanation about the possibly occurring GUI problems.

Running the example:

Type in l \ Conf/rm

new location hN

Migrate

t/:_‘_'_'Z_‘::\;
BoomerangAgent /CED/ BoomerangAgent
Migrate

e / back
O

LU

Create / \
BoomerangAgent i |
BoomerangAgent

Agency Ul

Agency 1 Agency 2

User input

Figure 6: BoomerangAgent Scenario

Create the BoomerangAgent inside one of the running agencies via the
agency’s Ul (1).

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a exanpl es. si npl e. Boorer angAgent

57

PROGRAMMER'’S GUIDE

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

Type in the address of one of the other running agencies and press OK (2).
If no agency domain service is running, you have to specify the complete
address as explained in Section 5.4. You can determine the running com-
munication servers of each agency via their GUI (Menu: File -> Prefer-
ences -> Servers) or TUI (Command: 'status’).

Note: If you press the Cancel button, the agent’s GUI disappears, and there
is no possibility to re-activate it. Please refer to Chapter 7 in order to find a
solution for this problem.

After pressing the OK button, the agent migrates to the specified agency
(3) and creates another graphical dialog. Once arrived, the agent asks for
the permission to return to its home agency. Press the OK button (4) in
order to confirm the migration request. After its migration back to its orig-
inal agency (5), the agent again creates its initial GUI, and the scenario
proceeds with step (2).

Example variations:

Run the example with and without a running agency domain service. Each
time, try different addresses by specifying or not specifying single address
components, and see what happens. All possible address syntaxes are
described in Section 5.4.

Create new communication servers of different protocols and use these
new servers for moving the agent around. The kinds of supported proto-
cols depend on your Grasshopper installation. For instance, SSL-protected
protocols require the security packages, and the CORBA protocol IIOP
requires a CORBA runtime environment. Detailed information about the
installation of these extensions can be found in the User’s Guide.

6.6 Summary

* An agent’'s migration can be triggered by the agent itself (via the agent’s
API), by other software components (via the agency’s API), or by users
(via the agency’s Ul).

* An agent may prohibit its migration by throwingVet oExcepti on
from inside itsbef or eMove() method.

» Grasshopper uses weak migration. That means, the agent’s data state (i.e.,

58

CHAPTER 6: MOVE ME!

al non-transient instance variables) is transferred to the destination
agency. Strong migration (i.e., the migration of the agent’s execution
stack) is not realized, since this is not supported by standard Java Virtual
Machines.

Parts of the agent’s data state can be used to enable an agent to continue its
task execution after a migration (instead of starting its execution from the
beginning on). For this purpose, the agehi'se() method can be sepa-

rated into different execution blocks where one block is completely per-
formed within a single location. See Section 6.4 for a detailed description.

Grasshopper mobile agents are able to migrate from one place to another.
The source and destination places may be hosted by the same or by differ-
ent agencies. The location of a place is specified in terms of a Grasshopper
address, i.e., an instance of the cldssi kv. gr asshopper . conmu-

ni cati on. G asshopper Addr ess. A complete address (represented

as string) has the following format:

protocol://hostName:portNumber/agencyName/placeName

Under certain conditions, some of the address components are not
required. Please refer to Section 5.4 for detailed information.

59

PROGRAMMER'’S GUIDE

60

CHAPTER 7: ACTION!

7 Action!

The class Agent (which is the superclass of all Grasshopper agents, as ex-
plained in Chapter 3) provides a method named act i on() . This method is
automatically invoked by the agency if a user performs one of the following
actions:

» double-click on the corresponding agent entry in the agency GUI

» selection of an agent in the agency GUI, right-click on the selected agent
entry and left-click on the invoke command of the appearing menu

« left-click on the invoke icon inside the icon bar of the agency GUI
* left-click on the menu item Object->Invoke
* typing the invoke command of the agency TUI

Beside the user interfaces, thet i on() method of an agent can also be trig-
gered by another software entity via thavokeAgent Action(...)
method of the agency’s programming interfage. i kv. gr asshop-
per. agency. | Agent Syst em Please refer to Section 9.11.2 where the
API of agencies is explained.

The intention of thact i on() method is to enable a user to trigger a certain
action of an agent via the agency’s user interface. For instance, a double-click
on the agent entry may start an agent-specific GUI, as shown in the following
example. Another possibility is shown in Example 6 (Section 8.1) where the
action() method is used to print an agent’s properties.

7.1 Example: ActionAgent

The following example is an extension of the BoomerangAgent introduced in
Section 6.5. The enhancement is that the action method reactivates the agent’s
I i ve() method. Thus, in contrast to the BoomerangAgent, the GUI can be
re-activated by a user via one of the actions listed above.

Note that re-activating an agertsve() method viaitacti on() method

does not re-activate the agent’s thread (whose execution stopped when the
i ve() method terminated for the first time). Instead, the re-activated agent
runs in a thread of the communication service of the local agency.

Example 5: ActionAgent \

package exanpl es. si npl e; ?

61

PROGRAMMER'’S GUIDE

i nport de.ikv.grasshopper. agent. Mbil eAgent;
i mport de.ikv.grasshopper.comuni cati on. *;

i nport javax.sw ng. *;

i nport java.awt.*;

// This class realizes an agent that nobves to a renote
// agency and, after this, returns to its origin.
// The agent can be re-activated via its ’action’
// nethod.
public class ActionAgent extends Mobil eAgent
{
// Alittle data state.
int state;

// No creation argunments needed.

public void init(Cbject[] creationArgs) {
// Initialize data state
state = O;

}

public String getNane() ({
return "ActionAgent";
}

public void action() {
// Re-ani nate the agent
| og(" Re-ani mated! ") ;
live();

}

public void live() {
String | ocation;

switch(state) {

case O:
log("Waiting for new |l ocation...");
| ocati on = JOpti onPane. showl nput Di al og(
null, "Were shall | go?");
if (location !'= null) {
state = 1,
log("Trying to nove...");
try {
// Go away!
nove(new Grasshopper Address(| ocation));
}
catch (Exception e) {

log("Mgration failed: ", e);

62

CHAPTER 7: ACTION!

}

// The next statenent is only reached
// if the mgration failed!!!
state = O,

}

br eak;

case 1:
l og("Arrived at destination!");
JOpt i onPane. showMessageDi al og(

null, "Let nme go hone!");
state = 0O,
log("Trying to nove...");
try {
// Come hone!
nove(getl nfo().get Home());
}
catch (Exception e) {
log("Return trip failed: ", e);
}

// The next statenent is only reached
// if the mgration failed!!!
br eak;
}
log("Termnating nmy life.");
}
}

Requirements:

» Optionally a running agency domain service. (Note that the agency
domain service has to be started before the agencies, and the domain
service’s address has to be specified when starting the agencies in order
to register them. Please refer to the User’s Guide for information about
how to start agencies and agency domain services.

» At least two running agencies
Snce the ActionAgent creates an own GUI that may block the agency
GUI, it is recommended that you do not activate the agency GUI.
Instead, start the agencies just with their textual interface (command
option -tui). Please refer to the paragraphs titled ,Running the Exam-
ples” at the beginning of Chapter 2 in order to get a detailed explana-
tion about the possibly occurring GUI problems.

63

PROGRAMMER'’S GUIDE

Running the example:

VD> m===

Press i
<Cancel>

ActionAgent

(3—>5
Invoke agent §
Q
()]
(D—>®
Create
ActionAgent Agency 1

User input

Figure 7: ActionAgent Scenario

Create the ActionAgent inside one of the running agencies via the
agency’s Ul (1).

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a exanpl es. sinpl e. Acti onAgent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

Press the Cancel button (2), and the GUI disappears. Now perform a dou-
ble-click on the agent entry in the agency GUI or perform the 'invoke’
command of the agency TUI (3). The agent’'s GUI appears again, and you
can continue moving the agent around, as explained in the Boomeran-
gAgent example (see Example 4 in Section 6.5).

/.2 Summary

* Theacti on() method of an agent is automatically invoked by the host-
ing agency on behalf of a user (via the agency’s Ul) or on behalf of another
software entity (via the agency’s API).

64

CHAPTER 7: ACTION!

* The agent programmer can override #et i on() method in order to
enable a user to trigger certain actions of the corresponding agent.

65

PROGRAMMER'’S GUIDE

66

CHAPTER 8: CLONES AND COPIES

8 Clonesand Copies

Sometimes, it may be desirable for an agent to create a copy of itself and to copy(...)
order this copy to perform one specific task, while the original instance is oc-

cupied with another task. For this purpose, the agent’s superclass provides the
methodcopy(. . .). By invoking this method, an agent creates another in-
stance of its own agent class. The location in which the new instance is to be
created has to be provided as parameter afdipg/(. . .) method.

The copy procedure is realized similar to an agent’s migration. That means,
the new agent instance is created at the desired location, and the data state of
the original instance is transferred (in serialized form) to the new instance. The
important difference is that, in contrast to the migration, the original agent in-
stance is not removed, but continues executing its task.

Note: The previous releases of Grasshopper provided two separate methods:
cl one andcopy. The difference was that, in contrastcimpy, thecl one A
method did not require any parameter, and the new instance was created i
same location as the original instance. To achieve this with the new Grasshop-
per release, just specify the current location of the original instance as param-
eter of thecopy(. ..) method, or simply set the valuertal | .

1. The agent’s copying is initiated. This can be done either by the agent itelfopy
(via its owncopy(. . .) method), by other software components (via tf&°cedure
copyAgent (...) method offered by the agency’'s API), or by human
users (via the agency’s Ul).

2. The agent'sbef or eCopy() method is automatically called by theefore-
agency in order to enable the agent to prepare its copying. This mett8y)
may be of particular importance if the agent’s copying procedure is trig-
gered by external entities (software components or human users), because
in this case the copy request is usually not expected by the agent. If the
agent itself triggers its copying, it has the possibility to prepare the copy-
ing already before invoking itsopy(...) method.

An agent may prohibit its own copying. If the agent does not want toVie@Excep-
copied, the agent can throw thede.ikv.grasshop- Ho"
per . agent. Vet oExcept i on inside itsbef or eCopy() method. If

the copy request has been initiated via the agency’'s Ul, the user is
informed about the copy rejection via the user interface. If the copy
request has been initiated via the agency’s API, the agency forwards the
Vet oExcept i on to the triggering software component.

3. The agent’s data state is serialized. That means, all instance variable of the

67

after Copy()

Identifier
handling

N, @

T

PROGRAMMER'’S GUIDE

agent that are not declared as transient, are put into a data stream. Please
refer to Section 6.3 for detailed information about the data state.

4. The agent’s serialized data state as well as additional information are
transferred to the destination agency. Among others, the additional infor-
mation covers the agent class name and its code base. This is required by
the destination agency to create a new instance of the agent.

5. The destination agency creates a new instance of the agent and provides
the agent with its transferred data state. If the agent’s class code is not ini-
tially maintained by the destination agency, it is retrieved via Java class
loading mechanisms by accessing the code base that has been delivered by
the source agency.

6. The destination agency automatically calls the agexdtiser Copy()
method. In this way, the agent is able to prepare the start of its task execu-
tion, e.g., by allocating references and resources.

7. The destination agency starts the thread of the agent. Now the agent is able
to start its task execution.

Note that the copied agent instance gets a new identifier. This identifier is
composed of the identifier of the original instance, suffixed by a period and
the copy number, starting with '1’.

Example: The identifier of the original agent instance is

Agent #192. 168. 100. 31#1999- 09- 28#09: 51: 13: 453#0
The first copy of this agent gets the following identifier:

Agent #192. 168. 100. 31#1999- 09- 28#09: 51: 13: 453#0. 1
The fifth copy of thisnew agent gets the following identifier:

Agent #192. 168. 100. 31#1999- 09- 28#09: 51: 13: 453#0. 1. 5

8.1 Example: CopyAgent

Inside itsi ni t (. . .) method, the CopyAgent creates two properties:
* Property 1: key = ,generation; value = ,parent*
» Property 2: key = ,copyPermission®, value = ,true”

(As explained in Chapter 5, an agent may have a set of properties that is main-
tained by the agent&gent | nf o object. Initially, no property is defined, but

the agent may set and modify its properties at any time. All properties are au-
tomatically part of the agent’s data state, i.e., they remain valid when the agent
migrates. If an agent creates a copy of itself, the copy gets the same properties

68

CHAPTER 8: CLONES AND COPIES

asthe original agent.)

The agent'acti on() method enables a user to watch the agent’s properties
at any time.

Thebef or eCopy() method of the CopyAgent reads the ,,copyPermission*
property value. If this property is set to ,true“, the agent allows its copying. If
the ,copyPermission” property is set to ,false“, the agent prohibits its copying
by throwing thev/et oExcept i on. (As explained above, the general purpose
of thebef or eCopy() method is to enable an agent to react on a copy re-
guest. The method is automatically invoked by the local agency after receiving
a copy request by the agent itself or by another entity.)

The CopyAgent'af t er Copy() method just notifies the user about the suc-
cessful arrival of a copy. (As explained above, the general purposeadf-the

t er Copy() method is to enable an agent to react on its arrival in a new
agency after a migration or copy procedure. The method is automatically in-
voked by the local agency before starting the agéntse() method.)

The CopyAgent uses the ,generation” property insideiitge() method in
order to determine whether it is still the original instance (i.e., the ,parent®) or
a copied instance (i.e., a ,child“). In this way, the ,generation” property rep-
resents the agent’s data state, similar tsthat e variable of the Boomeran-
gAgent (see Example 4 in Section 6.5).

The agent'd i ve() method is divided into two parts:

 If the agent's generation value equals ,parent®, the agent requests a list of
all agencies that are registered at the agency domain service. After this, the
agent changes its ,generation” value to ,child“ and sends one copy of
itself to every available agency. Finally, the agent resets the generation
value to ,parent, and théi ve() method terminates. Note that the
methodl i st Agenci es(...) has not been explained yet. This exam-
ple does not focus on describing how to contact the agency domain ser-
vice, but this functionality is needed to determine all registered agencies.
Please refer to Section 9.12 for detailed information about contacting a
domain service.

 If the agent’s generation value equals ,child* (which is true for all copies
of the parent agent that have been created in the first part lof trey)
method), the agent changes its ,copyPermission® property value to ,false".
After this, it is not possible for a user or software component to create cop-
ies of this agent, since theef or eCopy() method throws &/et 0Ex-
ception.

69

N, @

T

PROGRAMMER'’S GUIDE

Example 6: CopyAgent

70

package exanpl es. si npl e;

i mport de.ikv.grasshopper. agent. *;
i nport de.ikv.grasshopper.type.*;
i nport de.ikv.grasshopper.util.*;
import java.util.Properties;

// This class realizes an agent that produces copi es of
// itself. The agent uses its internal properties in
// order to prohibit the further copying of its

// children.

public class CopyAgent extends Mbil eAgent

{

transi ent Agent System nfo avai |l abl eAgenci es[];

public void init(Cbject[] creationArgs) {
set Property("generation", "parent");
set Property("copyPerm ssion", "true");

}

public void action() {
| og("Generation = " + getProperty("generation") +
", copyPerm ssion =" +
get Property("copyPerm ssion"));

}

public String getNane() {
return "CopyAgent";

}

public void beforeCopy()
t hrows Vet oException {
i f (getProperty("copyPerm ssion").equal s("fal se"))
{
| og(" Sorry, copying not allowed.");
t hrow new Vet oException();

}
}

public void afterCopy() {
log("Child has arrived.");

}

public void live() {
String generation = getProperty("generation");

CHAPTER 8: CLONES AND COPIES

if (generation.equal s("parent”)) {
// Get a list of all avail abl e agencies
avai | abl eAgencies = getRegion().listAgencies(
null, new SearchFilter());
// Create properties for the copies
Properties chil dProps = new Properties();
chi | dProps. set Property("generation","child");
chi | dProps. set Property("copyPerm ssion",
"fal se");
// Send a copy to each agency
| og(avai | abl eAgenci es. |l ength +
" agencies found");
for (int i = 0; i < avail abl eAgenci es. | engt h;
i++) {
| og(" Sendi ng one copy to agency " +
avai | abl eAgenci es[i].getLocation());

try {
copy(avai |l abl eAgenci es[i].getLocation(),
chi | dProps);
}

catch (Throwabl e e) {
| og("Copy to location " +
avai | abl eAgenci es[i].getlLocation() +
" failed. ", e);

Reqguirements:

* A running agency domain service. Note that the domain service has to
be started before the agencies, and the domain service’s address has to
be specified when starting the agencies in order to register them. Please
refer to the User’s Guide for information about how to start agencies
and agency domain services.

» At least two running agencies. (The originally created agent will create
a copy of itself in every available agency, so that more than one agency
should be started. However, the example also runs with a single agency.
In this case, a single copy will be created.)

71

PROGRAMMER'’S GUIDE

Running the example:

. Try to copy
0 agent
/O
Agency \‘,’/::_'_'_'_'_':\:‘
domain CopyAgent
service (child)
Agency 2 L
Get list of v
all registered @
agencies Copy
S
| / @ CopyAgent
Try to copy e — (child)
agent _—<:>——>) Agency 3
(D—-
g S —
< | CopyAgent C
e opyAgent
(D &| “aens st
Create — Agency 1 Agency 4
CopyAgent

User input

Figure 8: CopyAgent Scenario

Create the CopyAgent inside one of the running agencies via the agency’s
Ul (1).

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a exanpl es. si npl e. CopyAgent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

The agent contacts the agency domain service in order to retrieve a list of
all registered agencies (2). After this, the agent creates one copy of itself in
every agency contained in the retrieved list (3). These copies in turn will
not create any further copies. They just print a message onto the console
window of their local agency and terminate afterwards.

Try to copy the original agent (4) as well as the copied agents (5). You will
find out that the original agent (i.e., the parent agent) can be copied,
whereas the copied agents (i.e., the child agents) do not allow the user to
copy them. A copy of the original agent behaves exactly as the original

72

CHAPTER 8: CLONES AND COPIES

agent itself, i.e., the copy will again produce ,children®.

Look at the identifiers of all agents. As explained in Section 5.1, the copy
number is appended to the original identifier.

8.2 Summary

» Copying an agent means to create a new instance of an existing agent and
to transfer a copy of the current data state to the new instance. The new
instance can be created in the same location as the original instance or in a
remote agency.

* An agent may prohibit its copying by throwin/at oExcepti on.

» The identifier of the new instance is composed of the complete identifier
of the original instance, suffixed by the copy number.

73

PROGRAMMER'’S GUIDE

74

CHAPTER 9: THE COMMUNICATION SERVICE

O The Communication Service

One of the most significant benefits of mobile agent technology is the ability
of active service agents to migrate to different network locations in order to
access static software components locally instead of interacting via remote
procedure calls. However, in several application scenarios the traditional cli-
ent/server paradigm using RPC still provides efficient solutions.

By means of its communication service, Grasshopper achieves an integration
of both, agent migration combined with local interactions, and remote interac-
tions across the network. When using the communication service, clients do
not have direct references to the corresponding servers. Instead, an intermedi-
ate entity isintroduced, named proxy object or ssimply proxy. In order to estab-
lish a communication connection with a server, a client creates a proxy that
correspondsto the desired server. Thisproxy in turn establishesthe connection
to the actual server. In the context of Grasshopper, three different kinds of
servers are possible: agencies, agents, and agency domain services.

Client agent Server agent

Server proxy
——C)
2
! Ta

Communication Communication
service server
Protocol Remote interfaces
Agency 1 modules for supported protocols Agency 2

I\
ORB l/

1, 2, 4 Local Java method invocation
3 Remote method invocation via one of the supported protocols

Figure 9: Communication via Proxies

75

Proxy ob-
jects

L ocation
transparen-

cy

PROGRAMMER'’S GUIDE

If an agency domain service is running and both the client’s and the server’s
agency are registered at this service, a location-transparent communication
session can be established. The client simply provides the identifier of the de-
manded server, and the proxy object automatically contacts the agency do-
main service in order to determine the server’s location. If the server is
realized as mobile agent that moves to another location the proxy at the client
side keeps track of the server by requesting its new location from the agency
domain service.

In order to use the communication service, the following steps have to be per-
formed:

1. Implementation of the server side (see Section 9.1)

2. Generation of a server proxy (only required for Java releases prior to JDK
1.3, see Section 9.2)

3. Implementation of the client side (see Section 9.3)

A client can access a server in different ways. Depending on the concrete ap-
plication scenario, the programmer has to select between

« Synchronous and asynchronous communication (see Section 9.5)
« Static and dynamic communication (see Section 9.7)
« Unicast and multicast communication (see Section 9.9)

By default, each Grasshopper agency as well as the agency domain service are
accessible via proxies. Agents can retrieve the proxy dibtiaé agency via

the methodyet Agent Syst en{) which is provided by the agents’ super-
classAgent (see Section 9.11.3). Besides, agents can create proxies of re-
mote agencies (see Section 9.11.4). Finally, agents can get the proxy of an
agency domain service via the methodjet Regi on() which is provided by

the agents’ superclaggent (see Section 9.12).

The main objective of an agency domain service is to enable users and soft-

ware entities to search for specific components (i.e., agencies, places, and

agents). Demanded components can be described in terms of filters (see Sec-
tion 9.13) in order to facilitate the search.

Since clients as well as servers may be realized by mobile agents, the Grass-
hopper communication service has been designed to handle their migration
during a communication session. Please refer to Section 9.14 for detailed in-
formation about migrating servers and clients.

In several application scenarios, an integration of Grasshopper into existing
applications is required.

76

CHAPTER 9: THE COMMUNICATION SERVICE

9.1 Implementing the Server Side

The server side of a Grasshopper communication connection is realized in
terms of a Java object that provides at |east one public method to the commu-
nication service. All methods that are to be accessible via the communication
service haveto beincluded in aJavainterface that isimplemented by the serv-
er object. In detail, the following steps have to be performed:

1. Implementation of a server (agent) class

2. Selection of those server methods that are to be accessible via the commu-

nication service

3. Definition of a Java interface that includes the previously selected meth-

ods, called server interface in the scope of this chapter. This interface has
to be implemented by the server class.

If also methods of the agent’s superclasses are to be accessible, the corge-
sponding interfaces (e.d.Agent orl Mobi | eAgent) have to be inher- A
ited by the newly defined server interface. Note that these superc
interfaces only offer a subset of the methods that are provided by the
superclasses themselves. For instance, the intdriagent only covers

the methodyet | nf o() , while the superclasdgent provides a large set

of methods to its subclasses.

and/or return types, these classes have to be serializable, i.e., they hav,
implement the interfacgava. i 0. Seri al i zabl e. The reason is that

the Grasshopper communication service uses the serialization mechanism
for transferring the information that is associated with a remote method
invocation.

If a server interface method uses user-defined Java classes as paramet?rs

9.2 Creating Proxy Objects

As explained above, a client accesses a locally created proxy object in order
to communicate with a server. This proxy provides all public methods that

have been defined in the server interface.

The way of creating a proxy object depends on the used Java release. If JDK
1.3 or higher is used, the proxy creation can be performed dynamically by a
client agent during its runtime, just by using the class of the server interface
(see Section 9.2.2). If an earlier release of Java is used, the agent programmer
has to generataroxy classes manually by using the Grasshoppgtib gener-

ator (see Section 9.2.1). In both cases usage of the proxies, i.e., the imple-

77

PROGRAMMER'’S GUIDE

mentation of the client agent, is exactly the same.

9.2.1 Manual Proxy Generation

Stubgen If aJavarelease prior to JDK 1.3 isused for running Grasshopper, proxy class-
es have to be created and made accessible for the client agent. For this pur-
pose, Grasshopper provides a stub generator, realized in terms of abatch/shell
script named St ubgen.

In order to use the stub generator, please perform the following steps:
1. Implement your server interface.
2. Compile the server interface.

3. Invoke the stub generator by providing the classfile of the server interface
as parameter of the St ubgen batch/shell script. Type in the full qualified
class name, i.e., the classname prefixed by the compl ete package structure.
Single package names have to be separated by a dot (,.“) character. Avoid
the suffix ,.class* at the end of the class name.

Earlier releases of Grasshopper requiredcthss of the server agent as

& input, and the generated proxy contained all public methods of this server
class. The introduction of server interfaces has been realized in Grasshop-
per 2.0 in order to enable agent programmers to distinguish between agent-
internal public methods and those public methods that are to be accessible
via the communication service.
The stub generator produces a Java source file with the same name as the
server interface, suffixed with the letter 'P’ (indicating proxy classes).

4. Compile the generated proxy source file.
5. Insert the compiled proxy class file into your Java classpath.

Considering the server agent described in Section 9.4.1, the creation of a serv-
? er proxy can be achieved in the following way:

1. Compile the source file of the server interface, i.e., thel fier ver -
Agent . j ava. The output will be a Java class file nanmieser ver -
Agent . cl ass.

2. Invoke the stub generator by using the full qualified class name of the
server interface as parameter:

St ubgen exanpl es. si npl eCom | Ser ver Agent

The result will be a Java source file nanmeser ver Agent P. j ava.
This is the source file of the server proxy.

78

CHAPTER 9: THE COMMUNICATION SERVICE

3. Compile the generated source file. The result will be a Java class file
named | Ser ver Agent P. cl ass.

If you discover problems when compiling proxy classes with JDK 1.3,
please use the compiler optiont’ar get cl assi c’. If you are using A
JDK 1.2, no problems should occur during the compilation.

Please note that, as explained in Section 9.2.2, no manual proxy generation
via St ubgen is required if a JDK 1.3 environment is used. Even if a man-
ually generated proxy class exists, JDK1.3 will not use it.

9.2.1.1 Usage of the Stub Generator

The Grasshopper stub generator is realized as a batch/shell script named
St ubgen. The following line gives an overview of all supported parameters:
St ubgen [-h|--help] [-classpath <addd asspat h>]

[-d <stubDir>] [--conmpile] [--noSource]
<cl assnane>

Invoking St ubgen without any parameters prints out the list of available pa-
rameters, including a short description of their purpose. The same result can
be achieved by using the paramethbror - - hel p, respectively.

- cl asspat h <addd asspat h>:

This optional parameter allows the user to add a set of directories to the
existing Java CLASSPATH environment settingddCl asspat h> has
to be substituted by the directory path(s) that is/are to be added.

-d <stub_dir>:

This optional parameter allows the user to specify a directory into which
the generated Java source file of the proxy class has to be written.

--conpi |l e:

When this optional parameter is used, the stub generator automatically
compiles the generated Java source file of the proxy class. Note that this
option only works in a JDK 1.2 environment. In a JDK 1.3 environment,
the Java compiler must be explicitly invoked with the optioinar get

cl assic’.

--Nno_source:

This optional parameter can only be applied together with thwom
pi | e option. In this case, no source file of the proxy class is generated.

<cl assnane>;

This is the only mandatory parameter and must be substituted with the full
qualified class name of the server interface class file. Full qualified means

79

PROGRAMMER'’S GUIDE

that the complete package structure must be specified where two single
package names are separated by a dot characters. The suffix ,.class” has to
be avoided.

9.2.2 Dynamic Proxy Generation

Due to the enhancedflection capabilities of JDK 1.3, it is possible for a
Grasshopper (client) agent to create server proxies dynamically at runtime
without the requirement to have access to a previously compiled proxy class,
such as the cladsSer ver Agent P. cl ass mentioned in Section 9.2.1.

This means that the manual proxy class generation, performed by the agent
programmer by using the Grasshopper stub generator, is not necessary any-
more. Even if a manually generated proxy class is available, Grasshopper will
not use it in a JDK 1.3 environment.

Note that the client implementation is independent of the used Java environ-
ment, since it does not refer to the manually generated proxy clask&t.e.,
erver Agent P. cl ass in the example below), but instead to the server
interface class (i.el,Ser ver Agent . cl ass in the example below). The in-
terface class is required in any case, independently of the used Java environ-
ment.

0.2.3 Issuesof Mixed JDK Environments

If the Grasshopper environment consists of agencies running on JDK1.2 Java
Virtual Machines (JVMs) and other agencies running on JDK1.3 JVMs, prob-
lems may occur in cases where agents migrate while maintaining a proxy in
their data state. A migration from a JDK1.2 agency to a JDK1.3 agency causes
no problems. The proxy remains valid after the migration and can be used by
the migrated agents for accessing the associated server. Concerning the oppo-
site direction, i.e., a migration from a JDK 1.3 agency to a JDK 1.2 agency, the
client agent should exclude all proxies from its data state before migrating. As
described in Chapter 6, this can be achieved either by declaring the proxy as
transient instance variable or, in case of a non-transient proxy, by setting the
proxy to null before the migration. In both cases, the agent has to re-create the
proxy after the migration.

80

CHAPTER 9: THE COMMUNICATION SERVICE

9.3 Implementing the Client Side

Note that the implementation of aclient agent is exactly the same, independent
whether the proxy class has been created manually via the stub generator (as
described in Section 9.2.1) or whether the server proxy is dynamically gener-
ated by the client agent during its runtime, as described in Section 9.2.2. The
internal proxy handling is transparently performed inside the newl n-
stance(...) method of theclassde. i kv. gr asshopper. comuni -
cation. ProxyCenerator by analyzing the used Java runtime
environment. If a Java release prior to JDK 1.3 is detected, the newl n-
stance(...) method automatically tries to access the manually created
proxy class (I Ser ver Agent P. cl ass in the example, see Section 9.4),
while in the case of JDK 1.3 the reflection mechanism is used to generate a
proxy dynamically out of the server interface, (i.e, | Server-
Agent . cl ass inthe example).

The prerequisites that must be fulfilled by the client agent are:

access to the server interface clasSef ver Agent. cl ass in the
accompanying example, see Section 9.4)

access to the server proxy claady required if a Java release previous to
JDK 1.3 is available and the proxy class thus had to be manually gener-
ated via the stub generator (I Ser ver Agent P. cl ass in the accompa-
nying example, see Section 9.4)

knowledge about the identifier of the server agent (specified either as
instance of de. i kv. grasshopper.type.ldentifier or as
instance of ava. | ang. Stri ng)

If the client and server agents are not registered at the same agency domain
service and both agents are running in different agencies, the client agent

must provide the current location of the server agent (either as instance of

de. i kv. grasshopper. conmuni cati on. G asshopper Ad-

dr ess or as instance gfava. | ang. St ri ng). If both agents are run-

ning inside the same agency, the location need not be specified even if no

agency domain service is running.

If the client agent wants to invoke the server methods in an asynchronous
way, this must be specified bybgt e parameter, set ter oxyGener a-

t or . ASYNC. If synchronous method invocation is to be performed, this
additional parameter may be avoided or set FiooxyGener a-

t or . SYNC. Note that a single proxy supports either synchronous or asyn-
chronous method invocation. If a client agent wants to use both
mechanisms on the same server, two proxies must be created. Please refer

81

PROGRAMMER'’S GUIDE

to Section 9.5 for detailed information.

A client agent creates a server proxy by invoking the newl nst ance(. . .)
method of the classde. i kv. gr asshopper . comruni cati on. Pr ox-
yGener at or . Depending on the running Grasshopper environment and the
requirements of the client agent, the new nst ance(...) method can be
invoked with different parameters.

Considering the server agent described in Section 9.4.1, the creation of a serv-
er proxy can be achieved with the following lines of code:

Identifier serverldentifier = ...;

| Server Agent serverProxy =
(I Server Agent) ProxyGenerat or.new nstance(
| Server Agent . cl ass,
serverldentifier);

Notethat | Ser ver Agent represents the interface of the server agent.

The code above requires both client and server agent to be registered at the
same agency domain service or to reside inside the same agency, in order to
enable the proxy to locate the server agent. If both prerequisites are not ful-
filled, thenewl nst ance(...) method must be enhanced with the current
location of the server agent:

String serverLocation = ...

| Server Agent serverProxy =
(I Server Agent) ProxyGenerator.new nstance(
| Server Agent . cl ass,
serverldentifier,
server Location);

The examples above create a server proxy that supports synchronous commu-
nication. If the client agent wants to invoke the server methods asynchronous-
ly, this has to be specified by abyt e variable, as shown below:
| Server Agent serverProxy =
(I Server Agent) ProxyGenerator.new nstance(

| Server Agent . cl ass,

serverldentifier,

serverLocati on,

Pr oxyCGener at or . ASYNC) ;
In Grasshopper releases 1.x, asingle proxy was able to handle both synchro-
nous and asynchronous method invocation. In these early Grasshopper releas-
es, the stub generator inserted additional methods into the proxy class. The
result was a proxy class covering two methods for each public method of the
server agent. One of these methods was meant for synchronous communica-
tion, and the second one (with an additional parameter for maintaining the
asynchronously arriving method result) for asynchronous communication.

In the current Grasshopper release, it is not anymore required to use the stub

82

CHAPTER 9: THE COMMUNICATION SERVICE

generator, supposed that a JDK 1.3 runtime environment is used. In order to
enable a client implementation to be independent of the fact whether a manu-
ally generated proxy class exists or whether the Java reflection mechanismis
used for the dynamic proxy generation, no additional methods are created by
the stub generator. Thus, if a client agent wants to access a server agent syn-
chronously and asynchronously, the client agent hasto create two proxies, i.e.,
one proxy for each communication mechanism. Please refer to Section 9.5 for
detailed information about asynchronous communication.

Note that a proxy object is always created as instance of a server interface and
not of the corresponding server class. Do not try to convert the proxy down to &
the server class (neither when creating the proxy nor when invoking a method

on the proxy), since thiswill raise aCl assCast Except i on. Concerning
the example in Section 9.4, the interface | Ser ver Agent hasto be used for
proxy-related stuff, and not the class Ser ver Agent .

9.4 Simple Communication Scenario

The following scenario consists of the following three classes/interfaces, cov-
ered by the package exanpl es. si npl eCom

» Server Agent (see Example 7 in Section 9.4.1): An agent that provides
one method to the communication service. By means of this method, a
(remote) client can order the ServerAgent to migrate to another location.

* | Server Agent (see Example 8 in Section 9.4.1): The server interface
that contains the method which has to be accessible for client agents. This
interface is the basis for the generation of server proxies.

 Cient Agent (see Example 9 in Section 9.4.2): The agent that invokes
the accessible method on the ServerAgent. In the context of this scenario,
the ClientAgent remains at its initial location and in this way realizes a sta-
tionary user interface for the ServerAgent. By means of the ClientAgent’s
GUI, a user can move the ServerAgent remotely from one agency to
another.

9.4.1 Example: Server Agent

The agent shown in Example 7 provides the public megiodd . .) to the
communication service. When this method is invoked, the agent tries to mi-
grate to the location that has been provided as method parameter.

83

N, @

T

PROGRAMMER'’S GUIDE

Example 7: ServerAgent

package exanpl es. si npl eCom

i mport de.ikv.grasshopper. agent. *;

i npor t
de. i kv. grasshopper . communi cati on. G asshopper Addr ess;

// This class realizes the server agent of the sinple
// conmuni cati on scenari o.
public class Server Agent extends Mobil eAgent

{

}

i npl ements | Server Agent

public String getNanme() ({
return "Server Agent";

}

// This nethod i s accessi ble via the conmmuni cation
// service.
public void go(String |ocation) {

| og("Roger, nmoving to " + |ocation);

try {
nmove(new Grasshopper Address(| ocation));
}
catch (Exception e) {
log("Mgration failed. Exception =", e);
}
}
public void live() {
| og("ready.");
}

Inorder tomakethego(. ..) method accessibleviathe communication ser-
vice, aserver interface hasto be defined that contains the method. This server
interface (see Example 8) must be implemented by the server agent.

Note: Asexplained in Section 9.2, a special proxy class hasto be created with
the Grasshopper stub generator if aJavaruntime environment previousto JDK
1.3isused. If IDK 1.3 isused, this step is not required, since in this case the
proxy is dynamically created by using the Java reflection mechanism.

Example 8: | ServerAgent

package exanpl es. si npl eCom

84

CHAPTER 9: THE COMMUNICATION SERVICE

public interface | Server Agent

{

public void go(String | ocation);

}

Note: If the ServerAgent has to provide also the methods of its superclasses,
the interface | Mobi | eAgent has to be extended by the interface | Ser v-
er Agent .

A description about how to run the exampleis given in Section 9.4.3.

9.4.2 Example: ClientAgent

The agent below acts as a client that uses the communication service in order
to access the server agent introduced in Section 9.4.1.

Insideitsi ni t (. ..) method,theCl i ent Agent createsaninstance of the
Ser ver Agent aswell asaserver proxy, i.e., aninstance of the server inter-
face | Ser ver Agent (see Example 8). After this, the client agent is able to
invoke the server ageng®(. . .) method.

Note that the client uses a second proxy, i.e., the proxy of the local agency, in
order to create the server agent. The local agency proxy is available for each
agent via the methodget Agent Systen{) of the agent’s superclass
Agent . Detailed information about possible interactions between agents and
their local agency is given in Section 9.11.

The created server proxy is meant for synchronous communication, since the
parametePr oxyGener at or . ASYNC mentioned in Section 9.3 is not set.
The client just specifies the server interface as well as the server identifier.

A running agency domain service is required for running the example, since
the client moves the server to other locations. In order to maintain the connec-
tion to the server, the proxy has to contact the agency domain service for re-
guesting the server’s new location. This is done transparently for the client.

The client agent creates a GUI in order to ask the user for a new location for
the server agent. After the user has pressed the OK button, the client agent in-
vokes thego(. . .) method of the server proxy, transmitting the previously
specified location via the communication service to the server agent.

Example 9: ClientAgent

A
package exanpl es. si npl eCom ?

i nport de.ikv.grasshopper. agent. *;

85

PROGRAMMER'’S GUIDE

i nport de.ikv.grasshopper. agency. *;

i nport de.ikv.grasshopper.type.*;

i mport de.ikv.grasshopper.comuni cati on. *;
i nport javax.sw ng. *;

i nport java.awt.*;

// This class realizes the client agent of the sinple
// conmuni cati on scenari o.
public class Cient Agent extends Mbil eAgent
{
// Proxy of [|ocal agency = transient
// (i.e., not part of the data state),
// since it becones invalid if the agent nobves
// to another |ocation.
transi ent | Agent Syst em agencyProxy;

// Data state of the agent, since not transient.
// Agentlnfo serverlnfo;
| Server Agent server Proxy;

public void init(Cbject[] creationArgs) {
// Get proxy of [ocal agency.
agencyProxy = get Agent Systen();
// Create the server agent.
try {
serverinfo =
agencyPr oxy. cr eat eAgent (
"exanpl es. si npl eCom Ser ver Agent ",
get I nfo() . get Codebase(),
"I nformati onDesk™, null);
}
catch (Agent CreationFail edException e) {
| og("Creation of server agent failed.");
}
// Create proxy of the server agent.
if (serverinfo !'= null)
serverProxy = (| Server Agent)
Pr oxyCGener at or . newl nst ance(
| Server Agent . cl ass,
serverinfo.getldentifier());

}

public String getNanme() {
return "CientAgent”;
}

public void action() {
live();

86

CHAPTER 9: THE COMMUNICATION SERVICE

}

// This nethod requests user input via a graphical
// conponent.
// The user has to specify the new | ocation to which
// the ServerAgent shall m grate.
public String requestLocation() {

String location = null;

| og(" Request | ocation");

| ocati on = JOpti onPane. show nput Di al og(nul I,

"Where shall | send the server?");
| og("Moving the server to " + location);
return | ocation;

}

public void live() {

String | ocation;

log("Starting life");

| ocati on = requestLocation();

while (location !'= null) {
// I nvoke nethod on server agent via proxy.
server Proxy. go(l ocati on);
| ocati on = requestLocation();

}

}
}

A description about how to run the exampleis given in Section 9.4.3.

9.4.3 Runningthe Scenario

This section explains how to run the communication example whose parts
(i.,e, C i ent Agent and Ser ver Agent) have been introduced in the pre-
Vious sections.

Requirements:

* A running agency domain service. Note that this service has to be started
before the agencies, and its address has to be specified when starting the
agencies in order to register them. Please refer to the User’s Guide for
more information about how to start agencies and agency domain services.

» At least two running agencies
Snce the ClientAgent creates an own GUI that may block the agency GUI,
it is recommended that you do not activate the agency GUI. Instead, start
the agenciesjust with their textual interface (command option -tui). Please

87

PROGRAMMER'’S GUIDE

refer to the paragraphs titled ,Running the Examples* at the beginning of
Chapter 2 in order to get a detailed explanation about the possibly occur-
ring problems.

» If you are using a JDK 1.2 environment, you must have generated a proxy
class (named Ser ver Agent P) by invoking the Grasshopper stub gen-
erator with the interface classSer ver Agent as input parameter. The
file | Server Agent P. cl ass should be stored either in a directory
belonging to the Java classpath or in the code base directory of the Client-
Agent. In a JDK 1.3 environment, this class is not needed. Even if it is
available, it will not be used. Instead, the proxy is dynamically generated
by the ClientAgent at runtime.

Running the Example:

7

ServerAgent"_,(" Agency
domain

service

/
/

Agency 2 é \

Type in
new location ANEAN

Type in 7
new location ServerAgent

A

ClientAgent

. Proxy B
‘ move ServerAgent |ServerAgent |)

—— Create
e ServerAgent
Create Server
proxy Agent

[

W —o—2 oo s

Create
ClientAgent

User input

Figure 10: Simple Communication Scenario

Agency Ul

Agency API

Agency 1

Create th€ll i ent Agent inside one of the running agencies via the agency’s
Ul (1).

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

88

CHAPTER 9: THE COMMUNICATION SERVICE

cr a exanpl es. si npl eCom d i ent Agent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

At first, the client agent creates an instance of the server agent (2) and estab-
lishes a connection to this agent via a server proxy (3). The server agent will
appear in the agency’s GUI. (If you are using the TUI, please ub¢ ths |
command in order to list all agents running inside the agency. One of them
should be the server agent.)

Use the client agent’s GUI to type in the new location to which the server agent
has to migrate (4). Note that, since an agency domain service is running (and
connected with both agencies!), it is sufficient to specify the host name, agen-
cy name, and (optionally) a place name of the desired destination. As ex-
plained in Section 5.4, the required (simplified) location format is
<host Nanme>/ <agencyNamne>/ <pl aceNanme> or <host Nanme>/
<agencyNane>. In the latter case, the agent will migrate to the default place

| nf or mat i ondesk of the destination agency.

After pressing the OK button, the ClientAgent uses the server proxy to trigger
the ServerAgent’s migration to the specified location (5).

Note that the client does not know that the server agent has changed itslocaion-
tion. Thus, after you have specified a new server location for the second fififar =
and pressed OK (6), the ClientAgent again contacts the server proxy t(a@a)
which tries to contact the server agent at its former location. After noticing that

the server agent is not accessible anymore, the proxy automatically contacts
the agency domain service in order to determine the server agent's new loca-
tion (7b). Since each agency automatically registers all hosted agents at the
agency domain service (if existent), this service is aware of the locations of all
agents at any time. In this way, the re-establishment of the connection between
the proxy and the server agent is performed completely transparent for the cli-
ent agent. The proxy forwards the migration order from the ClientAgent to the
new location of the ServerAgent (7c), and the ServerAgent migrates to its new

destination (7d).

944 Summary

» The purpose of the Grasshopper communication service is to enable local
and remote interactions between Grasshopper components (agents, agen-
cies, region registries).

* A communication session is initiated by a client (agent) that establishes a

89

PROGRAMMER'’S GUIDE

connection to a server (agent) viaaso called proxy object or proxy.

» A Grasshopper proxy (object) represents the server at the client side. A cli-
ent always contacts a proxy locally, and the proxy in turn contacts the
(locally or remotely residing) server. A proxy is based on a Java interface
that defines those server methods which are to be accessible via the com-
munication service.

» Concerning JDK 1.2 environments, a proxy object has to be generated by
the programmer by using the Grasshopper stub generator. In contrast to
this, JDK 1.3 environments allow a dynamic proxy generation during the
runtime of the communicating components.

9.5 Sync. vs. Async. Communication

As described in Section 9.3, two different server proxies have to be created by
a client agent, depending on whether the client agent wants to communicate
with the corresponding server agent in a synchronous or asynchronous way.

Synchronous communication means that, after invoking a method of a server
agent via its proxy, the client agent is blocked until the invoked method re-
turns. In contrast to this, an asynchronously invoked method does not block
the invoking client.

The decision between synchronous and asynchronous communication is made
when the client agent creates a server proxy by invokingnthe n-
stance(...) method of the clag¥e. i kv. gr asshopper . communi -
cation. ProxyCGenerator. The default communication mode is
synchronous communication. If a proxy has to support asynchronous commu-
nication, this has to be specified by means of an additibgald] parameter.

» Creation of a proxy for synchronous communication. This is the default
mode, i.e., no specification of the communication mode is required:

| Server Agent serverProxy =

(I Server Agent) ProxyGenerator.new nstance(
| Server Agent . cl ass,
serverldentifier);

» Creation of a proxy for synchronous communication with (optional) speci-
fication of the communication mode:

| Server Agent serverProxy =

(I Server Agent) ProxyGenerat or.new nstance(
| Server Agent . cl ass,
serverldentifier,
Pr oxyGener at or . SYNC) ;

90

CHAPTER 9: THE COMMUNICATION SERVICE

» Creation of a proxy for asynchronous communication. The communication
mode must be specified:
| Server Agent serverProxy =
(I Server Agent) ProxyGenerator.new nstance(
| Ser ver Agent . cl ass,

serverldentifier,
Pr oxyGener at or . ASYNC) ;

More information about the usage of thew nst ance(...) method is
provided in Section 9.3.

9.5.1 Asynchronous Provision of Results

Asynchronously invoked methods do not block the invoking client. That
means, the client may continue its task after invoking the method, while the
corresponding server performs the invoked method in parallel. This does not
cause any problems for the client if the invoked server method neither returns
a result nor throws an exception. However, if a result or an exception is to be
transmitted by the server, the client must have the possibility to receive it.

For this purpose, a proxy that supports asynchronous communication infjole+eRe-
ments the interfacele. i kv. gr asshopper. comuni cati on. | Fu- sult

t ur eResul t which provides a method nameet Fut ur eResul t ().

This method, invoked by the client, returns an instance of the class
de. i kv. grasshopper. conmuni cati on. FutureResult which
represents an intermediate storage for asynchronously arriving results. That
means, when an asynchronously invoked method returns a result in terms of a
return value or an exception, this result is transmitted to and maintained by the
Fut ur eResul t object of the server proxy. The client may perform its own
task in parallel without being influenced by the interactions between the server
and its proxy.

When needed, the client can accesshineur eResul t object via the fol-
lowing methods:

* get Resul t (): This method returns the result that the server agent has
sent to the proxy. If no result is available, the method waits for a result for
a certain period of time which can be set via dle¢ Ti meout (.. .)
method. If the server agent does not deliver a result to the proxy within the
specified timeout period, a@e. i kv. grasshopper.conmuni ca-
tion. AsyncTi neout Excepti on is thrown by the method, and the
client can continue its task.

91

Return
typesde-
rived from
Object

Simplere-
turn types

Exception
handling

Exception
handling

PROGRAMMER'’S GUIDE

92

The default return type of the getResult() method is

j ava. | ang. Qbj ect . If the corresponding server method provides a
return type that is derived from j ava. | ang. Qbj ect, the client can
retrieve the server’'s return value simply by converting
j ava. | ang. Obj ect to the concrete return type of the server method,
such ag ava. | ang. Stri ng.

If a server method returns a primitive data type that is not derived from
j ava. | ang. Qbj ect, such as nt, this return type cannot be retrieved
directly from theget Resul t () method via converting. That means, the
return typei nt of a server method can only be retrieved aseger,
sincel nt eger is derived fromj ava. | ang. Qbj ect . An additional

cast is required in order to get the primitive data type, e.g., by invoking a
method likei nt Val ue() . Another possibility for retrieving primitive
data type values is to use one of the methyels<Type>Resul t ().
These methods are provided in order to simplify the retrieval of non-
(bj ect values.

If the asynchronously invoked server method throws an exception, this
exception is forwarded to tlgeet Resul t () method. Thus, thget Re-

sul t () method has to catch all exceptions that may be thrown by the
corresponding server method, as well as Theowabl e exception in
order to handle failures that may be associated with communication or
platform related problems.

get <Type>Resul t (): Several specializedet Resul t () methods

are defined that provide primitive data types as return types. For instance,
return values of the typioubl e can be retrieved by invoking the method
get Doubl eResul t (). Those specialized methods are defined for the
following return types: <Type> ool ean, byte, char, doubl e,
float,int,long, short. If no result is available, the method waits
for a result for a certain period of time which can be set viaé¢hdi m

eout (...) method. If the server agent does not deliver a result to the
proxy within the specified timeout period, @&e. i kv. gr asshop-
per.comruni cati on. AsyncTi meout Excepti on is thrown by

the method, and the client can continue its task.

If the asynchronously invoked server method throws an exception, this
exception is forwarded to thget Result() method. Thus, the

get <Type>Resul t () method has to catch all exceptions that may be
thrown by the corresponding server method, as well as the Throwable
exception in order to handle failures that may be associated with commu-
nication or system related problems.

get Timeout (): Ifaget<...>Resul t() method is invoked before

CHAPTER 9: THE COMMUNICATION SERVICE

aresult isavailable, the method blocks for a certain period of time, waiting
for the result. The get Ti meout () method returns the blocking period
that is specified for the get <. .. >Resul t () methods. The blocking
period is given in milliseconds, and the default value is one minute. If the
get<...>Resul t () method does not return a result during the speci-
fied timeout period, a de.ikv.grasshopper.comruni ca-
tion. AsyncTi neout Excepti on is thrown by the method, and the
client can continue its task.

* set Ti meout (.. .): This method allows the client to specify the block-
ing period for the get<...>Result() methods. Ijet <. .. >Resul t ()
method is invoked before a result is available, the method blocks for the
specified period of time, waiting for the result. The blocking period is
given in milliseconds, and the default blocking period is one minute. A
value of ’'0" defines an infinite blocking period. If the
get <...>Resul t () method does not return a result during the speci-
fied timeout period, a de.ikv.grasshopper.comruni ca-
tion. AsyncTi neout Excepti on is thrown by the method, and the
client can continue its task.

i sAvai | abl e() : This method informs the client whether an asynchro-
nously invoked method has already returned a result or not. In contrast to
theget <. .. >Resul t () methods, this method is non-blocking. If no
result is available, the method returns at once.

i sUser Exception(): In case the method invocation ends with an
exception (thrown by thget <. . . >Resul t () method), the sUser -
Excepti on() method indicates whether the exception has been thrown
by the server agent { ue) or due to other errors that may be associated
with communication or system failurefsa] se).

addResul tLi stener(...): By adding a result listener to the
Fut ur eResul t object, a client is automatically informed about incom-
ing results from a server. If a result arrives, the methesul t HasAr -
rived(...) of the associated listener is invoked. Inside this method,
the client can react on the result. For more information, please refer to the
paragraphs on page 96 which are titedotification.

renmoveResul t Li stener (...): This method removes an attached
result listener from thEut ur eResul t object.

Theonly possibility for a client to retrieve the result of an asynchronously in-
voked method is to invokeget <. . . >Resul t () method of thd-ut ur - A
eResul t object that is associated with the server proxy. An asynchron
method call like

93

Blocking

Exception
handlingis
required
two times

PROGRAMMER'’S GUIDE

wi
ca
to

result = asyncServerProxy. server Met hod();

Il not initializether esul t variable! Thisisthe reason why this method is
led without allocating a return variable in the examples below. In contrast
this, the result of a synchronous method invocation can of course be re-

trieved in thisway.

By using the Fut ur eResul t methods, a client can realize three different
mechanisms for accessing an asynchronously arriving result:

1

94

Blocking

After the client has asynchronously invoked a server method, it continues
itstask, while the server performs the invoked method in parallel. At acer-
tain point of execution, the client may require the result of the invoked
method in order to continue. In this case, the client can set the Fut ur e-

Resul t timeout to infinite (value = 0), and call one of the
get<...>Resul t () methods.

// I nvoke server nethod via asynchronous proxy.
try {

asyncSer ver Proxy. server Met hod() ;
catch ... // server & other exception
// Get FutureResult object
FutureResult futureResult =

((1'FutureResult) asyncServer Proxy).\\

get Fut ureResul t () ;

// dient perforns its task.

// dient needs the result.
// Set infinite tineout
futureResul t.set Ti meout (0);

try {
int result = futureResult.getIntResult();
} catch ... // server & other exceptions

The example code above contains two try/catch blocks. The first block
may be surprising to you, since an asynchronous method call does neither
directly return aresult nor throw an exception. The reason for the need of
this try/catch block is that Grasshopper generates proxies via the Java
reflection mechanism. This mechanism uses the server interface as input
for the proxy generation. If exceptions are specified inside this interface,
these exceptions are automatically adopted by the proxy.

After each asynchronous method call, a new Fut ur eResul t object is
created by the proxy. This object can be retrieved by the client by invoking
theget Fut ur eResul t () method.

CHAPTER 9: THE COMMUNICATION SERVICE

Note: It is required for the client to invoke the get Fut ur eResul t ()

method directly after performing an asynchronous method call. The reason A
is that the proxy only maintains asingle Fut ur eResul t instance. Thus,

if the client performs several asynchronous calls on the same proxy with-

out requesting the Fut ur eResul t object after each call, the proxy only
maintains the Fut ur eResul t object of the latest method call, and all
previously created Fut ur eResul t objects are lost.

In the example code above, the client sets an infinite timeout for the
retrieved Fut ur eResul t object. In this way, the subsequently invoked
getl nt Resul t () method will block until the server method has
returned (either with areturn value or an exception).

Usually, the client does not know if the server is still working on the

invoked method, or if something unexpected has happened, such as a sys- A
tem crash on the server side. Thus, it is recommended for the client not to

wait to the end of time, but to set afinite timeout that may be a bit longer

than the expected duration of the server’s method performance. If the tim-
eout period is over and the server method has still not returned, a
de. i kv. grasshopper. conmuni cati on. AsyncTi neout Ex-

cepti on is thrown by thd-ut ur eResul t object.

As shown in the example code above, the second try/catch block is placed
around theget | nt Resul t () method. The purpose of this method is to
transmit the server result to the client, either in terms of a return value or
an exception. Thus, this method has to be handled in the same way as the
real server method (i.eser ver Met hod()) is handled in case of a syn-
chronous invocation.

. Palling Polling
If the client is able to perform some tasks while waiting for the result of an
asynchronously invoked server method, the client can periodically check
whether a result has arrived or not. For this purposd;uher eResul t

object provides the non-blocking methoslAvai | abl e() that returns a
boolean value. If this method returhsue, the client can retrieve the
result via theget | nt Resul t () method (which will not block in this

case, independent of the defined timeout period, since the client has
assured that the result has already arrived).

// I nvoke server nethod via asynchronous proxy. \
try {

asyncSer ver Proxy. server Met hod() ; ?
} catch ... // server & other exceptions
// Get FutureResult object
FutureResult futureResult =

((1'FutureResult) asyncServerProxy).\\

95

Notification

PROGRAMMER'’S GUIDE

3.

96

get Fut ureResul t () ;
// Start polling
whil e(!futureResult.isAvailable()) {
// dient perforns its task.

// Now the result is avail abl e.

try {
int result = futureResult.getIntResult();

} catch ... // server & other exceptions

The first eight lines of this example code have already been explained
above.

Concerning the example, the return value of the method i sAvai | -
abl e() isused for evaluating the condition of awhi | e loop. The loop
ends if the server method has returned, i.e., if the method i sAvai | -
abl e() returnsthe valuet r ue. After this, the client retrieves the result
viaget I nt Resul t ().

Notification

Beside the possihilities to perform a blocking call or to periodically check
whether a result is available, a client can order to be notified when the
called server method returns. Thisis achieved by adding aresult listener to
the Fut ur eResul t object:

// Instantiate |istener
Li stener listener = new Listener();
// I nvoke server nethod via asynchronous proxy.
try {
asyncSer ver Proxy. server Met hod() ;
} catch ... // server & other exceptions
// Get FutureResult object
futureResult =
((1'FutureResult) asyncServer Proxy).\\
get Fut ureResul t () ;
// Add result |istener
futureResul t.addResul tLi stener(listener);
i ndex++;

The corresponding Listener class has to implement the
de. i kv. grasshopper. conmuni cati on. Resul t Li st ener
interface. This interface defines the method result HasAr -
rived(...) whichiscalled by the proxy when the asynchronous server
method has returned.

cl ass Listener inplenents ResultlListener {
public void resultHasArrived(Resul t Event e){

CHAPTER 9: THE COMMUNICATION SERVICE

// Get FutureResult object
FutureResult fResult =
(FutureResult) e.getSource();

try {
int result = fResult.getIntResult();
} catch ... // server & other exceptions

}
}

Note that a client may initiate a listener-based call without waiting for the
result of a previously performed call. In this case, a client must be able to
associate an incoming result with the corresponding method call. Concern-
ing the example above where the existence of only oneLi st ener object
is assumed, this can be achieved by creating a new Fut ur eResul t

object for each method cal. Inside the method resul t HasAr -

rived(...), the FutureResul t object that is associated with the
result event can be compared with the Fut ur eResul t objects that are
associated with the single method calls.

In some cases, a client may want to migrate to another location before the

result of a previoudly initiated asynchronous call has arrived. In this case, &
the client agent hasto add itself aslistener to the Fut ur eResul t object.

In order to do this, the client agent has to implement the Resul t Li s-

t ener interface. If the result listener is not realized by the client agent
classitself, incoming results will be lost if the client migrates. Please refer

to Section 9.14 for more information about migrating clients and servers.

9.6 Asynchronous Communication Scenario

The example scenario for asynchronous communication consists of four class-
es/interfaces, covered by the package exanpl es. asyncCom

* AsyncServer Agent (see Example 10 in Section 9.6.1): An agent that
provides one method to the communication service. For each single
method call, the user can decide, whether the result is to be a regular return
value or an exception. This is to show how the exception handling of asyn-
chronously invoked methods can be achieved.

* | AsyncServer Agent (see Example 11 in Section 9.6.1): The server
interface that contains the method which has to be accessible for the client
agent. This interface is the basis for the generation of server proxies.

 AsyncServer Excepti on (see Example 12 in Section 9.6.1): This
exception may be thrown by the server agent’s accessible method.

97

PROGRAMMER'’S GUIDE

 AsyncC i ent Agent (see Example 13 in Section 9.6.2): The client
agent that invokes the accessible method of the server. The user can decide
between four invocation mechanisnsgnchronous, asynchronous block-
ing, asynchronous polling, or asynchronous notification.

9.6.1 Example: AsyncServer Agent

The AsyncServerAgent implements the interface 1AsyncServerAgent. This
interface contains the metho@quest Confi rmati on() thatis accessi-

ble via the communication service. When this method is invoked, a dialog ap-
pears, asking the user whether the method has to terminate regularly, or
whether an exception is to be thrown. The purpose is to show how a client
agent retrieves asynchronously arriving return values and how it handles ex-
ceptions.

In order to enable the user to associate a specific method call at the server side
with the corresponding result arrival at the client side, the server agent incre-
ments the result value each time thequest Confi r mat i on() method

is invoked.

The source code of the corresponding client agent is described in Section
9.6.2.

Example 10: AsyncServerAgent

package exanpl es. asyncCom

i nport de.ikv.grasshopper. agent. *;

i mport de.ikv.grasshopper.comuni cati on. *;
i nport javax.sw ng. *;

i nport java.awt.?*;

// This class realizes the server agent of the async.
// conmmuni cation scenari o.
public class AsyncServer Agent extends Mbil eAgent
I npl ements | AsyncSer ver Agent
{

int result;

// No creation argunents are required.

public void init(Cbject[] creationArgs) {
result = 1;

}
public String getName() {

98

CHAPTER 9: THE COMMUNICATION SERVICE

return "AsyncServer Agent";

}

// This nethod requests user input via a graphical
// conponent.
// The user has to decide whet her the server nethod
// (i nvoked by the Asyncd ient Agent) shall return
// regularly or throw an exception.
public int requestConfirmation()

t hrows AsyncServer Exception {

int yesOrNo = O;

resul t ++;
log("Cient request arrived. Result will be =" +
result);
yesOrNo = JOpti onPane. showConfi rnDi al og(
nul |,
"Thr ow exception to client?"
"AsyncServer Agent",

JOpt i onPane. YES_NO_OPTI ON) ;

if (yesOrNo == JOptionPane. YES OPTI ON) {
log("No result. Throw ng exception instead!");
t hrow new AsyncServer Exception();

}
el se
return result;
}
public void live() {
| og("ready.");
}

}

The server interface just contains the method r equest Confirmati on().

Note: In Section 9.5.1 it has been mentioned that, concerning asynchronous
calls, a client has to perform an exception handling twice: at first when the
server method is called, and the second time when the result is retrieved via
oneof theget <. .. >Resul t () methods. Thereason for thefirst exception
handling isthat the server proxy isdynamically generated out of the server in-
terface by using the Javareflection mechanism. Since all server exceptionsare
defined in the server interface (as shown in Example 11), the reflection mech-
anism creates a proxy that expects an exception handling. However, actually
neither a server exception nor areturn value can appear directly when aserver
method is invoked in an asynchronous way. Instead, both results arrive at the

99

PROGRAMMER'’S GUIDE

client side only when the client invokesaget <. . . >Resul t () method.

Note: Asexplained in Section 9.2, a special proxy class hasto be created with
the Grasshopper stub generator if aJavaruntime environment previousto JDK
1.3 isused. If IDK 1.3 isused, this step is not required, since in this case the
proxy isdynamically created by using the Java reflection mechanism.

Example 11: AsyncServerAgent

package exanpl es. asyncCom

public interface | AsyncServer Agent

{

public int requestConfirmation()
t hrows AsyncServer Excepti on;
}

Example 12: AsyncServerException

package exanpl es. asyncCom

public class AsyncServer Excepti on extends Exception

{
publ i c AsyncServer Exception() {}

}

A description about how to run the example is given in Section 9.6.3.

9.6.2 Example: AsyncClientAgent

The AsyncClientAgent maintains the following instance variables:

* regi onProxy: A proxy of the local agency, instantiated from the class
| Regi on. In contrast to the agency interfaté&gent Syst em that
enables a client to look for agents inside the local agency, the interface
| Regi on provides access to the agency domain service and thus enables
a client to look for agents (and agencies) inside a whole region/domain.
Note that this proxy has to be transient in order to enable the agent to
migrate.

 syncServer Proxy: A variable maintaining a server proxy (i.e., an
instance ofl AsyncSer ver Pr oxy) that is able to handle synchronous
communication (referred to agnchronous proxy in the following para-
graphs). This variable is created by setting the communication mode
parameter toPr oxyGener at or. SYNC. Since this variable is not

100

CHAPTER 9: THE COMMUNICATION SERVICE

declared transient, it represents a part of the agent’s data state and is main-
tained by the agent when the agent migrates.

» asyncServer Proxy: A variable maintaining a server proxy (i.e., an
instance ol AsyncSer ver Pr oxy) that is able to handle asynchronous
communication (referred to asynchronous proxy in the following para-
graphs). This variable is created by setting the communication mode
parameter toPr oxyGener at or. ASYNC. Since this variable is not
declared transient, it represents a part of the agent’s data state and is main-
tained by the agent when the agent migrates.

« futureResult: A variable for handling asynchronously arriving server
results, i.e., return values or exceptions. Since this variable is not declared
transient, it represents a part of the agent’s data state and is maintained by
the agent when the agent migrates.

The following paragraphs describe the functionality of each client method.
init(Ooject[] creationArgs)

Initsinit(...) method, the agent requests theegi on interface of Get agency
the local agency in order to look for the AsyncServerAgent. The interfAc&Y

is retrieved via the methodet Regi on() which is provided by the

agent’s superclagggent .

In order to find the AsyncServerAgent, the client sets a search filterLbgk for
specifying the server agent's name, and invokes ittss Agent s(...) Sveragent
method on the Regi on interface. Invoking this method orders the local

agency to contact an agency domain service in order to look for all agents
matching the specified filter. All agencies that are registered at the con-
tacted agency domain service are included in the search. Detailed informa-

tion about functionality associated with the interfa&egi on is given in

Section 9.12.1.

The reason for the client to look for the server agent is that the client needs
the server’s identifier in order to create corresponding server proxies. The
identifier is part of theAgent | nf o object that is returned by the method

i st Agents(...). (A detailed list of all components 8fent | nf o

is given in Chapter 5.) Note that the methaodt Agent s(. . .) returns

a set ofAgent | nf os, representing the set of all agents that match the
specified filter criteria. The client agent simply selects the first agent from
the list.

The client agent creates two proxies of the server: one for synchronou$amg gen-
one for asynchronous communication. For this purpose, the client sge&io"
fies the server interface, the server identifier, afthyt e] variable that

defines the communication mode (SYNC or ASYNC). No provision of the

101

PROGRAMMER'’S GUIDE

server location is needed, since an agency domain serviceis available. The
proxy is able to locate the server agent transparently for the client by auto-
matically contacting the agency domain service.

request Communi cat i onMode()

This method, called from inside the ageht'sre() method, activates the
client's GUI that enables the user to select between the following commu-
nication modes:

» synchronous communication
(methodsynchr onousl nvocati on())

» asynchronous blocking communication
(methodbl ocki ngResul t Handl i ng())

» asynchronous polling communication
(methodpol I i ngResul t Handl i ng())

» asynchronous notification-based communication
(methodnoti fi cati onResul t Handl i ng())

Concerning the invocation of the server method, the only difference
between synchronous and asynchronous calls is that the synchronous call
directly returns a result, while the result of asynchronous calls has to be
requested by invoking@et <. . . >Reaul t () method.

There are no differences between the blocking, polling, and notification
based server method calls. Concerning asynchronous calls, differences
only exist in handling the result after invoking the method.

In order to keep the code as short as possible, the required exception han-
dling is performed only once inside theve() method instead of inside
each single method.

synchr onousl nvocati on()

The synchronous method invocation is already known from the previous
communication scenario, described in Section 9.4. The client uses the syn-
chronous proxy for invoking the server methoelquest Conf i r ma-
tion(). After the invocation, the client is blocked until the server
method returns.

bl ocki ngResul t Handl i ng()

In this method, the client uses the asynchronous proxy for invoking the
server method. After requesting thet ur eResul t object, the client is

free to perform its own task, represented byftbe loop. After perform-

ing the loop, it is assumed that the client needs the result of the server
method. Thus, the client sets the timeout to an appropriate value (the value

102

CHAPTER 9: THE COMMUNICATION SERVICE

'0’ represents an infinite timeout) and requests the server result by calling
get I nt Resul t (). If the result does not arrive within the specified tim-
eout period, ade. i kv. grasshopper. comuni cati on. Async-

Ti meout Excepti on will be thrown. This mechanism is meant to
prevent the client from waiting till the end of time if for instance the server
or its hosting system has crashed.

pol I'i ngResul t Handl i ng()

After invoking the server method and requesting Fia¢ ur eResul t
object, the client continues its own task, represented Wlyid e loop.
Inside this loop, the client periodically checks whether the server method
has returned. If this is true, the client requests the result by invoking the
proxy’sget | nt Resul t () method.

notificationResul t Handl i ng()

After invoking the server method and requesting Fiaé¢ ur eResul t
object, the client adds a result listener to the proxy. Note that in the given
example the client agent itself represents the result listener by implement-
ing the Resul t Li st ener interface. (Another possibility would have
been to define a separate listener class.)

After adding the listener, the client does not have to care about polling for
the result. Instead, the client's methodsul t HasArrived(...) is
automatically invoked by the proxy when a result has arrived.

live()
Thel i ve() method of the client agent has two purposes:

» to delegate the invocation of the server method to that client method
which corresponds to the communication mode selected by the user (via
the GUI)

» to perform the exception handling that is required by the asynchronous
invocation.

resul t HasArri ved(Resul t Event e)

If the client has added itself as listener tof¢ ur eResul t object (see
method not i fi cati onResul t Handl i ng() above), the method
resul t HasArrived(...) is automatically called by the proxy as
soon as the previously invoked server method has returned. In this case,
the result handling is performed in the usual way, i.e., by invoking the
get I nt Resul t () method. Note that thBut ur eResul t object on
which theget | nt Resul t () method is invoked is associated with the
listener event (see statemehResul t = (FutureResult)

e. get Source() ;).

103

N, @

T

PROGRAMMER'’S GUIDE

Example 13: AsyncClientAgent

package exanpl es. asyncCom

i mport de.ikv.grasshopper. agent. *;

i nport de.ikv.grasshopper. agency. *;

i nport de.ikv.grasshopper.type.*;

i mport de.ikv.grasshopper.comuni cation. *;
i nport de.ikv.grasshopper.util.*;

i nport javax.sw ng. *;

i mport java.awt.*;

// This class realizes the client agent of the async.
// conmuni cati on scenari o.
public class AsyncC i ent Agent extends Mbil eAgent
I npl ements Resul tListener
{

// Proxy of |ocal agency = transient

// (i.e., not part of the data state),

// since it is not serializable.

// A non-transient agency proxy woul d not
// allow the agent to mgrate.

transi ent | Regi on regi onProxy;

// Data state of the agent, since not transient
| AsyncSer ver Agent syncServer Proxy;

| AsyncSer ver Agent asyncSer ver Proxy,

Fut ureResult futureResult;

// No creation argunents are required.
public void init(CQbject[] creationArgs) {
Agent I nfo[] serverlnfos;

// Get proxy of |ocal agency
regi onProxy = get Regi on();
// Look for the server agent in the
// agency donmai n service
SearchFilter filter = new
SearchFilter(
Sear chFi | t er. NAME+" =AsyncSer ver Agent ") ;
serverinfos =
regi onProxy. listAgents(null, filter);
// Create proxies of the server agent
// (One for sync. and one for async. conmunicati on)
if (serverinfos !'=null) {
syncServer Proxy = (I AsyncServer Agent)
Pr oxyCGener at or . newl nst ance(

104

CHAPTER 9: THE COMMUNICATION SERVICE

| AsyncSer ver Agent . cl ass,
serverlinfos[0].getldentifier().toString(),
Pr oxyGener at or . SYNC) ;

asyncServer Proxy = (1 AsyncServer Agent)

Pr oxyGener at or. newl nst ance(

| AsyncSer ver Agent . cl ass,
serverlinfos[0].getldentifier().toString(),
Pr oxyGener at or . ASYNC) ;

}
}

public String getNane() {
return "Asyncd i ent Agent";

}

public void action() {
live();

}

// This nethod requests user input via a graphical
// conponent.

// The user has to sel ect one of the conmunication
// nodes:

// - synchronous

// - asynchronous bl ocki ng

// - asynchronous pol i ng

// - asynchronous notification-based

public String request Communi cati onMode() {
String conmvbde = null;
String options[] = {
"sync.",
"async. bl ocki ng",
"async. polling",
"async. notification"};
comvbde = (String)
JOpt i onPane. showl nput Di al og(
nul |, "Comruni cati on node: ",
"Asyncd i ent Agent "
JOpt i onPane. QUESTI ON_MESSAGE, nul |, options,
options[0]);
return conode;

}

// This nmethod perforns a synchronous invocation of

// the met hod ’request Confirmation’,

// provided by the AsyncServer Agent.

public i nt synchronousl nvocati on() throws Throwabl e {
int result = -1;

105

PROGRAMMER'’S GUIDE

106

l og("Starting synchronous call");

// I nvoke server nethod synchronously

// by using the sync. server proxy

result = syncServer Proxy. request Confirmation();
return result;

}

// This nmethod perforns an asynchronous bl ocki ng
// invocation of the nethod
// ’request Confirmation’, provided by the
// AsyncServer Agent .
public int bl ockingResultHandling()
throws Throwabl e {
int result = -1,

log("Starting blocking call");
// I nvoke server nethod asynchronously
// by using the async. server proxy
asyncSer ver Proxy. request Confirmation();
// Get futureResult object fromthe proxy
futureResult = ((IFutureResult)
asyncServer Proxy) . get FutureResul t ();
// Perform some task until the result is required
for (int i =0; i < 20; i++)
l og(" 1’ m doi ng sonet hing serious!");
l og("Now I need the server’s result.");
// Set timeout of 10 seconds
futureResul t. set Ti meout (10000);
// getintResult() will block until the server
// nmethod returns or until the timeout is over.
log("Waiting for the result for 10 seconds");
result = futureResult.getlntResult();
log("Waiting tinme is over");
return result;

}

// This nethod perforns an asynchronous polling

// invocation of the nethod

// ’request Confirmation’, provided by the

// AsyncServerAgent .

public int pollingResultHandling() throws Throwabl e {
int result = -1;

log("Starting polling call™");

// | nvoke server nethod asynchronously
// by using the async. server proxy
asyncSer ver Proxy. request Confirmation();

CHAPTER 9: THE COMMUNICATION SERVICE

// Get futureResult object fromthe proxy
futureResult = ((IFutureResult)
asyncServer Proxy) . get FutureResul t () ;
// Check periodically if the server nethod
// has returned
while (!futureResult.isAvailable())
l og("1’ mdoi ng sonet hing serious!\n");
// Now a result is available
| og("Result has arrived");
result = futureResult.getlntResult();
return result;

}

// Thi s met hod perforns an asynchronous notification-
// based invocation of the nmethod
// ’request Confirmation’, provided by the
// AsyncServerAgent .
public void notificationResultHandling()
throws Throwabl e {

log("Starting notifying call");

// | nvoke server nethod asynchronously

// by using the async. server proxy

asyncSer ver Proxy. request Confirmation();

// Get futureResult object fromthe proxy

futureResult = ((IFutureResult)
asyncServer Proxy) . get FutureResul t () ;

// The client agent adds itself as result

// listener to the futureResult object

futureResul t.addResul tLi stener(this);

// Note: The result will be retrieved by the

// nethod resul t HasArri ved

// of the client’s result |istener.

l og("Listening for notification");

}

// The live nmet hod requests t he desi red conmuni cati on
// node fromthe user and perforns a renote nethod
// call on the AsyncServerAgent, using the sel ected
// node.
public void live() {

String com\Vbde;

int serverResult;

comvbde = request Comruni cati onMbde() ;
while (comvbde !'= null) {
serverResult = -1;

try {

107

PROGRAMMER'’S GUIDE

108

i f (comMvbde. equal s("sync."))
// Synchronous net hod i ncocation
serverResult = synchronousl nvocation();

el se if (comvbde. equal s("async. bl ocking"))
// Asynchronous, bl ocking nmethod invocation
serverResult = bl ocki ngResul t Handl i ng() ;

el se if (comvbde. equal s("async. polling"))
// Asynchronous, polling method invocation
serverResult = pollingResultHandling();

el se if (conmvbde. equal s(

"async. notification"))

// Notif. based met hod invocation
notificationResul t Handl i ng();

| og("Server result =" + serverResult);
}
catch (AsyncServer Exception e) {

| og("User exception caught: ", e);
}

catch (AsyncTi neout Exception e) {
| og("Ti meout! Server seens to be busy.");

}
catch (Throwable t) {

| og(" Commmuni cati on exception caught: ", t);
}

comvbde = request Conmuni cati onMode() ;

}
}

// This method is automatically call ed when a server
// met hod, previously invoked in anotification-based
// way, has returned. In this way, the
// client agent is automatically notified about the
// arrival of the nethod result.
public void resultHasArrived(Resul t Event e){
FutureResult fResult;
int serverResult = -1;
| og("Listener notified.");
fResult = (FutureResult) e.getSource();

try {
serverResult = fResult.getlntResult();

}
catch (Throwable t) {
| og(" Exception caught: ", t);
}
if (serverResult !'= -1)
log("Notified server result =" + serverResult);

CHAPTER 9: THE COMMUNICATION SERVICE

9.6.3 Runningthe Scenario

Requirements:

* A running agency domain service. Note that this service has to be started
before the agencies, and the service’'s address has to be specified when
starting the agencies in order to register them. Please refer to the User’s
Guide for information about how to start agencies and agency domain ser-
vices.

« Two running agencies
Snce the agents in this example create an own GUI that may block the
agency GUI, it is recommended that you do not activate the agency GUI.
Instead, start the agencies just with their textual interface (command
option -tui). Please refer to the paragraphs titled ,Running the Examples*
at the beginning of Chapter 2 in order to get a detailed explanation about
the possibly occurring GUI problems.

 If you are using a JDK 1.2 environment, you must have generated a proxy
class (named IAsyncServerAgentP) by invoking the Grasshopper stub
generator with the interface class IAsyncServerAgent as input parameter.
The file IAsyncServerAgentP.class should be stored either in a directory
belonging to the Java classpath or in the code base directory of the Async-
ClientAgent. In a JDK 1.3 environment, this class is not needed. Even if it
is available, it will not be used. Instead, the proxy is dynamically gener-
ated by the AsyncClientAgent at runtime.

109

PROGRAMMER'’S GUIDE

Running the Example:

Select kind
AsyncServerAgent of result

—I=
I e e s
:'I'h]
Create

Agency 2

Agency Ul

LU)

AsyncServerAgent [
Return result @ @
asynchronously -
U
Select
Invoke a communication
server mode
method &
get ¥
) Future
5 Result | e e e
% -
(D & =
Create Create o
AsyncClientAgent | Agency 1 proxy perform Agent [e
task in

, llel
User input parate

Figure 11: Asynchronous Communication Scenario

Create the AsyncServerAgent inside one of the running agencies viathe agen-
cy’s Ul (1). (This agent has to be created first, sinceAdyencCl i ent -
Agent tries to contact thé&syncSer ver Agent via the communication
service.)

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a exanpl es. asyncCom AsyncSer ver Agent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

Create the AsyncClientAgent inside the other agency via the agency’s Ul (2).
(You should not create both agents inside the same agency, since both agents
provide modal dialogs that may block each other.)

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

110

CHAPTER 9: THE COMMUNICATION SERVICE

cr a exanpl es. asyncCom AsyncC i ent Agent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

After creating the AsyncClientAgent, this agent creates a proxy of the Async-
ServerAgent (3) and asks you to select a communication mode that is to be
used for contacting the server (4). After pressing the OK button, the client in-
vokes the server method (5), and the call is forwarded by the proxy to the
AsyncSer ver Agent . The server in turn starts its GUI, requesting the user
to specify whether the method is to return regularly or whether an exception
is to be thrown. In parallel, the client agent acts in one of the following ways,
depending on the previously selected communication mode:

» If the server method has been involggdchronously, the client agent is

blocked until the server method has returned (9a), i.e., until the user has
pressed one of the buttons of the server GUI (8). After this, the client’s
GUI appears again, and a new communication mode can be selected (4).
Note that in this case, the remaining steps (6, 9b, and 10) of the above fig-
ure are not performed.

If the server method has been involkasgnchronously, the client agent
creates &ut ur eResul t object via the server proxy (6) and is then free

to perform its own tasks in parallel to the server agent (7). After you have
pressed one of the buttons of the server agent’s GUI (8), the result of the
server method (i.e., a return value or an exception, depending on your pre-
viously made choice) is transferred to the server proxy (9a) which in turn
forwards the result to thEut ur eResul t object (9b). Now the client
agent is able to retrieve the result via one ofghé<. .. >Resul t ()
methods, to be invoked on tRet ur eResul t object (10).

Note that the steps (7) and (10) of the above figure depend on the selected
kind of asynchronous behavior:

* If the server method has been invokeghchronously and blocking, the
client prints some outputs in order to show that the server method is per-
formed independently of the client’s thread (7). After this, the client
waits for the server’s result for 10 seconds (10). If the server method
does not return within this time frame, the client stops waiting, caused
by an exception thrown by the proxy.
Please check this behavior by selecting the asynchronous blocking call
at the client side. At the server side, press one of the GUI buttons within
the client’s time frame, and the next time wait for more than 10 seconds
before pressing the button.

111

PROGRAMMER'’S GUIDE

 If the server method has been involkegnchronously and polling, the
client enters a loop that ends when the server method has returned (7).
After this, the client retrieves the result (10).

» If the server method has been invokasynchronously notification-
based, the client's GUI re-appears at once after invoking the server
method. When the server method has returned, the client’s listener
method (i.e., the methoResul t HasArri ved(...)) is invoked.
(For the sake of simplicity, the notification-based behavior is not
reflected in the above figure. Please have a look at the source code
instead.)

9.6.4 Summary

» A Grasshopper proxy object is able to handle either synchronous or asyn-
chronous communication. The communication mode has to be selected
when the proxy is created, and it remains the same for the entire life time
of the proxy. If a client wants to use synchronous as well as asynchronous
communication on a single server, the client has to create two proxies.

* A proxy maintains the result of an asynchronous method call inside an
object of the clasfut ur eResul t. A client can get a reference to this
object in order to perform the asynchronous result handling.

* In order to retrieve the result of an asynchronously invoked method, the
client can use one of thget <. . . >Resul t () methods provided by the
FutureResult object which is associated with the method invocation.

e In order to catch exceptions, the get<...>Result() method has to be
included in a try/catch block. The catch blocks must include all exceptions
that may be thrown by the server method as well as the superclass
j ava. | ang. Thr owabl e. The latter one is meant to catch possible
communication exceptions/errors.

« A client can handle asynchronously arriving results in different ways: The
client can block its own execution until the result has arrived, it can peri-
odically poll for the result, or it can order thet ur eResul t object to
be notified when the result has arrived.

9.7 Saticvs. Dynamic Method Invocation

Concerning the communication scenarios that have been explained in the pre-
vious sections, the client agents must have access to the proxy class code of

112

CHAPTER 9: THE COMMUNICATION SERVICE

the corresponding server agent. A proxy provides all methods of the server
agent that are to be accessible via the communication service and that are
therefore included in the server interface.

In addition to this static communication wherethe concrete server methodsare Generic
available for the client agents, Grasshopper supports dynamic communication PrY
where the clients invoke a generic method on a generic proxy class.

Dynamic communication is of particular importance if a client knows the
method signatures of a server agent, but does not have access to the sernver/s
proxy code. |

In order to perform a dynamic method call on a server agent, a client invBlyesmic

the static method nvoke(...) of the classde. i kv. grasshop-

method calls

per. comruni cati on. Dynam cl nvoker. This method requires the
following information about the server method:

The identifier of the server agent (Java type. i kv. grasshop-
per.type.ldentifier)

The name of the server method that is to be invoked (Java type:
java.l ang. String)

The classes of all method parameters in the order of their appearance in the
concrete server method (Java typava. | ang. C ass[])

The object values of all method parameters in the order of their appearance
in the concrete server method (Java tymera. | ang. Obj ect[])

The current location of the server agent, only needed if no agency domain
service is available. If no location is to be specified, this parameter has to
be set tonul | . (Java typede. i kv. grasshopper. comuni ca-

ti on. G asshopper Addr ess)

If the server method defines a return type that is not a standard Java Wgpede-
the client has to specify the class loader that is responsible for retrie(}ﬂ'?ﬁ classes
the class of the return type. (Java tyjpava. | ang. C assLoader)

As described in Section 9.1, user-defined classes have to be serializable if
they are to be used as parameters and/or return types of server methods. In
order to achieve this, the classes have to implement the interface
java.io. Serializable.

If the dynamic method call is to be performed asynchronous$lyt air - Asynchro-
eResul t object has to be provided for maintaining the result of t}j “Sig{;a”
invoked method. Please refer to Section 9.5 for detailed information about
asynchronous communication. (Java typde. i kv. grasshop-

per . conmuni cati on. Fut ureResul t)

113

PROGRAMMER'’S GUIDE

The return type of the i nvoke(...) method isj ava. | ang. Obj ect .
Thus, the client agent has to convert aretrieved return value to the concrete
type of the rea server method.

Consider the following method of a server proxy:

? public int nmethodl(int a, Integer b);

Thefollowing lines of code represent the corresponding dynamic method call
performed at the client side:

Integer result = (Integer)Dynam clnvoker.invoke (
serverld, "nethodl",
new Cl ass[]
{java.l ang. I nteger. TYPE, java.l ang.|nteger.cl ass},
new Qbj ect|[]
{new I nteger(123), new Integer(456)},

null);
Handling Concerning this example, please note that the return type as well as the first
primitive f th ethod are primitive datatypes, not derived fromj a-
types parameter of the server m primitiv ypes, iv j

va. | ang. Qbj ect . Sincethedynamici nvoke(. . .) methodisonly able
to return subtypes of Cbj ect , the client hasto perform acast to an Gbj ect
type. In the example, the return value as well asthe first method parameter are
convertedto| nt eger . Inorder to get the original ssimpletypei nt , theclient
can perform the following additional call:

int sinpleResult = result.intValue();

Beside the return value, also the first parameter of the server method is of the
simpletypei nt . Concerning the dynamic call, this simple type hasto be con-
sidered when specifying the classes/types of the server method parameters. As
shown in the example, the primitive data type is specified as j a-
va. | ang. | nt eger. TYPE, while the Object type is specified as j a-
va. |l ang. | nt eger. cl ass. The parameter values are both handled as
j ava. | ang. | nt eger.

9.8 Dynamic Communication Scenario

The example scenario for dynamic communication consists of four classes/in-
terfaces, covered by the package exanpl es. dynam cCom

« Dynam cServer Agent (see Example 14 in Section 9.8.1): An agent
that provides four methods to the communication service. Each method
has different parameter and return types which require a specific handling
at the client side.

114

CHAPTER 9: THE COMMUNICATION SERVICE

* | Dynam cServer Agent (see Example 15 in Section 9.8.1): The server
interface that contains the methods which have to be accessible for the cli-
ent agent. This interface is the basis for the generation of server proxies.

» Test Dat aPacket (see Example 16 in Section 9.8.1): A class that is
used as parameter as well as return type of one server method. Note that
for handling this class, the client has to specify a class loader when dynam-
ically invoking the server method.

« Dynam cC i ent Agent (see Example 17 in Section 9.8.2): The client
agent that invokes the accessible methods of the server.

90.8.1 Example: DynamicServer Agent

The DynamicServerAgent implements the interface IDynamicServerAgent.

This interface contains four methods that are to be accessible via the commu-
nication service. Each method has different parameter and return types which
require a specific handling at the client side. Concerning the methods them-
selves, there is nothing more to say, since their internals are not very exciting.

Note thatmet hod3(. . .) tries to access tist r i ng array at an invalid in-
dex. Thus, arr r ayQut OF Bound exception is thrown. This programming
error is intended in order to show that the client retrieves this exception.

The source code of the corresponding client agent is described in Section
9.8.2.

Example 14: DynamicServerAgent \

package exanpl es. dynam cCom ?

i mport de.ikv.grasshopper. agent. *;

i nport de.ikv.grasshopper.comuni cation.*;
i nport javax.sw ng. *;

i mport java.awt.*;

// This class realizes the server agent of the dynam c
// conmuni cati on scenari o
public class Dynam cServer Agent extends Mbil eAgent
I npl ements | Dynam cSer ver Agent
{

public String getName() {
return "Dynam cServer Agent";

}

// The follow ng four nmet hods are to be call ed by t he

115

PROGRAMMER'’S GUIDE

// Dynam cd i ent Agent by using
// the dynam c¢ conmuni cati on mechani sm provi ded by
// Grasshopper.

public Integer nmethodl(int a, Integer b) {
| og("nethodl(" + a + ", " + b + ") called.");
l og(" returning 42.");
return new I nteger(42);

}

public int nethod2() {
| og(" nmet hod2() called.");
l og(" returning -42.");
return -42;

}

public void nethod3(String[] s) {
| og(" met hod3(");

for (int i =0; i <s.length; i++)
I og(" "ot os[i]);
/1 The next line will cause an ArrayQut O Bound

/'l exception.
/Il Let’'s see if the client will notice this.
l og(" " + s[s.length] + ") called.");

}

publ i ¢ Test Dat aPacket net hod4(Test Dat aPacket s) {
| og(" et hod4(" + s + ") called.");

return s;
}
public void live() {
| og("ready.");
}
}
\ Example 15: IDynamicServerAgent
? package exanpl es. dynam cCom

public interface |IDynam cServer Agent
{
public Integer nethodl(int a, Integer b);
public int nmethod2();
public void nethod3(String[] s);
publ i c Test Dat aPacket net hod4(Test Dat aPacket s);

116

CHAPTER 9: THE COMMUNICATION SERVICE

}

The DynamicServerAgent usesthe class Test Dat aPacket asparameter as
well asreturn type of met hod4(. . .) . Notethat this class has to implement
theinterfacej ava. i 0. Seri al i zabl e in order to be usable for the com-
munication service. The following listing defines this additional class. Please
do not wonder about its semantic meaning. Its only purpose isto show how to
handle user-defined classes in the context of the communication service.

Example 16: TestDataPacket

package exanpl es. dynam cCom

// This class is just nmeant to show howto use a 'self
// made’ object type as paraneter and return type of
// dynami cal |l y i nvoked net hods.
// (See nethod4(...) of the Dynam cServer Agent.)
public class Test Dat aPacket i npl enents

java.io. Serializable {

publ i c Test Dat aPacket () {

}

public Integer i = new Integer(1l);
public char ¢ = "'c¢’;

public Float f = new Float((float) 5.0);
public Long | = new Long((long) 4.0);
public String s = "I"mthe outer class";

public String toString(){
StringBuffer b =
new StringBuffer("C ass Test Dat aPacket");
return b.toString();

}

cl ass Anl nner d ass{
String s = new String("lI’mthe inner class");
public Anlnnerd ass(){
}
public String toString(){
return new String("d ass AnlnnerC ass\n" + s);

}
}
}

A description about how to run the exampleis given in Section 9.8.3.

117

methodl(...)

PROGRAMMER'’S GUIDE

90.8.2 Example: DynamicClientAgent

At the beginning of its | i ve(...) method, the client agent requests the

| Regi on interface of thelocal agency in order to look for the DynamicServ-
erAgent. The interface is retrieved via the method get Regi on() whichis
provided by the agent’s superclaggent . In contrast to the agency interface

| Agent Syst emthat enables a client to look for agents inside the local agen-
cy, the interfacé Regi on provides access to the agency domain service and
thus enables a client to look for agents (and agencies) in a whole region/do-
main. The client uses theRegi on proxy in order to look for an agent with

the name 'DynamicServerAgent’. If more than one agent is found, the client
agent just takes the first one from the retrieved list. The reason for this lookup
is that the client agent needs the identifier of the server agent in order to per-
form dynamic method calls.

After retrieving the server identifier, the DynamicClientAgent invokes the
methods of the server agent. The following paragraphs explain each method
call in detail.

Dynamic call ofret hod1(...):

The server methodet hod1(...) is dynamically called with the fol-
lowing parameter values:

* serverld:
The identifier of the server agent that is to be contacted.

e _methodl”
The name of the server method that is to be invoked.

* new O ass|]
{java.l ang. | nt eger. TYPE,
java.l ang. I nt eger. cl ass}:
This server method requires parameters of the simplei typeand of
the Object typé nt eger. The simple type has to be considered when
specifying the classes/types of the server method parameters. As shown
in the source code, the primitive data type is specified as
j ava. | ang. | nt eger . TYPE, while the Object type is specified as
j ava. |l ang. I nt eger. cl ass.

* new (bj ect[]
{new | nt eger (para0l), para02)}:
The parameter values that are to be transferred to the server are both
handled ag ava. | ang. | nt eger, since tha nvoke(...) meth-
ods expects subclasseg @fva. | ang. Cbj ect .

e null:

118

CHAPTER 9: THE COMMUNICATION SERVICE

Viathelast parameter of thei nvoke(. ..) method, the server’s loca-

tion can be specified. This parameter is setubl , since the example
assumes a running agency domain service, so that the Dynamiclnvoker
is able to locate the server agent by itself.

e null:
Since a standard Java class is used as return type, no class loader has to
be specified.

The return type ofret hod1(...) isjava.l ang. | nteger. Since
this is a subclass ¢fava. | ang. Qbj ect, the client agent can directly
convert the return value of theavoke(...) method fromCbj ect to

| nt eger in order to retrieve the result.

Dynamic call ofret hod2() : method2(...)

The server methodet hod2(. . .) is dynamically called with the fol-
lowing parameter values:

e serverld:
The identifier of the server agent that is to be contacted.

 _method2“
The name of the server method that is to be invoked.

* new C ass[0], new bject[0]:
The server method itself does not require any parameters, so that the
third and fourth parameter of th@voke(.. .) method are initialized
with an emptyCl ass respectivelyObj ect array.

* null:
Via the fifth parameter of thenvoke(...) method, the server’s
location can be specified. This parameter is setubl , since the
example assumes a running agency domain service, so that the Dynam-
icinvoker is able to locate the server agent by itself.

* null:
Since a standard Java class is used as return type, no class loader has to
be specified.

o futureResult2:
The dynamic invocation afet hod2() is performed asynchronously,
so that aFut ur eResul t object is provided as last parameter. The
handling of the asynchronously arriving result is exactly the same as
described in Section 9.5.

Note that the nvoke(. . .) method is called without directly specifying
a variable for retrieving the result. The reason is, as explained in Section
9.5, that the result of an asynchronously called method cannot be retrieved

119

method3(...)

method3(...)
oneway

PROGRAMMER'’S GUIDE

directly by the method call itself. Instead, the get Resul t () method or
one of the get <Type>Resul t () methods provided by the Fut ur e-
Resul t object have to be invoked. Concerning the example, the client
agent invokes the get | nt Resul t () method, since the expected return
valueisof the simple Javatypei nt .

Dynamic call of net hod3(. . .):

The server method net hod3(. . .) isdynamicaly caled with the fol-
lowing parameter values:

serverl d:
The identifier of the server agent that is to be contacted.

,method3“
The name of the server method that is to be invoked.

cl assArray:

The required parameter of the server method is an arr&yrafng.

Please have a look at the source code in order to see how this parameter
has been constructed.

argunent Array:

This parameter represents the actual parameter of the server method,
i.e., theSt ri ng array. Please have a look at the source code in order to
see how this parameter has been constructed.

nul | :

Via the fifth parameter of thenvoke(...) method, the server’s
location can be specified. This parameter is semubl , since the
example assumes a running agency domain service, so that the Dynam-
icinvoker is able to locate the server agent by itself.

nul | :
Since a standard Java class is used as return type, no class loader has to
be specified.

Dynamic oneway call of method3(...):

Dynamic method invocations can be perforroadway. That means, the cli-

ent ignores possibly arriving return values and exceptions. Thus, the parame-
ter Fut ur eResul t is not required. Besides, there is generally no need for
specifying a class loader, even if the return value is realized in terms of a user-
defined class, as imet hod4(. . .) of the current example.

For enabling oneway calls, tBgnam cl nvoker provides the methadn-
vokeOneway(. . .) . The parameters are the same as known from the usual
i nvoke(...) method.

120

CHAPTER 9: THE COMMUNICATION SERVICE

The server method net hod3(. . .) isdynamically called with the fol-
lowing parameter values:

e serverld:
The identifier of the server agent that is to be contacted.

 _method3“
The name of the server method that is to be invoked.

e classArray:
The required parameter of the server method is an arr&y rafng.
Please have a look at the source code in order to see how this parameter
has been constructed.

e argunent Array:
This parameter represents the actual parameter of the server method,
i.e., theSt ri ng array. Please have a look at the source code in order to
see how this parameter has been constructed.

* null:
Via the fifth parameter of thenvoke(...) method, the server’s
location can be specified. This parameter is setubl , since the
example assumes a running agency domain service, so that the Dynam-
icinvoker is able to locate the server agent by itself.

Dynamic call of method4(...): method4(...)

The server methodet hod4(. . .) is dynamically called with the fol-
lowing parameter values:

* serverld:
The identifier of the server agent that is to be contacted.

» _method4“
The name of the server method that is to be invoked.

* new C ass[]{Test Dat aPacket . cl ass}:
This method requires a user-defined Java type as parameter. However,
the provision of the corresponding class is handled exactly as a standard
Java class.

e new bject[]{tdp}:
Also the provision of the parameter value corresponds to the handling
of standard Java classes.

* null:
Via the fifth parameter of thenvoke(...) method, the server’s
location can be specified. This parameter is setubl , since the
example assumes a running agency domain service, so that the Dynam-

121

N, @

T

PROGRAMMER'’S GUIDE

iclnvoker is able to locate the server agent by itself.

this.getd ass().getC assLoader ():

Since a self-defined Java class (i.e., non-standard Java type) is used as
return type of a dynamically invoked method, a class loader has to be
specified which is responsible for retrieving the class.

Example 17: DynamicClientAgent

package exanpl es. dynam cCom

i nport de.ikv.grasshopper. agent. *;

i nport de.ikv.grasshopper. agency. *;

i mport de.ikv.grasshopper.type.*;

i nport de.ikv.grasshopper.comuni cation. *;
i nport de.ikv.grasshopper.util.*;

i mport javax.sw ng. *;

i nport java.awt.*;

// This class realizes the client agent of the dynam c
// conmuni cation scenario
public class Dynam cd i ent Agent

{

122

ext ends Mbbi | eAgent
Identifier serverld;

public String getName() {
return "Dynam cC i ent Agent";

}

public void action() {
live();

}

// Inside the live() method, the agent sequentially
// calls the four nethods provided
// by the Dynam cServerAgent in a dynanm c way.
public void live() {

| Regi on regi onProxy;

Agent I nfo serverlnfos[];

// Get proxy of |ocal agency
regi onProxy = get Regi on();
// Look for the server agent in the
// agency donai n service
SearchFilter filter = new
SearchFilter(
Sear chFi | t er. NAME+" =Dynam cSer ver Agent ") ;

CHAPTER 9: THE COMMUNICATION SERVICE

serverlinfos = regi onProxy.|istAgents(

null, filter);
serverld = serverlinfos[0].getldentifier();
| og("Server located: " + serverld);
// nethodl:

int para0l = 123;
I nt eger para02 = new | nteger (456);
l og("I nvoki ng net hodl1(123, 456) synchronously.");
try {
// I nvoke net hodl synchronously
Integer resultl =
(I'nteger)Dynam cl nvoker . i nvoke(
serverld, "nethodl",
new Cl ass[]{j ava. |l ang. I nt eger. TYPE,
java.l ang. I nteger. cl ass},
new bj ect[]{new I nteger(parall), para02},

null, null);
| og(" Result of methodl =" + resultl);
}
catch (Throwabl e e) {
| og(" Exception caught: ", e);
}
// nmethod2:

FutureResult futureResult2 = new FutureResult();
| og("I nvoki ng net hod2 asynchronously polling.");
try {
// I nvoke net hod2 asynchronously polling
Dynami cl nvoker . i nvoke(
serverld, "nethod2",
new Cl ass[0], new Object[O0],
null, null, futureResult?2);
}
catch (java.lang.refl ect.
I nvocat i onTar get Exception e) {
| og(" Exception caught: ", e);
}
l og(" 1’ m doi ng sonmet hing serious!");
while (!futureResult2.isAvailable())
Systemout.print(".");
Systemout.println();
try {
// Get asynchronous result.
int result2 = futureResult2.getIntResult();
l og("Result of method2 =" + result?2);

}
catch (Throwable t) {

123

PROGRAMMER'’S GUIDE

| og(" Exception caught: ", t);
}

// net hod3:
l og(" 1 nvoki ng nmethod3(\"I\", \"am", \"the\",

\"client\").");
String paraO3[]

{"r", "anf', "the", "", "client"};

G ass classArray[] = new O ass[1];

bj ect argunent Array[] = new Object[1];
argunent Array[0] = para03;

cl assArray[0] = para03. getd ass();

try {
Dynani cl nvoker . i nvoke(

serverld, "nethod3", classArray,
argunment Array, null, null);
}
catch (java.lang.reflect.
I nvocat i onTar get Exception e) {
| og(" Exception caught: ",
e. get Tar get Exception());

}
cat ch(Throwabl e e){

| og(" Exception caught: ", e);
}

// nmet hod3 oneway:
l og(" I nvoking nmethod3(\"I\", \"am", \"the\",
\"Oneway\" \"client\").");
paraO3[3] = "oneway";
try {
Dynam cl nvoker . i nvokeOneWay (
serverld, "nethod3", classArray,
argunment Array, null);

| og(" Exceptions do not harmne...");
}
cat ch(Throwabl e e) {
| og(" Exception caught: ", e);
}
// nmethod4:

[l og(" I nvoki ng nmethod4()");
Test Dat aPacket tdp = new Test Dat aPacket () ;

try {
tdp = (Test Dat aPacket)

Dynami cl nvoker . i nvoke(
serverld, "nmethod4",

124

CHAPTER 9: THE COMMUNICATION SERVICE

new Cl ass[]{ Test Dat aPacket . cl ass},
new Qbj ect[]{tdp}, null,
this.getC ass().getd assLoader());
| og("What you send is what you get..." + tdp);
}
cat ch(Throwabl e e){

| og(" Exception caught: ", e);
}

9.8.3 Runningthe Scenario

Requirements:

* A running agency domain service. Note that this service has to be started
before the agencies, and the service’'s address has to be specified when
starting the agencies in order to register them. Please refer to the User’s
Guide for more information about how to start agencies and agency
domain services.

» At least one running agency

125

PROGRAMMER'’S GUIDE

Running the Example:

Agency 2
5 DynamicServerAgent
>
(8]
c
(O]
(D— %
Create
DynamicServerAgent |
Generic
proxy
Invoke
@ server
methods
) .
| L)
(8]
o
(2— 2
< | DynamicClientAgent
Create
DynamicClientAgent | Agency 1

User input

Figure 12: Dynamic Communication Scenario

Create the Dynam cSer ver Agent inside a running agency via the agen-
cy’'s Ul (1). (This agent has to be created first, sincdtheam cCl i ent -
Agent tries to contact thBynam cSer ver Agent via the communication
service.)

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a exanpl es. dynam cCom Dynam cSer ver Agent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

Create thddynamni cCl i ent Agent either in the same or a different agency

(2).

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a exanpl es. dynam cCom Dynam cC i ent Agent

126

CHAPTER 9: THE COMMUNICATION SERVICE

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

After creating both agents in the order mentioned above, the client agent in-
vokes the methods on the server agent by using a generic proxy (3). Both
agents run without the need for any user interaction. Thus, there is no need for
any further explanations. Just have a look at the agents’ output and compare it
with the agents’ source code.

Note that the server throws afr r ayQut Of Bound exception inside
met hod3(...). This is intended in order to show that the client receives
this exception.

9.8.4 Summary

* In contrast tastatic communication where the concrete server methods are
available for the client agents via a specific server proxy, Grasshopper sup-
portsdynamic communication where the clients invoke generic method
on ageneric proxy class.

» Dynamic communication is of particular importance if a client knows the
method signatures of a server, but does not have access to the server’s
proxy code.

* In order to perform a dynamic method call on a server, a client invokes the
static method i nvoke(...) of the generic proxy class
de. i kv. grasshopper. conmuni cati on. Dynam cl nvoker.
The following information of the server has to be provided: the server
identifier, the name of the server method, and the classes and values of the
method parameters. In specific cases, additional information is needed: the
server location, a class loader, and a reference fBfitaur eResul t
object.

» The result of a dynamically invoked method is provided as an instance of
the clasg ava. | ang. Qbj ect . The client has to convert this class to the
actual result type of the invoked method.

9.9 Unicast vs. M ulticast Communication

In specific scenarios, a client may want to invoke the same method successive-
ly on a set of server agents. Considering the communication mechanisms that
have been explained in the previous sections, the client agent would require a

127

Group
proxy

Group inter-
faces

I nterface
IGroup

PROGRAMMER'’S GUIDE

proxy of each server agent that is to be contacted, and the method calls would
have to be performed sequentially on each proxy.

In order to simplify such a scenario for the client agent, Grasshopper supports
multicast communication. Instead of creating a set of server proxies and se-
quentially invoking the same method on each single proxy, a client agent may
create agroup proxy and register aset of server agents at this proxy. When the
client invokes a method on the group proxy, the proxy forwards the call to all
registered agents. Internally, the group proxy contacts all registered server
agents sequentially. Thus, only little advantage concerning the performance of
the method invocations is achieved by using multicast communication. The
main purpose of thismechanismisto facilitate the implementation at the client
side.

A Grasshopper group proxy is a Java object that implements two interfaces:
the interface de. i kv. gr asshopper. conmuni cati on. | G oup and
the server interface of those server agents that are to be added to the group,
such as | Mul ti cast Ser ver Agent , concerning the example introduced
in Section 9.10.

Theinterfacel Gr oup isimplemented by every group object and providesthe
following methods for group establishment and maintenance:

« get Menber s(): This method returns the identifiers of all group mem-
bers in form of String objects.

» getResul t (): This method returnsiul ti cast Resul t object. The
purpose of this object is similar to the purpose dfud ur eResul t
object in asynchronous unicast scenarios (see Section 9.5)NThe -
cast Resul t object retrieves asynchronously arriving results of group
members. Detailed information is provided below.

* i nvoke(...): This method enables a client agent to perform a multi-
cast call dynamically. Similar to dynamic unicast calls (see Section 9.8),

the name of the server method as well as the classes and values of all
method parameters have to be specified. However, please note that it is
also possible to call the concrete server method directly, since the group
proxy implements, besides th& oup interface, also the server interface

of the group members.

add(...): Via this method, a server agent can be added to a group
proxy. For this purpose, the server agent’s identifier has to be provided.
Optionally, the server agent's location can be specified which is only
required no agency domain service is available.

renmove(...): This method enables the removal of a server agent from
the group proxy. For this purpose, the server agent’s identifier has to be

128

CHAPTER 9: THE COMMUNICATION SERVICE

provided.

* set Type(...): This method sets the termination mode of the subse-
guent multicast calls to be performed on the group proxy. Grasshopper
supports three types: AND termination, OR termination, and INCRE-
MENTAL termination. Detailed information is provided below.

A group proxy is created by calling the metlooceat eG oup(...) onthe Creatinga
class de. i kv. gr asshopper . communi cat i on. ProxyGener at or. 9rOUPProxy
Note that the group proxy should be of the generic Java@gssct . The

reason is that, as mentioned above, a group proxy implements two interfaces.

By creating a group proxy as instance of the ddgsect , the proxy can be

casted to both interfaces, depending on the method that is to be performed.

When creating a group proxy, the class of the server interface of the intenQed.
group members has to be provided as parameter. ?

bj ect serverGoup = ProxyCenerator.createG oup(
| Mul ti cast Server Agent . cl ass);

Via the interfacd Gr oup, new members can be added to the group proxy:

((1 G oup)serverGoup).join(
server Agentl dentifier);
Via the server interface, such abul t i cast Ser ver Agent concerning
the example introduced in Section 9.10, the methods of the group members
can directly be invoked on the group proxy:

((I'Mul ticast Server Agent) server G oup).
request Confirmation("C ient nmessage");

Thetermination mode Termina-
tion mode...

Since a multicast call is usually sent to more than one server agent, the result
of such a call is represented by a set of return values and/or exceptions. Due
to the fact that a group proxy sequentially contacts all server agents, the mul-
ticast results do usually not arrive at the client side exactly at the same time.
In order to fulfill the individual needs of the client concerning the retrieval of
multicast results, the group proxy provides the following three mechanisms:

1. AND Termination ...AND

The server method returns whahserver results have arrived at the client
side. Up to this point in time, the client agent is blocked.

2. OR Termination ...OR

The server method returns whtme first server result has arrived at the
client side. Up to this point in time, the client agent is blocked.

129

..INCRE-
MENTAL

Result han-
dling

PROGRAMMER'’S GUIDE

3. INCREMENTAL Termination

The server method returns at once. The client agent can request the results
when they are needed.

Thekind of termination can be set viathe method set Type(. . .) of thein-
terface | G- oup.

Thegroup proxy generally performsamulticast call asynchronously. Thus, the
result handling is similar to asynchronous unicast invocations, as described in
Section 9.5.1. After invoking a server method on the group proxy, the client
agent has to call the method get Resul t () on the group proxy’s interface
| G oup. This method returns an instance of the cldssi kv. gr ass-
hopper . communi cati on. Mul ti cast Resul t which offers the fol-
lowing methods:

o getFirst(): This method returns theut ur eResul t object of the
server agent whose result has arrived first.

o get FutureResul t(...): This method returns thHeut ur eResul t
object of a specific server agent. The demanded server agent is selected by
means of its identifier.

e get Nunber O Ret ur ned(...): This method returns the number of
server agents that have already returned a result.

o« getResult(...): This method returns the result of a specific server
agent. The demanded server agent is selected by means of its identifier.
Since the return type of this method msva. | ang. Obj ect , the client
agent has to cast this type to the actual return type of the server method.

* i sAvail abl e(...): This method checks whether at least one of the
contacted server agents has already returned a result.

Note that the handling of tHeut ur eResul t object is exactly the same as
described in Section 9.5.1. By enabling the client agent to get a sdparate

t ur eResul t object for each server agent of the contacted multicast group,
a high degree of flexibility is provided, for instance by enabling the client to
set different timeouts or to apply different result handling mechanisms (block-
ing, polling, notification) to different server agents.

Note that it is not necessary for a client agent to retrigwet air eResul t

object of a specific server agent before retrieving the actual server result. Via
the methodget Resul t () of the clasgde. i kv. grasshopper.com

muni cati on. Mul ti cast Resul t, a client agent can retrieve the server
result directly. However, in this case the client agent should verify that the re-
sult is already available. Please have a look at the following example for clar-
ification.

130

CHAPTER 9: THE COMMUNICATION SERVICE

90.10 Multicast Communication Scenario

The example scenario for multicast communication consists of three classes/
interfaces, covered by the package exanpl es. nul ti cast Com

« Multicast Server Agent (see Example 18 in Section 9.10.1): An
agent that provides one method to the communication service.

I Multicast Server Agent (see Example 19 in Section 9.10.1): The
server interface that contains the method which has to be accessible for the
client agent. This interface is the basis for the generation of server proxies.

« MulticastC ient Agent (seein Example 20 Section 9.10.2): The cli-
ent agent that invokes the accessible method of the server.

9.10.1 Example: MulticastServer Agent

The MulticastServerAgent implements the interface IMulticastServerAgent.
This interface contains one method that is to be accessible via the communi-
cation service. This method creates a modal dialog, requesting the user to
press a button that terminates the method. Finally, the method returns the iden-
tifier of the server agent.

The source code of the corresponding client agent is described in Section
9.10.2.

Example 18: MulticastServerAgent \ e

package exanpl es. multicast Com

i nport de.ikv.grasshopper. agent. *;

i mport de.ikv.grasshopper.comuni cation.*;
i mport javax.sw ng. *;

i nport java.aw.*;

// This class realizes the server agent of the nulticast
// conmuni cation scenari o.
public class Milticast Server Agent extends Mbi |l eAgent

i npl ements | Mul ticast Server Agent

{

int result;

/1 No creation argunents needed.
public void init(Cbject[] creationArgs) {
result = 1;

}

131

PROGRAMMER'’S GUIDE

public String getName() {
return "Milticast ServerAgent";

}

// This nethod requests user input via a graphical
// conponent.
// The user just has to confirmthe di al og by clicki ng
// the OK button.
public String requestConfirmtion(

String client Message) {

log("Cient request arrived. Returning nmy ID " +
getinfo().getldentifier().toString());
JOpt i onPane. showivessageDi al og(
nul I, clientMessage,
"Ml ticast Server Agent ",
JOpt i onPane. PLAI N_MESSAGE) ;
return getlinfo().getldentifier().toString();

}

public void live() {
| og("ready.");
}

}

Example 19: IMulticastServerAgent

? package exanpl es. multicast Com

public interface | Milticast Server Agent

{

public String requestConfirmtion(
String client Message);
}

A description about how to run the exampleis given in Section 9.10.3.

9.10.2 Example: MulticastClientAgent

init(...) Insideitsi ni t (...) method, the MulticastClientAgent contacts the agency
domain serviceviathe | Regi on interface of the local agency and requests a
list of all agents with the name 'MulticastServerAgent’. This is required since
the client agent needs the identifiers of the demanded server agents in order to
add them to a group proxy. After retrieving a list of available server agents, the

132

CHAPTER 9: THE COMMUNICATION SERVICE

client creates a group proxy, i.e. aproxy object for multicast communication,
and addsall retrieved server agentsto this proxy. Thisisdone by providing the
server agents’ identifiers to the group proxy viajtoeén(. . .) method.

The methodr equest Ter m nati onMode() is called from inside the requestTer-
agent'sl i ve() method and activates the client's GUI that enables the LE%F jon-
to select between the following termination modes:

* AND Termination
A multicast call returns aftesll server results have arrived. Up to this
point in time, the client agent is blocked.

* OR Termination
A multicast call returns after the first server results has arrived. Up to this
point in time, the client agent is blocked.

* INCREMENTAL Termination
A multicast call returns at once. The client can request the results when
they are needed.

Insideits| i ve() method, the client requests the selection of atermination live()
mode via its GUI and performs a multicast call by applying this termination
mode to the method invocation. After this, the client printsout all retrieved re-

sults.

Example 20: MulticastClientAgent \

package exanpl es. multicast Com ?

i nport de.ikv.grasshopper. agent. *;

i nport de.ikv.grasshopper. agency. *;

i nport de.ikv.grasshopper.type.*;

i nport de.ikv.grasshopper.comuni cation. *;
i mport de.ikv.grasshopper.util.*;

i nport javax.sw ng. *;

i nport java.awt.*;

// This class realizes the client agent of the nulticast
// conmuni cation scenari o.
public class MilticastCient Agent extends Mbil eAgent
{

// Proxy of |ocal agency = transient

// (i.e., not part of the data state),

// since it is not serializable.

// A non-transient agency proxy woul d not

// allow the agent to m grate.

transi ent | Regi on regi onProxy;

133

PROGRAMMER'’S GUIDE

// Data state of the agent, since not transient
(bj ect server G oup;

i nt nunber O Servers;

Agent I nfo[] serverlnfos;

// No creation argunents needed.
public void init(Cbject[] creationArgs) {

// Get proxy of |ocal agency
regi onProxy = get Regi on();
// Look for the server agent in the
// agency domain service
SearchFilter filter =

new SearchFilter(

SearchFi |l t er. NAME+" =Mul ti cast Ser ver Agent ") ;

serverlinfos = regionProxy.|istAgents(

null, filter);
// Create nulticast group for server agents that
// inplenment the interface | MilticastServerAgent
server G oup = ProxyGenerator. createG oup(

I Mul ticast Server Agent. cl ass);
nunmber Of Servers = serverlnfos. | ength;

for (int i = 0; i < nunber O Servers; i++)
// Add all found Milticast ServerAgents to the
// group

((1 G oup)serverGoup).join(
serverlinfos[i].getldentifier());

}

public String getNanme() {
return "Asyncd i ent Agent";

}

134

// This nethod requests user input via graphical
// conponent .
// The user has to sel ect the term nation node of the
// following nulticast invocation.
public String requestTerm nati onMode() {
String ternmVode = null
String options[] = {
"AND Term nati on",
"OR Term nation",
"I ncrenental Term nation"};
termvbde = (String) JOpti onPane. show nput Di al og(
null, "Term nation node:",
"Mul ticastCient Agent",
JOpt i onPane. QUESTI ON_MESSAGE, nul |, options,
options[O0]);

CHAPTER 9: THE COMMUNICATION SERVICE

return termnmbde;
}

public void live() {
String ternbde;
String serverld;
String serverResult;
Mul ticastResult ntResult = null

t er Mvbde = request Term nati onhMode();
while (termvbde !'= null) {
serverResult = null;
if (termvbde. equal s("AND Term nation")) {
// Met hod i ncocation with AND termn nation
log("l’mwaiting for ALL results...");
// Perform nulticast call
((1 G oup)serverGoup).set Type(
Mul ti cast Resul t. AND) ;
((1I'Mul ticast Server Agent) server G oup).
request Confirmation("Cient nessage: AND');
ncResult = ((1 G oup)serverGoup).getResult();
// All(!) results have arrived, or tineouts
// have exceeded.

@

se if (termvbde. equal s("OR Term nation")) {
// Method incocation with OR term nation
log("I’mwaiting for ONE results...");
// Perform nulticast call
((1 G oup)serverGroup).set Type(
Mul ti cast Result. OR);
((I'Mul ticast Server Agent) server G oup).
request Confirmation("Cient nmessage: OR");
ncResult = ((1 G oup)serverGoup).getResult();
// At |east one results has arrived, or
// timeouts have exceeded.

@

se if (termvbde. equal s(
"Incremental Termi nation")) {

// Method incocation with | NCREMENTAL
// term nation
log("I’mnot waiting at all!");
// Perform nulticast call
((1 G oup)serverGoup).set Type(

Mul ti cast Resul t. | NCREMENTAL) ;
((1I'Mul ticast Server Agent) server G oup).

request Confirmati on(

"Client nmessage: | NCREMENTAL");

ncResult =

135

PROGRAMMER'’S GUIDE

((1 G oup)serverGoup).getResult();
// Met hod has returned without waiting for
// any result.
whil e (ntResult. get Nunber O Ret urned() == 0)
l og("1’ m doi ng sonmething serious!\n");
}

// Evaluating the results
| og(ntResul t. get Nunber O Ret urned() +
result(s) available:");

for (int i = 0; i < nunmberOf Servers; i++) {
serverld =
serverinfos[i].getldentifier().toString();
try {

if (ncResult.isAvail abl e(serverld)) {
serverResult =
(String)ncResult.getResult(serverld);
| og("Result fromserver '" + serverld +
"' =" + serverResult);

}

}
catch (Throwable t) {

| og(" Exception caught from server '" +
serverld + "’ : ", t);
}

}
t ermvbde = request Term nati onMode();
}
}
}

9.10.3 Running the Scenario

Requirements:

* A running agency domain service. Note that this service has to be started
before the agencies, and the service’s address has to be specified when
starting the agencies in order to register them. Please refer to the User’s
Guide for more information about how to start agencies and agency
domain services.

« Several running agencies
Snce the agents in this scenario create own GUIs that may block the
agency GUI, it is recommended that you do not activate the agency GUI.
Instead, start the agencies just with their textual interface (command
option -tui). Please refer to the paragraphs titled ,Running the Examples*

136

CHAPTER 9: THE COMMUNICATION SERVICE

at the beginning of Chapter 2 in order to get a detailed explanation about
the possibly occurring GUI problems.

* If you are using a JDK 1.2 environment, you must have generated a proxy
class (hametlMul ti cast Ser ver Agent P) by invoking the Grasshop-
per stub generator with the interface clabsil ti cast Ser ver Agent
as input parameter. The fileMul ti cast Server Agent P. cl ass
should be stored either in a directory belonging to the Java classpath or in
the code base directory of the MulticastClientAgent. In a JDK 1.3 environ-
ment, this class is not needed. Even if it is available, it will not be used.
Instead, the proxy is dynamically generated by the MulticastClientAgent
at runtime.

Running the Example:

Agency 2 Agency 3

MulticastServerAgent MulticastServerAgent

Create
Multicast
Server
Agent

Create
Multicast
Server

Agent

Agency Ul

Agency Ul

Register

group
members Agency

— (3, domain
= " 7| service
& Agency Get list of
g API all registered
Select < MulticastServerAgents
mode e Create

MulticastClientAgent Agency 1 group proxy

User input

Figure 13: Multicast Communication Scenario

Create a set of MulticastServerAgents in the running agencies via the agen-
cies’ Ul (1). (All server agents have to be created before the client agent.)

If you are using the textual user interface of the agency, please create the
agents by means of the following command:

cr a exanpl es. nulticastCom Mul ti cast Server Agent
If the agents’ classes are not included in the Java CLASSPATH environ-

137

PROGRAMMER'’S GUIDE

ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

Create one MulticastClientAgent in one of the running agencies (2). (If you
start the client agent in an agency in which a server agent is already running,
the agents’ GUIs may block each other. Thus, it is recommended to start the
client agent in a separate agency.

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a exanples.nulticastCom Mul ticastd i ent Agent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

The client agent contacts the agency domain service in order to find all regis-
tered MigratingServerAgents (3), creates a group proxy (4), and registers all
found server agents as members of the group (5). Select the termination mode
in the client’s GUI, press OK (6), and see what happens. Triggered by your in-
teraction, the client agent invokes a method on the group proxy (7a) which for-
wards the invocation to all members of the group (7b, 7c). Depending on the
termination mode, a different number of results will be retrieved by the client:

AND termination causes the client agent to block until all servers have
returned a result, i.e., until you have pressed the OK button on the GUIs of
all server agents ((8and (8b)).

OR termination causes the client agent to block until the first result has
arrived, i.e., until you have pressed the OK button on the Guinef
server agent ((8ay (8b)).

INCREMENTAL termination allows the client to do something serious
while the server agents are performing their asynchronously invoked
method. Concerning the example, the client agent uses its waiting time for
making some outputs on the agency'’s text console until the first result has
arrived, i.e., until you have pressed the OK button on the Guinef
server agent ((8ay (8b)).

After handling the asynchronous result(s), the client agent continues by creat-
ing its own GUI again, and the scenario proceeds with step (6).

9.10.4 Summary

Instead of creating a set of server proxies and sequentially invoking the
same method on each single proxy, a client agent may crgiatigpgoroxy

138

CHAPTER 9: THE COMMUNICATION SERVICE

and register a set of server agents at this proxy. When the client invokes a
method on the group proxy, the proxy forwards the call to al registered
agents.

* A Grasshopper group proxy is a Java object that implements two inter-
faces: the interface de. i kv. grasshopper. comruni ca-
tion. | G oup and the server interface of those server agents that are to
be added to the group.

» The group proxy generally performs a multicast agyhchronously. The
methodget Resul t () on the group proxy’s interfadeGr oup returns
an instance of the classle. i kv. grasshopper.comuni ca-
tion. Mul ti cast Resul t. This class offers several methods for han-
dling the asynchronously arriving results.

» For retrieving the multicast results, a client can select one of the following
modes: AND termination (blocks the client until all server results have
arrived or a timeout period has expired), OR termination (blocks the client
until the first server result has arrived or a timeout period has expired), or
INCREMENTAL termination (does not block the client at all; the client
can request the server result(s) on demand).

9.11 Accessing Agencies

A Grasshopper agency offers two programming interfaces to all locally resid-
ing agents as well as to remote entities:

* | Agent Syst em This interface contains methods that are directly asso-
ciated with the offering agency itself. Among others, this interface enables
the monitoring and control of local places as well as locally running
agents.

* | Regi on: This interface provides access to an agency domain service,
i.e., a region registry or an LDAP server. Please refer to Section 9.12 for
detailed information about this interface.

9.11.1 Agency Related Information

Every Grasshopper agency carries information about itself that may be access-
ed by other entities. This information is maintained by an instance of the class
de. i kv. grasshopper.type. Agent Syst eml nf o. (similar to

de. i kv. grasshopper. type. Agent | nf o which covers agent-related

139

PROGRAMMER'’S GUIDE

information, described in Chapter 5).

ldentifier

toByteArray()
equals()
toString()

AgentSystemInfo

getLocation()
getNam e()
getldentifier()
getType()

toS tring()

Figure 14: Agencyinfo Class Diagram

When anew agency is created, the agency generates anew Agent Syst em

I nf o instance and uses creation arguments as well as environmental proper-
ties for its initialization. The Agent Syst em nf o object is accessible for
other entities via the get | nfo() method of the agency’s interface
| Agent System

tAgeIntfsysr TheAgent Syst enl nf o class covers the following components:
eminio

 |dentifier: The purpose of this component is to uniquely identify an agency
in the distributed environment. The identifier is automatically generated
by the agency during its creation. Detailed information about the structure
of a Grasshopper identifier is provided in Section 5.1. (Java type:
de. i kv. grasshopper.type.ldentifier)

« Location: This component maintains the location of the agency in terms of
a Grasshopper address. Detailed information about the structure of Grass-
hopper addresses is provided in Section 5.4. A concrete communication
receiver can be determined by invoking the methodkupComuni -
cationServer(...) on the agency domain service at which the
demanded agency is registered. Please refer to Section 9.12.1 for more
information about this method. (Java typde. i kv. grassgop-
per. communi cati on. G asshopper Addr ess)

« Name: This component maintains the name of the agency that has been set
by the user who created the agency. (Java fypea. | ang. Stri ng)

« Type: This component maintains the type of the agency. A Grasshopper
agency is always of the ty|@ asshopper Agent Syst emlype. Other
types may occur in the context of the MASIF standard. All of them are

140

CHAPTER 9: THE COMMUNICATION SERVICE

defined as String constants in the class de. i kv. grasshop-
per.util. G asshopper Const ant s. (Java type:
java.l ang. String)

Example 21 in Section 9.11.6 describes an agent that prints the contents of an
agency’sAgent Syst em nf o object.

0.11.2 Interface | AgentSystem

The interfacd Agent Syst emrepresents the main access point to an agency
for software entities. Its methods are meant to monitor and control locally run-
ning agents, local places, or the agency itself. The interface is accessible by
locally running agents (see Section 9.11.3) as well as by remote entities (see
Section 9.11.4).

<<lInterface>>
IAgentSystem

listMobileAgents()
listStationaryAgents()
listAgents()
listPlaces()
getAgentState()
getPlaceState()
createAgent()
moveAgent()
copyAgent() -
removeAgent() V7
suspendAgent()
resumeAgent()
invokeAgentAction()
createPlace()
removePlace()
suspendPlace()
resumePlace()
hasPersistence()
flushAgent()
flushAgentAfter()
saveAgent()
saveAgentEvery()
reloadAgent()

ping()

getinfo()

<<Interface>>
ISystemListenerProvider
addSystemListener()
removeSystemListener()

Figure 15: IAgentSystem Class Diagram

141

Agent-relat-
ed methods

PROGRAMMER'’S GUIDE

The interface | Agent Syst em provides the following agent-related meth-
ods:

copyAgent (. ..): This method creates a copy of a specific, locally
residing agent. The copy may be created inside the local agency or at
another location. (Note that the agent may prohibit its copying by throwing
a Vet oExcepti on from inside thebef oreCopy() method, as
described in Chapter 8.)

creat eAgent (...): This method creates a new agent in the local
agency.

fl ushAgent (.. .): This method flushes a locally residing agent. (This
functionality is associated with the Grasshopper persistence service.
Please refer to Chapter 10 for detailed information.)

flushAgent After(...): This method flushes a locally residing
agent after a certain period of time. (This functionality is associated with
the Grasshopper persistence service. Please refer to Chapter 10 for detailed
information.)

get Agent St at e(. . .) : This method returns the current state of a spe-
cific agent.

i nvokeAgent Action(...): This method invokes thacti on()
method of a specific agent. Please refer to Chapter 7 for information about
an agent'sacti on() method.

i st Agents(...): This method returns a list of locally residing
agents. The search can be restricted by setting filters. Please refer to Sec-
tion 9.13 for detailed information about searching Grasshopper compo-
nents.

i st Mobi | eAgent s(...): This method returns a list of locally resid-

ing mobile agents. The search can be restricted by setting filters. Please
refer to Section 9.13 for detailed information about searching Grasshopper
components.

'istStationaryAgents(...): This method returns a list of locally
residing stationary agents. The search can be restricted by setting filters.
Please refer to Section 9.13 for detailed information about searching
Grasshopper components.

noveAgent (...): This method moves a locally residing agent to
another location. (Note that the agent may prohibit its migration via the
bef or eMove() method, as described in Section 6.2.)

rel oadAgent (.. .): This method reloads an agent. (This functionality
is associated with the Grasshopper persistence service. Please refer to

142

CHAPTER 9: THE COMMUNICATION SERVICE

Chapter 10 for detailed information.)

renmoveAgent (. ..): This method removes an agent from the local
agency. (Note that the agent may prohibit its removal viagtsor eRe-
nove() method.)

resunmeAgent (...): This method resumes a suspended agent. (Infor-
mation about the different states of an agent is provided in Section 5.5.)

saveAgent (...): This method saves an agent. (This functionality is
associated with the Grasshopper persistence service. Please refer to Chap-
ter 10 for detailed information.)

saveAgent Every(...): This method saves an agent periodically.
(This functionality is associated with the Grasshopper persistence service.
Please refer to Chapter 10 for detailed information.)

suspendAgent (.. .): This method suspends an active agent. (Infor-
mation about the different states of an agent is provided in Section 5.5.)

The interfacd Agent Syst em provides the following place-related methPlacerelat-

ods:

ed methods

creat ePl ace(...): This method creates a new place in the agency.

get Pl aceSt at e(. . .) : This method returns the current state of a spe-
cific place.

I'istPlaces(...): This method returns a list of local places. The
search can be restricted by setting filters. Please refer to Section 9.13 for
detailed information about searching Grasshopper components.

removePl ace(. ..): This method removes a place from the agency.

resunmePl ace(. ..): This method resumes a suspended place. (Similar

to agents, places can be suspended and resumed. To suspend a place means
to suspend all agents that are currently running inside the place. When a
suspended place is resumed, all agents inside this place are also resumed.)

suspendPl ace(. . .): This method suspends an active place. (Similar

to agents, places can be suspended and resumed. To suspend a place means
to suspend all agents that are currently running inside the place. When a
suspended place is resumed, all agents inside this place are also resumed.)

The interfacd Agent Syst emprovides the following agency-related methAgency-re-

ods:

lated meth-
ods

» addSystemListener(...) : This method enables a software compo-

nent (e.g., an agent) to add a listener to an agency. The listener is notified
about specific events occurring inside the attached agency, such asthe cre-

143

PROGRAMMER'’S GUIDE

ation, state change, and removal of agents and places. Please refer to Sec-
tion 9.11.5 for detailed information about listening to agencies.

» getl nfo(): This method returns thgent Syst eml nf o object of the
agency.

» hasPer si st ence() : This method provides information about whether
the agency supports persistence or not.

* renoveSystenLi stener(...): This method removes an attached
listener from an agency. Please refer to Section 9.11.5 for detailed infor-
mation about listening to agencies.

9.11.3 Local Access

An agent can get access to the functionality of the local agency via the method
get Agent Systen() which is provided by the agent's superclass
de. i kv. grasshopper. agent . Agent. This method returns a refer-
ence to the interfadeAgent Syst em

The following example code has been extracted from Example 9, Section
9.4.2. In this code fragment, tkkki ent Agent gets a reference to the local
agency (interface Agent Syst en) in order to create an instance of the class
Server Agent .

| Server Agent server Proxy;
public void init(Cbject[] creationArgs) {
// Get proxy of |ocal agency.
agencyProxy = get Agent Systen();
// Create the server agent.
try {
serverinfo =
agencyPr oxy. cr eat eAgent (
"Server Agent ",
get I nfo() . get Codebase(),
"I nformati onDesk",
null);
}
catch (Agent CreationFail edException e) {
Systemout.println("## Cient Agent: Creation\\
of server agent failed.");

144

CHAPTER 9: THE COMMUNICATION SERVICE

9.11.4 Remote Access

In order to contact a remote agency, an agent has to create an agency proxy.
Similar to the creation of agent proxies (see Section 9.3), the agency that isto
be contacted must be addressed correctly.

In contrast to the creation of an agent proxy which aways requires the provi-

sion of the agent’s identifier, the creation of an agency proxy can be performed
by simply specifying the agency’s name as well as the name of the host on
which the agency is runnin@f course this assumesthat all agenciesrunning

on the same host have different names.

For creating an agency proxy, the (client) agent uses nimel n- Proxycre
stance(...) method of the claste. i kv. gr asshopper . conmuni - ion
cati on. ProxyCener at or. As explained in Section 9.3, the second
parameter of this method requires the identification of the component that is

to be associated with the proxy. Concerning agency proxies, this parameter
may be initialized in two different ways:

» The parameter may be initialized with the agency’s identifier which can be
retrieved from the agencyAgent Syst enl nf o object (methodet I -
dentifier()).Inorderto getthdgent Syst em nf o object, the cli-
ent has to contact a running agency domain service via its
i st Agenci es(...) method, assuming that the demanded agency is
registered at this service.

« If the client knows the agency’s name as well as the name of the host on
which the agency is running, these two components can be used instead of
the identifier. For this purpose, the host name and agency name have to be
written into aSt ri ng object, separated by a slash charactéost -

Nanme>/ <agencyNane>.

If the client knows the complete address of the agency in terms of a
G asshopper Addr ess object (which is required for generating a
proxy if no agency domain service is available), the client can invoke the
method gener at eAgent System d() on the G asshopper Ad-
dress object in order to get thechost Nanme>/ <agencyNane>
string.

G asshopper Addr ess agencyAddress = .. .; \
// Get proxy of renote agency.
agencyProxy = (I Agent System ?
Pr oxyCGener at or. newl nst ance(
| Agent System cl ass,
agencyAddr ess. gener at eAgent System d(),
agencyAddr ess);
// I nvoke net hod on agency proxy

145

Listener ob-

jects

M ethodsfor
detecting
events

beforeRe-
move()

PROGRAMMER'’S GUIDE

renot eAgents = agencyProxy. | i st Agent s(
new SearchFilter());

9.11.5 Listening to Agencies

Grasshopper agencies enable locally or remotely running software compo-
nentsto listen to internal events. This can be achieved by registering alistener
object at an agency. In the following, the agency at which the listener object is
registered is called destination agency. Thelistening component, i.e., the com-
ponent that registersthe listener at the destination agency and that wantsto be
notified about occurring events, may run at a another location, called source
location or source side in the scope of this section.

The destination agency automatically notifies all registered listener objects
about the occurrence of the following events:

» Agent creation
» Agent state change (suspension / resumption)
» Agent removal
» Place creation
» Place state change (suspension / resumption)
* Place removal

A listener object is an instance of a Java class that implements the interface
de. i kv. grasshopper. agency. | Syst enLi st ener. This interface
provides a set of methods where each method is associated with one of the
events mentioned above. The agency automatically invokes one of these
methods on all registered listeners when the corresponding event occurs.

» agentAdded(Agentinfo info)

agentChanged(Agentinfo info)

agentRemoved(Agentinfo info)

placeAdded(Placelnfo info)

placeChanged(Placelnfo info)
» placeRemoved(Placelnfo info)

The parameter Agentinfo or Placelnfo , respectively, providesinforma-
tion about the agent or place that is associated with the occurred event.

* bef or eRenove() : Beside the event-detecting methods listed above, a
system listener class has to implement the mebiedcdor eRenove() .

146

CHAPTER 9: THE COMMUNICATION SERVICE

Similar tothebef or eRenbve() method of Grasshopper agents, thislis-
tener method is automatically called before the listener object is removed.
Inside the method, the listener may prepare its removal, e.g., by releasing
occupied resources.

o getldentifier(): Finally, the methodjet | dentifier() has to getldentifi-
be implemented by your listener class. This method has to return the idéh-
tifier of the listener which is an instance of the cldssi kv. gr ass-
hopper . type. I denti fi er. Please generate the identifier during the
listener’s creation, and use ,listener” as parameter value of the Identifier’s
constructor. The variable that maintains the listener identifier should be an
instance variable of your listener class. Note that this identifier has the
same structure as agent identifiers as described in Section 5.1.

Example: \
cl ass MyLi stener inplenments |Systeniistener ({ ?
Identifier |listenerld,

public MyListener() {
listenerld = new Identifier(,listener");

}
public Identifier getldentifier(){

return listenerld;

}

public void bef or eRenmove() {

}
agent Added(...) {..

agent Changed(..
agent Renoved(..

.}
) {.
) {.
pl aceAdded(...){...}
{..
{..

.}
-}

pl aceChanged(..
pl aceRenoved(..

){}
J{}
}
A listener object isregistered at an agency viathe method addSyst enli s- Registering
tener(...) which is provided by the agency’s interfacheers

de. i kv. grasshopper. agency. | Agent Syst em This method is im-
plemented with two different signatures:

voi d addSyst enii stener (1 SystenLi stener |istener)
A previously created listener object is transferred to the agency.
By using the Java reflection mechanism, the listener object is transferred
by value to the demanded agency. In order to enable the destination
agency to instantiate the listener, the listener class as well as all classes

used by the listener class have to be inserted into the classpath environ-
ment setting of the destination agency. If this prerequisite is not fulfilled,

147

Listening
mechanism

PROGRAMMER'’S GUIDE

the listener should be added by using the method signature described
below.

I dentifier addSystenii stener(

java.lang. String cl assNane,

j ava.l ang. String codeBase,

j ava. l ang. Qbj ect[] argunents)
By using this signature, the listener is not created previously to the
method invocation at the source side. Instead, the listener’s class name,
code base, and constructor parameters (if required) are specified, and the
destination agency uses this information to create the listener object.
Since a code base is given, the listener class need not be inserted in the
destination agency'’s classpath. Instead, all required classes are retrieved
via the Java class loading mechanism.

Note that the destination agency creates the listener object by means of a
constructor that requires an object arr@pj(ect[]) as parameter.
Thus, the listener class must implement such a constructor in order to
enable the destination agency to create it. (In contrast to this, the method
addSyst enLi stener (| Systenli stener) allows a listener
object to be created by means of any individual constructor, since in this
case the listener creation is performed at the source side.)

Usually, the creation of an agency listener object is initiated by a component

that

wants to be notified about specific events occurring at the destination

agency. Thigistening component may reside at the same or a remote location,
compared to the location of the destination agency. Since the listener object is
running inside the destination agency, it has to establish a communication con-
nection to the listening component in order to forward event notifications.
This can be achieved by creating a proxy of the listening component and in-
voking methods on this proxy due to occurring events.

Figure 16 shows the general process of establishing a listener connection be-

148

CHAPTER 9: THE COMMUNICATION SERVICE

tween an agent (i.e., the listening component) and aremote destination agency.

Listening Agent Agent proxy

Listener object "

Listener service

Source agency Destination agency

Figure 16: Listening Mechanism for Agencies

The listening agent creates a proxy of the destination agency as explained
in Section 9.11.4.

The agent registers a listener object at the destination agency by invoking
theaddSyst enLi st ener (. ..) method on the agency proxy (2a, 2b).

The listener object is automatically connected to the listener service (2c)

of the destination agency. In order to forward event notifications to the lis-

tening agent, the listener object has to create a proxy of the agent (2d).
Required information, such as the agent’s identifier, location, and server
interface name, must have been provided to the listener object as construc-
tor arguments.

. From now on, the listener object is notified by the listener service about

occurring events, i.e., the creation, state change, and removal of an agent
or place (3a). The listener object forwards corresponding event notifica-
tions to the listening agent by invoking a method on the agent’s proxy (3b,
3c).

9.11.6 Example: AgencyClientAgent

The following example scenario consists of three classes/interfaces:

Agencyd i ent Agent : This class represents the listening agent, i.e.,
the agent that wants to be notified about events occurring inside the local
and inside a remote agency.

| Li st eni ngAgent : This interface is implemented by the AgencyCli-

149

Instance
variables

init(...)

beforeRe-
move()

live()

PROGRAMMER'’S GUIDE

entAgent and used by the listener object in order to create a proxy of the
AgencyClientAgent for the purpose of forwarding event notifications.

* GHLi st ener: This class realizes the actual listener object by implement-
ing the interfacede. i kv. gr asshopper. agency. | Syst enii s-
t ener.

Class AgencyClientAgent
The class AgencyClientAgent maintains the following instance variables:

 agencyAddr ess: This variable is initialized with a creation argument
inside the agents nit(...) method. The variable maintains the
address of a remote agency at which a listener object is to be registered.

» agencyProxy: This variable is initialized with a proxy of a remote
agency. The AgencyClientAgent uses this proxy in order to register a lis-
tener object at the remote agency.

 renoteLi stenerl d: This variable maintains the identifier of the
remotely registered listener object. This identifier is needed to enable the
agent to remove the listener from the remote agency when it is not needed
anymore.

* | ocal Li st ener: This variable maintains a reference to a locally regis-
tered listener.

Inside itsi ni t (. ..) method, the AgencyClientAgent retrieves a creation
argument that has to be specified by the user. This argument maintains the ad-
dress of the remote agency at which a listener object is to be registered.

Thebef or eRenpbve() method is automatically called by the agency before
the agent is removed (please refer to Section 4.2 for more information). The
AgencyClientAgent uses this method to remove all previously attached listen-
ers.

Inside itd i ve() method, the AgencyClientAgent checks whether an agency
address has been provided as creation argument. If not, the agent removes it-
self at once.

If the user has specified a valid agency address, the agent invokes the method
newl nst ance(.. .) of the clas$r oxyGener at or in order to create a
proxy of the remote agency'sh\gent Syst eminterface. In order to establish

a communication connection via the proxy, the agent has to identify the de-
manded agency by specifying the agency’s name as well as the name of the
host on which the agency is running. As explained in Section 9.11.4, this set
of information can be retrieved by calling the metlymher at eAgent -
System d() on theG asshopper Addr ess object that maintains the

150

CHAPTER 9: THE COMMUNICATION SERVICE

complete agency address. The last parameter of the newl nst ance(. . .)
method specifies the complete agency address that has been provided by the
user as creation argument of the AgencyClientAgent. (In the case of an avail-
able agency domain service, the newl nst ance(...) method can aso be
invoked without specifying the complete agency address. In this case, agency
name and host name are sufficient for identification purposes.)

By invoking methods on the created proxy, the AgencyClientAgent requests
the following information from the contacted agency: itsidentifier, name, type
location, and alist of all currently hosted agents. After this, the agent registers
a listener object at the remote agency by calling the method addSyst em
Li stener (...) onthe proxy.

The last action of the agent is to register a listener object at the local agency.

Please have a look at both calls of the method addSyst enii st en-

er(...):

» The first call creates a listener object at the remote agency. The method
parameters specify the name of the listener class, the code base from
which the listener class can be retrieved (in this case, the agent’s own code
base is assumed to maintain the listener class), as well as arguments for the
constructor of the listener class. As explained in Section 9.11.5, the remote
agency tries to create the listener object via a constructor that uses an
(bj ect array as parameter. Thus, all required listener arguments are
stored in a variable of the ty@bj ect[] .

The method returns the identifier of the new listener object. The identifier
is required for removing the listener later on (seedtieor eRenove()

method of the AgencyClientAgent).

Note that also the second signature of the me#mbdSyst enli s-

tener (...) could have been used for registering the listener object at
the remote agency. However, in this case, the listener class as well as all
classes referenced by the listener class (such as the class IListeningAgent)
would have to be stored in the Java CLASSPATH environment setting of
the remote agency.

» The second call registers a listener object at the agency in which the Agen-
cyClientAgent is running. In contrast to the first method call, the listener
object is created by the AgencyClientAgent itself instead of the agency
where the listener is to be registered. The agent creates the listener object
by using an individual constructor, so that the required arguments do not
have to be converted @) ect [] . After its creation, the listener object
itself is used as parameter of to@dSyst enli st ener (.. .) method.

Note that in this case the method does not return a listener identifier. In
order to remove the listener later on, its object reference is used for identi-

151

eventDe-
tected(...)

PROGRAMMER'’S GUIDE

fication purposes (see the bef or eRenove() method of the AgencyCli-
entAgent).

Since no code base is specified when the listener is registered, the listener
class as well as the class IListeningAgent have to be maintained in the
Java CLASSPATH environment setting of the local agency. (The class
IListeningAgent is needed because the listener object tries to create a
proxy of the AgencyClientAgent after being registered at the local

agency.)
The method event Det ect ed(. . .) is defined in the agent’s server inter-
face IListeningAgent. By implementing this interface, the AgencyClient-
Agent is accessible via the communication service. The created listener
objects invoke this method (via an agent proxy) in order to inform the Agen-
cyClientAgent about events that occur inside the monitored agencies.

Example 21: AgencyClientAgent

package exanpl es. si npl e;

i nport exanples.util.*;

i mport de.ikv.grasshopper. agent. *;

i nport de.ikv.grasshopper. agency. *;

i nport de.ikv.grasshopper.type.*;

i mport de.ikv.grasshopper.util.*;

i nport de.ikv.grasshopper.comuni cation. *;

// This class realizes an agent that contacts a renote

// agency.

public cl ass Agencyd i ent Agent extends Stati onaryAgent
i mpl enments | Listeni ngAgent

{

G asshopper Addr ess agencyAddr ess;
| Agent Syst em agencyPr oxy;

I dentifier renotelListenerld;
GHLi st ener | ocal Li st ener;

// Creation argunent:
// args[0] = address of the agency that has to be
// contacted by the AgencyAccessAgent
public void init(QOoject[] args) {
// The init nethod expects the address of an agency
// as argunent.
// I'f no argunent is provided, the agent renpves
// itself at the beginning of its |ive nethod.

if (args == null || args.length < 1)
agencyAddress = nul | ;
el se

152

CHAPTER 9: THE COMMUNICATION SERVICE

agencyAddress =
new G asshopper Address((String) args[O0]);

}

public String getName() {
return "Agencyd i ent Agent";

}

// This nethod is automatically called before the
// agent is renoved
// The agent uses thi s nethod to renove t he previously
// attached |istener(s).
public void beforeRenove() {

i f (agencyAddress == null)

| og(" No agency address specified. Renoving...");
if (renoteListenerlid !'= null) {

| og(" Renoving renote listener...");

try {

// Renove renote |istener.
agencyProxy. renoveSyst enli st ener (
renot eLi st enerl d);

}
catch (ListenerRenoval Fai | edException e) {
| og("Listener renoval failed: ", e);
}
if (localListener !'= null) {
| og("Renoving |l ocal listener...");

// Renove |ocal |istener
get Agent System() . renoveSyst enLi st ener (
| ocal Li st ener);
}

| og(" Renoving nyself...");
}

public void live() {
Agent I nfo renoteAgents[];
GHLi st ener agencylLi st ener;

i f (agencyAddress == null)
// No agency address has been specified as
// creation argunent.

try {
renove();
}

catch (Exception e) {
| og(" Cannot renove nyself. ", e);
}

153

PROGRAMMER'’S GUIDE

| og(" Contacting agency ' " +
agencyAddress.toString() + "'.");
// Create proxy of renote agency
agencyProxy = (I Agent System
Pr oxyCGener at or. newl nst ance(
| Agent Syst em cl ass,
agencyAddr ess. gener at eAgent System d(),
agencyAddr ess);
// Print sone information about the contacted
// agency
| og(" Agency contacted.");
log(" Identifier: " +
agencyProxy.getlnfo().getldentifier());
l og(" Nane "+
agencyProxy. getlnfo().getNane());
log(" Type "+
agencyProxy. getlnfo().getType());
log(" Location : " +
agencyProxy.getlnfo().getLocation());
| og(" Hosted agents:");
if (agencyProxy != null) {
// List all agents hosted by the renpte agency.
renot eAgents =
agencyProxy. | i st Agents(new SearchFilter());

if (renoteAgents != null)
for (int i =0; i < renoteAgents.length; i++)
log(" "+
renot eAgent s[i]. get Agent Presentation().
get Agent Nane() + " - " +

renot eAgents[i].getldentifier());

// Register a |listener at the renote agency
try {
oject[] listenerArgs = new bject[4];
// The follow ng obj ects are constructor
// arguments for the |istener object
listenerArgs[0] = (ldentifier)
getInfo().getldentifier();
i stener Args[1l] = (G asshopper Address)
getInfo().get Home();
listenerArgs[2] = (String) "Renote";
// Add Iistener
renmot eLi stenerld =
agencyPr oxy. addSyst enlLi st ener (
"exanpl es. util.CGHLi stener™,
getInfo().get Codebase(), |istenerArgs);
}

catch (ListenerCreationFail edException e) {

154

CHAPTER 9: THE COMMUNICATION SERVICE

}

| og(" Cannot listen to " +
agencyProxy. getlnfo().getNanme() +
e

}
if (renpteListenerlid != null)

| og("Li stener added to renote agency '" +
agencyProxy. getlnfo().getNanme() +
"', Listening...");

}
el se
| og(" Agency '" + agencyAddress +
"’ not found.");

// Register a listener at the |ocal agency.
// This is only possible if the classes
// GHLi stener as well as |Agencyd ientAgent are
// contained in the classpath.
| ocal Li stener = new
GHLi stener(getInfo().getldentifier(),
getlnfo().getHonme(), "Local");
try {
get Agent Systen{() . addSyst enli st ener (
| ocal Li st ener);

}

catch (Throwable e) {
| og(" Cannot register local listener. ", e);
| ocal Li stener = null

}

// The following nethod is called by the |istener
// object(s) due to events occurring inside the
// nonitored agenci es.

public void eventDetected(String event) {

| og(event);

Interface | ListeningAgent

By meansof thisinterface, the AgencyClientAgent isaccessible viathe Grass-
hopper communication service. The listener objects use the method event -
Det ect ed(. . .) defined by thisinterfacein order to inform the agent about
eventsthat occur inside the monitored agencies (or, concerning Example 24 in
Section 9.12.6, inside the monitored region registry).

Example 22: |ListeningAgent

155

Construc-
tors

PROGRAMMER'’S GUIDE

package exanples.util;
i mport de. i kv.grasshopper. agent. | Agent;

// This interface is inplenented by the follow ng

// agents:

// - exanpl es. si npl e. Agencyd i ent Agent

// - exanpl es. si npl e. Regi ond i ent Agent

// The net hod "eventDetected’ is called by a GHLI st ener
// object due to a detected event. In this way, a

// listening agent is autonatically

// i nfornmed about events occurring inside agencies or
// region registries.

public interface |ListeningAgent

{

public void eventDetected(String event);

}

Class GHL istener

By implementing theinterface | Syst enlLi st ener, thisclassrealizesalis-
tener that is able to monitor the events occurring inside Grasshopper agencies
Or region registries.

The class provides two constructors:

publ i c GHLi st ener (

String ldentifier agentld,

Grasshopper Addr ess agent Locat i on,

String | Nane)
This (individual) constructor can be used if the listening object (i.e., the
AgencyClientAgent or, concerning Example 24 in Section 9.12.6, the
RegionClientAgent) creates the GHListener object by itself. In this case,
the already created listener object is transferred to the demanded destina-
tion agency via the method addSyst enli st ener (| Syst enLi s-
tener).
Concerning the AgencyClientAgent (see Example 21 above), the agent
uses this constructor for creating the listener for the local agency.

public GHLi stener(Qbject[] creationArgs)

This constructor is automatically used by the destination agency if the lis-
tening object instructs the destination agency to create the listener by
invoking the method addSyst enli stener(String, String,
ohject[]).

Concerning the AgencyClientAgent (see Example 21 above), the agent
uses this constructor for registering a listener at the remote agency. The

156

CHAPTER 9: THE COMMUNICATION SERVICE

RegionClientAgent (see Example 24 in Section 9.12.6) uses this construc-
tor for registering alistener at aregion registry.

Inside the constructor, the listener object creates aproxy of the AgencyClient-

Agent or RegionClientAgent, respectively. For this purpose, the constructor
arguments provide sufficient information: the agent’s identifier and its loca-
tion. The agent’s class name is hard coded in the call oihnéve n-
stance(...) method. Via the last constructor argument, the agent
specifies a name for the listener object. The purpose of this name is just to en-
able the user to distinguish between the textual outputs of both listeners, since
both are printed in the text console of the agency in which the agent is running.

The remaining methods of the class GHListener implement the interface 1Eigsner
. . . ﬂ‘_ ds
temListener. These methods are automatically called by the monitored ag® 89
when a corresponding event, such as the creation of a new agent, has occurred.
Inside the methods, the listener object invokes the meghaeht De-
tected(...) of the AgencyClientAgent (or RegionClientAgent concern-
ing Example 24) via the previously created agent proxy, in this way
forwarding an event notification to the agent.

Example 23: GHListener

package exanples.util;

i nport de.ikv.grasshopper. agency. *;
i nport de.ikv.grasshopper.type.*;
i mport de.ikv.grasshopper.comuni cation.*;

// This class realizes a system|istener which can be
// used by G asshopper agents in order to |isten for
// events occurring inside agencies or region
// registries.
// The GHLi stener cl ass i s used by the fol | owi ng agents:
// - exanpl es. si npl e. Agencyd i ent Agent
// - exanpl es. si npl e. Regi ond i ent Agent
public class GHLi stener inplenments | Systenlistener
{

| Li st eni ngAgent agent Proxy;

String |istenerNane;

Identifier |listenerld,

// This constructor can be used when the |istener
// object is created at the source side and
// transferred to the destination agency via the
// met hod ’addSystenlLi stener (| Systenii stener)’.
publ i ¢ GHLi st ener (

I dentifier agentld,

157

PROGRAMMER'’S GUIDE

158

}

G asshopper Addr ess agent Locat i on,
String | Nanme) {
| i stener Nane = | Nane;

// Create a proxy of the agent that has added this
// listener object to the agency.
// The proxy i s used by the |istener for forwardi ng
// event notifications to the agent.
agent Proxy = (I Li steningAgent)
Pr oxyCGener at or. newl nst ance(
I Li st eni ngAgent . cl ass,
(ldentifier) agentld,
(Grasshopper Addr ess) agent Locati on);
Systemout.println("## " + |istenerNane +
" CGHListener: Created.");
if (agentProxy != null)
Systemout. println("## Agent proxy created.");
el se
Systemout. println("## Coul d not create \\
agent proxy.");

// Generate |listener identifier
listenerld = new lIdentifier("listener");

// This constructor is automatically used by the
// destination agency is the |istener is added via
// the nethod

/7

"addSystenii stener(String, String, Qbject[])’

public GHLi stener (Object[] creationArgs) {

listenerName = (String) creationArgs|2];
// Create a proxy of the agent that has added this
// listener object to the agency.
// The proxy i s used by the |istener for forwardi ng
// event notifications to the agent.
agent Proxy = (I Li steningAgent)
Pr oxyCGener at or. newl nst ance(
| Li st eni ngAgent . cl ass,
(Identifier) creationArgs[0],
(G asshopper Address) creationArgs[1]);
Systemout.println("## " + |istenerNanme +
" CGHListener: Created.");
if (agentProxy != null)
Systemout. println("## Agent proxy created.");
el se
Systemout. println("## Coul d not create \\
agent proxy.");

CHAPTER 9: THE COMMUNICATION SERVICE

// The follow ng net hods are automatically called by
// the listener service when a correspondi ng event
// occurs inside the agency or region registry to
// which the |istener has been attached.

public void agencyAdded(Agent System nfo info) {
// This event can only occur when the |istener is
// attached to an agency domain servi ce.
Systemout.println("## " + |listenerNane +
" CGHLi stener: Forwardi ng agency creation\\

event...");
agent Proxy. event Detected("## " + |istenerNane +
" @GHListener: Creation of agency '" +

i nfo.getNane() + "’ detected.");
}

publ i c void agencyRenoved(Agent System nfo info) {
// This event can only occur when the |istener is
// attached to an agency donai n service.
Systemout.println("## " + |istenerNanme +
" CGHLi stener: Forwardi ng agency renoval \\

event...");
agent Proxy. event Det ected("## " + |istenerNane +
" GHLi stener: Renoval of agency '" +

i nfo.getNane() + "’ detected.");
}

public void agent Added(Agentlnfo info) {
Systemout.println("## " + |istenerNanme +
" GHLi stener: Forwardi ng agent creation event...");
agent Proxy. event Det ected("## " + |istenerNanme +
" CGHListener: Creation of agent '" +
i nfo. get Agent Present ati on(). get Agent Nane() +
"’ detected.");

}

publ i c void agent Changed(Agentlnfo info) {
Systemout.println("## " + |istenerNanme +
" GHLi stener: Forwardi ng agent change event...");
agent Proxy. event Det ected("## " + |istenerNanme +
" CGHLi stener: Change of agent '" +
i nfo. get Agent Present ati on(). get Agent Nane() +
"' detected. New state = " + info.getState());

}

publ i c void agent Renoved(Agentlnfo info) {
Systemout.println("## " + |istenerNanme +

159

PROGRAMMER'’S GUIDE

" CGHLi stener: Forwardi ng agent renoval\\

event...");

agent Proxy. event Det ected("## " + |istenerNanme +
" CGHLi stener: Renoval of agent '" +
i nf o. get Agent Present ati on(). get Agent Nane() +
"’ detected.");

}

public void placeAdded(Pl acel nfo info) {
Systemout.println("## " + |istenerNane +
" CGHLi stener: Forwarding place creation\\

event...");
agent Proxy. event Detected("## " + |istenerNane +
" @GHListener: Creation of place '" +

i nfo.getNanme() + "’ detected.");
}

public void placeChanged(Pl acelnfo info) {
Systemout.println("## " + |istenerNane +

" GHLi stener: Forwardi ng pl ace change event...");
agent Proxy. event Det ected("## " + |istenerNanme +

" @GHLi stener: Change of place '" +

info.getNanme() + "’ detected. New state =" +

info.getState());
}

public void placeRenoved(Pl acel nfo info) {
Systemout.println("## " + |istenerNane +
" CGHLi stener: Forwarding place renoval \\

event...");
agent Proxy. event Detected("## " + |istenerNane +
" CGHLi stener: Renoval of place '" +

i nfo.getNanme() + "’ detected.");
}

public void beforeRenove() {
Systemout.println("## " + |istenerNane +
" CGHLi stener: Renoving...");
}

public Identifier getldentifier() {
return |istenerld,

}
}

Requirements:

« Two running agencies

160

CHAPTER 9: THE COMMUNICATION SERVICE

* In order to enable the agent to register a listener object at the local
agency, the class€®iLi st ener andl AgencyC i ent Agent have
to be inserted in the Java CLASSPATH environment setting of the
agency in which the AgencyClientAgent is started. Note that this condi-
tion need not be fulfilled if the agent uses the other signature of the
methodaddSyst enLi st ener (. ..) for registering a listener at the
local agency. Detailed information about the two signatures is provided
above, inside the description of theve() method of the AgencyCli-
entAgent.
If one of the classeGHLi st ener andl Agencyd i ent Agent are
missing in the CLASSPATH, you will see that the agent is still able to
register the listener object at the remote agency, while the local listener
registration fails.

Running the Example:

Get agency

information D
— rox
Create/add proxy
remote listener
Listenery GH
object / Listener

Agency
Client

Create

Create/add local

Create listener proxy
agency, proxy I
prox
o Agency Listener
istener i
Agency Create Listener - T
API agent proxy service
Agency 1 Agency 2

Agency Ul

Create Trigger agency event

User input AgencyClientAgent

Figure 17: AgencyClientAgent Scenario

Create some simple agents (e.g., the HelloAgent and PrintinfoAgent) in
each running agency.

Create the AgencyClientAgent in one of the running agencies, specifying
the address of the remote agency as creation argument (1).

161

PROGRAMMER'’S GUIDE

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a exanpl es. sinple. Agencyd i ent Agent socket://
Host 1: 7000/ Agencyl

Note that you have to adapt the agency address in the line above to the

address of your concrete agency. You can determine this address via the
command ’status’ of the agency’s text console. If you have an agency
domain service running and connected to both agencies, the address can be
specified just in terms of the host name and agency name, separated by a
slash charactekHost 1/ Agencyl.

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

Look at the output of the AgencyClientAgent in the local agency console. Af-
ter creating a proxy of the previously specified remote agency (2), the agent
will print a list of all agents that are running inside this agency (3). After this,
the agent adds a listener to the remote agency (4) and another one to the local
agency (6). Both listeners create a proxy of the AgencyClientAgent (5, 7) in
order to be able to forward event notifications.

Now create, suspend, resume, and remove agents and places inside both agen-
cies via the agencies’ user interfaces (8a, 9a), and have a look at the corre-
sponding console windows. The listener services of the agencies will detect
the events and send a notification to the attached listener object (8b, 9b). The
listeners in turn will use their agent proxies (8c, 9¢) in order to forward the no-
tifications to the AgencyClientAgent (8d, 9d).

9.11.7 Summary

» Every Grasshopper agency carries information about itself that may be
accessed by other entities. This information is maintained by an instance
of the classde. i kv. grasshopper.type. Agent Syst em nf o.

The maintained information includes an agency’s identifier, address,
name, and type.

* An agencys functionality is accessible via the interface
de. i kv. grasshopper. agency. | Agent Syst em Agents can get
a reference of thé Agent Syst em interface of their local agency via
their superclasdge. i kv. grasshopper. agency. Agent . Access to
remote agencies can be achieved by creating an agency proxy.

« Agents can register listener objects at agencies in order to be notified

162

CHAPTER 9: THE COMMUNICATION SERVICE

about agency-internal events.

9.12 Accessing an Agency Domain Service

An agency domain service can be contacted by an agent in two different ways:

1. Via the interface de. i kv. gr asshopper . agency. | Regi on of the
local agency, i.e., of the agency in which the agent is currently running:

The agent can chose between contacting the agency domain service at
which the local agency is registered or contacting any other available
agency domain service. In the latter case, the agent has to specify the
address of the demanded agency domain service when invoking a method
on the | Regi on interface. In both cases, the agent accesses the service
via the local | Regi on interface. Note that, in contrast to accessing a
remote agency, there is no need for an agent to create an own proxy of an
agency domain service. An agent can retrieve areference to thel Regi on
interface by invoking the method get Regi on() of itssuperclass Agent
(which is similar to the access of the local | Agent Syst eminterface, as
described in Section 9.11.3).

Note that the agent uses the same methods of the | Regi on interface,
independent of whether a Grasshopper region registry or an LDAP server
is contacted.

Detailed information about the available methods of the IRegion interface
are provided in Section 9.12.1.

2. Viaaproxy of theinterface
de. i kv. grasshopper. agency. Regi onRegi strati on:

The | Regi onRegi strati on interface is explicitly associated with
Grasshopper region registries. That means, in contrast to the | Regi on
interface provided by Grasshopper agencies, no LDAP server can be con-
tacted. An agent can get access to the | Regi onRegi strati on inter-
face in the usua way, i.e., by creating a proxy object via the method
new nstance(...) of theclassde. i kv. grasshopper. commu-
ni cati on. ProxyCGener at or, (cf. Section 9.3).

Thel Regi onRegi strati on interfaceis of particular importance if an
agent wants to add a listener to a region registry, since this cannot be
achieved viathe | Regi on interface. For detailed information about this
aspect, please refer to Section 9.12.5. If an agent just wants to invoke the
list methods of an agency domain service, it is, from an implementation
point of view, more comfortable to use the | Regi on interface of the local

163

Agent-relat-
ed methods

PROGRAMMER'’S GUIDE

agency.

Detailed information about the available methods of the | Regi onReg-
i stration interface are provided in Section 9.12.2.

9.12.1 Interface |Region

<<Interface>>
IRegion

listM obileAgents()
listStationaryAgents()
listAgents()
listAgencies()
listPlaces()
getAgentState()
getPlaceState()
lookupLocation()
lookupComm unicationServer ()

Figure 18: IRegion Class Diagram

The | Regi on interface provides the following agent-rel ated methods:

get Agent St at e(. . .) : This method returns the current state of a spe-
cific agent.

i st Agents(...): This method returns a list of agents that are regis-
tered at the contacted agency domain service. The search can be restricted
by setting filters. Please refer to Section 9.13 for detailed information
about searching Grasshopper components.

i st Mobi | eAgents(...): This method returns a list of mobile
agents that are registered at the contacted agency domain service. The
search can be restricted by setting filters. Please refer to Section 9.13 for
detailed information about searching Grasshopper components.

i stStationaryAgents(...): This method returns a list of sta-
tionary agents that are registered at the contacted agency domain service.
The search can be restricted by setting filters. Please refer to Section 9.13
for detailed information about searching Grasshopper components.

| ookupLocati on(...): This method returns the current location of a
specific agent.

164

CHAPTER 9: THE COMMUNICATION SERVICE

The | Regi on interface provides the following place-related methods: Place-relat-
ed methods

e« getPl aceState(...): This method returns the state of a specific
place.

 listPlaces(...): This method returns a list of places that are regis-
tered at the contacted agency domain service. The search can be restricted
by setting filters. Please refer to Section 9.13 for detailed information
about searching Grasshopper components.

Thel Regi on interface provides the following agency-related methods: lA?;?Cy-ertﬁ
al m -

* listAgencies(...): This method returns a list of agencies that asds
registered at the contacted agency domain service. The search can be
restricted by setting filters. Please refer to Section 9.13 for detailed infor-
mation about searching Grasshopper components.

* | ookupComuni cati onServer(...): This method requires a
St ri ng parameter, specifying the agency’s name as well as the name of
the host on which the agency is running. This information has to be pro-
vided with the following syntaxxhost Nane>/ <agencyNane>.
If the invoking entity knows the complete address of the agency in terms
of aG asshopper Addr ess object (which is required for generating a
proxy if no agency domain service is available), the client can invoke the
method gener at eAgent System d() on the G asshopper Ad-
dress object in order to get thechost Name>/ <agencyNane>
string.

9.12.2 Interface | RegionRegistration

The interface IRegionRegistration inherits the interfac®sst enii st en-

er Provi der, enabling the registration and de-registration of listener ob-
jects, and the interfaceDi r ect or ySer vi ce, providing access to the
registration information of the registry.

165

Agent-relat-
ed methods

PROGRAMMER'’S GUIDE

<<Interface>> <<Interface>>
ISystemListenerProvider IDirectorySenice
addSystemListener() listMobileAgents()
remoeSystemListener() listStationaryAgents()
h listAgents()
/\ listAgencies()
\ listPlaces()
\ lookupLocation()
\ getAgentState()
\\ getPlaceState()
\\\ lookupCommunicationServer()

\\ /

<<Interface>>
IRegionRegistration

Figure 19: IRegionRegistration Class Diagram

Thel Regi onRegi st r at i on interface providesthe following agent-rel at-
ed methods:

get Agent St at e(. . .) : This method returns the current state of a spe-
cific agent.

i st Agents(...): This method returns a list of agents that are regis-
tered at the contacted region registry. The search can be restricted by set-
ting filters. Please refer to Section 9.13 for detailed information about
searching Grasshopper components.

i st Mobil eAgents(...): This method returns a list of mobile
agents that are registered at the contacted region registry. The search can
be restricted by setting filters. Please refer to Section 9.13 for detailed
information about searching Grasshopper components.

listStationaryAgents(...): This method returns a list of sta-
tionary agents that are registered at the contacted region registry. The
search can be restricted by setting filters. Please refer to Section 9.13 for
detailed information about searching Grasshopper components.

| ookupLocation(...): This method returns the current location of a
specific agent.

166

CHAPTER 9: THE COMMUNICATION SERVICE

Thel Regi onRegi st r at i on interface providesthefollowing place-relat- Place-relat-

ed methods:

ed methods

get Pl aceState(...): This method returns the state of a specific
place.

i stPlaces(...): This method returns a list of places that are regis-
tered at the contacted region registry. The search can be restricted by set-
ting filters. Please refer to Section 9.13 for detailed information about
searching Grasshopper components.

Thel Regi onRegi strati on interface provides the following agency- relAgenCy re-

lated methods:

ed meth-
ods

I i st Agenci es(...): This method returns a list of agencies that are
registered at the contacted region registry. The search can be restricted by
setting filters. Please refer to Section 9.13 for detailed information about
searching Grasshopper components.

| ookupConmuni cati onServer(...): This method requires a

St ri ng parameter, specifying the agency’s name as well as the name of
the host on which the agency is running. This information has to be pro-
vided with the following syntaxxhost Nane>/ <agencyNane>.

If the invoking entity knows the complete address of the agency in terms
of aGrasshopper Addr ess object (which is required for generating a
proxy if no agency domain service is available), the client can invoke the
method gener at eAgent System d() on the G asshopper Ad-

dress object in order to get thechost Nanme>/ <agencyNane>

string.

Thel Regi onRegi st r at i on interface provides the following registry-reRegistry-re-

lated methods:

lated meth-
ods

» addSystemListener(...) : This method enables a software compo-

nent (e.g., an agent) to add a listener to a region registry. The listener is
notified about specific events occurring inside the attached registry, such
as the creation, state change, and removal of agencies, agents, and places.
Please refer to Section 9.12.5 for detailed information about listening to
region registries.

renoveSyst enLi stener(...): This method removes an attached
listener from a region registry. Please refer to Section 9.12.5 for detailed
information about listening to region registries.

167

PROGRAMMER'’S GUIDE

0.12.3 Local Access

Similar to Section 9.11.3 and Section 9.11.4 where a separation was made be-
tween the local and remote access of an agency, there are two ways of contact-
ing an agency domain service. However, it hasto be noted that the local access
described in the current section allows the access of both Grasshopper region
registries aswell as LDAP servers, while the remote access described in Sec-
tion 9.12.4 isrestricted to the access of region registries.

Concerning the local access, an agent does not need to create a proxy of an
agency domain service, since the functionality of this serviceis provided via
the interface | Regi on of the local agency. The actual access of the domain
serviceis performed by the local agency and hidden behind the | Regi on in-
terface.

An agent can retrieve a reference to the | Regi on interface via the method
get Regi on() which is provided by the agent's superclass
de. i kv. grasshopper. agent. Agent .

Note that the registration of an agency at an agency domain service is optional.
If an agent wants to contact an agency domain service in the case that the host-
ing agency is not registered at this service, the agent has to provide the address
of the domain service when invoking a method onltRegi on interface.
Another case in which an agent has to specify the domain service address is
that the hosting agency has access to a specific agency domain service, but the
agent wants to contact a different domain service.

When an agent specifies the address of an agency domain service, the agent
has to know whether the service is represented by a region registry or by an
LDAP server, since their address schemes are slightly different:

Addressing aregion registry

If the demanded agency domain service is a Grasshopper region registry,
its address is a usual Grasshopper address as described in Section 5.4.
Represented as String, the address has the following format:

<protocol>://<hostName>:<portNumber>/<regionRegistryName>

Addressing an LDAP server

If the demanded agency domain service is an LDAP server, its address has
the following format:

| dap: // <host Nanme>: por t Nunber >/ <di st i ngui shedNane>

As shown above, the protocol type must be sdtdap, and a distin-
guished name has to be provided, sucloas KV, c=DE'.

168

CHAPTER 9: THE COMMUNICATION SERVICE

The following example code, extracted from Example 13 in Section 9.6.2, \
shows how aclient agent can access an agency domain service viathe methods

of thel Regi on interface of thelocal agency. Concerning the code below, the ?
default agency domain service is to be contacted, i.e., the domain service at

which the local agency is registered. Therefore, no address is specified, and
thevaluenul | isused asfirst parameter of thel i st Agent s(...) meth-

od.

// Get proxy of |ocal agency
regi onProxy = get Regi on();
// Look for the server agent in the
// agency donmain service
SearchFilter filter = new SearchFilter(
Sear chFi | t er. NAME+" =AsyncSer ver Agent ") ;
serverIinfos = regionProxy.listAgents(null, filter);

90.12.4 Remote Access

In order to contact a remote region registry, an agent has to create a registry
proxy, based on the interface | Regi onRegi strati on (see Section
9.12.2).

Similar to the creation of agent proxies (see Section 9.3), the registry that isto

be contacted must be addressed correctly. In contrast to the creation of an
agent proxy which always requires the provision of the agent’s identifier, the
creation of a registry proxy can be performed by simply specifying the regis-
try’s name as well as the name of the host on which the registry is running.

For creating a region registry proxy, the (client) agent usesé¢hue n- Proxy cre-
stance(...) method of the claste. i kv. gr asshopper . conmuni - "
cati on. ProxyCener at or. As explained in Section 9.3, the second
parameter of this method requires the identification of the component that is

to be associated with the proxy.

The identification of a region registry can be achieved by specifying the reg-
istry’s name as well as the name of the host on which the registry is running.
For this purpose, the host name and registry name have to be written into a
Stri ng object, separated by a slash charactbiost Nanme>/ <r egi s-

t r yName>.

If the client knows the complete address of the registry in term&oass -

hopper Addr ess object, the client can invoke the methgeher at eRe-
gionld() on the G asshopper Addr ess object in order to get the
<host Name>/ <r egi st r yNanme> string.

169

Listener ob-
jects

M ethodsfor
event detec-
tion

PROGRAMMER'’S GUIDE

Grasshopper Address regi stryAddress = ... ;
// Get proxy of region registry.
regi stryProxy = (1 Regi onRegi stration)
Pr oxyCGener at or . newl nst ance(
| Regi onRegi stration. cl ass,
regi st ryAddr ess. gener at eRegi onl d(),
regi stryAddress);
// I nvoke nethod on regi stry proxy
renmot eAgents = regi stryProxy.|istAgents(
new SearchFilter());

9.12.5 Listening to Region Registries

Grasshopper region registries enable locally or remotely running software
componentsto listen to internal events. This can be achieved by registering a
listener object at aregistry. The region registry automatically notifies all reg-
istered listener objects about the occurrence of the following events:

* Agency creation

* Agency removal

» Agent creation

» Agent state change (suspension / resumption)
* Agent removal

» Place creation

» Place state change (suspension / resumption)
* Place removal

A listener object is an instance of a Java class that implements the interface
de. i kv. grasshopper. agency. | Syst enLi st ener. This interface
provides a set of methods where each method is associated with one of the
events mentioned above. The region registry automatically invokes one of
these methods on all registered listeners when the corresponding event occurs.

» agencyAdded(AgentSysteminfo info)

agencyRemoved(AgentSysteminfo info)

agentAdded(Agentinfo info)

agentChanged(Agentinfo info)

agentRemoved(Agentinfo info)

placeAdded(Placelnfo info)

170

CHAPTER 9: THE COMMUNICATION SERVICE

» placeChanged(Placelnfo info)
» placeRemoved(Placelnfo info)

The parameter AgentSysteminfo , Agentinfo , or Placelnfo , re
spectively, providesinformation about the agency, agent, or place that is asso-
ciated with the occurred event.

» bef oreRenpve() : Beside the event-detecting methods listed abovejetoreRe-
system listener class has to implement the mettefcor eRenove(). MoV&)
Similar to thebef or eRenove() method of Grasshopper agents, this lis-
tener method is automatically called before the listener object is removed.
Inside the method, the listener may prepare its removal, e.g., by releasing
occupied resources.

» getldentifier(): Finally, the methogjet | dentifier() has to
be implemented by your listener class. This method has to return the iden-
tifier of the listener which is an instance of the cldssi kv. gr ass-
hopper. type. Il dentifi er. Please generate the identifier during the
listener’s creation, and use ,listener” as parameter value of the Identifier's
constructor. The variable that maintains the listener identifier should be an
instance variable of your listener class. Note that this identifier has the
same structure as agent identifiers as described in Section 5.1.

Example: \

cl ass MyLi stener inplenments |Systeniistener ({ ?
Identifier listenerld;

public MyListener() {
listenerld = new Identifier(,listener");
}

public Identifier getldentifier(){
return listenerld;
}

public void bef or eRenove() {

}
agencyAdded(...) {...

agencyRenoved(...
agent Added(...) {...
agent Changed(...

}
){...}
}
){-}
agent Renoved(...) {...}
}
{
{

pl aceAdded(...) {...
pl aceChanged(...)
pl aceRenoved(...)

}
)

}
A listener object is registered at a region registry via the method addSys- Registering
tenListener(...) which is provided by the registry’s interfacdeers

171

PROGRAMMER'’S GUIDE

de. i kv. grasshopper. agency. | Regi onRegi strati on. This
method isimplemented with two different signatures:

voi d addSyst enli stener (1 SystenLi stener |istener)
A previously created listener object is transferred to the region registry.

By using the Java reflection mechanism, the listener object is transferred

by value to the demanded registry. In order to enable the registry to
instantiate the listener, the listener class aswell as all classes used by the
listener class have to be inserted into the registry’s classpath environ-
ment setting. If this prerequisite is not fulfilled, the listener should be
added by using the method signature described below.

I dentifier addSysteniistener(

java.lang. String cl assNane,

java.l ang. Stri ng codeBase,

j ava. |l ang. Qbj ect[] argunents)
By using this signature, the listener is not created previously to the
method invocation at the source side. Instead, the listener’s class name,
code base, and constructor parameters (if required) are specified, and the
region registry uses this information to create the listener object. Since a
code base is given, the listener class need not be inserted in the registry’s
classpath. Instead, all required classes are retrieved via the Java class
loading mechanism.
Note that the region registry creates the listener object by means of a
constructor that requires an object arr&@pj(ect[]) as parameter.
Thus, the listener class must implement such a constructor in order to
enable the registry to create it. (In contrast to this, the mettid®y s -
tenli st ener (| Syst enLi st ener) allows a listener object to be
created by means of any individual constructor, since in this case the lis-
tener creation is performed at the source side.)

Usually, the creation of a listener object is initiated by a component that wants
to be notified about specific events occurring at the region registry. Since the
listener object is running inside the registry, it has to establish a communica-
tion connection to the listening component in order to forward event notifica-
tions. This can be achieved by creating a proxy of the listening component and
invoking methods on this proxy due to occurring events.

List?]nin_g Figure 16 shows the general process of establishing a listener connection be-
mechanism

172

CHAPTER 9: THE COMMUNICATION SERVICE

tween an agent (i.e., the listening component) and aregion registry.

Listening Agent Agent proxy

Listener object l'

Listener service

Source agency Region Registry

Figure 20: Listening Mechanism for Region Registries

1. The listening agent creates a proxy of the registry as explained in Section
9.12.4.

2. The agent registers a listener object at the registry by invoking the add-
Syst enLi stener(...) method on the proxy (2a, 2b). The listener
object is automatically connected to the listener service (2c) of the registry.
In order to forward event notifications to the listening agent, the listener
object has to create a proxy of the agent (2d). Required information, such
as the agent’s identifier, location, and server interface name, must have
been provided to the listener object as constructor arguments.

3. From now on, the listener object is notified by the listener service about
occurring events, i.e., the creation, state change, and removal of an agency,
agent, or place (3a). The listener object forwards corresponding event noti-
fications to the listening agent by invoking a method on the agent’s proxy
(3b, 3c).

9.12.6 Example: RegionClientAgent

The following example scenario consists of three classes/interfaces:

* Regi onCl i ent Agent : This class represents the listening agent, i.e.,
the agent that wants to be notified about events occurring inside a specific
region registry.

e | Li st eni ngAgent : This interface is implemented by the RegionCli-

173

Instance
variables

init(...)

beforeRe-
move()

live()

PROGRAMMER'’S GUIDE

entAgent and used by the listener object in order to create a proxy of the
RegionClientAgent for the purpose of forwarding event notifications.

* GHLi st ener: This class realizes the actual listener object by implement-
ing the interfacede. i kv. gr asshopper. agency. | Syst enii s-
t ener.

Class RegionClientAgent
The class RegionClientAgent maintains the following instance variables:

» adsAddr ess: This variable is initialized with a creation argument inside
the agent's nit (...) method. The variable maintains the address of
the agency domain service at which a listener object is to be registered.

« adsProxy: This variable is initialized with a reference of theegi on
interface of the local agency. The RegionClientAgent uses this interface in
order to retrieve information from the domain service whose address has
been provided by the user as creation argument of the agent.

* registryProxy: This variable is initialized with a proxy of a region
registry, based on the interfat®egi onRegi strati on. (Note that,
for this purpose, the address provided by the user must refer to a Grasshop-
per region registry and not to an LDAP server.) The RegionClientAgent
uses this proxy in order to retrieve information from the region registry
whose address has been provided by the user. Besides, the RegionClient-
Agent uses this proxy in order to register a listener object at the registry.

* |istenerld: This variable maintains the identifier of the remotely reg-
istered listener object. This identifier is needed to enable the agent to
remove the listener from the region registry when it is not needed any-
more.

Inside itsi ni t (. ..) method, the RegionClientAgent retrieves a creation
argument that has to be specified by the user. This argument maintains the ad-
dress of an agency domain service. Note that, since the agent tries to register
a listener at the domain service, it is recommended to specify the address of a
region registry and not the address of an LDAP server.

Thebef or eRenmove() method is automatically called by the agency before
the agent is removed (please refer to Section 4.2 for more information). The
RegionClientAgent uses this method to remove the previously attached listen-
er.

Inside itsl i ve() method, the RegionClientAgent gets a reference to the

| Regi on interface of the local agency. The agent uses this interface in order
to retrieve a list of all agents that are registered at the agency domain service
whose address has been previously specified by the user.

174

CHAPTER 9: THE COMMUNICATION SERVICE

After this, the agent creates a region registry proxy, based on the interface
| Regi onRegi strati on. Similar to the | Regi on interface mentioned
above, the agent usesthe proxy for retrieving alist of all registered agents. The
retrieved list should be the same in both cases, since the same agency domain
service is contacted.

Finally, the agent usesthel Regi onRegi st r at i on proxy for registering a
listener at the contacted region registry. For this purpose, the agent calls the
method addSyst enLi st ener (. ..) on the proxy, providing the class
name of the listener object, the code base from which the listener class can be
retrieved, as well as listener-specific parameters. Detailed information about
registering listeners at aregion registry is given in Section 9.12.5.

The method event Det ect ed(. . .) is defined in the agent’s server intereventDe-
face IListeningAgent. By implementing this interface, the RegionCIientAgé?‘ffed("')
is accessible via the communication service. The created listener objects in-
voke this method (via an agent proxy) in order to inform the RegionClient-
Agent about events that occur inside the monitored region registry.

Example 24: RegionClientAgent

package exanpl es. si npl e;

i nport exanples.util.*;

i mport de.ikv.grasshopper. agent. *;

i nport de.ikv.grasshopper. agency. *;

i nport de.ikv.grasshopper.type.*;

i mport de.ikv.grasshopper.util.*;

i nport de.ikv.grasshopper.comuni cation. *;

// This class realizes an agent that contacts a renote
// region registry.
public cl ass Regi onCl i ent Agent ext ends Stati onaryAgent
i mpl ement s | Li st eni ngAgent
{
G asshopper Addr ess adsAddr ess;
| Regi on adsProxy;
| Regi onRegi stration regi stryProxy;
Identifier |istenerld,

// Creation argunent:
// args[0] = address of a region registry
public void init(Qoject[] args) {
// The init nethod expects the address of a region
// registry as argunent.
if (args == null || args.length < 1)
adsAddress = nul | ;

175

PROGRAMMER'’S GUIDE

176

}

el se
adsAddress = new G asshopper Addr ess((
String) args[0]);
listenerld = null;

public String getName() {

}

return "Regi onC ient Agent";

public void beforeRemove() {

}

if (listenerld !'= null) {
| og("Renoving listener...");
try {
regi stryProxy. renoveSyst enii st ener (
listenerld);
}

catch (ListenerRenoval Fai | edException e) {
l og("Listener renoval failed: ", e);
}

}
| og(" Renoving nyself...");

public void live() {

Agent I nfo regi steredAgents[];
SearchFilter filter

if (adsAddress == null)
// No domai n service address has been specified
// as creation argunent.

try {
remove();

}
catch (Exception e) {
| og(" Cannot renove nyself. ", e);
}
// Get access to an agency domain service via the
// I Region interface of the |ocal agency.
adsProxy = getRegion();
// Test the proxy by listing all agents that are
// registered at the domain service.
filter = new SearchFilter();
| og("Agent list retrieved via lRegion interface:");
regi steredAgents = adsProxy. |istAgents(
adsAddress, filter);
for (int i = 0; i < registeredAgents.length; i++)
l og(" " + registeredAgents|[i].

CHAPTER 9: THE COMMUNICATION SERVICE

get Agent Presentation().get AgentNane() + ": " +
regi steredAgentsf[i].getldentifier());

// Get access to an agency donmain service via a
// proxy based on the | Regi onRegi stration
// interface.
regi stryProxy = (1 Regi onRegi stration)
Pr oxyCGener at or . newl nst ance(
| Regi onRegi stration. cl ass,
adsAddr ess. gener at eRegi onl d(),
adsAddress);
// Test the proxy by listing all agents that are
// registered at the donain service.
filter = new SearchFilter();
| og("Agent list retrieved via \\
| Regi onRegi stration proxy:");
regi steredAgents =
regi stryProxy.listAgents(filter);
for (int i = 0; I < registeredAgents.length; i++)
l og(" " + registeredAgents|[i].
get Agent Present ati on(). get Agent Name() +
+ regi steredAgents[i].getldentifier());

// Regi ster a listener at the
// | Regi onRegi stration proxy
oject[] listenerArgs = new (bject][3];
try {
// The follow ng objects are constructor
// arguments for the |istener object
listenerArgs[0] =
(ldentifier) getinfo().getldentifier();
listenerArgs[1l] = (
Grasshopper Address) getlnfo().get Honme();
listenerArgs[2] = (String) "Region";
// Add Iistener
listenerld = regi stryProxy. addSyst enii st ener (
"exanpl es.util.GHLI stener",
getl nfo().get Codebase(), |istenerArgs);
}
catch (ListenerCreationFail edException e) {
| og("Cannot listen to registry. Reason: ", e);
}
if (listenerld !'= null)
| og("Listener added to registry. Listening...");
}

// The following nethod is called by the |istener
// object(s) due to events occurring inside the

177

PROGRAMMER'’S GUIDE

// nonitored agenci es.
public void eventDetected(String event) {
| og(event);

}
}

Interface | ListeningAgent

By implementing this interface, the RegionClientAgent is accessible via the
Grasshopper communication service. The listener object invokes the method
event Det ected(...) defined by this interface in order to inform the
agent about events that occur inside the monitored region registry. Note that
also the AgencyClientAgent described in Section 9.11.6 implements this in-
terface. Please refer to this section for detailed information aswell as a source
code listing.

Class GHL istener

By implementing theinterface | Syst enli st ener, theclassGHLi st en-
er realizesalistener that is able to monitor the events occurring inside Grass-
hopper agencies or region registries. Note that also the AgencyClientAgent
described in Section 9.11.6 uses this class. Please refer to this section for de-
tailed information as well as a source code listing.

Requirements:

* A running agency domain service. Note that the domain service has to
be started before the agencies, and its address has to be specified when
starting an agency. Please refer to the User’s Guide for information
about how to start agencies and agency domain services.

» At least one running agency

178

CHAPTER 9: THE COMMUNICATION SERVICE

Running the Example:

Registr
proxy

List registered agents via

IRegionRegistration proxy 5b
Create/add] proxy

@ remote listener @

Reglon) @ Listenery GH
Client bect) List
Agent objec istener

S —
List registered agents via Create
Create IRegion interface agent @
- proxy
registry
proxy Registr Listener
(25) > E\PI / servi
Agency vice
API
Agency Region registry

Agency Ul
v@ Trigger registry event

Create

User input RegionClientAgent

Figure 21: RegionClientAgent Scenario

Create some simple agents (e.g., the HelloAgent or PrintinfoAgent) in
each running agency.

Create the RegionClientAgent in one of the running agencies (1).

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a exanpl es. sinpl e. Regi onCl i ent Agent socket://
Host 1: 7020/ Regi stryl

Note that you have to adapt the region registry address in the line above to
the address of your concrete registry. You can determine this address via
the command ’'status’ of the registry’s text console.

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

The RegionClientAgent will print a list of all agents that are currently reg-
istered at the contacted agency domain service. Note that this list will be
printed two times: The agent retrieves the first list vial tRegi on inter-

179

PROGRAMMER'’S GUIDE

face of the local agency (2) and the second one viaal Regi onRegi s-
trati on proxy (4). Both lists should comprise the same set of agents.

After retrieving and printing the agent lists, the RegionClientAgent adds a
listener to the registry (5). The listener in turn creates a proxy of the
RegionClientAgent for the purpose of notification forwarding (6).

The last output of the agent should be the following:

Li stener added to registry. Listening...

In order to prove that the agent is now listening to the registry, please cre-
ate anew agency and provide the registry address as creation argument, so
that the new agency registersitself at the monitored registry. The Region-
ClientAgent should notice the creation and confirm it by means of a corre-
sponding textual output. Now create, suspend, resume, and remove agents
and places in al running agencies (7) and look at the textual output of the
RegionClientAgent.

9.12.7 Summary

An agent can use the interfacede. i kv. grasshop-
per.agency. | Regi on in order to access an agency domain service.
The interfacd Regi on is provided by each agency, and it is accessible
for locally residing agents via the agents’ superctbssi kv. gr ass-

hopper . agency. Agent . The interfacel Regi on offers a unified
access to agency domain services, independent of whether they are repre-
sented by a Grasshopper region registry or by an LDAP server.

An agent can use the interfacede. i kv. grasshop-

per. agency. | Regi onRegi strati on in order to access a Grass-
hopper region registry. In contrast to the interfaRegi on, the interface

| Regi onRegi stration is not provided by Grasshopper agencies.
Instead, an agent has to use this interface in order to create a region regis-

try proxy.
The interfacel Regi onRegi strati on enables an agent to register a

listener object at a region registry in order to be notified about registry-
internal events.

9.13 Searching Grasshopper Components

The interface$ Agent Syst em(see Section 9.11.2) ah&egi on (see Sec-

180

CHAPTER 9: THE COMMUNICATION SERVICE

tion 9.12.1) of a Grasshopper agency provide several methods for searching
agencies, places, and agents. These methods are of particular interest for
agents acting as communication clients in order to find suitable server agents.
Usually, a client needs a server with specific capabilities. When using the
available list methods, a client can define a search filter by specifying the de-
manded server characteristics. In this case, the list methods only return infor-
mation about those servers that match to the defined filter criteria

Search filters are represented asinstances of the classde. i kv. gr asshop-
per.util. SearchFilter. Thefilter criteria are specified in terms of a
St ri ng object whose content must match to the following syntax:

filter = not-filter Filter syntax
not-filter = (1)? orfilter*
or-filker = and-filter (’|' and-filter)*
and-filter = item (’'&’ item)*
item = key comperator value
| 'C not-filter ’)’
comperator = = # equals
| # starts with
| '$ # ends with
| ™~ # contains
key = java.lang.String
value = java.lang.String

The syntax considers the following rules (where the character ssquencesym Syntax ex-
bol represents any symbol in the above syntax, suchasf i | ter oriten): Planation

* symbol

Non-terminal symbol. A non-terminal symbol at the left side of the '=’
character substitutes the rule that is defined at the right side of the same
line.

Example:
Therulefilter = not-filter
isequaltdilter = (!)? or-filter*.

'symbol’

Terminal symbol. A terminal symbol cannot be substituted anymore. It is
represented by the concrete character sequence surrounded by

symboll symbol2
symbol2 follows symboll

symboll | symbol2
symboll or symbol2

181

Minimal fil-
ter

Filter keys

PROGRAMMER'’S GUIDE

¢ symbol?

symbol isoptional. If it occurs, than only once.
e symbol*

symbol isoptional. If it occurs, than with any number of repetitions
¢ (symboll symbol2)

Group of symbols. Any operator typed behind the closing bracket is
applied to the whole group.

The minimal filter consists of a single item , represented by a key and a
value which are connected by means of a comparator . The correspond-
ingruleis

item = key conperator val ue

The supported keys are defined in the class de.ikv.grasshop-
per.util.SearchFilter . Note that some keys cannot be applied to all
kinds of Grasshopper components (i.e., agencies, places, and agents). For in-
stance, the CODEBASIey can only be applied to agents, and the LASTLO-
CATION key isonly valid for mobile agents. If, for example, alist method is
invoked with afilter that containsthe LASTLOCATION key, all Grasshopper
componentsthat cannot be applied to thiskey are automatically excluded from
the search. Thus, amethod call that usesthe LASTLOCATION key withinits
filter can only return alist of mobile agents.

Thefollowing table lists all available keys and the components to which they
can be applied.

Table 3: Filter Keys

: L Can be
Filter key Description applied to
CODEBASE Code base of the searched compo- | « Agents

nent's Java classes. The corre-
sponding value must match to the
code base syntax defined in Sec-
tion 5.3.

A value of this key corresponds to
the return value of the method
get Codebase() of the class
Agent | nf o.

182

CHAPTER 9: THE COMMUNICATION SERVICE

Table 3: Filter Keys

Filter key

Description

Can be
applied to

DESCRI PTI ON

Textual description of the
searched component.

A value of thiskey corresponds to
the return value of the method
get Agent Descri ption()

of the class Agent Pr esent a-
ti on, respectively to the return
value of the method get De-
scription() of the class
Pl acel nf o.

* Agents
* Places

Home location of the searched Agents

component.

(Equal to LO-

A value of this key corresponds t&CATION for
the return value of the methodtationary

get Honme() of the class
Agent | nf o.

The syntax of the corresponding

value must match to a textual re
resentation of the class
de. i kv. grasshopper.
conmuni cat i on.

G asshopper Addr ess,

as defined in Section 5.4.

agents)

p_

| NTERFACENANME

Full qualified class name of th
searched component.

A value of this key corresponds
the return value of the methg
get Agent I nterf ace-
Name() of the classAgent | n-
fo.

e Agents

to
nd

183

PROGRAMMER'’S GUIDE

Table 3: Filter Keys

Filter key

Description

Can be
applied to

DESCRI PTI ON

Textual description of the
searched component.

A value of thiskey corresponds to
the return value of the method
get Agent Descri ption()

of the class Agent Pr esent a-
t i on, respectively to the return
value of the method get De-
scription() of the class
Pl acel nf o.

* Agents
* Places

Home location of the searched Agents

component.

(Equal to LO-

A value of this key corresponds t&CATION for
the return value of the methodtationary

get Home() of the class
Agent | nf o.

The syntax of the correspondir
value must match to a textual re
resentation of the class
de. i kv. grasshopper.
communi cati on.

G asshopper Addr ess,

as defined in Section 5.4.

agents)

9
p_

| NTERFACENANE

Full qualified class name of th
searched component.

A value of this key corresponds
the return value of the methg
get Agent I nterface-
Name() of the classAgent | n-
fo.

e Agents

to
nd

184

CHAPTER 9: THE COMMUNICATION SERVICE

Table 3: Filter Keys

. — Can be
Filter key Description applied to
LASTLOCATI ON Previous location of the searched | « Mobile

component. agents
A value of thiskey corresponds to
the return value of the method
get Last Location() of the
classAgent | nf o.
The syntax of the corresponding
value must match to atextual rep-
resentation of
de. i kv. grasshopper.
conmuni cat i on.
Grasshopper Addr ess,
as defined in Section 5.4.
LOCATI ON Current location of the searcheed Agents

component.
A value of this key corresponds

» Agencies

R Places

the return value of the method

get Locati on() of the
Agentlnfo of the class
Agent Syst em nf o.

The syntax of the corresponding

value must match to a textual re
resentation of the class
de. i kv. grasshopper.
conmuni cat i on.

G asshopper Addr ess,

as defined in Section 5.4.

p_

185

PROGRAMMER'’S GUIDE

Table 3: Filter Keys

Filter key

Description

Can be
applied to

NANVE

Name of the searched component.

A value of thiskey corresponds to
the return value of the method
get Nane() of the class Pl a-
cel nfo or Agent Syst em n-
f o, respectively to the return
value of the method get Agent -
Nane() of the class Agent -
Present ati on.

* Agents
» Agencies
* Places

SERVI CEI D

Identifier of the searched comppes Agents

nent.

A value of this key corresponds to
the return value of the method

getldentifier() ofthe class
AgentInfo or AgentSys-
t em nf o.

The syntax of the correspondir
value must match to a textual re
resentation of

de. i kv. grasshopper.
type.ldentifier,

as defined in Section 5.1.

» Agencies

9
p_

STATE

Current state of the searched cqg
ponent.

A value of this key corresponds
the return value of the methg
getState() of the class
Agent | nf o orPl acel nf o.

m- Agents

* Places
to
nd

TYPE

Type of the searched componen

A value of this key corresponds
the return value of the methg
get Type() of the class
Agentlnfo or AgentSys-
t em nf o.

ts Agents

te Agencies
d

186

CHAPTER 9: THE COMMUNICATION SERVICE

To create an empty filter which matches all entries, just create an empty Creatinga

Sear chFi | t er object. Filter

SearchFilter filter = new SearchFilter();

To define aspecificfilter, createa St r i ng object and initializeit with afilter
rule that matchesthe above syntax. Create aSear chFi | t er object and pro-
vide the previously defined filter rule as parameter of the Sear chFi | t er
constructor. Another possibility isto create an empty Sear chFi | t er object
and useitsset Fi | ter (. ..) method in order to specify thefilter rule.

9.14 Migrating Serversand Clients

The fundamental characteristic of mobile agents is their ability to autono-
mously migrate from one network location to another. This ability may cause
problems if an agent wants to migrate while being involved in a communica-
tion session. The Grasshopper communication serviceisableto handlethefol -
lowing scenarios of migrating agents:

First Migration Scenario: Migrating Server Agent

A client agent creates a proxy of a server agent and starts a communication
session by periodically invoking methods on the proxy. The communication
service forwards the method invocations to the remotely running server agent.

After a few invocations performed by the client agent, the server agent mi-
grates to a new location. After the server agent’s migration, the client agent
again tries to invoke a server method.

Concerning this scenario, two aspects have to be considered:

1. The server agent migrates away before the invoked method has returned a
result to the client agent.

In this case, the method will be completed, even in the absence of the
server agent. The reason is that the method is performed in a separate
thread, created by the communication service. The server agent’s own
thread runs independently in parallel. If the server agent moves away, its
own thread terminates, but its (passive) object instance remains valid as
long as it is referenced by other objects. After completing the method, the
communication service returns the result to the client agent, terminates the
thread that has performed the method, and releases its references to the
server agent’s object instance. After this, the Java garbage collector is able
to remove the server object.

2. The client agent again tries to invoke a server method after the server

187

PROGRAMMER'’S GUIDE

agent has migrated to a new location.

In this case, both involved agencies (i.e., the agency hosting the client
agent as well as the agency hosting the server agent) must be registered at
the same agency domain service. If this condition is fulfilled, the proxy
automatically contacts the agency domain service in order to retrieve the
new location of the server agent. After this, the proxy forwards the method
invocation to the new location. The client agent does not need to be aware
of the fact that the server agent has moved.

Second Migration Scenario: Migrating Client Agent

A client agent creates a proxy of a server agent and starts a communication
session by periodically invoking methods on the proxy. The communication
service forwards the method invocations to the remotely running server agent.
After afew invocations, the client agent migrates to a new location. Once ar-
rived at the new location, the client agent again triesto invoke a method on the
server agent.

The client agent’s proxy remains valid after the migration. Thus, the client can
continue invoking the server methods via the same proxy.

If the client agent invokes the server method asynchronously, the agent is not
blocked until the server method returns. Thus, the client agent may move to
another location right after the invocation, i.e., without waiting for a result. If
the invoked server method does not return any result or the client agent does
not need it, nothing special has to be considered. If the client wants to retrieve
the server result at its new location, the asynchronous method invocation must
be performed with the listener approach. Concerning the client agent’s imple-
mentation, the following conditions must be fulfilled:

« The client agent itself must implement the interfdee i kv. gr ass-
hopper. communi cati on. Resul t Li stener. Thus, the client
agent must provide the methodsul t HasArrived(...).

« After invoking the server method and retrieving fhet ur eResul t
object, the client agent must add itself as listener to this object by invoking
the methochddResul t Li stener(...).

When the server method returns, the methedul t HasArri ved(. . .)

is automatically called, in this way notifying the client agent and allowing it
to handle the result. If the conditions above are fulfilled, the notification is au-
tomatically forwarded to the client agent if it has changed its location after in-
voking the server method. For detailed information about the listener
approach and the asynchronous communication capabilities of Grasshopper in
general, please refer to Section 9.6.

188

CHAPTER 9: THE COMMUNICATION SERVICE

The following example incorporates all migration scenarios described above.

9.15 Migration Scenario

The example scenario for showing the migration capabilities of communicat-
ing agents consists of three classes/interfaces, covered by the package exam
pl es. m grati ngCom

» MgratingServer Agent (see Example 25 in Section 9.15.1): An
agent that provides one method to the communication service.

« | MgratingServer Agent (see Example 26 in Section 9.15.1): The
server interface that contains the method which has to be accessible for the
client agent. This interface is the basis for the generation of server proxies.

« MgratingCient Agent (seein Example 27 Section 9.15.2): The cli-
ent agent that invokes the accessible method of the server.

0.15.1 Example: MigratingSer ver Agent

The purpose of the MigratingServerAgent is to perform a method that is in-
voked by the MigratingClientAgent via the Grasshopper communication ser-
vice. This method suspends the thread in which it is running, just in order to
produce a delay before returning a result. The purpose of this delay is to enable
the MigratingClientAgent to move to another location before the server meth-
od has returned a result.

Inside itsi ni t (. ..) method, the MigratingServerAgent expects a creatiovi(...)
parameter, defining the delay for the server method in milliseconds. If no de-
lay is defined by the user, the default value of 4000 milliseconds is used.

Thel i ve() method creates a graphical user interface, requesting a newv}
cation from the user. After the user has pressed the OK button of the GUI, the
agent tries to migrate to the specified location where thee() method is
started again.

The method namesler ver Met hod(. . .) is meant to be called by the Mi-server-
gratingClientAgent. This method produces a delay in order to enable the'{fi"od(-)
gratingClientAgent to migrate to another location before returning a result.

Example 25: MigratingServerAgent

package exanpl es. m grati ngCom

189

PROGRAMMER'’S GUIDE

i nport de.ikv.grasshopper. agent. Mbi |l eAgent;
i nport de.ikv.grasshopper.comuni cation. *;

i mport javax.sw ng. *;

i nport java.awt.*;

// This class realizes the server agent of the m grating
// conmuni cati on scenari o.
public class M gratingServer Agent extends Mobil eAgent
i npl enments | M gratingServer Agent
{
// Data state of the agent, since not transient
i nt del ay;

// Required creation argunent:

// args[0] = delay tine between invocation and
// term nation of the nethod ’serverMethod’.
public void init(Cbject[] creationArgs) {

if (creationArgs == null |
creationArgs.length < 1){
| og(" Creation argunent needed: <del ayTi me>");
log("Exiting.");
t hrow new Runti nmeException();

}
if (creationArgs != null)
del ay =
I nteger.parselnt((String)creationArgs[O0]);
el se
del ay = 4000;

}

public String getName() {
return "M gratingServer Agent";
}

public void live() {
String | ocation;

log("Waiting for new |l ocation...");
// Vit for user input
| ocati on = JOpti onPane. showl nput Di al og(
null, "Were shall | go?");
if (location !'= null) {
log("Trying to nove...");
try {
// G away!
nove(new Grasshopper Address(| ocation));

}

190

CHAPTER 9: THE COMMUNICATION SERVICE

catch (Exception e) {
log("Mgration failed: ", e);
}

}
}

// The follow ng nethod i s accessible via the
// conmuni cation service.
public String serverMethod(int value) {

| og("Performng client request with value = " +
val ue);

try {
Thread. current Thread() . sl eep(del ay);

}
catch (InterruptedException e) {

log("Sleep interrupted.");
}
| og("Returning result to client.\n");
return new String("Server result =" +
Integer.toString(val ue));
}

}

Example 26: IMigratingServerAgent

package exanpl es. m grati ngCom

public interface | M gratingServer Agent

{

public String serverMethod(int val ue);

}

9.15.2 Example: MigratingClientAgent

The MigratingClientAgent periodically invokesthe method named ser ver -

Met hod(. . .) of the MigratingServerAgent viathe communication service.

By invoking the client agent’s action() method, a user can order the agent to
move to another location.

The MigratingClientAgent maintains the following instance variables which
are, since not declared transient, part of the agent’s data state:

» syncServer Proxy: This variable maintains a proxy of the Migrating-
ServerAgent which is able to handle synchronous method calls. Its initial-
ization is performed inside theinit(...) method of the

191

init(...)

action()

PROGRAMMER'’S GUIDE

MigratingClientAgent.

e asyncSer ver Proxy: This variable maintains a proxy of the Migrating-
ServerAgent which is able to handle asynchronous method calls. Its initial-
ization is performed inside theinit(...) method of the
MigratingClientAgent.

« futureResult: This variable maintains &ut ur eResul t object
which is responsible for retrieving an asynchronously arriving result from
the MigratingServerAgent.

« server Par anet er : The integer value of this variable is used as param-
eter of the methoder ver Met hod(. . .) of the MigratingServerAgent.
The value is incremented after each method call on the MigratingServer-
Agent in order to enable the user to find corresponding outputs performed
by the client and the server in the text console windows of both involved
agencies.

 requestedLocation: This variable is Initialized inside the
action() method of the MigratingClientAgent. By means of this
method, which can be called by the user via the agency’s Ul, the agent
requests a new location. Inside theve() method, the agent migrates to
this location as soon as it has been specified by the user.

e serverld: This variable maintains the identifier of the contacted
MigratingServerAgent.

« comvbde: The value of this variable has to be specified by the user as
first creation argument for the MigratingClientAgent. Allowed values are
,Sync* and ,async”. Depending on the specified value, the client agent
performs the server method synchronously or asynchronously.

Insideitsi ni t (. ..) method, the MigratingClientAgent stores the provided
creation arguments in its non-transient instance variables. After this, the agent
contacts an agency domain service vialtRegi on interface of the local
agency in order to look for a running MigratingServerAgent. The client agent
selects the first server agent from the retrieved list and creates two server prox-
ies: one for synchronous and one for asynchronous communication. Finally,
the instance variableer ver Par anet er is set to 0.

Theact i on() method of the client agent enables a user to send the agent to
a new location. Inside the method (which can be invoked by the user via the
agency’s Ul, as explained in Chapter 7), an input dialog window is created, re-
guesting a new destination location from the user. The location is maintained
by the instance variable equest edLocati on. The corresponding
nove(...) operation is called inside the ageitisve() method.

192

CHAPTER 9: THE COMMUNICATION SERVICE

Themethod syncLi ve() is called from inside the agent’s ve() method, synclLive()
if the synchronous communication mode has been selected by the user. Inside
this method, the agent periodically invokes the metlsel ver -

Met hod(...) of the MigratingServerAgent via the synchronous server
proxy. The method calls are performed insiddal e loop which ends either

due to a caught communication exception or due to a retrieved migration re-
guest performed by the user.

An Obj ect Not BoundExcept i on may occur due to the call of the server
method if the server agent is not available for communication. Two possible
reasons may lead to this exception:

» The MigratingServerAgent is not alive anymore.
» The MigratingServerAgent is currently migrating to another location.

In the second case, the MigratingServerAgent will probably become available
again after a short time. Thus, the client agent retries the method invocation
five times, waiting for one second between two communication attempts.

If any other exception is thrown, the client agent assumes that the server agent
will not become available again and thus terminateshid e loop at once.

If the reason for terminating thehi | e loop was a migration request per-
formed by a user, the client agent tries to move to the new destination location.

The methodasyncLi ve() is called from inside the agent’s ve() meth- asyncLive()
od, if the asynchronous communication mode has been selected by the user.
Inside this method, the agent invokes the metedver Met hod(. . .) of

the MigratingServerAgent via the asynchronous server proxy.

After invoking the server method, the client agent retrieves a reference of the
Fut ur eResul t object from the asynchronous server proxy and uses this
object for registering itself as result listener. After this, the client agent’s meth-
odresul t HasArrived(...) isautomatically called due to an incoming
server result. Please refer to Section 9.5 for detailed information about asyn-
chronous communication in Grasshopper.

Inside itsl i ve() method, the agent checks the availability of the Migratinig«()
ServerAgent. If one of the server proxies refers to null, the client agent as-
sumes that no server agent has been found and removes itself. Otherwise, the
client agent invokes either the metlgdhcLi ve() orasynclLi ve(), de-

pending on the communication mode that has been selected by the user.

If the user has selected the asynchronous communication mode, the method
resul t HasArrived(...) is automatically invoked after retrieving arﬁ‘\llg‘as'?r
asynchronously incoming server result. Please refer to Section 9.5 for detaile

information about asynchronous communication in Grasshopper.

193

PROGRAMMER'’S GUIDE

Example 27: MigratingClientAgent

package exanpl es. m grati ngCom

i mport de.ikv.grasshopper. agent. *;

i nport de.ikv.grasshopper. agency. *;

i nport de.ikv.grasshopper.type.*;

i mport de.ikv.grasshopper.comuni cation. *;
i nport de.ikv.grasshopper.util.*;

i nport javax.sw ng. *;

i mport java.awt.*;

// This class realizes the client agent of the m grating
// conmuni cati on scenari o.
public class MgratingC ient Agent extends Mbil eAgent

{

194

i npl ements Resul tLi stener

// Data state of the agent, since not transient
I M gratingServer Agent syncServer Proxy;

I M gratingServer Agent asyncServer Proxy;
FutureResult futureResult;

i nt serverParaneter;

String requestedLocati on;

String serverld,

String comvbde;

// Required creation argunents:
// args[0] = conmmuni cation node. Expected val ues =
// "sync" or "async”
public void init(CQbject[] creationArgs) {
| Regi on regi onProxy;
Agent I nfo[] serverlnfos;

if (creationArgs == null |
creationArgs.length < 1) {
| og("Creation argunent needed: <comvbde>");
log("Exiting.");
t hrow new Runti meException();

}
// Get creation argunent
// com\vbde: Expected val ues = "sync" or "async”

comvbde = (String) creationArgs[O0];

// Get domain service proxy of |ocal agency
regi onProxy = get Regi on();

// Look for the server agent in the

// agency domain service

CHAPTER 9: THE COMMUNICATION SERVICE

SearchFilter filter =
new Sear chFil ter(
Sear chFi | t er. NAME+" =M gr at i ngSer ver Agent ") ;
serverlinfos = regi onProxy.|istAgents(
null, filter);
// Create proxies of the server agent
// (ne for sync. and one for async. conmunication)
syncServer Proxy = nul | ;
asyncServer Proxy = null;
serverld = null
if (serverinfos !'=null) {
serverld =
serverinfos[0].getldentifier().toString();
syncServerProxy = (I M gratingServer Agent)
Pr oxyGener at or. newl nst ance(
I M gratingServer Agent . cl ass,
serverld, ProxyCenerator.SYNC)
asyncServerProxy = (I M gratingServerAgent)
Pr oxyCGener at or. newl nst ance(
I M gratingServer Agent . cl ass,
serverld, ProxyCGenerator.ASYNC)
}
// Initialize paranmeter for server nethod.
server Paraneter = 0;

}

public String getNanme() ({
return "M gratingCdientAgent";
}

// By invoking this nethod via the agency’s user
// interface, the user can nove the agent to anot her
// | ocation.
public void action() {
i f (comvbde. equal s("sync")) {
log("Waiting for new |l ocation...");
request edLocati on =
JOpt i onPane. show nput Di al og(
null, "Were shall | go?");

}
}

public void beforeMve() {
l og(" Moving.");
}

public void afterMve() {
l og("Arrived.");

195

PROGRAMMER'’S GUIDE

}

// This nethod is performed if the agent has been
// started with the conmuni cation node set to "sync".
public void syncLive() {

String serverResult;

int nunberOf Retries;

nunber 0 Retries = O;
request edLocati on = nul |
while (nunmberO Retries < 5 &&
request edLocation == null) {
try {
log("Calling server nethod with value =" +
server Paraneter);
// | nvoke server nethod synchronously
// by using the sync. server proxy
serverResult =
syncSer ver Proxy. server Met hod(
server Par aneter) ;

server Par anmet er ++;
|l og("Result has arrived: " + serverResult +
"\'n");
}
catch (Qbj ect Not BoundException e) {
// Server agent not found. Possible reason:
// server agent is currently nmigrating
// or server agent has been renoved.
// Retry 5 tines.
| og(" Server agent currently not avail able.\\
Retrying " +
Integer.toString(5 - nunberOf Retries) +
" tinmes...");
nunber Of Ret ri es++;
server Paraneter - -;
// Vit for a second until retrying contact.

try {
Thread. current Thread() . sl eep(1000);

}
catch (InterruptedException e2) {

| og("Sleep interrupted.");
}

catch (Throwable t) {
// Somet hi ng unexpect ed happened. Term nate
// while |oop.
| og(" Conmruni cati on exception caught: ", t);

196

CHAPTER 9: THE COMMUNICATION SERVICE

number O Retries = 5;

}
}
if (requestedLocation !'= null) {
log("Trying to nove...");
try {
// @G away!
nove(
new Grasshopper Addr ess(r equest edLocati on));
}
catch (Exception e) {
request edLocation = null;
log("Mgration failed: ", e);
}
}

}

// This nethod is perforned i f the agent has been
// started with the conmuni cation node set to
// "async".
public void asyncLive() {
i nt nunberOf Retri es;
String requestedLocati on;

log("Waiting for new |l ocation...");
request edLocation =
JOpt i onPane. showl nput Di al og(
nul |, "Were shall | go?");

// I nvoke server nethod asynchronously

// by using the async. server proxy

try {
| og("Starting asynchronous call");
// | nvoke server nethod asynchronously
// by using the async. server proxy
asyncServer Proxy. server Met hod(ser ver Paranet er) ;
// Get futureResult object fromthe proxy
futureResult = ((IFutureResult)

asyncSer ver Proxy) . get FutureResul t ();

// The client agent adds itself as result
// listener to the futureResult object
futureResul t.addResul tLi stener(this);
// Note: The result will be retrieved by the
// nmethod resul t HasArrived
// of the client’s result |istener.
| og("Listening for notification");
server Par anet er ++;

197

PROGRAMMER'’S GUIDE

198

}

pu

}

//
//
//
//

catch (Throwable t) {

| og(" Cannot contact server: ", t);
}
log("Trying to nove...");
try {
// G away!
nmove(new Grasshopper Addr ess(request edLocati on));
}
catch (Exception e) {
log("Mgration failed: ", e);
}
blic void live() {
if (syncServerProxy == null ||
asyncServer Proxy == null) {
| og("No M gratingServer Agent found. Renovi ng\\
nmyself...");
try {
remove();
}

catch (Exception e) {
| og("Renoval failed.");
}
}

i f (comMvbde. equal s("sync"))
syncLive();

el se
asyncLive();

The foll owi ng nethod is only needed if the client
agent has been started in asynchronous node.

The nethod is automatically called when an
asynchronous server result has arrived.

public void resultHasArrived(Result Event e){

Fut ureResult fResult;

String serverResult = null;

| og("Listener notified.");

fResult = (FutureResult) e.getSource();

try {
serverResult = (String) fResult.getResult();
}
catch (Throwable t) {
| og(" Exception caught: ", t);
}

CHAPTER 9: THE COMMUNICATION SERVICE

if (serverResult !'= null)
log("Notified server result =" + serverResult);

9.15.3 Running the Scenario

Requirements:

* A running agency domain service. Note that this service has to be started

before the agencies, and the service’s address has to be specified when
starting the agencies in order to register them. Please refer to the User’s
Guide for more information about how to start agencies and agency
domain services.

Three running agencies

Snce the agents in this scenario create own GUIs that may block the
agency GUI, it is recommended that you do not activate the agency GUI.
Instead, start the agencies just with their textual interface (command
option -tui). Please refer to the paragraphs titled ,Running the Examples*
at the beginning of Chapter 2 in order to get a detailed explanation about
the possibly occurring GUI problems.

If you are using a JDK 1.2 environment, you must have generated a proxy
class (nametlM gr at i ngSer ver Agent P) by invoking the Grasshop-

per stub generator with the interface clabs gr at i ngSer ver Agent

as input parameter. The fileM grati ngServer Agent P. cl ass
should be stored either in a directory belonging to the Java classpath or in
the code base directory of the MigratingClientAgent. In a JDK 1.3 envi-
ronment, this class is not needed. Even if it is available, it will not be used.
Instead, the proxy is dynamically generated by the MigratingClientAgent
at runtime.

Running the Example:

Create a MigratingServerAgent in one of the running agencies (1). This agen-
cy will be referred to as Agency_1 in the scope of this section. As creation ar-
gument, you can optionally provide a delay time in milliseconds. This delay

time will be used by the agent to delay the method that is remotely called by

the MigratingClientAgent. If you do not specify a delay time, the default value

of 4000 milliseconds will be used.

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

199

Synchro-
nous scenar -
io

PROGRAMMER'’S GUIDE

cr a exanples.mgrati ngCom M grati ngServer Agent 5000

Note that you may specify any other (positive) delay time that fits into the
range of ani nt variable. The only purpose of this delay timeisto enable
the user to send the client agent to another location before the server
method returns.

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

Create a MigratingClientAgent in one of the running agencies (2). Do not use
the agency in which the MigratingServerAgent has been created before. The
hosting agency of the MigratingClientAgent agency will be referred to as
Agency_2 in the scope of this section. The MigratingClientAgent expects one
creation argument, specifying the desired communication mode. The mode
may be set to ,sync*” for synchronous communication or ,async* for asynchro-
nous communication.

If you are using the textual user interface of the agency, please create the
agent by using one of the following commands, depending on the desired
communication mode:

» cr a examples.migratingCom.MigratingClientAgent
sync

e cr a examples.migratingCom.MigratingClientAgent
async

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

After creating both agents in the order mentioned above, the behavior of the
scenario depends on the communication mode that has been specified as cre-
ation argument of the MigratingClientAgent:

Synchronous scenario, performed if the MigratingClientAgent has been creat-

200

CHAPTER 9: THE COMMUNICATION SERVICE

ed with the value ,sync* as demanded communication mode:

\ T 7b— g‘ Migrating
Proxy / \ Server
Invoke N €I Agent
server Return | Agency 3
result
@ 6 @
Migrating
Agency Client \
API Agent
Migrating
Server
Agent
Agency 2 Serverproxy / Agency 1

Agency Ul

Create
MigratingClientAgent

Create
MigratingClientAgent

Order

User input migration

Figure 22: Synchronous Migration Scenario

The MigratingServerAgent creates a graphical input dialog window,
requesting a new destination location from the user.

The MigratingClientAgent creates a proxy of the MigratingServerAgent
(3) and periodically invokes the methedr ver Met hod(. . .) via the
proxy (4). Before returning, the server method produces the previously
specified delay or the default delay of 4000 milliseconds, as described
above.

Please type the address of the third agency into the server agent's GUI, i.e.,
the address of the agency in which no agent is currently running, and press
the OK button (5a). This agency is referred to as Agency_3 in the scope of
this section. You will see that the server agent is migrating at once (5b),
and you will also notice that the currently running metised ver -

Met hod(. . .), invoked by the MigratingClientAgent before the migra-
tion request, is completed in spite of the absence of the server agent (6).
Finally you will notice that all subsequent method invocations, performed
by the client agent (7a), are automatically forwarded to the new location of
the MigratingServerAgent (7b).

Please invoke thact i on() method of the MigratingClientAgent. If you
are using the textual user interface of the agency, you can do this via the

201

PROGRAMMER'’S GUIDE

i nvoke command. (Please refer to the User’s Guide for detailed informa-
tion about this command.) After performing this command, the client
agent creates a graphical user interface, requesting a new destination loca-
tion. Please type in the address of Agency_2 and press the OK button. You
will see that the client agent waits for the completion of the previously
invoked server method and, after this, migrates to Agency_ 2. Once arrived
at its new destination, the client agent continues invoking the server
method.

The client agent as well as the server agent perform outputs on the text
consoles of their hosting agency. Among others, these outputs comprise
the value of the integer variabseer ver Par anet er which is incre-
mented after each method call. By looking at this number, you can see that
the result of every invoked method is retrieved by the client agent, inde-
pendent of the migration behavior of both agents.

Please proceed with the scenario by moving both agents back and forth
and looking at the output occurring in the agencies’ text consoles.

Asynchro- Asynchronous scenario, performed if the MigratingClientAgent has been cre-
Nnous scenar -

i ated with the value ,async” as demanded communication mode:
Agency 3
Migrating{\,__{)
Client /
Agent

Migrating
Server

— Agent
o

Future Result

Agency 2 Agency 1

\ Create
b Migrating
(:> > " T, Server

Agent

Order || e
. migration
User input

Figure 23: Asynchronous Migration Scenario

Agency Miggt_ingt
API 'en

Server

MigratingClientAgent

202

CHAPTER 9: THE COMMUNICATION SERVICE

The MigratingServerAgent creates a graphical input dialog window,
requesting a new destination location from the user.

After creating a server proxy (3), the MigratingClientAgent also creates a
graphical input dialog window, requesting a new destination location from
the user.

Please type the address of Agency_3 into the input dialog window of the
client agent and press the OK button (4).

The client agent invokes the server method asynchronously (5), gets a
FutureResult object from the server proxy (6), and registersitself as result
listener (7). After this, the client agent and migrates to Agency 3 without
waiting for the result of the invoked method (8). By looking at the client
agent’s output in the text console of Agency_3, you will notice that the
result of the server method is automatically forwarded to the client agent’s
new location (9).

Please proceed with the scenario by moving both agents back and forth
and looking at the output occurring in the agencies’ text consoles.

9.15.4 Summary

» The Grasshopper communication service is able to keep track of migrating
server and client agents.

» If a client agent invokes a method on a server agent and the server agent
migrates to another location before completing the method, the method is
completed by the agency even without the presence of the server agent. All
subsequent invocations, performed by the client agent, are automatically
forwarded to the server agent’s new location. Note that this forwarding
mechanism only works if the same agency domain service is available at
all involved agencies.

 If a client agent uses asynchronous, notification-based communication for
invoking methods of a server agent, and if the client agent itself imple-
ments the required result listener interface, then the client agent may
migratebefore retrieving the result of a previously invoked server method.
The communication service will automatically forward the result to the
client agent’s new location.

203

External-
CommSer -
vice

PROGRAMMER'’S GUIDE

9.16 Interacting with External Applications

The sections above have described how to use the different communication
mechanisms of Grasshopper for interactions between agents, agencies, and
agency domain services. However, beside these ,Grasshopper-internal” inter-
actions, the communication service also allows external applications to inter-
act with the Grasshopper platform. The external application may act as
communication client and/or server.

External Client Applications

In order to use the Grasshopper communication service as a client, an external
application has to behave exactly as a Grasshopper agent: the application just
creates a proxy of the desired server object/agent by usingethien-
stance(...) method of the clag¥e. i kv. gr asshopper . comruni -

cati on. ProxyGener at or.

Note: An external application always has to specify the complete server ad-
dress, when creating a server proxy. The simplification to use a combination
of host name and agency name instead (which is possible for client agents if
the local agency is registered at an agency domain service) cannot be applied.
In order to determine the address of a server agent or agency, the external ap-
plication can contact an appropriate region registry by creating a registry
proxy and specifying the complete registry address (see the example below).

External Server Applications

Similar to agents acting as servers, an external application must implement a
server interface, i.e., an interface that defines those methods that have to be
made accessible via the communication service. Please refer to Section 9.1 for
detailed information. Concerning the proxy generation, please refer to Section
9.2.

In order to enable an external application to use the Grasshopper communica-
tion service as a server, Grasshopper provides the adadskv. gr ass-
hopper . communi cat i on. Ext er nal CommServi ce. This class
provides the following methods:

« startReceiver(...): This method starts a new communication
receiver at théext er nal Conmruni cat i onSer vi ce object. A com-
munication receiver is characterized by a Grasshopper address, and it is
needed by communication clients for accessing server objects. The com-
plete address of the communication receiver has to be provided as method
parameter. Note that one instance of the diadser nal Conmuni ca-

t i onSer vi ce can maintain several communication receivers, for exam-

204

CHAPTER 9: THE COMMUNICATION SERVICE

plein order to support different protocols.

regi sterQbject(...): This method registers a server object at the
Ext er nal Communi cati onSer vi ce instance. Similar to Grasshop-

per server agents, a server object is characterized by implementing a server
interface, i.e., a Java interface that defines those methods of the server
object which are to be accessible for clients via the communication ser-
vice.

deregi steroject(...): This method deregisters a server object
from theExt er nal Conmruni cat i onSer vi ce object.

shut down() : This method terminates thext er nal Communi ca-
ti onServi ce object.

The external application has to perform the following steps in order to become
accessible as server:

1.

Create an instance of the cldss i kv. gr asshopper. communi ca-
ti on. Ext er nal CormtSer vi ce.

. Create an instance of the class i kv. gr asshopper . comruni ca-

ti on. G asshopper Addr ess. As constructor argument, provide a
complete Grasshopper address. This address will be used later on by cli-
ents to connect themselves to the server object.

. Start a communication receiver on thet er nal CormSer vi ce object

that has been created in step 1. As method parameter, provide the Grass-
hopper address object that has been created in step 2. (Note that, similar to
Grasshopper agencies and region registries, multiple communication
receivers can be started, e.g., in order to support multiple protocols.)

. Register the server object (i.e., the object that implements the server inter-

face of the external application) at thet er nal ComrSer vi ce object.

The server object may be the application itself or a separate Java object.
As method parameters, an identifier for the server object as well as a refer-
ence of the server object have to be specified. The identifier will be used

later on for identifying the server object when a client wants to create a

server proxy. (Note that in the case of Grasshopper agents, the automati-
cally generated agent identifier is used for this purpose. In the case of an
external application, the identifier is user-defined, and thus its uniqueness
is not guaranteed.)

205

Creation ar-
guments

main(...)

PROGRAMMER'’S GUIDE

0.17 External Communication Scenario

Thefollowing examples shows how an external application can usethe Grass-
hopper communication service. The external application actsin the client and
in the server role.

The example scenario consists of the following classes/interfaces, covered by
the package exanpl es. ext er nal Com

» External Applicati on (see Example 28 in Section 9.17.1): A stand-
alone Java application that interacts with the Grasshopper environment as
communication client and server.

* Server bj ect (see Example 29 in Section 9.17.1): The actual server
object class. An instance of this class is created by the ExternalApplica-
tion, and it is contacted by the ExternalAccessAgent that acts as a client to
this object.

* | Server Obj ect (see Example 30 in Section 9.17.1): The server inter-
face of the external application, implemented by the class ServerObject.

» Ext er nal AccessAgent (see Example 31 in Section 9.17.2): A Grass-
hopper agent that is created by the ExternalApplication and that acts as a
client on the ServerObiject.

* | Ext ernal AccessAgent (see Example 32 in Section 9.17.2): The
server interface of the ExternalAccessAgent.

0.17.1 Example: ExternalApplication

Class ExternalApplication

The class ExternalApplication acts as client as well as server of the Grasshop-
per communication service. It realizes a stand-alone Java application that re-
quires the following creation arguments:

* The complete address of a running region registry

* An identifier for the server object. This name will be used later on by the
ExternalAccessAgent to create a proxy of the server object.

e an address for the communication receiver that will be created by the
ExternalApplication. This address will be used later on by the ExternalAc-
cessAgent to create a proxy of the server object.

At the beginning of its main(...) method, the ExternalApplication performs the
following steps:

206

CHAPTER 9: THE COMMUNICATION SERVICE

1.
2.
3.

4.

creation of the server object
creation of a Ext er nal ConmfSer vi ce object

start of a communication receiver on the Ext er nal CormBer vi ce
object

registration of the server object at the Ext er nal CormSer vi ce object.

After these steps, the server object isaccessiblefor clientsviathe Grasshopper
communication service, provided that the client knows the address of the com-
munication receiver as well as the class and (user-defined) identifier of the
server object.

Now the External Application acts as client on several Grasshopper compo-
nents by performing the following steps:

5.

© © N o

creation of a proxy of the region registry.

retrieval of alist of all agenciesthat are registered at the region registry
creation of a proxy of thefirst agency in the retrieved list

creation of a new place inside the contacted agency

creation of an ExternalAccessAgent in the place 'InformationDesk’ of the
contacted agency

10.creation of a proxy of the created agent by using the agent’s server inter-

face IExternalAccessAgent

11.invocation of an agent method, ordering the agent to move to the place

that has been created in step 8.

Example 28: ExternalApplication

package exanpl es. ext er nal Com

i mport de.ikv.grasshopper.comuni cation.*;

i nport de.ikv.grasshopper. agency. *;

i nport de.ikv.grasshopper.util. SearchFilter;
i mport de.ikv.grasshopper.type.*;

i nport exanpl es. si npl eCom *;

// This class realizes a stand-al one application that
// acts as client as well as a server for the agent
// ’ External AccessAgent’ .
public class External Application
{
public static void main(String args[])
t hrows Exception {

207

PROGRAMMER'’S GUIDE

// Creation argunents:

// args[0] = Region registry address

// args[1l] = Server object identifier

// args[2] = Conmunication service address
// args[3] = Agent code base

if (args == null || args.length < 4) {
Systemout. println("## External Application:\\
Creation argunents needed: <registryAddress>\\
<server bj ect | d> <commBer vi ceAddr ess>\\
<agent Codebase>");
Systemout.println("## Exiting.");
Systemexit(1);

}

String registryAddress = args[0];

String serverCbjectld = args[1];

G asshopper Address commBSer vi ceAddr ess =
new Grasshopper Address(args| 2]);

String agent Codebase = args| 3];

// Create server object

System out. println("## External Application:\\
Creating server object");

Server Obj ect server(Cbject = new Server Qbj ect();

// Create conmuni cation service
Ext er nal ConrmBer vi ce commfServi ce = new
Ext er nal CormSer vi ce() ;

// Start conmunication receiver
commBer vi ce. start Recei ver (commBSer vi ceAddr ess) ;

// Regi ster server object at conmuni cation service

Systemout. println("## External Application:\\

Regi steri ng server object");

commBer vi ce. regi ster Qbj ect (server vj ect | d,
(Server Obj ect) serverbject);

// Contact region registry
Systemout. println("## External Application:\\
Contacting region registry '" + registryAddress +
vt
Grasshopper Addr ess regi onAddr =
new Grasshopper Addr ess(regi stryAddress);
| Regi onRegi stration regi onProxy =
(1 Regi onRegi strati on)
Pr oxyCGener at or. newl nst ance(
| Regi onRegi stration. cl ass,
regi onAddr . gener at eRegi onl d(),

208

CHAPTER 9: THE COMMUNICATION SERVICE

regi onAddr) ;

// Request a list of all registered agencies from
// the region registry
Agent System nfo[] agent System nfo =
regi onProxy. | i st Agenci es(newSearchFilter());
Systemout.println("## External Application: " +
agent System nfo.length + " agencies found.");
for (int i = 0; i < agentSystem nfo.length; i++){
Systemout. printl n("## "+ (i1 + "L+
agent System nfo[i].getLocation());
}

// Contact first agency of the Iist
System out. println("## External Application:\\
Contacting agency '" +
agent Syst em nf o[O] . get Locati on().
gener at eAgent System d() + "'.");
G asshopper Addr ess address =
agent System nf o[O] . get Locati on();
String server Addresses[] =
regi onProxy. | ookupConmuni cati onSer ver (
addr ess. gener at eAgent System d()) ;
Systemout. println("## External Application:\\
The agency has the foll ow ng comuni cation\\
servers:");
for(int i = 0; i < serverAddresses.length; i++){
Systemout. printl n("## T+
server Addresses[i]);
}
Systemout. println("## External Application:\\
Sel ecting server " + serverAddresses[0]);
Gr asshopper Addr ess agencyAddress =
new Grasshopper Addr ess(server Addresses[0]);
| Agent Syst em agencyProxy = (| Agent System)
Pr oxyCGener at or . newl nst ance(
| Agent System cl ass,
agencyAddr ess. gener at eAgent System d(),
agencyAddr ess) ;

// Create a new place inside the contacted agency.
Systemout. println("## External Application:\\
Creating place 'NewPl ace’ in contacted agency.");
agencyProxy. creat ePl ace(" NewPl ace", "");

// Create an agent in the place ’'I|nfornmationDesk’

// of the contacted agency.
System out. println("## External Application:\\

209

PROGRAMMER'’S GUIDE

Creating agent inside the place\\
"I nformationDesk’.");
bj ect agent Creati onArgs[] = new (bject][2];
agent Creati onArgs[0] = (String)serverQbjectld,
agent Creati onArgs[1] =
(String)comBervi ceAddress.toString();
Agent I nfo agentinfo =
agencyPr oxy. cr eat eAgent (
"exanpl es. ext er nal Com Ext er nal AccessAgent ",
agent Codebase, "", agentCreati onArgs);

// Contact the new agent.
Systemout. println("## External Application:\\
Contacting the new agent.");
| Ext er nal AccessAgent agent Proxy =
(I Ext er nal AccessAgent)
Pr oxyCGener at or. newl nst ance(
| Ext er nal AccessAgent. cl ass,
agentInfo.getldentifier(),
agencyAddr ess);

// Mbve the agent to the new pl ace via the agent’s
// own “go(...)’ nethod.

Systemout. println("## External Application: \\
Movi ng the agent to the place ' NewPl ace’.");
Grasshopper Addr ess newlLocati on = agencyAddr ess;
newLocat i on. set Pl ace(" NewPl ace");

agent Proxy. go(newLocation.toString());

// That’s all

Systemout. println("## External Application:\\
Ready. ") ;

System exit(0);

Class Server Object

This classrepresentsthe server part of the External Application. It implements
the method pri nt Message(...) that is defined in the corresponding
server interface | ServerObject.

Example 29: ServerObject

package exanpl es. ext er nal Com

// This class realizes a server object that is offered

210

CHAPTER 9: THE COMMUNICATION SERVICE

// by the stand-al one application
// ’ External Application’.
// It s accessible for asshopper agents via the
// conmmuni cation service
public class ServerQbject inplenents | Server (bj ect
{
public void printMessage(String nsg) {
Systemout. println("## Server Qbject: \\
Receiving nmessage: '" + nsg + "’.");
}
}

I nter face | Server Object

This interface represents the server interface that isimplemented by the class
ServerObject and that is used by the External AccessAgent for creating aproxy
of the server object.

Example 30: | ServerObject

package exanpl es. ext er nal Com

public interface | ServerQbject

{
}

public void printMessage(String nsg);

0.17.2 Example: External AccessAgent

Class Exter nal AccessAgent
The External A ccessA gent maintains the following instance variables:

Inst_ance
variables

» server Qbj ect Addr ess: the complete address of the server object
that is provided by the ExternalApplication. This address is delivered to

the agent as creation argument.

 server Qbj ect | d: the (user-defined) identifier of the server object.

This identifier is delivered to the agent as creation argument.

» server Qbj ect Proxy: a proxy to the server object, created inside the

agent'sinit(...) method

Inside itsi ni t (. ..) method, the agent creates a proxy of the server objett...)
and invokes ther i nt Message(. . .) method on this object. For the cre-
ation of the proxy, the client agent uses the server object’s interface, the server

211

go(...)

PROGRAMMER'’S GUIDE

object identifier, and the address of the communication receiver. All these pa-
rameters have been delivered by the ExternalApplication during the agent’s
creation.

The agent'ggo(. . .) method is accessible via the communication service,
since it is defined in the agent’s server interface IExternalAccessAgent. The
ExternalApplication uses this method to move the agent to a new place.

After its creation as well as before and after its migration, the agent invokes
the methodr i nt Message(...) on the server object of the ExternalAp-
plication.

Example 31: ExternalAccessAgent

package exanpl es. ext er nal Com

i mport de.ikv.grasshopper. agent. *;
i nport de.ikv.grasshopper.comuni cation. *;
i nport de.ikv.grasshopper.type.ldentifier;
i mport de.ikv.grasshopper. agency.

Agent Cr eat i onFai | edExcepti on;

// This class realizes an agent that acts as client as
// well as a server for the stand-al one application

// ’ External Application’.

publ i c cl ass External AccessAgent extends Mobil eAgent
i mpl enents | Ext er nal AccessAgent

{

G asshopper Addr ess server Obj ect Addr ess;
Identifier server(Qbjectld,
| Server Obj ect server Obj ect Pr oxy;

// Creation argunents:
// args[0] = Nane of the external server object that

// has to be contacted by the agent
// args[1] = Address of the external conmunicytion
// recei ver that has to be contacted by the agent

public void init(QOoject[] args) {

if (args == null || args.length < 2) {
l og(" Creation argunents needed:\\
<Server Obj ect Name> <ConRecei ver Addr ess>") ;
log("Exiting.");
t hrow new Runti nmeException();
}
String server Qoj ect Nane
String server Qbj ect Addr

String)args[0];
String)args[1];

—

212

CHAPTER 9: THE COMMUNICATION SERVICE

// Contact the server object which has been
// created by the server application
| og(" Creating proxy of server object");
server (bj ect Address = new
G asshopper Addr ess(server Gbj ect Addr) ;
server (bjectld = new
I dentifier(serverject Nane. get Bytes());
server bj ect Proxy =
(1 Server Ohj ect) ProxyGener at or. new nst ance(
exanpl es. ext ernal Com | Server (bj ect . cl ass,
server (bj ectl d,
server (bj ect Addr ess) ;

// | nvoke the server object’s nethod
| og("Notifying server about my creation.");
server Cbj ect Proxy. pri nt Message(
"Ext ernal AccessAgent created.");
}

public String getName() {
return "External AccessAgent”

}

public void afterMve() {
| og("Notifying server about ny arrival.");
server Qbj ect Proxy. pri nt Message(
"Ext ernal AccessAgent arrived.");
}

public void go(String |ocation) {
| og(" Roger, nmoving to " + location);
try {
| og(" Notifying server about my migration.");
server Cbj ect Proxy. pri nt Message(
" Ext er nal AccessAgent noving.");
nove(new Grasshopper Address(| ocation));

}
catch (Exception e) {
log("Mgration failed. Exception =", e);
server Cbj ect Proxy. pri nt Message(
" Ext er nal AccessAgent coul dn’t nove.");
}

}

public void live() {
}

213

PROGRAMMER'’S GUIDE

Interface | Exter nal AccessAgent

Thisinterface represents the server interface that isimplemented by the Exter-
nal AccessAgent and that is used by the External Application for creating a
proxy of the agent.

Example 32: |External AccessAgent

package exanpl es. ext ernal Com

public interface | External AccessAgent

{

public void go(String | ocation);

}

9.17.3 Running the Scenario

Requirements:

* Arunning region registry. Note that the registry has to be started before the
agency, and the registry’s address has to be specified when starting the
agency in order to register them. Please refer to the User’s Guide for more
information about how to start agencies and region registries.

* One running agency

* If you are using a JDK 1.2 environment, you must have generated proxy
classes (named Server Cbject P and | External AccessA-
gent P) by invoking the Grasshopper stub generator with the interface
classed Server Obj ect respectivelyl Ext er nal AccessAgent as
input parameter. The fildsSer ver Cbj ect P. cl ass andl Ext er na-
| AccessAgent P. cl ass should be stored either in a directory belong-
ing to the Java classpath or in the code base directory. In a JDK 1.3
environment, the proxy classes are not needed. Even if they are available,
they will not be used. Instead, the proxies are dynamically generated by
the respective clients at runtime.

Running the Example:

Start the ExternalApplication as a stand-alone Java application. The following
creation arguments are required:

* The complete address of the previously started region registry. (To deter-
mine the address, please use theat us’ command in the registry’s
TUL.

214

CHAPTER 9: THE COMMUNICATION SERVICE

* An identifier for the server object that will be created by the ExternalAp-
plication. This identifier will be used by the ExternalAccessAgent for cre-
ating a proxy of the server object.

* A complete Grasshopper address for the communication receiver of the
ExternalApplication. This address will be used by the ExternalAccessA-
gent for creating a proxy of the server object.

j ava exanpl es. ext er nal Com Ext er nal Appl i cati on <reg-
i stryAddress> <serverl d> <conBervi ceAddr ess>

Now have a look at the output in the terminal window of the ExternalApplica-
tion and at the text console and GUI of the running agency.

Region registry - Agency
Create % ExternalAccessAgent
) - Create agent in A %
IRegionRegistration| - pjace InformationDesk 5 Create &
c
5 6 > 2 external S
st N N = g
agencies Move Y S
Registry Agency Agent _~ I
e proxy proxy e proxy v
Create Create Create ,;' ©
registry agency agent 3
proxy proxy proxy n;.
[Sa— >3 %"
_ Server Q2 @ proxy
Establish object/ ‘é
server External g
side| comservice g

External application

Figure 24: External Application Scenario

After its creation, the ExternalApplication establishes its server side (1) by
creating the server object, creating a communication service instance, register-
ing the server object at the communication service, and starting a communica-
tion receiver.

After this, the ExternalApplication acts as a client by creating a proxy of the
region registry (2), contacting the registry by listing all registered agencies (3),
and creating a proxy of the first agency in the retrieved list (4). The External-
Application contacts the agency in order to create a new place (5) and a new
agent (6). From this pointin time on, the ExternalApplication also acts as com-

215

PROGRAMMER'’S GUIDE

munication server, accessed by the External AccessAgent that has been created
in step (6). The External AccessAgent creates a proxy of the ServerObject (7)
and invokes the objectfsr i nt Message(...) method (8).

Now, the ExternalApplication creates a proxy of the agent (9) and moves the
agent to the previously created place (10). Before and after its migration, the
agent again notifies the ExternalApplication about its actions by invoking the

server object’'s methaglr i nt Message(...) (12, 13).

9.17.4 Summary

» The Grasshopper communication service enables external applications/
objects to interact with Grasshopper components (agents, agencies, and
region registries). The external application may act as server and/or client.

» To act as communication client, an external application has to behave in
the same way as usual Grasshopper client agents. That means, the external
application simply creates a proxy of the desired server side component
(e.g., a server agent) and is then able to invoke server methods.

» To act as communication server, the external component has to implement
a server interface (similar to Grasshopper server agents). The object imple-
menting the server interface has to be registered at an instance of the class
de. i kv. grasshopper. conmuni cat i on. Ext er nal CormSer -

Vi ce. After starting a communication receiver on this instance, the server
object is available for communication clients.

* In contrast to Grasshopper agents where a unique identifier is automati-
cally generated by the creating agency, an external server object requires a
user-defined identifier (whose uniqueness is usually not guaranteed.) Cli-
ents have to use this identifier as well as the address of the communication
receiver (started on tHext er nal CormSer vi ce instance) in order to
create a proxy on the external server object.

216

CHAPTER 10: THE PERSISTENCE SERVICE

10T he Persistence Service

The persistence service is part of the core functionality of Grasshopper agen-
cies. Its purpose is to persistently store the data states of al currently hosted
agents aswell asruntime information about all placesthat exist on the agency.

Note that the persistence service is de-activated by default. In order to use its
functionality, an agency has to be started with the paramepar si s- &
t ence’. Besides, only those agents can be persistently stored which are

rived from one of the Grasshopper super classes
Per si st ent Mobi | eAgent or Persi stent Stati onaryAgent,

both contained in the packade. i kv. gr asshopper . agent.

The reason for disabling the persistence service by default is that it has a neg-
ative impact on an agency’s performance. The advantage of preserving the
data states of all running agents is combined with a slower execution.

The API of the persistence service is divided into two parts, one provided by
the agency (interfacde. i kv. grasshopper. agency. | Agent Sys-

t em) and the other provided by the persistence-supporting agent (classes
Per si st ent Mobi | eAgent , orPer si st ent St at i onar yAgent).

Before describing the persistence API, some terms have to be explained:

e save: Saving an agent means to store the agent’s data state (i.e.sathe
agent’s Agentinfo structure as well as all user-defined, non-transient
instance variables of the agent class) in the local file system of the hosting
agency. After the save procedure, the agent continues its task execution.
The save procedure can be performed either automatically by the hosting
agency after a predefined time interval or explicitly via the agency’s or the
agent’s API.

To save a place means to save all agents inside the place. An agency with
activated persistence service automatically saves all places periodically
after a predefined time interval.

The purpose of saving agents and places is to preserve their important
runtime information in case of a system crash or agency shutdown. After
restarting the agency, all saves agents and places are automatically
restarted. The agents are supplied with their preserved data states, so that
they are able to continue their tasks.

« fl ush: To flush an agent means to save the agent and, after this, rerfiose
its instance and thread from the hosting agency. (In contrast to this, the
save procedure does not stop the agent’s execution.

217

reload

PROGRAMMER'’S GUIDE

An agent can be flushed either automatically after a certain timeout period
in which the agent has not been accessed by any clients, or explicitly via
the agency'’s or the agent’s API.

The purpose of flushing an agent is to save the runtime resources of an
agency by removing those agents from the memory which are not accessed
by any clients for a certain period in time. Note that, if an agency is
ordered to flush an agent automatically, this flush procedure is performed
independent of the agent’s active behavidiat means, evenif the agent is
currently performing important tasks inside its | i ve() method, the
agency flushes the agent when the predefined timeout period has passed.

To avoid this, the agent itself can set an infinite timeout period and explic-

itly initiate its flushing after performing its tasks.

* rel oad: The reload procedure is performed on flushed agents in order to
re-activate them. During the reload procedure, the agent instance is re-cre-
ated in the agency in which it has been flushed before. The agent is sup-
plied with its preserved data state, and the agent’s thread is re-started. In
this way, the agent continues its task execution from that point in execu-
tion at which it has been flushed.

An agency automatically reloads a flushed agent if any client component
tries to access it by invoking a method on the flushed agent’'s proxy.
Besides, an agency provides a method that enables the explicit reload of a
flushed agent.

Persistence support via agency API (interfacel Agent Syst en)

« flushAgent (.. .): This method flushes an agent at once. The agent to
be flushed is specified in terms of its identifier.

« flushAgent After(...): This method orders the agency to flush an
agent after a certain timeout period in which the agent has not been
accessed by any client. The agent to be flushed is specified in terms of its
identifier.

* hasPer si st ence() : This methods checks whether the persistence ser-
vice of the agency is active.

* rel oadAgent (. ..): This method explicitly reloads a flushed agent at
once. The agent to be reloaded is specified in terms of its identifier.

e saveAgent (...): This method explicitly saves a flushed agent at
once. The agent to be saved is specified in terms of its identifier.

 saveAgent Every(...): This method orders the agency to save an
agent periodically after a certain time period. The agent to be saved is
specified in terms of its identifier.

218

CHAPTER 10: THE PERSISTENCE SERVICE

Persistence support via agent API (classes Per si st ent Mobi | eAgent
and Per si st ent St ati onar yAgent)

 flush(...): This method flushes the agent at once. Note that an agent

should handle this method with care, since the agent itself is not able to
reload itself. Instead, the agent has to be reloaded by the hosting agency.

get Fl ushTi neout () : This method returns the currently valid timeout
period after which the agent is automatically flushed. The timeout period
defines the period in which the agent has not been accessed by any client.

get Savel nt er val () : This method returns the currently valid interval
after which the agency automatically saves the agent’s data state.

bef or eFl ush(): This method is automatically invoked by the local
agency before an agent is flushed. In this way, similar to the methods
bef oreCopy() andbef oreMove() of mobile agents, the agent is
able to prepare its flushing, if required.

afterLoad(): This method is automatically invoked by the local
agency after a flushed agent has been reloaded. In this way, similar to the
methodsaf t er Move() andaft er Copy() of mobile agents, the agent

is able to prepare the continuation of its task, if required.

bef oreSave(): This method is automatically invoked by the local
agency before an agent is saved. In this way, similar to the methods
bef or eCopy() andbef oreMove() of mobile agents, the agent is
able to prepare its saving, if required.

save() : This method saves the agent’s data state at once.

set Fl ushTi nmeout (.. .): This method sets the flush timeout, i.e., the
period after which the agency flushes the agent if no client has tried to
access the agent.

set Savel nterval (...): This method sets the save interval of the
agent, i.e., the period after which the agency automatically saves the
agent’s data state.

10.1 Example: SleepyAgent

The following examples shows how an agent can access the functionality of
the Grasshopper persistence service.

Inside itsi ni t (. . .) method, the SleepyAgent configures its personal pami(...)
sistence settings: its save interval and its flush timeout period. Both parame-
ters have to be provided to the agent as creation arguments.

219

before-
Flush(), af-
terLoad(),
beforeSave()

action()

live()

PROGRAMMER'’S GUIDE

The methods bef or eFl ush(), afterLoad(), and bef or eSave()
just perform an output in the agency'’s text console in order to show that they
are invoked automatically.

As explained above, a persistent agent is automatically flushed by the hosting
agency if the agent has not been accessed by any clients for the duration of the
flush timeout period. The flushed agent is automatically reloaded by the agen-
cy if a client tries to access the agent. This client may be another agent that
maintains a proxy of the flushed agent, or it may be a user who tries to contact
the agent via the agency’s Ul. Concerning the SleepyAgent, the agent’s

ti on() method is used for triggering the agent’s reload: If the agent has been
flushed and the user invokes the action() method via the agency’s Ul, the agent
is automatically reloaded.

Inside itsl i ve() method, the agent periodically performs an output every
second. The purpose of this behavior is to show the automatic flushing after
the predefined timeout period.

Example 33: SleepyAgent

package exanpl es. si npl e;
i mport de.ikv.grasshopper. agent. *;

public class Sl eepyAgent extends Persi stent Mobil eAgent
{

| ong sheepCount;

| ong savel nterval;

| ong flushTi nmeout;

// Creation argunents:

// args[0] = save interval

// args[1] = flush tineout
public void init(QOoject[] args) {

if (args == null || args.length < 2) {
| og(" Creation argunents needed: <savelnterval >\\
<f 1 ushTi meout >") ;
log("Exiting.");
t hrow new Runti nmeException();

}

savel nterval = new
Integer((String)args[0]).longVal ue();
fl ushTi meout = new
Integer((String)args[1]).longVal ue();
sheepCount = O;

220

CHAPTER 10: THE PERSISTENCE SERVICE

// configure persistence behavi our
set Savel nterval (savel nterval);
set Fl ushTi meout (fl ushTi neout) ;

}

public String getName() {
return "Sl eepyAgent”;

}

public void action() {

}

// This nethod is automatically invoked before the
// agent is saved by the agency.
public void beforeSave() {

| og(" Saving ny nenory...");

}

// This nethod is automatically invoked before the
// agent is flushed by the agency.
public void beforeFlush() {

log("Falling asleep...");

}

// This nethod is automatically invoked after the
// agent has been | oaded by the agency.
public void afterLoad() {
| og("Waki ng up...");
}

public void live() {

while (true) {
| og(" Counting sheeps (" + sheepCount + ")...");
sheepCount ++;

try {
Thread. current Thread() . sl eep(1000);

}
catch (InterruptedException e) {
| og(" Exception caught.", e);
}
}
}
}
Requirements:

221

PROGRAMMER'’S GUIDE

e one running agency, started with enables persistence. Please refer to the
User’s Guide for information about how to start an agency.

Running the example:

Create the SleepyAgent inside the running agency via the agency’s Ul (1).
The required parameters are the agents save interval and its flush timeout
period, both given in milliseconds.

If you are using the textual user interface of the agency, please create the
agent by means of the following command (the given parameter values are
just meant as examples and may be changed):

cr a exanpl es. sinple. Sl eepyAgent 4000 10000

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

After its creation, the agent periodically performs an output in the agency’s
text console, until its timeout period has exceeded. At this point in time,
the agency flushes the agent.

In order to re-activate the agent, invokeatst i on() method via the
'invoke’ command of the agency. In this way, you try to contact the agent
as a client, and this orders the agency to reload the agent. After its reload,
the agent continues performing its boring outputs. Note that the counter
variable starts with the value that was valid when the agent was flushed.

As a variation of the scenario, please start the agent as described above,
and shutdown the agency after a while. (The agent should have been saved
at least once before the shutdown.)

Restart the agency. You will see that the agent will be automatically recre-

ated and continue performing its outputs. Note that the counter variable

starts with the value that was valid when the agent was saved before the
agency’s shutdown.

10.2 Summary

» The persistence service is part of the core functionality of Grasshopper
agencies.

» By default, the persistence service is disabled. To activate it, an agency has
to be started with the parametepéer si st ence’. The reason is that the
persistence service has negative impact on an agency’s performance.

222

CHAPTER 10: THE PERSISTENCE SERVICE

Only those agents can be persistently stored which are derived from one of
the Grasshopper super clas$&s si st ent Mobi | eAgent or Per -
si stent St ati onar yAgent.

Saving an agent means to preserve its data state in the file system of the
hosting agency. Saving a place means to save all agents running inside the
place.

Flushing an agent means to save the agent and afterwards remove the
agent from the agency.

Reloading an agent means to re-activate a flushed agent. The agent contin-
ues its task from that point in execution at which it has been flushed.

223

PROGRAMMER'’S GUIDE

224

CHAPTER 11: SPeECIAL PLACES

11Special Places

By default, every Grasshopper agency offersthe samefunctionality to all host-
ed agents, provided via the interface | Agent Syst em (see Section 9.11).
This functionality is associated with the entire agency. That means, an agent
can access the interface | Agent Sy st emindependent of the place in which
the agent is currently running. Even remote access across a hetwork is possi-
ble.

In addition to this default functionality, a user can add specific capabilitiesto
single places within an agency. This place-related functionality is only acces-
sible from within the place.

The following steps are needed for alocating additional functionality to a
place:

1. Definition of a Java interface whose methods shall represent the place
functionality. These interface methods will only be accessible for agents
running within this place.

Example:
interface |IPlaceService {...}

2. Redlization of a Java class that implements the methods defined by the
interface.

Example:
cl ass Pl aceService inplenents | PlaceService {...}

3. Creation of a place property file which defines the association between a
specific place name and its desired functionality.

The place property file must be stored within a directory that belongs to
the system’s Java classpath, and the filename muskRlece-

Defining a
place service

N, @

T

Place prop-
erty file

Name>. pr operti es where<Pl aceNane> has to be substituted by

the name of the place which shall provide the additional functinality.
Inside the file, the following two properties must be defined:

» InterfaceClass (referring to the place interface as defined in step 1

above)

 Interfacelmpl (referring to the interface implementation as defined in

step 2 above)

225

Searching a
place service

N, @

T

Accessing a
place service

PROGRAMMER'’S GUIDE

Example:
File name = $peci al Pl ace. properti es*”

File content:

| nt erfaced ass=I Pl aceServi ce
| nt erfacel npl =Pl aceSer vi ce

After performing the three steps described above, every place with the name
'Speci al Pl ace’ will automatically offer the functionality realized by the
classPl aceSer vi ce.

In order to find a place that offers a specific functionality, an agent can search
for this place either inside the local agency or inside an agency domain ser-
vice. The search key may be the place name or the name of the interface of-
fered by the place.

Example:
Looking for a place inside the local agency

Pl acel nfo placeList[];
pl aceLi st = get Agent Systen().li stPl aces(
new Sear chFilter(
" | NTERFACENAME=exanpl es. pl ace. | Pl aceService"));

Looking for a place inside the whole region

Pl acel nfo pl aceList[];
pl aceLi st = getRegion().listPlaces(
new Sear chFilter(
" | NTERFACENAME=exanpl es. pl ace. | Pl aceServi ce"));

In order to access the functionality of a specific place, an agent has to migrate
to this place and invoke the methget Pl ace() which is provided by the
agent’s superclasdgent . On the returned reference, the agent invokes the
methodget | nt erf ace() and cast the result to the interface class of the
place service.

Example:

| Pl aceServi ce pl aceService =
(I Pl aceService)(getPlace().getlnterface());

The concept of adding functionality to single places can be of particular inter-
est in combination with defining place-specific access rights. In this way it is
possible to restrict the access to a specific place (and its functionality) to those
agents which have certain certificates. Please refer to Chapter 12 for further
information.

226

CHAPTER 11: SPeECIAL PLACES

The idea behind place services is that they should only be accessible within

the offering places. In order to follow this concept when implementing your

own place service, ssimply avoid making the service class or interface serializ- ol
able. Inthisway, an agent must rel easeits reference to the place service before -
leaving the place, since an agent is generally not able to migrate while main-
taining non-serializable instance variables.

11.1 Example Scenario for Special Places

The following scenario consists of the following three classes/interfaces, cov-
ered by the package exanpl es. pl ace:

Pl aceServi ce (see Example 34 in Section 11.1.1): The class that real-
izes the place functionality and that is accessible only from inside the
place.

* | Pl aceServi ce (see Example 35 in Section 11.1.1): The interface that
defines the place functionality and that is implemented by the class
Pl aceSer vi ce.

Pl aceAccessAgent (see Example 37 in Section 11.1.2): An agent
accessing the place functionality that is realized by the ElagseSer -
Vi ce.

Beside these classes/interfaces, this example scenario comprises a place prop-
erty file (see Example 36 in Section 11.1.1). This file defines which place shall
offer the additional functionality.

11.1.1 Example: PlaceService

The purpose of the class shown in Example 34 is to be added to a specific place
inside an agency. The methedr vi ceAccess() represents the function-

ality of the place which shall be only accessible for agents running inside the
place.

Example 34: PlaceService \

package exanpl es. pl ace; ?

i mport de.ikv.grasshopper.type.*;

public class PlaceService inplenents |PlaceService

{

227

PROGRAMMER'’S GUIDE

i nt accessCount

public PlaceService() {
Systemout.println("l’ma special place.");
accessCount = 1;

}

public void serviceAccess() {
Systemout.println("You re the " + accessCount ++
+ ". agent accessing ny service.");
}

}

Theinterface | Pl aceSer vi ce shown below is meant to be used by agents
in order to access the class PlaceService.

Example 35: |PlaceService

package exanpl es. pl ace;

public interface | Pl aceService

{

public void serviceAccess();

}

Example 36 shows a place property file which specifiesthat theinterface | P-
| aceSer vi ce and the corresponding implementation Pl aceSer vi ce re-
alize the additional functionality for specific places. Thisfile has to be stored
inside the classpath of the agency which shall be able to create such special
places. The name of the property file must be

<pl aceNane>. properties

where <pl aceNane> isthe name of the place that shall offer the additional
functionality.

Example 36: Place Property File

I nterfaceC ass=exanpl es. pl ace. | Pl aceServi ce
I nt erfacel npl =exanpl es. pl ace. Pl aceSer vi ce

11.1.2 Example: PlaceAccessAgent

The PlaceaccessAgent maintains the following instance variables:

228

CHAPTER 11: SPeECIAL PLACES

» state: This variable indicates the case statement withinl thee()
method with which the agent shall start its execution after the next migra-
tion. Please refer to Chapter 6 for learning about the concept of execution
states in the context of Grasshopper.

* pl aceNane: This variable maintains the name of the place which pro-
vides the additional functionality needed by the agent.

* pl aceServi ce: This variable holds a reference of the place’s service
class. Note that this variable is not declared transient and thus belongs to
the agent's data state. However, in contrast to the remaining data state
(comprised by the variablest at e and pl aceNane), the interface
| Pl aceSer vi ce as well as the associated implement&baceSer -

vi ce are intentionally(!) not serializable (i.e. they do not extend/imple-
ment the interfac¢ ava. i 0. Seri al i zabl e). Thus, the agent has to
setpl aceNane to nul | before its next migration. In this way it is not
possible for the agent to access the place service from outside the place.

The agent’s action() method is used to set the instance variable placeService
to null.

The live() method is separated into two execution blocks.

Within the first block ¢t at e = 0), which the agent processes after its ini-
tial creation, the agent looks for a place that offers the intedfaeen

pl es. pl ace. | Pl aceSer vi ce. If such a place exists within the local
agency, the agent determines the place name,sseite to 1 and
migrates to this place.

The agent performs its second execution blatkaf e = 1) after migrat-

ing to the desired place. Inside this block, the agent retrieves a reference to
the place service clag¥d aceSer vi ce and invokes the offered method
servi ceAccess() . After this, the live() method ends.

Example 37: PlaceAccessAgent \

package exanpl es. pl ace; ?

i mport de.ikv.grasshopper. agent. *;

i nport de.ikv.grasshopper.type.*;

i nport de.ikv.grasshopper.util.*;

i mport de.ikv.grasshopper.comuni cation.*;

public class Pl aceAccessAgent extends Mobil eAgent

{

int state;
String pl aceNang;

229

PROGRAMMER'’S GUIDE

| Pl aceServi ce pl aceServi ce;

public void init(Cbject[] creationArgs) {
state =0;

}

public String getName() {
return "PlaceAccessAgent"”;

}

public void action() {
| og(" Rel easi ng pl ace reference.");
pl aceService = nul |

}

public void live() {
Pl acel nfo placeList[];
Gr asshopper Addr ess newlLocat i on;

swtch (state) {
case O:
// Look for a place with the needed
// functionality.
| og(" Looking for place with interface\\
"I Pl aceService' ...");
pl aceLi st = null;
pl aceLi st = get Agent Systen().|i stPl aces(
new Sear chFil ter (" | NTERFACENAVE=exanpl es. \\
pl ace. | Pl aceService"));
if ((placeList '= null) &&
(placeList.length > 0)) {
// Take first place of the found Iist
pl aceNane = pl acelLi st[0].get Nanme();
// Mbve to the special place
newLocati on = new Grasshopper Addr ess(
get Agent System() . getlnfo().
getLocation().toString() + "/" +
pl aceNane) ;
try {
| og("Mwing to " + placeNane);
state = 1,
nove(newLocat i on);
}
cat ch(Exception e) {
l og("Coudn’t nmove to right place." +
newLocation.toString());
state = O;

}

230

CHAPTER 11: SPeECIAL PLACES

}

}

el se
l og("Couldn’t find right place.");
br eak;
case 1:
// Check if agent is running inside the
// desired place
If (getlinfo().getLocation().getPlace().
equal s(pl aceNane)) {
// Desired place reached
// Get place interface
pl aceService = (I Pl aceServi ce)
(get Pl ace().getlnterface());
// Access place functionality
| og(" Accessing place functionality");
If (placeService != null)
pl aceServi ce. servi ceAccess();
el se
l og("l got lost. Place does not \\
provi de needed service.");
}
el se {
// Agent is not in the desired place
log ("M gration has failed. Place " +
pl aceNane + "’ not reached.");
if (getInfo().getLocation().getPlace().
equal s("I nformati onDesk"))
| og(" Maybe | don’t have the needed \\
access rights :-(");
}
state = O,
br eak;

log("Exiting.");

11.1.3 Running the Scenario

This section explains how to run the example whose parts (i.e., Pl aceSer -
vice, | Pl aceServi ce and Pl aceAccessAgent) have been intro-
duced in the previous sections.

Requirements:

« One running agency.

231

PROGRAMMER'’S GUIDE

* The classes PlaceService and IPlaceService have been stored in the class-
path of the running agency.

» A place property file (see Example 36 in Section 11.1.1) has been created
and stored in the classpath of the running agency. The name of this file is
Smart Pl ace. properti es.

(Note that you may use any filename ending witpr'operti es’. The
character sequence before this suffix represents the name of the place that
shall offer the additional functionality.)

Running the Example:

Create a place name8rar t Pl ace’ inside the running agency. If you
are using the textual user interface of the agency, please create the place by
means of the following command:

cr p Smart Pl ace

The place will confirm its creation in terms of the following textual output:
'I'm a special place.’.

Create the PlaceAccessAgent inside the running agency. If you are using
the textual user interface of the agency, please create the agent by means of
the following command:

cr a exanpl es. pl ace. Pl aceaccessAgent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

Since you did not define the place in which the agent shall be crerated, the
agency creates the agent within the default place InformationDesk.

The first action of the agent is to look for a place which provides the inter-
face exanpl es. pl ace. | Pl aceSer vi ce’. After this, the agent
determines the corresponding place name and migrates to this place. Once
arrived, the agent invokes the mettsst vi ceAccess().

Now try to move the agent to another place. If you are using the agency’s
GUI, you can simply do this via drag and drop. If you are using the TUI,
please perform the following command (after substituting the agent num-
ber '#4’, the host namenyhost ' as well as the port number000’ by

the corresponding values of your running agency):

m #4 socket://myhost: 7000/ | nf or mat i onDesk

You will see that the agent cannot migrate. The error message of the
agency will be

Fail ed to nove agent!

232

CHAPTER 11: SPeECIAL PLACES

An agent could not be externalized

The reason for thisfailureisthat the agent tried to run away with the refer-
ence of the place service in its data state.

Now invoke the agentact i on() method, either by double-klicking on
the agent icon inside the agency GUI or by invoking the following com-
mand on the textual console (again by substituting the agent nutaber ’
with the number of your agent):

i nvoke #4
The agent releases its reference to the place service.

Try again to migrate the agent by repreating tio@e command men-
tioned above. You will see that the agent now migrates to the place
| nf or mat i onDesk. (However, since the guy seems to be crazy about
using the place service, he migrates back to the Samet Pl ace right

after arriving at thé nf or mat i onDesk.)

233

PROGRAMMER'’S GUIDE

234

CHAPTER 12: THE SECURITY SERVICE

12T he Security Service

Grasshopper supports two kinds of security mechanisms:

» External security protects all remote interactions that are performed via the
Grasshopper communication service. For this purpose, X.509 certificates
and the Secure Socket Layer (SSL) protocol are used. SSL is an industry
standard protocol that makes use of both symmetric and asymmetric cryp-
tography. By using SSL, confidentiality, data integrity, and mutual authen-
tication of clients and servers can be achieved.

* Internal security protects interfaces of agencies and agents as well as cer-
tain agency resources (such as the local file system) from unauthorized
access, performed by agents. This access control is achieved by authenti-
cating and authorizing the owner of the accessing agent. Due to the
authentication/authorization results, access control policies are activated.
Internal security within Grasshopper is mainly based on the inherent secu-
rity mechanisms of Java.

Both external and internal security is mainly transparent for agent program-
mers. The following two sections explain those security aspects which have to
be considered when programming Grasshopper agents.

12.1 External Security

The administration of the external security comprises the start of secure com-
munication receivers on agencies and region registries, i.e., receivers using
one of the protocol types 'socketssl’ or 'rmissl’. This has to be done by an
agency user and is thus explained in the User’s Guide.

The only aspect of interest for agent programmers is that an agent can actively
select a secure protocol for interacting with remote components or for moving
to another agency. Note that in both cases the involved agencies must support
external security which requires the installation of a set of additional Java se-
curity packages. Please refer to the User’s Guide for further details.

In order to use a secure protocol for remote interactions, the agent has to spec-
ify a suitable communication receiver when creating the server proxy.

Example:

server Proxy = (| AsyncServer Agent) ProxyGener at or .
new nst ance(
| AsyncSer ver Agent . cl ass,

235

PROGRAMMER'’S GUIDE

serverld,
»socketssl://myHost:7000/myAgency”);

In order to use a secure protocol for its migration, the agent has to specify a
suitable communication receiver as parameter of its move method.
Example:

move(new GrasshopperAddress(
~socketssl://myHost:7000/myAgency*));

The exampl es above assume that a secure communication receiver is running
on the contacted agency. Apart from the general availability of external secu-
rity in al involved agencies, thisis a prerequisite for agents.

12.2 Internal Security

The administration of the internal security comprises the configuration of se-
curity policies. This hasto be done by an agency user and isthus explained in
the User’s Guide.

The only aspect of interest for agent programmers is that, depending on an
agent’s access rights, an exception may be thrown if the agent tries to access
resources without having the associated permission. The following exception
Is thrown in this case:

de. i kv. grasshopper. security. AccessContr ol Excepti on

The first parameter of this exception presents a textual description of the ac-
cess violation. This description has one of the following general contents:

1. Agent from <owner> has no, bad or unknown signature.
2. Agent from <owner> is denied access to place <placeName>
3. Access denied for <subject>

If the third description applies to a thrown exception, the second parameter of
the exception contains an instance of the glassa. security. Perm s-

si on which specifies the permission that would have been required for the
denied action. The following permissions are checked by the Grasshopper se-
curity manager (for a detailed description, please refer to the HTML documen-
tation of the class

de. i kv. grasshopper. security. GHSecurit yManager):

» accept connections from a specified host address
» access a specified thread or thread group
» access the AWT event queue

236

CHAPTER 12: THE SECURITY SERVICE

connect to a specified host/port
connect to a specified object on a specified host/port
create a new class loader

delete a specified file

execute a specified command

exit the virtual machine

link a native library

listen to a specified port

access members of a specified class
use multicast communication

access a specified package

define classes in a specified package
initiate a print job

access system properties

access a specified system property
read from a file descriptor

read from a specified file

define the security subsystem and trigger the specified action
set a socket or stream handler factory
access the system clipboard

bring up a top-level window

write to a file descriptor

write to the specified file

12.3 Example: SecretAgent

This example shows how to configure

Example 38: Keytool Usage: Generate Key

D:\Utils\jdkl. 3\ bi n>keyt ool -genkey -alias Bond
Ent er keystore password: agent-007
What is your first and | ast nane?

237

PROGRAMMER'’S GUIDE

[Unknown] : Janes
What is the name of your organizational unit?
[Unknown] : GH
What is the name of your organization?
[Unknown] : | KV
What is the name of your City or Locality?
[Unknown] : Berlin
What is the name of your State or Province?
[Unknown] : Berlin
What is the two-letter country code for this unit?
[Unknown] : DE
I s <CN=Janes, OU=CGH, O=I KV, L=Berlin, ST=Berlin, C=DE>
correct?
[no]: 'y

Enter key password for <Bond>
(RETURN i f sane as keystore password):

D:\Uils\jdkl. 3\ bin>

Example 39: Keytool Usage: List Keys

D:\Utils\jdkl. 3\ bi n>keytool -1ist
Enter keystore password: agent-007

Keystore type: jks
Keyst ore provider: SUN

Your keystore contains 2 entries:

bond, Fri Aug 18 10: 35:48 GVI+02: 00 2000, keyEntry,
Certificate fingerprint (MD5):

DE: 4B: BO: 6C: 99: D9: 9C: 73: 59: 16: 8E: AO: 58: 73: 3B: 6F
nykey, Thu Jul 27 10:01:51 GMr+02: 00 2000, keyEntry,
Certificate fingerprint (MD5):

3D: 9B: B3: E8: 6C. 8D: 43: BA: 60: 7D: 04: AC. AA: B7: DF: BD

Example 40: Keytool Usage: Export Key

D:\Utils\jdkl. 3\ bi n>keyt ool -export -alias Bond -file
Bond. cer

Enter keystore password: agent-007
Certificate stored in file <Bond. cer>

238

CHAPTER 12: THE SECURITY SERVICE

239

PROGRAMMER'’S GUIDE

240

CHAPTER 13: GRASSHOPPER AND CORBA

13Grasshopper and CORBA

Asdescribed in Chapter 9, Grasshopper provides an advanced communication
service in order to enable local and remote interactions between the platform
components (agencies, agents, and region registries). This service has been
designed for coping with the specific demands of mobile, communicating en-
tities. Please refer to Section 9.14 in order to see how the Grasshopper com-
munication service handles migrating client and server agents by forwarding
method invocations and results.

CORBA (Common Object Request Broker Architecture) is the standard dis-
tributed object architecture developed by the Object Management Group
(OMG) consortium. Since 1989, the OM G has specified an architecture for an
Object Request Broker (ORB), i.e., an open software bus, on which object
components written by different vendorsin different programming languages
can interoperate across networks and operating systems. This standard allows
CORBA objectsto invoke each other in alocation-transparent way, i.e., with-
out knowing where the accessed objects reside. Interfaces to CORBA objects
are defined by using the OM G-specified Interface Definition Language (IDL).
Up to now, a standardized IDL language mapping exists for numerous pro-
gramming languages.

In some cases, a Grasshopper agent may need to interact with existing appli-
cationswhich provide their own programming interfaces. Dueto thewidedis-
semination of distributed applications that are based on CORBA, this chapter
explains how Grasshopper agents can act as CORBA clients and/or servers.

Currently, numerous CORBA implementations are available, realizing more
or less parts of the CORBA specifications. Several products offer additional
capabilitiesthat go beyond the specifications standardized by the Object Man-
agement Group (OMG), providing for example specific communication pro-
tocols or services. Concerning the integration of Grasshopper into a CORBA
environment, the only prerequisite is that the used CORBA implementation is
compliant with the CORBA/I10OP 2.0 Specification (orbos/97-02-25) and the
IDL-to-Java Language Mapping (orbos/98-01-06 Final)l. Besides, for run-
ning the examples included in this chapter, a CORBA Naming Service is re-
quired which is compliant with the Naming Service Specification described in
CORBAservices: Common Object Services Specification.

Java IDL is a CORBA/IIOP 2.0 compliant Object Request Broker provided
with the JDK 1.2 (and higher releases). Together with the idltojava compiler

What is
CORBA?

Why Grass-
hopper and
CORBA?

Which
CORBA?

Java |DL

1. The mentioned OMG documents are available via download from the OMG’s FTP server:

ftp://ftp.omg.org/pub/docs/orbos/.

241

PROGRAMMER'’S GUIDE

(downloadable from the Java Devel oper Connection) which realizes the stan-
dardized IDL-to-Java L anguage Mapping, it can be used to define, implement,
and access CORBA objects from the Java programming language.

The CORBA parts of the examples included in this chapter have been gener-
ated by using JavalDL. However, it should be possibleto use any other Object
Request Broker that fulfils the requirements described above.

Note that this chapter does not include an introduction into CORBA. Before
working through this chapter, you should know about the concepts and pro-
gramming basics of this architecture.

13.1 CORBA Enhanced Grasshopper Agents

Some time ago, the OMG has initiated several specifications concerning the
realization of mobility inaCORBA environment, such asthe Objectsby Value
specification (orbos/98-01-01). However, our objective for achieving an inte-
gration of Grasshopper and CORBA isto use only aminimal set of function-
ality of the underlying CORBA platform, in this way granting compatibility
with most of the currently available CORBA/I1OP 2.0 compliant implementa-
tions.

In order to implement a Grasshopper mobile agent that providesa CORBA in-
terface, the following issues have to be taken into account:

1. The CORBA-related part of the agent, i.e., the CORBA object maintained
by the agent, consists partly of classes that have been generated automati-
cally by the IDL-to-Java compiler of the used CORBA implementation.
Depending on the IDL-to-Java compiler, these classes may not be serializ-
able. In this case, a mobile agent that declares these classes as non-tran-
sient instance variables will not be able to migrate (see Section 6.3 for an
explanation). Even if al classes are serializable, problems may occur after
the agent’s migration, since some CORBA-related variable values may be
associated with the local environment (IP address, port number, etc.) at
which they have been assigned. These considerations lead to the

First requirement for CORBA-enhanced Grasshopper agents.

The CORBA-related part of an agent has to be separated from the
remaining code, e.g., by encapsulating this part in one or more separate
Java classes. In order to avoid the attempt of an agency to serialize the
CORBA-related part during an agent’s migration, this part should not be
declared as non-transient instance variable of the associated agent. Oth-
erwise, the agent must release all its references to the CORBA part

242

CHAPTER 13: GRASSHOPPER AND CORBA

before migrating to a new location. Once arrived at its destination, the
agent can re-create its CORBA part.

2. In a CORBA 2.0 compliant environment, a usual way for a client to
retrieve the reference of a CORBA object (i.e., the object’s Interoperable
Reference, IOR), is to contact a CORBA Naming Service. This service is
part of the CORBA Common Object Services Specification (COSS), and
its purpose is to maintain name bindings, i.e., mapping between composed
object names and IORs. In order to announce the availability of a new
CORBA object, a name binding for the object has to be provided to the
Naming Service.

If a Grasshopper mobile agent maintains a CORBA object, and assuming
that (according to the serialization issue mentioned above) this CORBA
object is not part of the agent’s data state, the agent has to re-create the
object after each migration. In this way, the object gets a new IOR, and its
previous IOR (which is still registered at the Naming Service) becomes
invalid. Thus, the CORBA object has to update its name binding by con-
tacting the Naming Service and providing its new IOR. This leads to the

Second requirement for CORBA-enhanced Grasshopper agents:

If a Grasshopper mobile agent provides a CORBA object, the Nam
Service entry of this object has to be updated after each migration of The
agent.

The following scenarios show all CORBA-related aspects and procedures that
have to be considered when implementing a CORBA-enhanced Grasshopper
mobile agent

243

PROGRAMMER'’S GUIDE

CORBA object
provided by the agent

Create/ X\ . CORBA
object Client
Agency 1 @ Init
Init ORB
Is Bind
ORB 9 object @ Resolve reference
Resolve reference @ to NS of Naming Service
of Naming Service
Invoke G) G Resolve IOR
Conngct CORBA method of CORBA object
object to ORB
ORB
CORBA

Naming Service

Figure 25: CORBA Object Creation and Connection Establishment

Asshown in Figure 25, the initial steps for CORBA servers as well as clients
istoinitialize the Object Request Broker (1s, 1c)! and to request the reference
to the running Naming Service from the ORB (2s, 2c).

The next step for the server (agent) isto create the CORBA object (3), to con-
nect this object to the ORB (4), and to bind the object to the Naming Service

().

Now the CORBA object is available for CORBA clients. That means, aclient
can contact the Naming Service in order to retrieve the IOR of the CORBA
object (6). By using thisreference, the client is able to invoke the methods be-
longing to the interface of the CORBA object (7).

1. Theletterssand c indicate whether an interaction step is associated with the server (s) or the
client (c) side.

244

CHAPTER 13: GRASSHOPPER AND CORBA

Agency 1 Migrate Agency 2
CORBA object (without New CORBA object,
provided by the agent | CORBA part) created after migration
J ---------) @-g- 1 ’ J
Remove Create new
object CORBA object
Init
<) Unbind ORB
) L) object) Resolve reference
Disconnect from NS Bind of Naming Service
CORBA object object @)
from ORB to NS Connect CORBA
object to ORB
< ORB >
1
CORBA

Naming Service

Figure 26: Migration of a CORBA Server Agent

Figure 26 shows the migration procedure of a CORBA -enhanced Grasshopper
agent. At first, the agent has to unbind the object from the Naming Service (1)
and to disconnect the object from the ORB (2). If the CORBA object has been
declared as non-transient instance variable of the agent, the agent has to re-
lease all references of the object (3) before migrating to the new location (4).
Once arrived at its destination agency, the agent hasto perform the sameinitial
steps that have already been described in Figure 25 above: the initialization of
the ORB (5), theretrieval of the Naming Service IOR (6), the (re-)creation of
the CORBA object (7), the connection of the object to the ORB (8), and the
object’s registration at the Naming Service (9).

245

PROGRAMMER'’S GUIDE

?
Agency 1 Try to
<1 invoke
method
CORBA object
provided by the agent
CORBA
Client
3
Invoke
method Resolve IOR
Agency 2 <2> of CORBA object
< ORB >
v
T
CORBA

Naming Service

Figure 27: Connection Re-establishment by CORBA Client Agent

After the agent’s migration, the client application (mentioned in Figure 25
above) may still want to interact with the CORBA object provided by the
agent. Since the client is not aware of the fact that the agent has migrated, it
still uses the old (and now invalid) IOR of the CORBA object, as shown in
step (1) of Figure 27. The underlying Object Request Broker throws an excep-
tion to the client, indicating that the IOR has become invalid, and due to this
exception the client requests the new IOR by contacting the Naming Service
(2). By using the retrieved IOR, the client is now able to contact the CORBA
object at its new location (3).

13.1.1 Example: CORBA Enhanced Agents

The following example scenario consists of the following classes:

« CORBASer ver Agent: This class realizes an agent that maintains a
CORBA object and, in this way, offers a CORBA interface to its environ-
ment. On request of a user, the agent migrates from one agency to another,

246

CHAPTER 13: GRASSHOPPER AND CORBA

taking into account the CORBA -related issues described in Section 13.1.

* CORBASer vant : This class represents the implementation of the IDL
interface CI_CORBAServerAgent. Note that this class is covered by the
same source file as the class CORBAServerAgent.

 CORBAC i ent Agent : This class realizes an agent that acts as CORBA
client by periodically invoking a method on the CORBAServerAgent.
Once the server agent has changed its location, the client agent requests
the new IOR of the server agent's CORBA object from the Naming Ser-
vice and re-establishes the connection to the server agent.

IDL Interface CI_CORBAServer Agent

The following listing shows the CORBA interface to be offered by the COR-
BAServerAgent. The interface is described by means of the CORBA Interface
Definition Language (IDL), and it has to be translated into the Java program-
ming language by means of the IDL to Java compiler of the installed CORBA
platform. The prefix 'CI’ of the interface stands for 'CORBA Interface’.

Example 41: CI_CORBAServerAgent

nodul e exanpl es {
nodul e cor baCom {
nmodul e idl {
interface Cl _CORBAServer Agent ({
string get AgencyNane();
1

Class CORBA Servant

The class CORBAServant maintains the following instance variable: Ins;znblce
variables

» agencyNane: This variable holds the name of the agency in which the
CORBAServerAgent is currently running. The name is provided to the
CORBAServant object during its creation, and it is used as return value of
the method getAgencyName().

The methodyet AgencyNane() can be called by any CORBA client thagetAgen-
maintains the IOR of the CORBAServant object. The method just perforrﬁ)g“é‘me()
textual output and returns the name of the agency in which the associated
CORBAServerAgent is currently running.

The source code of this class is shown in Example 42 below.

247

Instance
variables

createCor-
baPart()

before-
Move()

beforeRe-
move()

live()

PROGRAMMER'’S GUIDE

Class CORBA Server Agent
The class CORBA ServerAgent maintains the following instance variables:

» cor baOhj ect Ref : This variable is initialized with a reference of the
CORBA object (which is an instance of the class CORBAServant).

» ncRef : This variable holds a reference of the CORBA Naming Service.

* nane: This variable maintains the CORBA name which is used to register
the CORBAServant object at the Naming Service.

» or b: This variable holds a reference to the Object Request Broker.

Note that all instance variables are declared transient in order to exclude them
from the agent’s data state.

Inside its methodcr eat eCor baPart (), the CORBAServerAgent per-
forms all CORBA-related steps that have been described in Figure 25:

* ORSB initialization
» Retrieval of the Naming Service reference

» Creation of the CORBA object (i.e., an instance of the class COR-
BAServant)

» Connection of the CORBA object with the ORB
* Registration of the CORBA object at the Naming Service

Note that the methock eat eCor baPar t () is not only performed after the
agent’s initial creation, but also after each migration of the agent. Please refer
to the beginning of Section 13.1 for a detailed explanation.

The agent uses itsef or eMove() method to unbind the CORBA object
from the Naming Service and to disconnect it from the ORB.

The bef or eRenove() method is implemented similar to thef or e-
Move() method: Before the agent is removed, it unbinds its CORBA object
from the Naming Service and disconnects it from the ORB.

Inside itsl i ve() method, the agent creates its CORBA object (see method
cr eat eCor baPart ()). After this, the agent requests a new location from
the user and migrates to this location.

Example 42: CORBAServerAgent

package exanpl es. cor baCom
i nport de.ikv.grasshopper. agent. Mbil eAgent;

i nport de.ikv.grasshopper. agency. *;
i mport de. i kv.grasshopper.conmmuni cati on.

248

CHAPTER 13: GRASSHOPPER AND CORBA

G asshopper Addr ess;
i nport javax.sw ng. *;
i mport java.aw.*;
// inport files generated by idltojava conpiler
i nport exanpl es. corbaComidl. *;
// inport general CORBA stuff
i nport org.ong. CORBA. *;
// inport nam ng service stuff
i mport org.ong. CosNam ng. *;
i nport org.ong. CosNam ng. Nam ngCont ext Package. *;

// The followi ng class represents the actual CORBA
// object that will be created by the CORBAServer Agent
cl ass CORBASer vant
extends _Cl _CORBASer ver Agent | npl Base
{

String agencyNane;

publ i c CORBAServant (String agyNane) {
agencyNanme = agyNane;
}

// This nethod i s the i npl enent ati on of the | DL net hod
// inside the CORBA interface Cl_CORBAServer Agent
public String get AgencyNane() {

System out. println("## CORBAServer Agent :\\

Retrieving client request. Returning '" +
agencyNane + "’ .");
return agencyNane;

}
}

// This class realizes the server agent of the CORBA
// conmuni cation scenari o.
public class CORBAServer Agent extends Mbbil eAgent
{

// All CORBA-rel ated instance variabl es are

// decl ared transient, since they nust not

// be serialized when the agent m grates.

transi ent CORBAServant cor baChj ect Ref;

transi ent Nam ngCont ext ncRef;

transi ent NanmeConponent|[] nane;

transi ent ORB orb;

public String getNanme() {
return " CORBAServer Agent";

}

249

PROGRAMMER'’S GUIDE

// This nethod initializes the ORB, retrieves the | OR
// of the CORBA Nam ng Service, creates the CORBA
// object, connects it to the ORB,
// and registers it at the Nam ng Service.
public void createCorbaPart() {
try {
// Initialize the ORB
log("Initializing ORB...");
orb = ORB.init(new String[0], null);

// Get the reference of the Nam ng Context

// interface, provided by the CORBA Nam ng

// Service

| og(" Connecting to Nam ng Service...");

or g. ong. CORBA. Obj ect obj Ref =
orb.resolve_initial _references(

"NameServi ce");
ncRef = Nam ngCont ext Hel per. narrow obj Ref);

// Create the CORBA obj ect
| og("Creating CORBA object...");
cor baCbj ect Ref = new
CORBASer vant (
get Agent System() . getl nfo().getNane());

// Connect the CORBA object to the ORB
| og(" Connecting CORBA object to ORB...");
or b. connect (cor baCbj ect Ref) ;

// Bind the agent’s CORBA object to the Nam ng

// Service.

// The object name will be "CORBAServerAgent"

| og(" Bi ndi ng CORBA object to NS...");

name = new NaneConponent|[1];

name[0] = new NaneConponent (" CORBASer ver Agent ",
")

ncRef . bi nd(nane, corbaObj ect Ref);

| og("Ready for client requests.");

}
catch(Exception e) {

| og(" Exception: ", e);
}

}

// The agent’s beforeMve() method is used to unbi nd
// fromthe Nam ng Service and to di sconnect from
// the ORB.

public void beforeMve() {

250

CHAPTER 13: GRASSHOPPER AND CORBA

try {
// Unbind from Nam ng Service

| og(" Unbinding fromNS...");
ncRef . unbi nd(nane) ;

// Di sconnect from ORB

| og(" Di sconnecting fromORB...");
or b. di sconnect (cor baObj ect Ref) ;
or b. shut down(f al se);

}
catch (Exception e) {

| og(" Exception caught. ", e);
}

}

// The agent’s beforeRenpve() nethod is used to
// unbind fromthe Nam ng Service
// and to di sconnect fromthe ORB.
public void beforeRenove() {
try {
// Unbi nd from Nam ng Service
l og(" Unbinding fromNS...");
ncRef . unbi nd(nane) ;

// Di sconnect from ORB

| og(" Di sconnecting fromORB...");
or b. di sconnect (cor baQbj ect Ref) ;
or b. shut down(f al se);

}
catch (Exception e) {

| og(" Exception caught. ", e);
}

}

public void live() {
String | ocation;

// Create the CORBA obj ect
creat eCor baPart ();

// Request a new | ocation fromthe user
| ocati on = JOpti onPane. show nput Di al og(nul |,

"Where shall | go?");
while (location !'= null) {
l og(" Moving...");
try {
// Go away!

// All CORBA-rel ated procudures required for

251

PROGRAMMER'’S GUIDE

// the migration are included in the agent’s
// beforeMve() nethod (see above).
nove(new Grasshopper Address(| ocation));

}
catch (Exception e) {
log("Mgration failed. ", e);
| ocati on = JOpti onPane. show nput Di al og(nul |,
"Where shall | go?");
}

Class CORBACIientAgent

The class CORBA ClientAgent maintains the following instance variable:

Inst_gglce » ncRef : This variable holds a reference of the CORBA Naming Service.
vari es
» server Agent Ref : This variable maintains the IOR to the CORBASer-
vant, i.e., the CORBA object provided by the CORBAServerAgent.
« orb: This variable holds a reference to the Object Request Broker.
Note that all instance variables are declared transient in order to exclude them
from the agent’s data state.
connect- Inside its methodonnect ToOr b(. . .), the client agent performs the fol-
ToOrb() lowing CORBA-related steps that have been described in Figure 25:
* ORSB initialization
» Retrieval of the Naming Service reference
connect- Inside the methodonnect ToSer ver Agent (), the client agent requests
X%iﬁrt‘(’)er' the IOR of the CORBAServant object from the Naming Service. If the IOR is
not available at once, the client agent performs five retries, assuming that the
server agent is currently migrating (and thus not registered at the Naming Ser-
vice). After five fruitless retries, the client agent assumes that something bad
has happened to the server agent (such as its removal), and thus exists its loop.
ll\)/lefo% The agent uses itsef or eMove() method to shut down the ORB.
ov

beforeRe- The bef or eRenove() method is implemented similar to thef or e-
move() Move() method: Before the agent is removed, it shuts down the ORB.

Inside itsl i ve() method, the client agent initializes the ORB and connects
itself to the server agent's CORBA object. After this, the client agent periodi-
cally (i.e., once per second) invokes the CORBA methpetlAgency N

anme() of the server agent's CORBA object. If the client agent catches an

252

CHAPTER 13: GRASSHOPPER AND CORBA

exception, it tries to re-establish the connection to the CORBA object (see
method connect ToSer ver Agent ()). After five fruitless attempts, the
client agent terminates.

Example 43: CORBAClientAgent

package exanpl es. cor baCom

i mport de.ikv.grasshopper. agent. Mbi | eAgent;

// inport files generated by idltojava conpiler
i nport exanpl es. corbaComidl. *;

// inport general CORBA stuff

i nport org.ong. CORBA. *;

// inport nam ng service stuff

i mport org.ong. CosNam ng. *;

i nport org.ong. CosNam ng. Nam ngCont ext Package. *;

// This class realizes the client agent of the CORBA
// conmuni cation scenari o.
public class CORBAC i ent Agent extends Mbbil eAgent
{
// All CORBA-rel ated instance variabl es are
// decl ared transient, since they nust not
// be serialized when the agent m grates.
transi ent Nam ngCont ext ncRef;
transi ent Cl _CORBASer ver Agent server Agent Ref;
transi ent ORB orb;

public String getName() {
return "CORBAC i ent Agent " ;

}

// This nmethod initializes the ORB and
// retrieves the | OR of the CORBA Nam ng Service.
public void initOb() {
try {
orb = null;
ncRef = null;
// Initialize the ORB
log("Initializing ORB...");
orb = ORB.init(new String[0], null);

// Get the reference of the Nam ng Context
// interface, provided by the CORBA Nam ng
// Service

| og(" Connecting to Nam ng Service...");

or g. ong. CORBA. Obj ect obj Ref =

253

PROGRAMMER'’S GUIDE

254

}

orb.resolve_initial _references(
"NameServi ce");
ncRef = Nam ngCont ext Hel per. narrow obj Ref);
}
catch (Exception e) {
| og(" Exception caught. ", e);
}

// This nethod establishes a connection to the CORBA
// object provided by the CORBAServerAgent.
public CI _CORBAServer Agent connect ToServer Agent () {

short nunberOf Retries;
Cl _CORBASer ver Agent ref;

| og(" Connecting to CORBAServerAgent...");

// Generate the CORBA nanme of the server agent’s
// CORBA obj ect
NameConponent nc = new

NaneConponent (" CORBASer ver Agent ", "");
NanmeConponent path[] = {nc};

number Retries = 0;

ref = null;
while (nunmberOFRetries < 5) {
try {
// Resolve | OR of the server agent’s CORBA
// object
ref =

Cl _CORBASer ver Agent Hel per. narr ow
ncRef . resol ve(path));
| og("Reference retrieved.");
nunber X Retries = 5;
}
catch (Exception e) {
// The exception may have occurred because the
// server agent is currently noving.
// Thus, wait a bit and then retry to establish
// the connecti on.

| og(" Coul d not connect to server agent.", e);
log(" Retrying " + (5-nunberOfRetries) +

" time(s)...");
try {

Thread. current Thread() . sl eep(1000);

}
catch (InterruptedException i) {

| og(" CORBACI i ent Agent: ", e);

CHAPTER 13: GRASSHOPPER AND CORBA

}
nunmber O Retri es++;
}
}

return ref;

}

// The agent’s beforeMve() nethod is used to shut
// down the ORB.
public void beforeMve() {
try {
// Shut down ORB
| og(" Shutdown ORB...");
or b. shut down(f al se);

}
catch (Exception e) {

| og(" Exception caught. ", e);
}

}

// The agent’s beforeRenove() nmethod i s used to shut
// down the ORB.
public void beforeRenove() {
try {
// Shut down ORB
| og(" Shutdown ORB...");
or b. shut down(f al se);

}
catch (Exception e) {

| og(" Exception caught. ", e);
}

}

public void live() {
String agencyNarne;

initob();
server Agent Ref = connect ToServer Agent () ;
while (serverAgentRef !'= null) {

try{

// I nvoke server nethod via CORBA
agencyNane = server Agent Ref. get AgencyNane() ;
| og(" Server agency = '" + agencyName + "’ .");
Thread. current Thread() . sl eep(1000);
}
catch(Exception e) {
// The exception may have occurred because the

255

PROGRAMMER'’S GUIDE

}

}

}
}

// server agent is currently noving.

// Try to re-connect to server agent.

| og(" Exception when i nvoki ng server nethod. "
e);

| og(" Server agent nay have noved.");

l og(" Try to re-establish connection.™);

server Agent Ref = connect ToSer ver Agent () ;

// The server agent has not re-appeared for five
// seconds. Thus, the client agent assunes that
// something terri bl e has happened to t he server. ..

| og(" Permanent failure. Server agent may be dead.\\
Exiting...");

Requirements:

* A running CORBA environment. Note that, depending on the used

CORBA platform, different components/processes may be required.
The minimal environment (as required in the current Java 2 CORBA

installation of Sun Microsystems) consists just of a running CORBA
Naming Service.

» At least two running agencies

256

CHAPTER 13: GRASSHOPPER AND CORBA

Running the example:

'- At bl o
i [Comred
Q Agency 1 Agency 2

9 5 CORBA 5

- Server CORBA | <,
@.. 2 Agent Client | & e

Q ()
2 < /\ Agent g

%é %

é%

\

. >

CORBA
I »
“oron @ ierver
- . \ / gent
Naming Service »:_-_—_-_:::iz Agency 3

Figure 28: CORBA Agent Scenario

Create the CORBA ServerAgent in one of the running agencies (1).

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a exanpl es. cor baCom CORBASer ver Agent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

The CORBAServerAgent initializes the ORB, resolves the Naming Ser-

vice IOR, creates its CORBA object, and connects it to the ORB. All these
steps are summarized by step (2) of Figure 28. After binding the object to
the Naming Service (3), the server agent creates a graphical dialog win-
dow, requesting a new location from the user (4).

Create the CORBACIientAgent in one of the running agencies (5).

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

257

PROGRAMMER'’S GUIDE

cr a exanpl es. cor baCom CORBAC i ent Agent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

The CORBACIientAgent initializes the ORB and resolves the Naming
Service IOR (6). After requesting the IOR of the server agent's CORBA
object from the Naming Service (7), the client agent periodically (i.e.,
once per second) invokes the metlyed AgencyNane() of the server
agent’s CORBA object (8) and prints the result on the text console of the
local agency.

Type in a new location into the server agent's GUI. After pressing the OK
button (9), the server agent unbinds its CORBA object from the Naming
Service (10), disconnects it from the ORB, and shuts down the ORB (11).
After its migration (12), the server agent again performs the same steps
that have been performed in step (2) and (3) after its initial creation (13)/
(14). The client agent, still periodically invoking the server method, recog-
nizes that the CORBA object is not available any more. Thus, the client
agent again contacts the Naming Service and requests the new IOR of the
CORBA object (15). Then the client uses this IOR for establishing a con-
nection to the CORBA object at its new location, and finally the client
continues invoking the server method (16).

You can also move the client agent to another location. Since this agent
does not provide an own user interface, please use the Ul of the local
agency.

258

ANNEX A: ACRONYMS

A Acronyms

ADS Agency Domain Service

API Application Programming Interface

CORBA Common Object Request Broker Architecture
GUI Graphical User Interface

[HOP Internet Inter-ORB Protocol

IOR Interoperable Reference

JDK Java Development Kit

VM Java Virtual Machine

MASIF Mobile Agent System Interoperability Facility
OMG Object Management Group

ORB Object Request Broker

RMI Remote Method Invocation

SSL Secure Socket Layer

TUI Textual User Interface

Ul User Interface

Annex-1

PROGRAMMER'’S GUIDE

Annex-2

ANNEX B: GLOSSARY

B Glossary

Active

one possible >state of an >agent or >place. An agent or place is active
when it is currently executing its task, i.e., when the corresponding Java
thread is running. Other possible states are >suspended (possible for
agents and places) and >flushed (possible only for agents). After their cre-
ation, agents and places are active. For further information about states,
please refer to Section 5.5.

Address

A Grasshopper address refers to a >communication receiver of the desired
destination agency, region registry, or external object. Note that multiple
communication receivers can be created on single agencies, region regis-
tries, and external objects. The purpose may be the need to support differ-
ent protocols.

A Grasshopper address covers the following components:

 protocol type: Type of the protocol to be used for the migration. The fol-
lowing protocols are supported: socket, rmi, iiop, socketssl, rmissl,
grasshopperiiop.

* host name: Name or IP address of the destination host

» agency/registry/object name: Name of the destination agency, region
registry, or external object

» port number: Number of the port at which the communication receiver
of the destination agency is listening.

» place name: Name of the destination place. This component is optional.
If no place name is specified, the agent migrates to the default place
~InformationDesk” which exists in every Grasshopper agency.

Represented as a String, a complete Grasshopper address has the following
format:

protocol : // host Name: por t Nunber / agencyNane/ pl aceNane

Depending on the concrete scenario, the address may be simplified by
skipping several components. Please refer to Section 5.4 for further
details.

ADS
see agency domain service.

Annex-3

PROGRAMMER'’S GUIDE

Agency

the runtime environment for Grasshopper >agents. An agency is realized
as a Java process, running on its own Java Virtual Machine (JVvM). All
hosted agents are running inside >places maintained by the agency. An
agency provides the required functionality for supporting the execution
and management of the hosted agents, including a >communication ser-
vice, >security service, >persistence service, and access to a management
API and an >agency domain service. Besides, an agency provides graphi-
cal and/or textual user interfaces for administration purposes.

Agency Domain Service (ADYS)

a registration facility, supporting the localization of Grasshopper agents.

Two kinds of agency domain services are supported: Grasshopper-specific
>region registries and LDAP servers. When starting an agency, the user

can (optionally) associate the agency with a running agency domain ser-

vice. The entire set of all agencies that are registered at the same ADS

build a >region. During its runtime, an agency automatically registers all

hosted agents at this agency domain service, and it de-registers the agents

after their removal or after their migration to another location. By access-

ing the domain service’'s API, agents are able to search for each other.
Besides, the proxies of the Grasshoppercommunication service access

the agency domain service in order to enable location-transparent interac-
tions between agents. An agency domain service provides graphical and/or
textual user interfaces for administration purposes.

Agency ldentifier

a data type for uniquely identifying amgency. Grasshopper uses a com-
mon Sdentifier structure for agenciesagents, and listeners. Concerning

an agency, a combination of host name aagency name can be used
instead of the unique identifier, e.g., in order to create an aggmoyy>

(see Section 9.11.4). The precondition of this alternative way of addressing
an agency is that all agencies running on the same host have different
names.

Agency Name

a user-defined name of an agency, specified during the agency’s creation.
Agency names do not have to be unique in the scope of the entire environ-
ment, but an agency name should only be used once on each host. The rea-
son for this convention is that a combination of host name and agency
name may be used for addressing purposes instead of the uaggney>
identifier.

Annex-4

ANNEX B: GLOSSARY

Agent

a self-contained software component which is responsible for autono-

mously carrying out one or multiple tasks on behalf of a user or another
software entity. An Grasshopper agent is implemented in terms of Java
classes. An agent’s ,core” class is referred to agent class. During its
runtime, a Grasshopper agent is realized as a Java thread, running inside a
>place of an >agency. >Mobile agents are able to migrate from one place

to another, while stationary agents reside at their creation place for their
entire runtime.

Agent Class

the ,core” of a Grasshopper agent, characterized by inheriting one of the
classedvbbi | eAgent, St ati onar yAgent , Per si st ent Mobi | e-

Agent , or Per si st ent St ati onar yAgent . The agent class imple-
ments thé i ve() method which defines the agent’s active behavior. The

I i ve() method runs inside the agent’s own thread.

Agent Identifier

a data type for uniquely identifying aragent. Grasshopper uses a com-
mon Sdentifier structure for agencies, agents, and listeners. For further
details, please refer to Section 5.1.

Agent State

the mode of existence of aragent. All Grasshopper agents can exist in
the states 'active’ and 'suspendedPersistent agents can additionally
exist in the state 'flushed’. Agents may change their state several times
during their runtime. After their creation, agents are active. Please refer to
Section 5.5 for further information about states.

Agent Type

Grasshopper supports two general types of agentebite agents and
>gtationary agents. Both agent types may optionally support persistence
(see ypersistence service), thus resulting in four agent types all together.
The type of an agent is allocated during the agent’s implementation by
deriving the =agent class from one of the super classelbi | eAgent

St ati onar yAgent, Persi st ent Mobi | eAgent, or Persis-

t ent St at i onar yAgent .

Agent Name

a user-defined name of an agent. Agent names do not have to be unique.
For the unique identification of an agent, the automatically generated

Annex-5

PROGRAMMER'’S GUIDE

>agent identifier has to be used. Please refer to Section 5.2 for further
details.

Agent Platform

the entire distributed agent environment. The Grasshopper platform con-
sists of a set of >agencies and one or more >agency domain service.

Agent System

asynonym for the term >agency. Among others, the term 'agent system’ is
used in the context of thdVBPASF specification.

Asynchronous Communication

a communication mechanism between clients and servers. After invok-
ing a method on the server, the client does not have to wait for the termi-
nation of the server method. Instead, the client continues performing its
own task. There are different possibilities for the client to retrieve the
method result: it can periodically poll for the result, block its task execu-
tion until the result arrives, or subscribe to be notified about the result
arrival. Asynchronous communication is one possible mode of the
Grasshopper cemmunication service. For further information, please
refer to Section 9.5.

Client Agent

an >agent acting as communication client. A client agent invokes methods
on a server agent which may run on the same or a remote agency. A
Grasshopper agent may act as client and server at the same time.

Code Base

a network location that maintains Java class code. Grasshopper supports
two kinds of code bases: file systems and HTTP servers. In the context of
Grasshopper, code bases are particularly required for the class code of
>agents. A Grasshopper agency uses Java class loading mechanisms in
order to dynamically retrieve the required (agent) classes

* File systems

The classes of an agent may be maintained in the file system of an
agency. In this case, the code base, represented as String, must have the
following format:

file:/<directory-path>

where<di r ect or y- pat h> represents a path that leads to the direc-
tory in which the agent’s class files are stored. Single directories of the

Annex-6

ANNEX B: GLOSSARY

path are separated with slash’)’characters. Note that on Windows
machines, the letter of the maintaining device has to be specified:

file:/<driveLetter>:/<directory-path>
* Http servers

The classes of an agent may be maintained on an Http server. In this
case, the code base, represented as String, must have the following for-
mat:

http://<domain-name>/<path>

where<domai n- nanme> and<pat h> are structured in the usual way
(i.e., domain components separated with a ddj €haracter, and path
components separated with a slagh)(Character).

Further details about the class loading mechanism are provided in Section
5.3.

Communication Recelver

realized the server side access point of a communication relationship that
has been established via the Grasshoppamnmunication service. A com-
munication receiver is represented by a Grasshoppddress which
defines the server’s protocol type, IP address, object name, and port num-
ber. By default, each Grasshoppe&gency and >egion registry has one
communication receiver that uses the plasocket protocol. Additional
communication receivers can be added at start-up time or during runtime.
Please refer to the User’s Guide for further information.

Communication Service

a core service of Grasshoppegencies and >egion registries. The com-
munication service supports local and remote interactions between Grass-
hopper components @gents, agencies, region registries). Besides, the
service enables external applications to communicate with the Grasshop-
per environment. The communication service enables synchronous and
asynchronous (see Section 9.5), unicast and multicast (see Section 9.9),
static and dynamic method (see Section 9.7) invocations. By means of
>proxy objects, Grasshopper agents are able to communicate with each
other in a location-transparent way. That meardjent agents and
>server agents may migrate during a communication session, while the
communication service keeps track of the agents and transparently redi-
rects the method invocations and the return values to the actual locations
(see Section 9.14).

Annex-7

PROGRAMMER'’S GUIDE

CORBA

see >common object request broker architecture

Common Object Request Broker Architecture (CORBA)

a comprehensive architecture for the realization of distributed applica-
tions, developed by the >Object Management Group (OMG). For further
details, pleaserefer toht t p: / / www. ony. or g.

Data State

the set of variable values that a >mobile agent carries with it during a
>migration. The data state of a Grasshopper mobile agent consists of al
instance variables that are not declared transient (see Section 6.3). Before
a migration, the data state is >serialized, i.e., transformed into a data
stream. After transferring this stream to the destination agency, the original
object structureis re-created and delivered to the associated agent. In order
to improve the migration performance, the data state should be minimized.
A set of hintsfor defining a data state is provided in Section 6.3.

Dynamic Method Invocation

a mechanism for client/server interactions where the client is able to con-
struct a method call without having access to the corresponding server (or
proxy) class. Dynamic method invocations can be performed synchro-
nously or asynchronously. Dynamic method invocation is one feature of
the Grasshopper >communication service. For further information, please
refer to Section 9.5.

Dynamic Proxy Generation

the generation of a >proxy object during the runtime of the associated
application, without the need for a manually created >proxy class. Cur-
rently, Grasshopper supports dynamic proxy generation in aJDK 1.3 envi-
ronment. If a JDK 1.2 environment is used, proxy classes have to be
created manually before running the associated application. The manual
proxy creation can be achieved by using the Grasshopper >stub generator.
Please refer to Section 9.2 for further details.

Execution Block

apart of the program logic of a>mobile agent that is entirely executed at a
single location. In the context of Grasshopper, thel i ve() method of a
mobile agent can be divided into a set of execution blocks. Invocations of

the agent'srove() method should only be performed at the end of an
execution block. Before the agent’s migration, a counter variable (belong-

Annex-8

ANNEX B: GLOSSARY

ing to the agent’s data state) may be initialized, indicating which execu-
tion block to perform after the arrival at the new location. Please refer to
Section 6.4 for more information about the concepts of execution blocks.

Execution State

a set of information indicating the exact point in execution of a process or
thread. The standard Java language does not offer the possibility to extract
the execution state of a process or thread, and thus (standard) Java-based
mobile agent platforms are usually not able to take advantaggrohg
migration. The current point in anagent’s execution must be mapped

onto the agent’s data state, e.g., in terms of a counter variable that indi-
cates the number of thexecution block that has to be performed after the

next migration. Please refer to Section 6.4 for more information about this
concept.

Flush

the procedure of persistently storing a Grasshoppge in the file sys-

tem of the hosting agency. The purpose of flushing an agent is to save
agency resources. A flushed agent is automatically re-activated when
another entity tries to access it. The functionality of flushing an agent is
associated with the Grasshopp@ersistence service. An agent can only

be flushed if the following two preconditions are fulfilled: 1.) The persis-
tence service of the hosting agency is active; 2.) #gert class is derived

from one of the classeBer si st ent Mobi | eAgent or Persi s-

t ent St at i onar yAgent . Please refer to Chapter 10 for further details.

Flushed

one possible state of an >agent. A flushed agent does not anymore exist
as a living object or running thread inside the hosting agency. Instead, the
agent has been persistently stored inside the agency’s file system. Other
possible states aresuspended (possible for agents and places) and
>active. For further information about agent states, please refer to Section
5.5. The functionality of flushing an agent is associated with the Grasshop-
per >ersistence service. An agent can only be flushed if the following two
preconditions are fulfilled: 1.) The persistence service of the hosting
agency is active; 2.) theagent class is derived from one of the classes
Per si st ent Mobi | eAgent or Persi stent Stati onar yAgent .
Please refer to Chapter 10 for further details.

Home L ocation

the Socation at which a Grasshopper agent has been created.

Annex-9

PROGRAMMER'’S GUIDE

|dentifier

enables the unique identification of Grasshopper >agents, >agencies, and
listeners in the entire distributed environment. A Grasshopper identifier
consists of the following components:

» a prefix, describing the kind of component that is associated with the
identifier (Agent, AgentSystem, Listener). Note that the prefix ’listener’
is reserved for internal usage only.

* the Internet address or name of the host on which the identifier has been
created

 the date on which the identifier has been created: "yyyy-mm-dd"
 the time on which the identifier has been created: "hh-mm-ss-msms"
» the number of copies of the corresponding agent

Represented as String, a complete Grasshopper identifier has the following
format:

<prefix>#<ip-address>#<date>#<time>#<copy-number>
Example of a Grasshopper identifier:
"Agent#123.456.789.012#1999-11-19#15:59:59:0#0"

More information about Grasshopper identifiers can be found in Section
5.1.

liop (Grasshopper protocol type)

one possible protocol used by the Grasshoppemmunication service.
iiop uses CORBA mternet Inter-ORB Protocol. The protocol type ’iiop’
is part of a Grasshoppenddress. Note that, in order to communicate via
iiop, the server side (represented by agency, >region registry, or exter-
nal application) must provide aommunication receiver that supports this
protocol. iiop required a CORBA runtime environment.

[1OP
see *nternet Inter-ORB Protocol

I nfor mationDesk

the default place that exists in every Grasshopper agency. If an agent

wants to migrate and does not provide a specific place of the desired desti-
nation agency, the agent automatically moved to the InformationDesk
place.

Annex-10

ANNEX B: GLOSSARY

Internet Inter-ORB Protocol (110P)

a protocol specified by the >Object Management Group (OMG) in the
context of the >Common Object Request Broker Architecture (CORBA).
I1OP enables interactions between CORBA client and server objects that
are implemented in different languages and residing remotely in different
computing environments. For more information, please refer to the
CORBA gpecification, available from the OMG (http://
WWW. ONng. or g).

L ocation

in the context of Grasshopper, the network location of an >agency, a
>place inside an agency , or a >region registry. The location of a Grass-
hopper >agent is equal with the location of the place in which the agent is
currently running. A location is specified in terms of an >address.

Manual Proxy Generation

the creation of a >proxy class by using the Grasshopper >stub generator.
Currently, Grasshopper supports >dynamic proxy generation in aJDK 1.3
environment. If a JDK 1.2 environment is used, proxy classes have to be
created manually before running the associated application. Please refer to
Section 9.2 for further details.

MAFAgentSystem

a CORBA interface for >agencies, specified in the >Mobile Agent System
Interoperability Facility (MASIF) specification. Please refer to the MASIF
standard for detailed information.

MAFFinder

a CORBA interface for >region registries, specified in the >Mobile Agent
System Interoperability Facility (MASIF) specification. Please refer to the
MASIF standard for detailed information.

MASIF
see >Mobile Agent System Interoperability Facility

Migration

the movement of a >mobile agent from one >agency to another. During the
migration, not only the agent’s class code is transferred, but also important
internal information. Two kinds of migration can be distinguisheationg
migration and >veek migration. Please refer to Section 6.1 for further
details.

Annex-11

PROGRAMMER'’S GUIDE

Mobile Agent

an >agent that is able to move from one >agency to another during its runt-
ime. By dividing | i ve() method of a Grasshopper mobile agent into
several >execution blocks, the agent is able to perform different tasks at
different locations. Please refer to Chapter 6 for detailed information about
the characteristics of Grasshopper mobile agents.

Mobile Agent System I nteroper ability Facility (MASIF)

the first >mobile agent standard of the >Object Management Group
(OMG). The idea behind MASIF is to improve the interoperability
between mobile agent platforms of different manufacturers. Please refer to

the MASIF standard for detailed information, available via download from

the OMG’s FTP server. Please look for the ORBOS document with the
number 97-10-05.

Please note that, in contrast to previous Grasshopper releases, the current
release does not cover the MASIF functionality in its kernel. Instead, a
MASIF library is available as a Grasshopper extension. Please have a look
at the IKV Web sites.

M obility

the ability of a ¥nobile agent to migrate from one agency to another dur-
ing its runtime.

Multicast Communication

a communication mechanism between clients and servers. A client
addresses a set of servers by performing just a single method call. Multi-
cast communication is one possible mode of the Grasshoppeneni-

cation service. For further information, please refer to Section 9.5.

Name

In the context of Grasshopper, names are associated agénts, >agen-

cies, and xegion registries. Names are user-defined, and they do not have

to be unique in the distributed environment. Concerning agencies, names
should be unique on single hosts, since the combination of host name and
agency name may be used for addressing agencies. Please refer to Section
5.2 (agent names) and to Section 9.11.1/Section 9.11.4 (agency names).

Object Management Group (OMG)

founded in April 1989 by eleven companies, the OMG began independent
operations as a not-for-profit corporation. The OMG’s objective is to
develop technically excellent, commercially viable and vendor-indepen-

Annex-12

ANNEX B: GLOSSARY

dent specifications for the software industry. Its best-known achievement
is the development of the >Common Object Request Broker Architecture,
comprising its worldwide standard specifications:. CORBA/IIOP, Object
Services, Internet Facilities and Domain Interface specifications. Please
refertohtt p: / / www. ong. or g for further details.

OMG

see >0Object Management Group

Object Request Broker (ORB)

a communication channel, supporting RPC interactions between distrib-
uted software components. Each component belongs to the category client
and/or server. The object request broker manages the connection establish-
ment. A well-known specification in this context is the >Common Object
Request Broker Architecture of the >Object Management Group.

ORB
see >0Object Request Broker

Persistence Service

a part of the core functionality of a Grasshopper >agency. An agency’s
persistence service is responsible for continuously storingddta states

of all >agents that are running on the agency. In contrast to other parts of
an agency’s core functionality which are active by default and cannot be
deactivated, the persistence service must explicitly be activated during the
agency’s start-up. The reason is that the persistence service has a negative
impact on an agency’s performance. Thus, if persistence is not required,
this service should not be activated.

Note that only those agents can be persistently stored whgest zlass
inherits one of the Grasshopper super clag&essi st ent Mobi | e-
Agent or Persi st ent St ati onar yAgent . Please refer to Chapter
10 for further details.

Persistent Agent

a Grasshopperagent whose agent class inherits one of the super classes
Per si st ent Mobi | eAgent or Persi stent Stati onar yAgent .
Such Grasshopper agents can be persistently stored besestence ser-
vice of the hosting agency is active.

Place

a logical entity inside a Grasshoppagency. Each agency has at least one

Annex-13

PROGRAMMER'’S GUIDE

place, named ’InformationDesk’. Additional places can be added at the
agency’s start-up or later during its runtime. Grasshoppgents always

run inside a place of an agency. Mobile agents can migrate from one place
to another. The destination place of an agemtigyration may exist on the
same or a remote agency. A user can define a security policy for each sin-
gle place of an agency. Please refer to the User’s Guide for more informa-
tion.

Place State

the mode of existence of glace. Places can exist in the states 'active’
and 'suspended’. They may change their state several times during their
runtime. After their creation, places are active. Please refer to Section 5.5
for further information about states.

Proxy Class

a Java class that has been created via the Grasshayzigenerator.

The required input of the stub generator isserver interface. A >client
(agent) needs an instance of the proxy class, i.epraxy object, in order

to interact with a server (agent) via the Grasshoppercommunication
service. A proxy class, created via the stub generator, is needed if Grass-
hopper runs in a JDK 1.2 environment. In JDK 1.3 environments, a proxy
object can be dynamically generated during the runtime of the associated
application. In this case, no proxy class is required. (Note that in a JDK 1.3
environment the dynamic proxy generation is performed in any case. Even
if a proxy class is accessible, it will not be used.) Please refer to Section
9.2 in order to learn about the differences between dynamic and manual
proxy creation, and about how to create a proxy class by using the Grass-
hopper stub generator.

Proxy (Object)

a Java object that representssarwer (agent) at the location of the corre-
sponding =lient (agent). When using the Grasshopperommunication
service, a client has to locally create a proxy object that corresponds with
the derived server. After this, the client invokes methods on the proxy
object, and the communication service forwards these invocations to the
remote server. The method result is transferred back to the client via the
proxy. A proxy object can by created either as an instance @faxy>

class that has been generated with the Grasshoppeib >generator
(required in JDK 1.2 environments, or dynamically via the Java reflection
mechanism (possible in JDK 1.3 environments). (Note that in a JDK 1.3
environment the dynamic proxy generation is performed in any case. Even
if a proxy class is accessible, it will not be used.) Please refer to Section

Annex-14

ANNEX B: GLOSSARY

9.2 in order to learn about the differences between dynamic and manual
proxy creation, and about how to create a proxy class by using the Grass-
hopper stub generator.

Region

a set of Grasshopper >agencies that are registered at the same >agency
domain service (ADS). One advantage of having aregion isthat all agents
running inside the region can be easily located. Concerning the >communi-
cation service, a >client (agent) need not be aware of the current location
of the desired >server (agent). Instead, the communication service auto-
matically contacts the agency domain service for determining the server
location. Each agency automatically registers all currently hosted agents at
the ADS, and it de-registers the agents after their removal or their migra-
tion to another location. Of course, a mobile agent can migrate to an
agency that belongs to another region than the agency in which the agent is
currently running. However, in this case the complete >address of the des-
tination agency must be provided by the agent, while the migration
between agencies belonging to the same region just requires the specifica-
tion of the destination host and destination >agency name.

Region Registry

one specia type of >agency domain service. A region registry is a Grass-
hopper-specific registration service that is responsible for maintaining
information about >agents and >agencies. Beside region registry, Grass-
hopper supports LDAP servers as agency domain services.

Remote Method Invocation (RMI)

a Java communication mechanism, enabling remote interactions between
Java objects that are running on different Java Virtual Machines.

Resumed

one possible >state of an >agent or >place. (see >resumption). For further
information about states, please refer to Section 5.5.

Resumption

the procedure of re-activating a suspended >agent or >place. After the
resumption of an agent, the agent continues performing its task which has

been interrupted by the agent’suspension. The resumption of a place
resumes all agents inside the place. For further information about states,
please refer to Section 5.5.

Annex-15

PROGRAMMER'’S GUIDE

rmi (Grasshopper protocol type)

one possible protocol used by the Grasshopper >communication service.

rmi uses Java >Remote Method Invocation. The protocol type 'rmi’ is part
of a Grasshopperaeldress. Note that, in order to communicate via rmissl,
the server side (represented by agency, >region registry, or external
application) must provide acommunication receiver that supports this
protocol.

RMI
see Remote Method Invocation

rmissl (Grasshopper protocol type)

one possible protocol used by the Grasshoppemmunication service.

rmissl uses Remote Method Invocation, protected via Secure Socket

Layer. The protocol type 'rmissl’ is part of a Grasshoppaddress. Note

that, in order to communicate via rmissl, the server side (represented by an
>agency, >region registry, or external application) must provide eom
munication receiver that supports this protocol. rmissl requires external
security packages. Please refer to the User’s Guide for information about
these packages.

Secure Socket Layer (SSL)

SSL is one of the most widely used security protocols on the Internet and
can be used to protect almost all traffic over TCP/IP networks. The Grass-
hopper xommunication service is able to protect all remote interactions
(covering for instance agent communication and agent migration) via SSL,
presupposed that additional security packages have been installed. Please
refer to the User’s Guide for information about the required packages.

Security Service

one part of the core functionality of Grasshopper agencies. Grasshopper
distinguishes between external and internal security:

» External security protects all remote interactions that are performed by
using the Grasshopper >communication service. For this purpose, the
communication service makes use of X.509 certificates and3duere
Socket Layer protocol. In order to take advantage of protected interac-
tions, a ommunication receiver must be used which supports one of
the secure protocolssocketss or >rmissl. Note that these protocols are
only available, if external security packages have been installed. Please
refer to the User’s Guide for information about these packages.

 Internal security protects the resources inside a Grasshopgenmcy

Annex-16

ANNEX B: GLOSSARY

by defining access rights for >agents. Internal security is active by
default and does not require the installation of any external packages.
Please refer to the User’s Guide for information about how to configure
the internal security of Grasshopper.

Serialization

the procedure of transforming a Java object structure into a data stream.
Serialization is a fundamental requirement fagent >migration, since it
enables the transfer of an agenthta state from one location to another.

Server Agent

an >agent acting as communication server. A server agent offers methods
to a >client agent which may run on the same or a remote agency. A Grass-
hopper agent may act as client and server at the same time. The methods
that are to be accessible for client agents must be declared in the server
agent’s server interface.

Server Interface

a Java interface that has to be implemented bydgent-class of a Grass-
hopper server agent. The server interface declares those methods of a
server agent that are to be accessible @hent agents. The server inter-
face is used as input for the Grasshopsaii>generator. The correspond-

ing output is a proxy class. Please refer to Section 9.1 to Section 9.3 for
further details.

Server Proxy
see Jproxy (object)

socket (Grasshopper protocol type)

one possible protocol used by the Grasshoppemmunication service.
socket uses a plain socket protocol, representing the lowest level of pro-
gramming to the TCP/IP layer of a network. The protocol type 'socket’ is
part of a Grasshopperaddress. Note that, in order to communicate via
socket, the server side (represented by ageney, >region registry, or
external application) must provide &ommunication receiver that sup-

ports this protocol. (Concerning agencies and region registries, a socket
communication receiver is running by default.)

sock etssl

one possible protocol used by the Grasshoppempaunication service.
socketssl uses a plain socket protocol, representing the lowest level of pro-
gramming to the TCP/IP layer of a network., protected @aure Socket

Annex-17

PROGRAMMER'’S GUIDE

Layer. The protocol type 'socketssl’ is part of a Grasshopeldress.

Note that, in order to communicate via socketssl, the server side (repre-
sented by anagency, >region registry, or external application) must pro-
vide a >ommunication receiver that supports this protocol. socketssl
requires external security packages. Please refer to the User’s Guide for
information about these packages.

SSL
see &ecure Socket Layer

State

the mode of existence of amagent or >place. All Grasshopper agents can
exist in the states ’active’ and 'suspendedPersistent agents can addi-
tionally exist in the state 'flushed’. Places can exist in the states 'active’
and 'suspended’. Agents as well as places may change their states several
times during their runtime. After their creation, agents and places are
active. Please refer to Section 5.5 for further information about states.

Stationary Agent

a Grasshopperagent that is running on the samelace for its entire life
time. In contrast to this, mobile agents are able to migrate to different
locations.

Strong Migration

a kind of >migration where an agent moves together with its whabee>
cution state. After a strong migration, the agent continues processing its
task exactly at the point at which it has been interrupted before the migra-
tion. Please refer to Section 6.1 for further details.

stubgen
the name of the shell script that starts the Grasshosndr generator.

Stub Generator

a Grasshopper tool for generatingroxy classes. The required input of
the stub generator is a&erver interface. Please refer to Section 9.2.1 for
information about how to use this tool.

Suspended

one possible state of an >agent or >place. (see suspension). For further
information about states, please refer to Section 5.5.

Annex-18

ANNEX B: GLOSSARY

Suspension

the procedure of temporarily interrupting an >agent’s task execution. After

the suspension of an agent, the agent’s thread is stopped, while the agent
still exists inside the agency as a (passive) Java object. The suspension of

a place suspends all agents inside the place. The re-activation of agents
and places is calledresumption. For further information about states,
please refer to Section 5.5.

Synchronous Communication

a communication mechanism between clients and servers. After invoking
a method on the server, the client is blocked until the termination of the
server method. Synchronous communication is one possible mode of the
Grasshopper communication service. For further information, please
refer to Section 9.5.

Weak Migration

a kind of >migration where an agent maintains itdata state when travel-

ling from one location to another. An agent's data state consists of internal
variable values that are serialized at the agent’s old location, transferred
across the network, and provided to the agent again at the new location.
The agent programmer has to decide which variables are to be part of the
data state. Please refer to Section 6.1 for further details.

Annex-19

PROGRAMMER'’S GUIDE

Annex-20

ANNEX C: INDEX

C Index

A

access control 236
active 42, Annex - 3
Address Annex - 3
address 40, Annex - 3
complete structure 41
host name 41
minimal structure 42
object name 41
place name 41
port number 41
protocol type 40
ADSAnnex - 3
agency Annex - 4
access
local 144
remote 145
access by agents 139
address 40
identifier 140, Annex - 4
information 139
listening to 146
location 40, 140
name 140, Annex - 4
proxy 145
type 140

agency domain service 163, Annex - 4

access 163
local 168
agent Annex - 5
address 40
classAnnex - 5
client Annex - 6
clone 67
code base 37
constructors 24
copy 67
creation 23
parameters 25
viaAPI 25
viaUl 25
data state 52
description 33
identification 35

identifier 35, Annex - 5
interface name 33
life cycle 42
location 40
migration 49

procedure 51

strong 50

weak 50
mobile 13, Annex - 12
name 33, Annex - 5
names & descriptions 36
persistent 13, Annex - 13
platform Annex - 6
properties 32
removal 25
server Annex - 17
state 34, 42, Annex - 5
stationary 13, Annex - 18
system Annex - 6
thread 19
type Annex - 5
types 14, 33

asynchronous communication 90, An-
nex - 6

dynamic calls 113

result handling 91
blocking 94
notification 96
polling 95

certificate 235
class

ActionAgent 61
AgencyClientAgent 152
Agencylnfo 140
identifier 140
location 140
name 140
type 140
Agent 15
action() 15, 61
afterCopy() 16

Annex-21

PROGRAMMER'’S GUIDE

beforeCopy() 16

beforeRemove() 16, 26

copy() 16

getAgentSystem() 16

getDescription() 16

getinfo() 16

getName() 16

getProperties() 17

getProperty() 17

getRegion() 17

getType() 17

init() 17, 24

live() 17, 19

structure 54

log() 17

remove() 17

setProperties() 18

setProperty() 18
Agentinfo 31

AgentPresentation 33

AgentSecurityRelated 33

AgentSpecification 33

code base 32

home location 32

identifier 32

last location 32

location 32

properties 32

state 34
AgentPresentation 33

agent name 33

agent type 33

description 33

interface name 33
AgentSecurityRelated 33
AgentSpecification 33
AsyncClientAgent 103
AsyncServerAgent 98
BoomerangAgent 55
ClientAgent 85
CopyAgent 69
CORBACIientAgent 252
CORBAServant 247
CORBA ServerAgent 248
DynamicClientAgent 122
DynamicServerAgent 115
External AccessAgent 212
External Application 207

Annex-22

External CommService 204
deregisterObject() 205
registerObject() 205
shutdown() 205
startReceiver() 204

FutureResult 91
addResultListener() 93
getResult() 91
getResult() 92
getTimeout() 92
isAvailable() 93
isUserException() 93
removeResultListener() 93
setTimeout() 93

GHListener 156

GHSecurityManager 236

HelloAgent 19

MigratingClientAgent 193

MigratingServerAgent 189

MobileAgent 18
afterCopy() 68
afterMove() 18, 52
beforeCopy() 67
beforeMove() 18, 51
getType() 18
move() 18

MulticastClientAgent 133

MulticastServerAgent 131

PersistentMobileAgent 219
afterLoad() 219
beforeFlush() 219
beforeSave() 219
flush() 219
getFlushTimeout() 219
getSavelnterval() 219
save() 219
setFlushTimeout() 219
setSavelnterval() 219

PersistentStationaryAgent 219
afterLoad() 219
beforeFlush() 219
beforeSave() 219
flush() 219
getFlushTimeout() 219
getSavelnterval() 219
save() 219
setFlushTimeout() 219
setSavelnterval() 219

ANNEX C: INDEX

PlaceAccessAgent 229
PlaceService 227
PrintinfoAgent 45
PrintStringAgent 27
RegionClientAgent 175
Serializable 52
ServerAgent 83
ServerObject 210
SleepyAgent 220
StationaryAgent 18
getType() 18
TestDataPacket 117
class diagram
Agencylnfo 140
Agent 14
Agentinfo 31
|AgentSystem 141
IRegion 164
IRegionRegistration 166
client agent Annex - 6
clone 67
code base 32, 37, Annex - 6
communication receiver Annex - 7
communication service 75, Annex - 7
asynchronous com. 90
client side 81
dynamic com 112
external clients 204
external interactions 204
external servers 204
general usage 76
location transparency 76
migration handling 187
multicast com. 127
proxy
concept 75
creation 77
dynamic 80
manual 78
server side 77
static com. 112
synchronous com. 90
unicast com. 127
contact 4
copy 67
procedure 67
CORBA 241, Annex - 8

D

data state 52, Annex - 8
defining the 53
dynamic communication 112
async. calls 113
generic proxy 113
method calls 113
primitive types 114
user defined classes 113
dynamic method invocation Annex - 8
dynamic proxy generation Annex - 8

E
example
ActionAgent 61
AgencyClientAgent 149
BoomerangAgent 55
classloading 11
CopyAgent 68
fault tolerance 10
HelloAgent 19
overview 6
PrintinfoAgent 44
PrintStringAgent 26
RegionClientAgent 173
running the 10
scenario
async. communication 97
AsyncClientAgent 100
AsyncServerAgent 98
running the 109
CORBA 246
CORBAClientAgent 252
CORBA ServerAgent 248
running the 256
dynamic communication 114
DynamicClientAgent 118
DynamicServerAgent 115
running the 125
external communication 206
Externa AccessAgent 211
External Application 206
running the 214
migration 189
MigratingClientAgent 191
MigratingServerAgent 189
running the 199

Annex-23

PROGRAMMER'’S GUIDE

multicast communication 131
MulticastClientAgent 132
MulticastServerAgent 131

running the 136
simple communication 83

ClientAgent 85

running the 87

ServerAgent 83
special places 227

| PlaceService 228

PlaceAccessAgent 228

PlaceService 227

property file 228

running the 231

SleepyAgent 219

execution block Annex - 8
execution state Annex - 9
external communication 204
external security 235

F
file

place property 225
filter 181
flush 217, Annex - 9
flushed 43

G

grasshopperiiop 41

group interface 128

group proxy 128
creation 129

H
home location 32, Annex - 9

I
identifier 32, Annex - 10
IDL 241
liop 41, Annex - 10
InformationDesk Annex - 10
installation requirements 5
interface
Cl_CORBAServerAgent 247
[Agent 19
[AgentSystem 141, 218

Annex-24

addSystemListener() 143
copyAgent() 142
createAgent() 23, 142
createPlace() 143
flushAgent() 142, 218
flushAgentAfter() 142, 218
getAgentState() 142
getinfo() 144
getPlaceState() 143
hasPersistence() 144, 218
invokeAgentAction() 142
listAgents() 142
listM obileAgents() 142
listPlaces() 143
listStationaryAgents() 142
moveAgent() 142
reloadAgent() 142, 218
removeAgent() 143
removePlace() 143
removeSystemListener() 144
resumeAgent() 143
resumePlace() 143
saveAgent() 143, 218
saveAgentEvery() 143, 218
suspendAgent() 143
suspendPlace() 143
|AsyncServerAgent 100
IDirectoryService 165
IDynamicServerAgent 116
| External AccessAgent 214
| FutureResult 91
|Group 128
add() 128
getMembers() 128
getResult() 128
invoke() 128
remove() 128
setType() 129
IListeningAgent 155
IMigratingServerAgent 191
IMobileAgent 19
IMulticastServerAgent 132
| Persistent 19
| PlaceService 228
IRegion 163, 164
getAgentState() 164
getPlaceState() 165
listAgencies() 165

ANNEX C: INDEX

listAgents() 164
listMobileAgents() 164
listPlaces() 165
listStationaryAgents() 164
lookupCommuni cationSer-
ver() 165
lookupL ocation() 164
IRegionRegistration 163, 165
addSystemL.istener() 167
getAgentState() 166
getPlaceState() 167
listAgencies() 167
listAgents() 166
listMobileAgents() 166
listPlaces() 167
listStationaryAgents() 166
lookupCommuni cationSer-
ver() 167
lookupL ocation() 166
removeSystemListener() 167
| ServerAgent 84
| ServerObject 211
| StationaryAgent 19
| SystemListener 146, 170
agencyAdded() 170
agencyRemoved() 170
agentAdded 146
agentAdded() 170
agentChanged() 146, 170
agentRemoved() 146, 170
beforeRemove() 146, 171
getldentifier() 147, 171
placeAdded() 146, 170
placeChanged() 146, 171
placeRemoved() 146, 171
| SystemL istenerProvider 165
internal security 235, 236
invoke action() 61

L

last location 32
listener
identifier 147, 171
result 96
system 146, 170
registration 147, 171
location 32, 40, Annex - 11

location transparency 76

M

MAFAgentSystem Annex - 11

MAFFinder Annex - 11

manual proxy generation Annex - 11

MASIF Annex - 11

method
action() 15, 61
add() 128
addResultListener() 93
addSystemL.istener() 143, 167
afterCopy/() 16, 68
afterLoad() 219
afterMove() 18, 52
agencyAdded() 170
agencyRemoved() 170
agentAdded() 146, 170
agentChanged() 146, 170
agentRemoved() 146, 170
beforeCopy() 16, 67
beforeFlush() 219
beforeMove() 18, 51
beforeRemove() 16, 26, 146, 171
beforeSave() 219
copy() 16
copyAgent() 142
createAgent() 23, 142
createPlace() 143
deregisterObject() 205
flush() 219
flushAgent() 142, 218
flushAgentAfter() 142, 218
getAgentState 142
getAgentState() 164, 166
getAgentSystem() 16
getDescription() 16
getFlushTimeout() 219
getldentifier() 147, 171
getinfo() 16, 144
getMembers() 128
getName() 16
getPlaceState() 143, 165, 167
getProperties() 17
getProperty() 17
getRegion() 17
getResult() 91, 128

Annex-25

PROGRAMMER'’S GUIDE

getSavelnterval () 219 migration 49, Annex - 11
getTimeout() 92 handling 187
getType() 17, 18 procedure 51
hasPersistence() 144, 218 strong 50, Annex - 18
init() 17, 24 weak 50, Annex - 19
invoke() 128 mobile agent 13, Annex - 12
invokeAgentAction() 142 mobility Annex - 12
iSAvailable() 93 multicast communication Annex - 12
isUserException() 93 group interface 128
listAgencies() 165, 167 group proxy 128
listAgents() 142, 164, 166 result handling 130
listMobileAgents() 142, 166 termination mode 129
listPlaces() 143, 165, 167 and 129
listStationaryAgents() 142, 164, incremental 130
166 or 129

live() 17, 19

structure 54 N
log() 17 i
lookupCommunicationServer() name Annex - 12

165, 167

lookupL ocation() 164, 166 O
move() 18 object request broker Annex - 13
moveAgent() 142 OMG Annex - 13
placeAdded() 146, 170 ORB Annex - 13
placeChanged() 146, 171
placeRemoved() 146, 171 P
registerObject() 205 permission 236
rel Oad'g‘(g)leln;()égz’ 218 persistence service 217, Annex - 13
remov ’ flush 217
removeAgent() 143 reload 218
removePlace() 143 save 217
removeResultListener() 93 persistent agent 13, Annex - 13
removeSystemL istener() 144, 167 place Annex - 13
resumeAgent() 143 service 225
resumePlace() 143 special 225
SV ﬁ 219:0 43 place property file 225
saveagen lace state Annex - 14
saveAgentEvery() 143, 218 Broperties 32
serProperty() 18 protocol 40
setFlushTimeout() 219 type 40
setProperties() 18 grasshopperiiop 41
setSavelnterval () 219 iiop 41
setType() 129 rmissl 41
shutdown() 205 socket 40
startReceiver() 204 socketss 41

suspendAgent() 143

proxy
suspendPlace() 143

Annex-26

ANNEX C: INDEX

concept 75
creation 77
dynamic 80
manual 78
generic 113
group 128
proxy class Annex - 14
proxy object Annex - 14

R

region Annex - 15
region registry Annex - 15
access 163
local 168
remote 169
listening to 170
proxy 169
reload 218
remote method invocation Annex - 15
result listener 96
resume Annex - 15
resumption Annex - 15
rmi 41, Annex - 16
rmissl 41, Annex - 16

S

save 217

search filter 181

searching 180

secure socket layer 235, Annex - 16

security service 235, Annex - 16

serialization Annex - 17

server agent Annex - 17

server interface Annex - 17

server proxy Annex - 17

socket 40, Annex - 17

socketssl 41, Annex - 17

source code
ActionAgent 61
AgencyClientAgent 152
AsyncClientAgent 104
AsyncServerAgent 98
AsyncServerException 100
BoomerangAgent 55
Cl_CORBAServerAgent 247
ClientAgent 85
CopyAgent 70

CORBACIlientAgent 253
CORBA ServerAgent 248
DynamicClientAgent 122
DynamicServerAgent 115
External AccessAgent 212
External Application 207
GHListener 157
HelloAgent 19
|AsyncServerAgent 100
IDynamicServerAgent 116
| External AccessAgent 214
[ListeningAgent 155
IMigratingServerAgent 191
[MulticastServerAgent 132
| ServerAgent 84
| ServerObject 211
MigratingClientAgent 194
MigratingServerAgent 189
MulticastClientAgent 133
MulticastServerAgent 131
PrintinfoAgent 45
PrintStringAgent 27
RegionClientAgent 175
ServerAgent 84
ServerObject 210
SleepyAgent 220
TestDataPacket 117
special places 225
SSL 235
ssl Annex - 16
state 42, Annex - 18
active 42
diagram 44
flushed 43
suspended 43
static communication 112
stationary agent 13, Annex - 18
strong migration 50, Annex - 18
stub generator Annex - 18
usage 79
stubgen Annex - 18
See stub generator
suspended 43, Annex - 18
suspension Annex - 19
synchronous communication 90, An-
nex - 19
system listener 146, 170

Annex-27

PROGRAMMER'’S GUIDE

T

termination mode 129
and 129
incremental 130
or 129

W
weak migration 50, Annex - 19

X
X.509 235

Annex-28

	1 Preface
	1.1 About this Document
	1.2 Document Structure
	1.3 Related Documents
	1.4 Notational Conventions
	1.4.1 Fonts
	1.4.2 Icons

	1.5 How to Get in Contact

	2 Introduction
	3 Hello Agent!
	3.1 Example: HelloAgent
	3.2 Summary

	4 Creation and Removal of Agents
	4.1 Agent Creation
	4.2 Agent Removal
	4.3 Example: PrintStringAgent
	4.4 Summary

	5 Agent Related Information
	5.1 Identification
	5.2 Names and Descriptions
	5.3 Code base
	5.4 Grasshopper Addresses and Locations
	5.5 States and Life Cycles
	5.6 Example: PrintInfoAgent
	5.7 Summary

	6 Move Me!
	6.1 Strong vs. Weak Migration
	6.2 The Migration Procedure
	6.3 The Data State: Mobile Information
	6.4 Structuring an Agent’s Life
	6.5 Example: BoomerangAgent
	6.6 Summary

	7 Action!
	7.1 Example: ActionAgent
	7.2 Summary

	8 Clones and Copies
	8.1 Example: CopyAgent
	8.2 Summary

	9 The Communication Service
	9.1 Implementing the Server Side
	9.2 Creating Proxy Objects
	9.2.1 Manual Proxy Generation
	9.2.1.1 Usage of the Stub Generator

	9.2.2 Dynamic Proxy Generation
	9.2.3 Issues of Mixed JDK Environments

	9.3 Implementing the Client Side
	9.4 Simple Communication Scenario
	9.4.1 Example: ServerAgent
	9.4.2 Example: ClientAgent
	9.4.3 Running the Scenario
	9.4.4 Summary

	9.5 Sync. vs. Async. Communication
	9.5.1 Asynchronous Provision of Results

	9.6 Asynchronous Communication Scenario
	9.6.1 Example: AsyncServerAgent
	9.6.2 Example: AsyncClientAgent
	9.6.3 Running the Scenario
	9.6.4 Summary

	9.7 Static vs. Dynamic Method Invocation
	9.8 Dynamic Communication Scenario
	9.8.1 Example: DynamicServerAgent
	9.8.2 Example: DynamicClientAgent
	9.8.3 Running the Scenario
	9.8.4 Summary

	9.9 Unicast vs. Multicast Communication
	9.10 Multicast Communication Scenario
	9.10.1 Example: MulticastServerAgent
	9.10.2 Example: MulticastClientAgent
	9.10.3 Running the Scenario
	9.10.4 Summary

	9.11 Accessing Agencies
	9.11.1 Agency Related Information
	9.11.2 Interface IAgentSystem
	9.11.3 Local Access
	9.11.4 Remote Access
	9.11.5 Listening to Agencies
	9.11.6 Example: AgencyClientAgent
	9.11.7 Summary

	9.12 Accessing an Agency Domain Service
	9.12.1 Interface IRegion
	9.12.2 Interface IRegionRegistration
	9.12.3 Local Access
	9.12.4 Remote Access
	9.12.5 Listening to Region Registries
	9.12.6 Example: RegionClientAgent
	9.12.7 Summary

	9.13 Searching Grasshopper Components
	9.14 Migrating Servers and Clients
	9.15 Migration Scenario
	9.15.1 Example: MigratingServerAgent
	9.15.2 Example: MigratingClientAgent
	9.15.3 Running the Scenario
	9.15.4 Summary

	9.16 Interacting with External Applications
	9.17 External Communication Scenario
	9.17.1 Example: ExternalApplication
	9.17.2 Example: ExternalAccessAgent
	9.17.3 Running the Scenario
	9.17.4 Summary

	10 The Persistence Service
	10.1 Example: SleepyAgent
	10.2 Summary

	11 Special Places
	11.1 Example Scenario for Special Places
	11.1.1 Example: PlaceService
	11.1.2 Example: PlaceAccessAgent
	11.1.3 Running the Scenario

	12 The Security Service
	12.1 External Security
	12.2 Internal Security
	12.3 Example: SecretAgent

	13 Grasshopper and CORBA
	13.1 CORBA Enhanced Grasshopper Agents
	13.1.1 Example: CORBA Enhanced Agents

	A Acronyms
	B Glossary
	C Index

