
Grasshopper Programmer’s Guide

Release 2.2

IKV++ GmbH
Bernburger Strasse 24-25
10963 Berlin, Germany
http://www.grasshopper.de

Copyright (c) 1999 IKV++ GmbH Informations- und Kommunikationssysteme

All Rights Reserved.

Grasshopper Release 2.2 Programmer’s Guide, März 2001

The Grasshopper Programmer’s Guide is copyrighted and all rights are reserved. Information in this
document is subject to change without notice and does not represent a commitment on the part of
IKV++ GmbH. The document may not, in whole or in part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without prior consent, in
writing, from IKV++ GmbH.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
Microsoft, Windows, and Windows NT are trademarks or registered trademarks of Microsoft
Corporation in the U.S. and other countries.
All other names are used for identification purposes only and are trademarks or registered trademarks
of their respective companies.

Grasshopper Release 2.2 is based on Grasshopper Release 1.x which is copyrighted by the Research
Institute for Open Communication Systems (FOKUS), a department of the National Research Center
for Information Technology (GMD), Germany.

IKV++ GmbH
Informations- und Kommunikationssysteme
Bernburger Strasse 24-25
D-10963 Berlin
Germany
Email: ikv@ikv.de
URL: http://www.ikv.de

CONTENTS
Contents

1 Preface ...1

1.1 About this Document... 1

1.2 Document Structure... 1

1.3 Related Documents.. 2

1.4 Notational Conventions ... 3

1.4.1 Fonts.. 3

1.4.2 Icons.. 3

1.5 How to Get in Contact... 4

2 Introduction ..5

3 Hello Agent!...13

3.1 Example: HelloAgent .. 19

3.2 Summary ... 20

4 Creation and Removal of Agents .. 23

4.1 Agent Creation .. 23

4.2 Agent Removal.. 25

4.3 Example: PrintStringAgent ... 26

4.4 Summary ... 29

5 Agent Related Information ..31

5.1 Identification ... 35

5.2 Names and Descriptions .. 36

5.3 Code base .. 37

5.4 Grasshopper Addresses and Locations...................................... 40

5.5 States and Life Cycles ... 42

5.6 Example: PrintInfoAgent .. 44

5.7 Summary ... 46

6 Move Me!...49

6.1 Strong vs. Weak Migration ... 49

6.2 The Migration Procedure... 51

6.3 The Data State: Mobile Information ... 52
i

PROGRAMMER’S GUIDE

..54

...55

....58

..61

....64

...68

....73

...77

...77

..78

..80

..80

...81

...83

...83

..85

...87

...89

...90

..91

...97

..98

100

.109

.112

112

.114
6.4 Structuring an Agent’s Life..

6.5 Example: BoomerangAgent ..

6.6 Summary ..

7 Action! ... 61

7.1 Example: ActionAgent...

7.2 Summary ..

8 Clones and Copies .. 67

8.1 Example: CopyAgent ..

8.2 Summary ..

9 The Communication Service ... 75

9.1 Implementing the Server Side...

9.2 Creating Proxy Objects ...

9.2.1 Manual Proxy Generation..

9.2.1.1 Usage of the Stub Generator 79

9.2.2 Dynamic Proxy Generation ...

9.2.3 Issues of Mixed JDK Environments..............................

9.3 Implementing the Client Side..

9.4 Simple Communication Scenario..

9.4.1 Example: ServerAgent..

9.4.2 Example: ClientAgent ...

9.4.3 Running the Scenario..

9.4.4 Summary...

9.5 Sync. vs. Async. Communication ...

9.5.1 Asynchronous Provision of Results...............................

9.6 Asynchronous Communication Scenario................................

9.6.1 Example: AsyncServerAgent ..

9.6.2 Example: AsyncClientAgent ...

9.6.3 Running the Scenario..

9.6.4 Summary...

9.7 Static vs. Dynamic Method Invocation....................................

9.8 Dynamic Communication Scenario ..
ii

CONTENTS
9.8.1 Example: DynamicServerAgent 115

9.8.2 Example: DynamicClientAgent 118

9.8.3 Running the Scenario .. 125

9.8.4 Summary ... 127

9.9 Unicast vs. Multicast Communication 127

9.10 Multicast Communication Scenario .. 131

9.10.1Example: MulticastServerAgent 131

9.10.2Example: MulticastClientAgent.................................... 132

9.10.3Running the Scenario .. 136

9.10.4Summary ... 138

9.11 Accessing Agencies... 139

9.11.1Agency Related Information... 139

9.11.2 Interface IAgentSystem .. 141

9.11.3Local Access ... 144

9.11.4Remote Access.. 145

9.11.5Listening to Agencies ... 146

9.11.6Example: AgencyClientAgent 149

9.11.7Summary ... 162

9.12 Accessing an Agency Domain Service 163

9.12.1 Interface IRegion .. 164

9.12.2 Interface IRegionRegistration....................................... 165

9.12.3Local Access ... 168

9.12.4Remote Access.. 169

9.12.5Listening to Region Registries...................................... 170

9.12.6Example: RegionClientAgent 173

9.12.7Summary ... 180

9.13 Searching Grasshopper Components....................................... 180

9.14 Migrating Servers and Clients ... 187

9.15 Migration Scenario .. 189

9.15.1Example: MigratingServerAgent 189
iii

PROGRAMMER’S GUIDE
9.15.2Example: MigratingClientAgent191

9.15.3Running the Scenario...199

9.15.4Summary..203

9.16 Interacting with External Applications204

9.17 External Communication Scenario ..206

9.17.1Example: ExternalApplication206

9.17.2Example: ExternalAccessAgent211

9.17.3Running the Scenario...214

9.17.4Summary..216

10 The Persistence Service.. 217

10.1 Example: SleepyAgent...219

10.2 Summary ..222

11 Special Places .. 225

11.1 Example Scenario for Special Places.......................................227

11.1.1Example: PlaceService ..227

11.1.2Example: PlaceAccessAgent ...228

11.1.3Running the Scenario...231

12 The Security Service .. 235

12.1 External Security..235

12.2 Internal Security ...236

12.3 Example: SecretAgent..237

13 Grasshopper and CORBA... 241

13.1 CORBA Enhanced Grasshopper Agents..................................242

13.1.1Example: CORBA Enhanced Agents246

A Acronyms ..Annex - 1

B Glossary...Annex - 3

C Index ..Annex - 21
iv

LIST OF FIGURES
List of Figures

Figure 1: Agent Class Diagram.. 15

Figure 2: AgentInfo Class Diagram... 31

Figure 3: Agent State Diagram .. 44

Figure 4: Agent Migration ... 50

Figure 5: Structure of an Agent’s live() Method ... 54

Figure 6: BoomerangAgent Scenario... 57

Figure 7: ActionAgent Scenario .. 64

Figure 8: CopyAgent Scenario... 72

Figure 9: Communication via Proxies ... 75

Figure 10:Simple Communication Scenario.. 88

Figure 11:Asynchronous Communication Scenario.................................. 110

Figure 12:Dynamic Communication Scenario .. 126

Figure 13:Multicast Communication Scenario.. 137

Figure 14:AgencyInfo Class Diagram... 140

Figure 15:IAgentSystem Class Diagram ... 141

Figure 16:Listening Mechanism for Agencies .. 149

Figure 17:AgencyClientAgent Scenario.. 161

Figure 18:IRegion Class Diagram ... 164

Figure 19:IRegionRegistration Class Diagram.. 166

Figure 20:Listening Mechanism for Region Registries............................. 173

Figure 21:RegionClientAgent Scenario... 179

Figure 22:Synchronous Migration Scenario.. 201

Figure 23:Asynchronous Migration Scenario.. 202

Figure 24:External Application Scenario .. 215

Figure 25:CORBA Object Creation and Connection Establishment......... 244

Figure 26:Migration of a CORBA Server Agent....................................... 245

Figure 27:Connection Re-establishment by CORBA Client Agent 246
v

PROGRAMMER’S GUIDE
Figure 28:CORBA Agent Scenario.. 257
vi

LIST OF TABLES
List of Tables

Table 1: Notational Conventions ... 3

Table 2: Icons .. 3

Table 3: Filter Keys ... 182
vii

PROGRAMMER’S GUIDE
viii

LIST OF EXAMPLES
List of Examples

Example 1:HelloAgent .. 19

Example 2:PrintStringAgent.. 27

Example 3:PrintInfoAgent... 45

Example 4:BoomerangAgent .. 55

Example 5:ActionAgent .. 61

Example 6:CopyAgent .. 70

Example 7:ServerAgent... 84

Example 8:IServerAgent ... 84

Example 9:ClientAgent ... 85

Example 10:AsyncServerAgent .. 98

Example 11:IAsyncServerAgent ... 100

Example 12:AsyncServerException .. 100

Example 13:AsyncClientAgent ... 104

Example 14:DynamicServerAgent .. 115

Example 15:IDynamicServerAgent... 116

Example 16:TestDataPacket.. 117

Example 17:DynamicClientAgent... 122

Example 18:MulticastServerAgent.. 131

Example 19:IMulticastServerAgent .. 132

Example 20:MulticastClientAgent .. 133

Example 21:AgencyClientAgent ... 152

Example 22:IListeningAgent... 155

Example 23:GHListener .. 157

Example 24:RegionClientAgent.. 175

Example 25:MigratingServerAgent... 189

Example 26:IMigratingServerAgent ... 191

Example 27:MigratingClientAgent ... 194
ix

PROGRAMMER’S GUIDE
Example 28:ExternalApplication ... 207

Example 29:ServerObject... 210

Example 30:IServerObject ... 211

Example 31:ExternalAccessAgent ... 212

Example 32:IExternalAccessAgent.. 214

Example 33:SleepyAgent ... 220

Example 34:PlaceService ... 227

Example 35:IPlaceService.. 228

Example 36:Place Property File ... 228

Example 37:PlaceAccessAgent.. 229

Example 38:Keytool Usage: Generate Key.. 237

Example 39:Keytool Usage: List Keys .. 238

Example 40:Keytool Usage: Export Key ... 238

Example 41:CI_CORBAServerAgent.. 247

Example 42:CORBAServerAgent.. 248

Example 43:CORBAClientAgent .. 253
x

CHAPTER 1: PREFACE
1 Preface

This chapter provides information about this document itself as well as about
the remaining parts of the Grasshopper manual.

1.1 About this Document

This document describes how to implement mobile and stationary agents on
top of the Grasshopper platform. Every fundamental implementation aspect is
handled, such as mobility, local/remote communication, agent localization,
CORBA support, and security.

Simple example agents are introduced and enhanced step by step throughout
the whole document, starting as ’minimal agents’ and ending as rather com-
plex agents that make use of most of the Grasshopper functionality.

1.2 Document Structure

This document is subdivided into the following chapters.

CHAPTER 1: Preface, this part of the document, gives an overview of this
manual and its background.

CHAPTER 2: Introduction, provides a general description about running the
examples that are described in the scope of this document.

CHAPTER 3: Hello Agent!, provides basic information that enables you to
implement a first, simple agent on top of Grasshopper. The supported agent
types, their class structure, and their functionality is introduced, and the chap-
ter ends with an example that shows a minimal Grasshopper agent.

CHAPTER 4: Creation and Removal of Agents, explains how to create and re-
move Grasshopper agents via the platform’s programming and user interfaces.
Special emphasis lies on the provision of creation parameters to a new agent.

CHAPTER 5: Agent Related Information, describes the set of information that
characterizes a Grasshopper agent, such as an agent’s identifier, location,
name, type, code base, and state.

CHAPTER 6: Move Me!, provides detailed information about the mobility as-
pect of Grasshopper agents. Special emphasis lies on the introduction of an
agent’s data state and the structure of an agent’s live() method.
1

PROGRAMMER’S GUIDE

n ac-

rass-

pper
h reg-

dvan-

ency

ech-

gents

ch-

 via

n-

d to
CHAPTER 7: Action!, describes how a user can trigger a running agent via the
platform’s user interfaces in order to force the agent to perform a certai
tion.

CHAPTER 8: Clones and Copies, explains how to create a copy of a G
hopper agent.

CHAPTER 9: The Communication Service, describes how Grassho
agents can communicate with each other, with remote agencies, and wit
istration servers.

CHAPTER 10: The Persistence Service, explains how agents can take a
tage of the persistence mechanism of the hosting agency.

CHAPTER 11: Special Places, describes how single places within an ag
can be enhanced with additional functionality.

CHAPTER 12: The Security Service, shows the impacts of the security m
anisms of an agency on the execution of agents.

CHAPTER 13: Grasshopper and CORBA, explains how Grasshopper a
can act as CORBA servers and/or clients.

ANNEX A: Acronyms

ANNEX B: Glossary

ANNEX C: Index

1.3 Related Documents

The whole Grasshopper manual comprises four parts:

Basics and Concepts. This part covers an introduction to mobile agent te
nology and to the Grasshopper platform.

User’s Guide. This part describes the platform installation and its usage
graphical and command line interfaces.

Programmer’s Guide. This part explains how to realize mobile and statio
ary agents on top of the Grasshopper platform.

Release Notes. This part lists modifications and enhancements compare
the previous release of Grasshopper.
2

CHAPTER 1: PREFACE
1.4 Notational Conventions

Several notational conventions are used throughout the whole document in or-
der to improve the readability and to support you in finding specific informa-
tion.

1.4.1 Fonts

The following font types are used within this manual:

1.4.2 Icons

The following icons are placed at the page margins in order to indicate certain
types of information:

Font Description

Proportional font Used for standard text

Proportional italic font Used either to emphasize words or to in-
dicate the first appearance of new terms.

Fixed font Used for source code, E-mail addresses
and http addresses.

Fixed, bold font Used to emphasize parts of source code,
such as class or method names

Fixed bold italic
font

Used to emphasize comments inside
source code

Table 1: Notational Conventions

This icon indicates information that is specific for Unix op-
erating systems.

This icon indicates information that is specific for Windows
operating systems.

Table 2: Icons
3

PROGRAMMER’S GUIDE
1.5 How to Get in Contact

To make suggestions, critics, or even compliments, please contact us by send-
ing an E-mail to grasshopper@ikv.de

In order to retrieve the comments of other Grasshopper users and participate
in discussions, please visit our Web site

http://www.grasshopper.de/community

and subscribe to the discussion groups you are interested in.

Additional information can be retrieved from the following Web site:
http://www.grasshopper.de

This icon indicates paragraphs that provide some background
information about a specific topic. This information is not re-
quired for the understanding of the respective section and
may be skipped. However, it may be interesting for you if
you want to know more about the concepts of Grasshopper
Development System. This background information is addi-
tionally highlighted by means of a shaded frame.

This icon indicates useful tips and tricks that facilitate the us-
age of the product.

This icon indicates paragraphs that are of particular impor-
tance and that should be read in any case, even if you want to
go through the document as soon as possible.

This icon is used to indicate examples.

Table 2: Icons
4

CHAPTER 2: INTRODUCTION
2 Introduction

This document describes how to implement mobile and stationary agents on
top of the Grasshopper platform. Every fundamental implementation aspect is
handled, such as mobility, local/remote communication, agent localization,
CORBA support, and security.

Simple example agents are introduced and enhanced step by step throughout
the whole document, starting as ’minimal agents’ and ending as rather com-
plex agents that make use of most of the Grasshopper functionality.

Installation Requirements

We recommend that you take a look at the examples provided in this manual.
The following requirements have to be fulfilled in order to run them.

1. The Java Development Kit JDK 1.2 (or higher) as well as the Grasshopper
platform V2.2 is needed for all examples. Concerning JDK 1.3, Grasshop-
per takes advantage of improved reflection mechanisms: With JDK 1.3, it
is not anymore required to manually create proxy classes for using the
Grasshopper communication service.

2. In order to compile and run examples that are accessing CORBA function-
ality, a CORBA environment must have been installed. Please refer to the
User’s Guide to get information about the CORBA environments that are
supported by Grasshopper. If your installed CORBA implementation is not
initially supported by Grasshopper, please refer to the User’s Guide in
order to see how to adapt Grasshopper to your CORBA implementation.

3. In order to compile and run the examples that make use of the security fea-
tures of Grasshopper, a security add-on must have been installed. For
detailed information about this add-on, please refer to the User’s Guide.

API Specification

Grasshopper provides a large set of classes and interfaces that can be used by
agents for accessing the functionality of the platform. This document focuses
on the introduction of the platform functionality in terms of textual descrip-
tions and programming examples. It does not provide an entire specification
of the platform API. If a specific method is mentioned in this document, its
concrete parameters are usually left out. For instance, the method

AgentInfo createAgent (
java.lang.String className,
java.lang.String codeBase,
java.lang.String placeName,
5

PROGRAMMER’S GUIDE

ents
oba-

le
w to

ple
 and

ent
loca-

how

pro-

ple
mote
kage
java.lang.Object[] arguments)

is simply mentioned as

createAgent(...)

An entire API specification is provided in HTML format as part of your Grass-
hopper installation (see directory <GH_HOME>/doc/api, where
<GH_HOME> is the root directory of your Grasshopper installation).

Example Scenarios

The examples that are introduced in the following chapters are part of the
Grasshopper release. Their source code can be found in the directory
<GH_HOME>/examples/src, and the corresponding class files are stored
in the directory <GH_HOME>/examples/classes of your Grasshopper
installation.

The examples are arranged in Java packages. The root package is named ex-
amples, and the inner packages correspond to the sections of this document:

• Package examples.simple

This package comprises all examples that consist of single agents:

• HelloAgent (see Example 1 on page 19). This example repres
the minimal Grasshopper agent that just prints a variation of the pr
bly most famous example message.

• PrintStringAgent (see Example 2 on page 27). This examp
shows how to provide creation arguments to an agent and ho
remove an agent.

• PrintInfoAgent (see Example 3 on page 45). This exam
describes the set of information that characterizes an agent,
explains the way how an agent can get access to this information.

• BoomerangAgent (see Example 4 on page 55). This example ag
migrates to a user-defined location and returns back to its home
tion.

• ActionAgent (see Example 5 on page 61). This example shows
a user can trigger an agent via the agency’s user interfaces.

• CopyAgent (see Example 6 on page 70). This example agent
duces copies of itself inside all running agencies.

• AgencyClientAgent (see Example 21 on page 152). This exam
shows how an agent gets access to the functionality of local and re
agencies. It needs the following additional classes from the pac
examples.util: GHListener, IListeningAgent, IListenin-
6

CHAPTER 2: INTRODUCTION
gAgentP.

• RegionClientAgent (see Example 24 on page 175). This example
shows how an agent gets access to a Grasshopper agency domain ser-
vice. It needs the following additional classes from the package exam-
ples.util:
GHListener, IListeningAgent, IListeningAgentP.

• SleepyAgent (see Example 33 on page 220): This example shows
the usage of the persistence service.

• Package examples.simpleCom

This package comprises the agents belonging to the simple communica-
tion scenario as described in Section 9.4 on page 83. The scenario
describes the communication basics of the Grasshopper platform. The
package consists of the following classes:

• ServerAgent (see Example 7 on page 84)

• IServerAgent (see Example 8 on page 84)

• IServerAgentP. This class has been generated by using the Grass-
hopper stub generator. The class is needed by the ClientAgent for creat-
ing proxies of the ServerAgent, if a JDK 1.2 environment is used.
Please refer to Section 9.2 for detailed information about Grasshopper
proxy objects and the stub generator.

• ClientAgent (see Example 9 on page 85)

• Package examples.asyncCom

This package comprises the agents belonging to the asynchronous commu-
nication scenario as described in Section 9.6 on page 97. The scenario
explains how an agent can use the communication service for asynchro-
nous method invocations and describes different result handling mecha-
nisms. The package consists of the following classes:

• AsyncServerAgent (see Example 10 on page 98)

• IAsyncServerAgent (see Example 11 on page 100)

• IAsyncServerAgentP. This class has been generated by using the
Grasshopper stub generator. The class is needed by the AsyncClient-
Agent for creating proxies of the AsyncServerAgent, if a JDK 1.2 envi-
ronment is used. Please refer to Section 9.2 for detailed information
about Grasshopper proxy objects and the stub generator.

• AsyncServerException (see Example 12 on page 100)

• AsyncClientAgent (see Example 13 on page 104)
7

PROGRAMMER’S GUIDE

nica-
shows
to the

ing
icCli-

 1.2
ation

nica-
nario
lticast
e fol-

by
Multi-
if a
ailed
or.

uni-
enario
sults
llow-
• Package examples.dynamicCom

This package comprises the agents belonging to the dynamic commu
tion scenario as described in Section 9.8 on page 114. The scenario
how a client agent can contact a server agent without having access
server proxy. The package consists of the following classes:

• DynamicServerAgent (see Example 14 on page 115)

• IDynamicServerAgent (see Example 15 on page 116)

• IDynamicServerAgentP. This class has been generated by us
the Grasshopper stub generator. The class is needed by the Dynam
entAgent for creating proxies of the DynamicServerAgent, if a JDK
environment is used. Please refer to Section 9.2 for detailed inform
about Grasshopper proxy objects and the stub generator.

• TestDataPacket (see Example 16 on page 117)

• DynamicClientAgent (see Example 17 on page 122)

• Package examples.multicastCom

This package comprises the agents belonging to the multicast commu
tion scenario as described in Section 9.10 on page 131. The sce
shows how a client agent can add a set of server agents to a mu
group and invoke methods on this group. The package consists of th
lowing classes:

• MulticastServerAgent (see Example 18 on page 131)

• IMulticastServerAgent (see Example 19 on page 132)

• IMulticastServerAgentP. This class has been generated
using the Grasshopper stub generator. The class is needed by the
castClientAgent for creating proxies of the MulticastServerAgent,
JDK 1.2 environment is used. Please refer to Section 9.2 for det
information about Grasshopper proxy objects and the stub generat

• MulticastClientAgent (see Example 20 on page 133)

• Package examples.migratingCom

This package comprises the agents belonging to the migrating comm
cation scenario as described in Section 9.15 on page 189. The sc
shows how the communication service forwards method calls and re
to migrating server and client agents. The package consists of the fo
ing classes:

• MigratingServerAgent (see Example 25 on page 189)

• IMigratingServerAgent (see Example 26 on page 191)
8

CHAPTER 2: INTRODUCTION
• IMigratingServerAgentP. This class has been generated by
using the Grasshopper stub generator. The class is needed by the
MigratingClientAgent for creating proxies of the MigratingServer-
Agent, if a JDK 1.2 environment is used. Please refer to Section 9.2 for
detailed information about Grasshopper proxy objects and the stub gen-
erator.

• MigratingClientAgent (see Example 27 on page 194)

• Package examples.externalCom

This package comprises the agents belonging to the external communica-
tion scenario as described in Section 9.17. The scenario shows how an
external application can interact with Grasshopper components (agents,
agencies, and region registries) by using the Grasshopper communication
service. The external application acts as communication server and client.

• Package examples.corbaCom

This package comprises the agents belonging to the CORBA communica-
tion scenario as described in Section 13.1.1. The scenario shows how to
implement Grasshopper agents as CORBA server objects and CORBA cli-
ents. Particular focus lies on issues concerning the migration of CORBA-
enhanced mobile agents.

• Package examples.util

This package comprises classes that are commonly used by different
examples agents mentioned above:

• GHListener (see Example 23 on page 157). This class realizes a lis-
tener object that is able to monitor the events of an agency or a region
registry. It is implemented by the following agents: examples.sim-
ple.AgentSystemClientAgent, examples.sim-
ple.RegionClientAgent.

• IListeningAgent (see Example 22 on page 155). This class repre-
sents an interface that is contacted by GHListener objects in order to
forward event notifications to listening agents. It is implemented by the
following agents: examples.simple.AgentSystemyClient-
Agent, examples.simple.RegionClientAgent.

• IListeningAgentP. This class has been generated by using the
Grasshopper stub generator. The class is needed by GHListener
objects for creating server proxies of the AgencyClientAgent, if a JDK
1.2 environment is used. Please refer to Section 9.2 for detailed infor-
mation about Grasshopper proxy objects and the stub generator.
9

PROGRAMMER’S GUIDE

ingle
 one

 or an

xtual
ted by
-
in-

ive, a
In this
e

hop-
inter-
ency

e only
UI of

y GUI.
agency
his
ow-
rass-
ents

 func-
p the
ng the
mple
Running the Examples

Each example consists of one or more agents. To run the examples, at least one
agency must have been started. Some examples require two agencies and
eventually an agency domain service (i.e., a region registry or X.500 directory
service). For each example, these requirements are mentioned in this docu-
ment below the corresponding source code. The corresponding paragraphs or
sections are titled „Running the Example“ for examples consisting of a s
agent and „Running the Scenario“ for examples consisting of more than
agent. For detailed information about how to start an agent, an agency,
agency domain service, please refer to the User’s Guide.

Example
output

The example agents display the progress of their execution in terms of te
messages or graphical components. Note that textual messages, initia
log(String) and log(String, Throwable) statements, are by de
fault displayed in the terminal window (e.g., XTerm or MS-DOS console w
dow) in which the agency has been created. If the agency’s GUI is act
message console can be activated via the menu item Tools -> Console.
case, all outputs from stdout and stderr are printed in this console. Th
log(...) methods are provided by the class de.ikv.grasshopper.agen-
cy.Agent (see Chapter 3).

Some of the example agents create a simple GUI. This GUI realizes a modal
dialog which blocks the whole agency GUI. Note that this is not a Grass
per-specific problem, but a general characteristic of modal dialogs. The
nal execution of the agency is not influenced. That means, all internal ag
threads as well as threads of other running agents are not blocked. Th
impact is that the agency GUI does not accept any user inputs until the G
the agent has been closed.

Known
problem

In some cases the GUI of an example agent appears behind the agenc
In this case, the agent GUI is active but cannot be accessed, since the
GUI (residing in front of the agent GUI) is blocked by the agent GUI. T
problem could be solved by implementing a more advanced agent GUI. H
ever, the intention of the example agents is to focus on a specific set of G
hopper functionality and not on GUI design. Thus, the graphical compon
have been realized as simple as possible. In order to avoid all associated prob-
lems, it is recommended that you start the agencies with their textual interface
(TUI) instead of their GUI if you want to run an example agent that provides
an own GUI.

Fault toler-
ance

Note that all examples are meant to show a specific set of Grasshopper
tionality. In order to focus on the essential parts of the code and to kee
code as simple and short as possible, no effort has been spent in maki
example agents stable and fault tolerant. Thus, it may be that an exa
10

CHAPTER 2: INTRODUCTION
crashes if it has not been started exactly in the described way.

Class load-
ing and
caching

In order to start an agent, the hosting agency must have access to all class files
that are required by the agent. There are two possibilities to grant this access:
Either the agent’s code base must be included in the CLASSPATH environ-
ment variable of the underlying operating system, or the code base must be ex-
plicitly typed in when you start an agent. Note that the above choice influences
the class caching mechanism of the Java virtual machine (JVM) on which the
agency is running:

• If the agent’s code base is included in the CLASSPATH environment vari-
able, the agent’s classes are loaded only once during the entire life time of
the JVM (which is equal to the life time of the agency running on the
JVM). If more than one instance of the same agent is started on one
agency, the JVM uses its internally cached classes for the creation of the
second and all subsequent instances.

• If the agent’s code base is not included in the CLASSPATH environment
variable, you have to provide it when starting a new agent. (For this pur-
pose, a Grasshopper agency offers adequate graphical and textual input
facilities whose usage is explained in the User’s Guide.) In this case, the
agency does not cache the agent code. If more than one instance of the
same agent is started on one agency, the JVM loads the required code from
the specified code base for each new agent.

The explanations above may be of interest for the development of agents:

During the development phase of a new agent, it may be desirable not to in-
clude its code base in the CLASSPATH environment variable. In this case it is
possible to create an instance of the new agent, to modify the agent’s code af-
terwards, and to create another instance of the agent inside the same agency
by using the modified code without re-starting the agency. This may be advan-
tageous especially if more than one agency is involved in a scenario, since the
re-start of several agencies (which eventually run on different hosts) is rather
time consuming.

After sufficiently testing an agent, it may be desirable to include its code base
in the CLASSPATH environment variable. In this case, it is not necessary for
you to explicitly type in the code base when creating the agent, since the agen-
cy’s JVM by default accesses the system’s Java classpath.
11

PROGRAMMER’S GUIDE
12

CHAPTER 3: HELLO AGENT!
3 Hello Agent!

From a static point of view, a Grasshopper agent is realized by means of a Java
class or a set of classes. Each agent has exactly one agent class which charac-
terizes the agent and which must be derived from one of the superclasses Mo-
bileAgent, StationaryAgent, PersistentMobileAgent, or
PersistentStationaryAgent, all provided by the Grasshopper plat-
form.

Stationary
vs. mobile
agents

When implementing a Grasshopper agent, the first decision that must be made
is whether the agent is to be stationary or mobile. Mobile agents are able to
migrate autonomously from one agency to another, whereas stationary agents
do not have this ability. Besides, it is not possible for a user to move a station-
ary agent via the graphical or textual user interfaces (UI) of the hosting agen-
cy. The reason for the separation between mobile and stationary agents is that
the migration of specific agents may cause failures.

For instance, consider an agent that has references or native access to local re-
sources. In this case, the agent may only be able to run on a specific agency
where the required resources are available. If the agent is moved to another lo-
cation where the required environmental conditions are not provided, the
agent is not able to run properly. In order to avoid this situation, such an agent
should be stationary.

Usually, Grasshopper mobile agents are derived from the class
de.ikv.grasshopper.agent.MobileAgent, while stationary
agents are derived from de.ikv.grasshopper.agent.Stationar-
yAgent. Special cases are persistent agents which are mentioned in the fol-
lowing paragraph.

Persistent
vs. non-per-
sistent
agents

The second decision when implementing a Grasshopper agent is whether the
agent shall be recoverable after a system crash. Grasshopper provides a per-
sistence service in order to enable agencies to persistently store an agent’s data
state within the local file system. In case of a system crash or simply the ter-
mination of an agency, all persistently stored agents can be recovered when the
agency is restarted. In order to achieve this, two preconditions must be ful-
filled:

1. The agency must have been started with activated persistence service.
Please refer to the User’s Guide for detailed information about how to start
an agency.

2. The agents that are to be recoverable must have been implemented with
enabled persistence. This is achieved by deriving the agent class from one
13

PROGRAMMER’S GUIDE

m

m

m

se the

m

gents
).

rclass
of the superclasses de.ikv.grasshopper.agent.Persistent-
MobileAgent or de.ikv.grasshopper.agent.Persistent-
StationaryAgent.

Note that the persistence service stores all persistence-supporting agents (i.e.,
agents derived from one of the classes PersistentMobileAgent or
PersistentStationaryAgent). The more persistence-supporting
agents are running, the more processing power is required by the hosting agen-
cy for maintaining their internal information. Even an agency without any run-
ning agents is slower if the persistence service is active. This fact should be
considered for evaluating if an agent needs persistence-support or not. Further
information about the persistence service can be found in Chapter 10.

Summarizing, Grasshopper supports four kinds of agents:

Grasshop-
per agent
types

• Mobile agents: instances of classes that are derived fro
de.ikv.grasshopper.agent.MobileAgent

• Stationary agents: instances of classes that are derived fro
de.ikv.grasshopper.agent.StationaryAgent

• Persistent mobile agents: instances of classes that are derived fro
de.ikv.grasshopper.agent.PersistentMobileAgent. In
contrast to usual mobile agents, persistent mobile agents are able to u
Grasshopper persistence service (see Chapter 10).

• Persistent stationary agents: instances of classes that are derived fro
de.ikv.grasshopper.agent.PersistentStationary-
Agent. In contrast to usual stationary agents, persistent stationary a
are able to use the Grasshopper persistence service (see Chapter 10

As shown in Figure 1, all Grasshopper agents have the common supe
de.ikv.grasshopper.agency.Agent.
14

CHAPTER 3: HELLO AGENT!
class AgentVia its superclass Agent, each Grasshopper agent has access to the following
methods:

• action() : This method is automatically invoked by the agency if a user
performs a double-click on the corresponding agent entry in the agency
GUI or types in the ’invoke’ command in the TUI. For example, this

Figure 1: Agent Class Diagram

MobileAgent
move()
beforeMove()
afterMove()
getType()

IStationaryAgent
(from agent)

<<Interface>>
IMobileAgent

(from agen t)

<<Interface>>

StationaryAgent
getType()

IAgent

getInfo()
setProperties()
getProperties()
setProperty()
getProperty()

<<Interface>>

PersistentMobileAgent
PersistentMobileAgent ()
save()
flush()
beforeSave()
beforeFlush()
afterLoad()
setSaveInterval()
getSaveInterval()
setFlushTimeout()
getFlushTimeout()

PersistentStationaryAgent
PersistentStationaryAgent()
save()
flush()
beforeSave()
beforeFlush()
afterLoad()
setSaveInterval()
getSaveInterval()
setFlushTimeout()
getFlushTimeout()

Agent

live()
action()
log()
copy()
remove()
beforeCopy()
afterCopy()
beforeRemove()
init()
getInfo()
getAgentSystem()
getRegion()
getName()
getType()
getDescription()
setProperties()
getProperties()
setProperty()
getProperty()

IP ersistent

save()
flush()
setSaveInterval()
getSaveInterval()
setFlushTimeout()
getFlushTimeout()

<<Interface>>
15

PROGRAMMER’S GUIDE

 user.

ng
ay be
lass.

st-
t pro-
le the
. By

ailed

n
oval,

4.2 for

self.

 the

roxy
der to
 API.

he
ple-

at this
ose of
s to

ci-
 the
er to

 the
 dur-
t pro-
ating
 (see
method can be used to activate an agent’s own GUI on request of a
Please refer to Chapter 7 for more information.

• afterCopy(...): This method is automatically invoked by the hosti
agency on the copy of an agent right after its creation. The method m
overridden by agent programmers when implementing an agent c
Please refer to Chapter 8 for more information.

• beforeCopy(...): This method is automatically invoked by the ho
ing agency before an agent is copied and may be overridden by agen
grammers when implementing an agent class. Its purpose is to enab
agent to prepare its copying, e.g., by performing specific initializations
throwing a VetoException inside the beforeCopy() method, an
agent may even prohibit its copying. Please refer to Chapter 8 for det
information.

• beforeRemove(...): This method is automatically invoked before a
agent is removed. Its purpose is to enable the agent to prepare its rem
e.g., by releasing resources and references. Please refer to Section
detailed information.

• copy(...): This method enables an agent to create a copy of it
Detailed information about its usage is provided in Chapter 8.

• getAgentSystem(...): This method enables the agent to access
functionality of the local agency by returning the interface IAgentSys-
tem. For detailed information about the concept of Grasshopper p
objects, please refer to Chapter 9. Please refer to Section 9.11 in or
learn about an agency’s API and about how an agent can access this

• getDescription(): This method returns the textual description of t
agent which can be specified by the agent programmer during the im
mentation phase or by the user when creating the agent, provided th
is supported by the agent implementation (see Section 5.2). The purp
the description is to provide information about the agent’s capabilitie
the user.

• getInfo(...): This method returns a set of information that is asso
ated with the agent. Among others, this set of information comprises
agent’s identifier, type, and name. For detailed information, please ref
Chapter 5.

• getName(): This method returns the name of the agent. In contrast to
unique agent identifier which is automatically generated by an agency
ing the creation of an agent, the name can be specified by the agen
grammer during the implementation phase or by the user when cre
the agent, provided that this is supported by the agent implementation
16

CHAPTER 3: HELLO AGENT!
Section 5.2).

• getPlace(): As explained in Chapter 11, an agency user can allocate addi-
tional functionality to specific places. With this method, an agent can get
access to the functionality of the place in which the agent is currently run-
ning.

• getProperties(): Optionally, a set of properties can be provided to
an agent, either during the agent’s creation, or during its runtime. This
method returns the complete list of an agent’s properties. Please refer to
Chapter 5 for further information about agent properties.

• getProperty(...): Optionally, a set of properties can be provided to
an agent, either during the agent’s creation, or during its runtime. This
method returns the value of one single property, specified by the property
key. Please refer to Chapter 5 for further information about agent proper-
ties.

• getRegion(...): This method enables the agent to access the func-
tionality of an agency domain service by returning the interface IRe-
gion. For detailed information about the concept of Grasshopper proxy
objects, please refer to Chapter 9. Please refer to Section 9.12 in order to
learn about an agency domain service’s API and about how an agent can
access this API.

• getType(...): This method returns the type of the agent. Please refer
to Chapter 5 for detailed information.

• init(...): This method is automatically called by the hosting agency
when an agent is created. It offers the possibility to provide creation argu-
ments to the agent. For detailed information, please refer to Chapter 4.

• live(...): This is the most fundamental method of each Grasshopper
agent, since its implementation realizes the agent’s active, autonomous
behavior. Note that this is the only method that must be overridden by an
agent programmer when implementing an agent class. A first implementa-
tion of this method is provided by the example in Section 3.1. A detailed
guideline for the design of the live(...) method for mobile agents is
given in Chapter 6.

• log(...): Two log(...) methods are provided by the superclass
Agent in order to enable an agent to print textual messages onto the text
console of the local agency. The method log(String) directs outputs
to stdout, while the method log(String, Throwable) directs
outputs to stderr.

• remove(): This method allows an agent to remove itself. Please refer to
17

PROGRAMMER’S GUIDE

 to
This
fer to

 to
This
 key.
s.

ess

ng
roce-
ple-

self to
rces.

st-
rest,

ome
re its
g a

ma-

efer

her

nt

efer

is-
Section 4.2 for detailed information.

• setProperties(): Optionally, a set of properties can be provided
an agent, either during the agent’s creation, or during its runtime.
method sets the complete list of an agent’s properties. Please re
Chapter 5 for further information about agent properties.

• setProperty(...): Optionally, a set of properties can be provided
an agent, either during the agent’s creation, or during its runtime.
method sets the value of one single property, specified by the property
Please refer to Chapter 5 for further information about agent propertie

class Mo-
bileAgent

Via its superclass MobileAgent, each Grasshopper mobile agent has acc
to the following methods:

• afterMove(...): This method is automatically invoked by the hosti
agency after an agent has arrived in a new agency after a migration p
dure. The method may be overridden by agent programmers when im
menting an agent class. For instance, the agent may want to adapt it
the new environment, e.g., by allocating new references or resou
Please refer to Section 6.2 for more information.

• beforeMove(...): This method is automatically invoked by the ho
ing agency before an agent is moved. This method is of particular inte
if the agent’s migration is not triggered by the agent itself, but by s
other software component. In this case, the agent may want to prepa
migration, e.g., by releasing references or resources. By throwin
VetoException inside the beforeMove() method, an agent may
even prohibit its migration. Please refer to Section 6.2 for more infor
tion.

• getType(...): This method returns the type of the agent. Please r
to Chapter 5 for detailed information.

• move(...): Via this method, an agent is able to migrate to anot
agency/place. Please refer to Chapter 6 for more information.

class Sta-
tionary-
Agent

Via its superclass StationaryAgent, each Grasshopper stationary age
has access to the following methods:

• getType(...): This method returns the type of the agent. Please r
to Chapter 5 for detailed information.

Persistent
agents

For information about the classes PersistentMobileAgent and Per-
sistentStationaryAgent, please refer to Chapter 10 where the pers
tence service is described.
18

CHAPTER 3: HELLO AGENT!
Remotely
accessible
agent meth-
ods

Beside the classes mentioned above, Figure 1 shows four Java interfaces:
IAgent, IMobileAgent, IStationaryAgent, and IPersis-
tent. These interfaces cover those methods that are accessible locally and re-
motely by other software components, whereas the remaining class methods
are only accessible for the derived agent class itself. A detailed explanation of
the external access of agent methods (which is realized with the Grasshopper
communication service and proxy objects) is given in Chapter 9.

Agents as
threads

By definition, a software agent is an active, autonomously acting component.
In Grasshopper, this fundamental characteristic is released by defining an
agent as Java thread. The entire thread handling is performed by the hosting
agency (i.e., the Java process in which multiple agents may run concurrently).

Usually, the active behavior of a Java thread is specified inside the thread’s
run() method which is declared in the java.lang.Runnable interface.

Concerning Grasshopper, the run() method of the agent threads is declared
final inside the superclass Agent. The reason is that the agency has to per-
form several checks and operations before an agent is allowed to start its actual
task.

live()Instead of the original run() method, each Grasshopper agent has to imple-
ment a method named live(). This method (which is declared abstract in
the agent’s superclass) defines the active behavior of the agent, i.e., the control
flow that is performed inside the agent’s own thread. The live() method is
the only method that is mandatory for each agent.

3.1 Example: HelloAgent

With the knowledge that has been provided so far, you are able to implement
your first Grasshopper agent:

The HelloAgent has a rather short life which ends right after a single print
statement. After performing this statement, the live() method as well as the
agent thread’s run() method terminate.

Example 1: HelloAgent

package examples.simple;

import de.ikv.grasshopper.agent.MobileAgent;

public class HelloAgent extends MobileAgent
{
public void live() {
19

PROGRAMMER’S GUIDE

 and

te the

iron-
eation

read
assive
bjects/
o re-
gent’s

tes ac-
ct for

 either
log("Hello Agent!");
}

}

Requirements:

• One running agency

Running the example:

Create the HelloAgent inside the running agency via the agency’s UI
have a look at the agency’s console window.

If you are using the textual user interface of the agency, please crea
agent by means of the following command:

cr a examples.simple.HelloAgent

If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

Once the live() method of an agent has terminated, also the agent’s th
terminates, and the agent remains inside the hosting agency just as a p
Java object. The methods of the agent can still be accessed by other o
agents, but the agent itself is not active anymore. The only possibility t
animate the agent is to move it to another agency. In this case, the a
thread is re-started at its new location.

In order to keep the agent living, the termination of the live() method must
be avoided. This can be achieved for example via endless loops or wait state-
ments. However, in some cases it may be desired that an agent migra
tively to another agency and after this just acts as a passive server obje
other entities. In this case, it is advisable to terminate the live() method in
order to save resources.

3.2 Summary

• A Grasshopper agent is statically represented by a Java class that is
derived from one of the classes MobileAgent, StationaryAgent,
PersistentMobileAgent, or PersistentStationaryAgent.

• A Grasshopper agent is realized as Java thread. The run() method of the
agent’s thread is not accessible for agent programmers. The live()
method has to be used instead.

• Each Grasshopper agent has to implement the live() method whose
20

CHAPTER 3: HELLO AGENT!
control flow is performed inside the agent’s thread and thus defines the
agent’s active behavior.

• When the live() method terminates, the agent is not removed, but
remains in the hosting agency as passive object.
21

PROGRAMMER’S GUIDE
22

CHAPTER 4: CREATION AND REMOVAL OF AGENTS
4 Creation and Removal of Agents

This section describes how to create and remove a Grasshopper agent. Con-
cerning the creation, special emphasis is given to the provision of creation pa-
rameters.

4.1 Agent Creation

The first method that runs when a usual Java object is created is the object’s
constructor. Beside the default constructor, it is possible to specify additional
constructors in order to deliver initial parameters to the object.

Also a Grasshopper agent may require initial input parameters. However, in
contrast to a usual Java object, these arguments cannot be delivered via a spe-
cific constructor. In order to explain the reason for this, the agent creation pro-
cess has to be described in more detail:

Agent cre-
ation

Grasshopper agents are generally created inside an agency. A Grasshopper
agency supports two different ways for creating agents: a user interface and a
programming interface:

...via the UIHuman users can create agents via the graphical or the textual user interface
(UI) of an agency. (Please refer to the User’s Guide for detailed information
about the GUI and TUI usage.)

... via the
API

Software components, such as other agents/objects, can create an agent via the
application programming interface (API) of an agency. In contrast to the cre-
ation of usual Java objects, this cannot be achieved properly via a ’new’
statement(!), such as ’HelloAgent hAgent = new HelloAgent()’ .

new vs. cre-
ateAgent()

Instead, an agency provides the method createAgent(...) that is of-
fered by the interface de.ikv.grasshopper.agency.IAgentSys-
tem and that has to be used for creating agents via the API.

The reason for this way of agent creation (which may seem to be a bit strange
for Java programmers) is that an agency has to perform several internal tasks
during the creation procedure:

• The agency registers the agent in the agency’s internal database.

• The agency registers the agent inside the agency domain service, if this
component is available.

• The agency enables the agent to access the agency’s functionality by deliv-
ering fundamental object references.
23

PROGRAMMER’S GUIDE

 data
oses.

arting
to its
up is
y the

f the

ection
the
y.

lue is
lace
.

ed as

ent’s
 run-
nt is

sibil-

truc-
r be

r the

d by
itute of
• The agency creates important information objects that are containing
associated with the agent and that are required for management purp

• The agency initiates the agent’s thread handling, among others by st
the agent’s thread inside an own thread group. Reason: Additionally
initial thread, an agent may create further threads. An own thread gro
created for each agent in order to ensure that all threads created b
agent terminate when the agent is removed.

The execution of all these procedures is triggered by the invocation o
createAgent(...) method. By using a simple ’new’ statement instead,
the agent is not able to run.

cre-
ateAgent(...)
usage

The createAgent(...) method requires the following parameters:

• the name of the agent class, i.e., the Java class that contains the live()
method of the agent.

• the code base from which the agent classes can be retrieved (see S
5.3). Note that this value can be initialized with an empty string if
agent classes are maintained in the Java classpath of the local agenc

• the name of the place in which the agent shall be created. If this va
initialized with an empty string, the agent is created in the default p
InformationDesk which exists by default in every Grasshopper agency

• a set of creation arguments, represented as Object[]. This array is us
parameter of the agent’s init(...) method which is explained below.

• optionally, a set of properties. These properties are stored in the ag
AgentInfo structure and can be read and modified during the agent’s
time. Note that properties can only be provided to an agent if the age
created via the agency’s API. The agency’s UI does not offer this pos
ity.

About agent
constructors

When creating a new agent, an agency always invokes the agent’s default con-
structor, i.e., a constructor without arguments. Thus, any additional cons
tor that may have been defined by the agent programmer will neve
invoked. If creation arguments are to be provided to the agent, the init(Ob-
ject[]) method has to be used instead of a constructor.

init(...) Tasks that have to be performed by the agent only once, i.e., right afte
agent’s initial creation, should be implemented inside the agent’s init(Ob-
ject[]) method. This method is defined in the agent’s superclass Agent
and may be overridden by any agent subclass. It is automatically invoke
the agency right after creating the agent and can be considered as subst
the agent’s constructor.
24

CHAPTER 4: CREATION AND REMOVAL OF AGENTS
Delivering
creation pa-
rameters to
an agent...

The init(Object[]) method can be used by the agent to receive and an-
alyze initial parameters. In this way, this method can be handled by agent pro-
grammers as replacement of a specific constructor. The only thing that has to
be considered by the programmer is that the Object[] arguments have to be
converted to appropriate types inside the init method.

...via the
API

When an agent is created by a software component via the cre-
ateAgent(...) method of the agency’s API, the Object[] arguments
are provided as one parameter of this method. If no parameters are to be pro-
vided, the Object[] value must be set to null inside the parameter list of
the createAgent(...) method.

...via the UIWhen an agent is created by a user, the creation parameters are typed in either
via a graphical dialog window when using the GUI, or via a command line
when using the TUI. If more than one parameter is provided, a blank character
has to be used as separator. If one single parameter contains a blank character,
the complete parameter has to be included in quotation marks. (Please refer to
the User’s Guide for detailed information).

Note that, when an agent is created by a human user, the agency always in-
vokes the agent’s init(Object[]) method by using String[] as pa-
rameter type! Thus, whenever an agent is implemented that requires input
parameters and that is to be created via the UI, the init(Object[]) meth-
od has to expect String[] as parameter type and perform the cast to actu-
ally needed types internally.

Never invoke the agent’s move(...), copy(...), or remove(...)
method inside the init(...) method. This may lead to an unpredictable
behavior.

4.2 Agent Removal

Three possibilities exist for the removal of an agent:

• The agent can remove itself by invoking the method remove() of its
superclass Agent.

• The agent can be removed by external software entities via the API of the
agency that is hosting the agent (method removeAgent(...) of the
agency proxy IAgentSystem). Please refer to Section 9.11 where the
functionality of agencies is explained.

• The agent can be removed by a user via the agency’s UI. Please refer to the
User’s Guide for information about the usage of an agency.
25

PROGRAMMER’S GUIDE

s the
ent are

mati-

der
erenc-
s in-

tring
 to be
cy via

e user

s,

, the
 this
t“.

ave
w in-
-
of the
 to be
ro-

ses

t to
A Grasshopper agent is realized as a Java thread that runs inside its own thread
group. That means, if an agent itself creates several threads, they are also run-
ning in the agent’s thread group. Since the removal of an agent include
removal of its thread group, all threads that have been created by the ag
also removed.

before Re-
move()

After receiving the request to remove an agent, the hosting agency auto
cally invokes the agent’s method beforeRemove() which is defined in the
superclass Agent. An agent programmer may override this method in or
to enable the agent to prepare its removal, e.g., by releasing occupied ref
es. This is of particular importance if the agent is removed by other entitie
stead of initiating its removal by itself.

4.3 Example: PrintStringAgent

The agent in the following example expects two creation arguments: a s
to be printed, and an integer number specifying how often the string has
printed. These parameters are provided to the agent by the hosting agen
the agent’s init(Object[]) method.

init(...) Note that the parameters are to be provided via the agency’s UI. Since th
interfaces interpret every input as String, the agent has to handle the Ob-
ject[] arguments of the init(...) method as String[] (see the con-
version ...(String)creationArgs... in the example code). Beside
the second parameter has to be converted to int.

After converting the creation arguments to the appropriate data types
agent checks whether it has a property with the key „generation“. Initially,
is not the case, and thus the agent adds this property with the value „firs

live() If the „generation“ property has the value „first“ (which is the case if you h
created the agent via the agency’s UI), the PrintInfoAgent creates a ne
stance of itself, using the createAgent(...) method that has been ex
plained in Section 4.1. As creation arguments (see the fourth parameter
method), the agent specifies its own creation arguments, i.e., the string
printed and the number of repetitions. Additionally, the PrintInfoAgent p
vides a „generation“ property with value „second“ to the cre-
ateAgent(...) method (see fifth parameter). This property value cau
the newly created agent not to create further agents.

After printing the string, the agent removes itself. Note that invoking the re-
move() method causes the agency to automatically invoke the methodbe-
foreRemove(). The purpose of this method is to enable the agen
26

CHAPTER 4: CREATION AND REMOVAL OF AGENTS
prepare its removal, e.g., in order to release occupied resources. This is of par-
ticular importance if the agent is removed by other entities instead of initiating
its removal by itself.

.

Example 2: PrintStringAgent

package examples.simple;

import de.ikv.grasshopper.agent.MobileAgent;
import de.ikv.grasshopper.agency.*;

// This class realizes an agent that prints a
// user-defined string.
// Its purpose is to show how creation arguments can
// be provided to an agent.
// After printing the user-defined string,
// the agent removes itself.
public class PrintStringAgent extends MobileAgent
{
String printThis;
int max;

// Creation argument:
// args[0] = User-defined string
// args[1] = Number of print repetitions
public void init(Object[] creationArgs) {
if (creationArgs == null ||

creationArgs.length < 2) {
log("Creation arguments needed: \\
<string> <number>");
log("Exiting.");
throw new RuntimeException();

}
// Parameters are provided via GUI as Strings.
// Thus, (String) casting is required.
printThis = new String((String)creationArgs[0]);
max = Integer.parseInt((String)creationArgs[1]);

// define a new property
if (getProperty("generation") == null)
setProperty("generation", "first");

}

public void beforeRemove() {
log("(" + getProperty("generation") +
"): Removing...");

}

27

PROGRAMMER’S GUIDE

s UI.
public void live() {
for (int count = 0; count < max; count++)
log("(" + getProperty("generation") + "): " +
printThis);

if (getProperty("generation").equals("first")) {
java.util.Properties newProps =
new java.util.Properties();

// Initialize properties for new agent
newProps.setProperty("generation", "second");
Object newArgs[] = new Object[2];
// Initialize creation arguments for new agent
newArgs[0] = printThis;
newArgs[1] = new Integer(max).toString();
try {
// Create new agent
log("(" + getProperty("generation") +
"): Creating new agent.");
getAgentSystem().createAgent(
"examples.simple.PrintStringAgent",
getInfo().getCodebase(),
"",
newArgs,
newProps);

}
catch (AgentCreationFailedException e) {
log("(" + getProperty("generation") +
"): Could not create new agent. ", e);

}
}
try {
remove();

}
catch (Exception e) {
log("(" + getProperty("generation") +
"): Removal failed. ", e);

}
}

}

Requirements:

• One running agency

Running the example:

Create the PrintStringAgent inside the running agency via the agency’
28

CHAPTER 4: CREATION AND REMOVAL OF AGENTS
Type in the string to be printed and the number of repetitions as creation
arguments.

If you are using the textual user interface of the agency, please create the
agent by means of the following command (which is meant only as an
example, concerning the creation arguments):

cr a examples.simple.PrintStringAgent „Hello User!“ 7

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

4.4 Summary

• A Grasshopper agent is always created inside an agency.

• Using the agency’s API, a Grasshopper agent must be created via the
method createAgent(...) which is part of the agency’s API. Never
directly use a new statement for creating an agent!

• An agency uses the agent’s default constructor for the creation. This con-
structor is also invoked after each migration and copying procedure of the
agent. In contrast to this, the agent’s init(Object[]) method is per-
formed only once.

• The agent’s init(Object[]) method, provided by the superclass
Agent, can be overridden by agent programmers. This method is auto-
matically invoked by an agency when creating a new agent. Via this
method, initial creation parameters can be delivered to the agent.

• The creation of an agent can be triggered in two different ways: by human
users via the agency’s UI and by software entities via the cre-
ateAgent(...) method of the agency’s API. Both possibilities allow
the provision of creation parameters.

• When an agent is created via the agency’s UI, all provided creation param-
eters are transferred to the agent in terms of a String array. Thus, the
agent has to convert the string values to data types that are actually
required.

• Never invoke the agent’s move(...), copy(...), or remove(...)
method inside the init(...) method. This may lead to an unpredict-
able behavior.
29

PROGRAMMER’S GUIDE
30

CHAPTER 5: AGENT RELATED INFORMATION
5 Agent Related Information

Every Grasshopper agent carries information about itself that may be accessed
by itself or by other entities. This information is maintained by an instance of
the class de.ikv.grasshopper.type.AgentInfo. When a new
agent is created, the creating agency initializes a new AgentInfo instance
and transfers it to the agent. The agent may access this instance by invoking
the method getInfo() that is implemented in its superclass Agent.

AgentInfoNote that the AgentInfo object is part of the data state of every Grasshop-

Figure 2: AgentInfo Class Diagram

AgentSpec ification

ge tM ajorVersionN umbe r()
ge tM inorVersionN umbe r()
ge tA gent System Type()
ha sAuth()
ge tA uthe nti cator()
ge tLanguag eId()
ge tS erial izat io nIdList ()
ge tC las sQuali fierL ist ()
ad dClass()
ad dClassQual ifie r()
t oS tr ing()

Identifier

toByteArray()
equals()
toString()

AgentSecurityRelated

getO wnership()
getS ignedCha llenge()
equa ls()
t oS tr ing()

AgentPresentation

ge tA gent Type()
ge tA gent Name()
ge tA gent Int erfaceN am e()
ge tA gent Des cripti on()
t oS tr ing()

AgentInfo

getIdentifier()
getType()
getHome()
getAgentSpecification()
getAgentPresentation()
getAgentSecurityRelated()
getCodebase()
getLocation()
getLastLocation()
getState()
isActive()
isSuspended()
isFlushed()
getProperty()
setProperty()
getProperties()
setProperties()
toString()

S tate

getState()
isActive()
isSuspended()
isFlushed()
toString()
31

PROGRAMMER’S GUIDE

The

e

gent

s and

at is
tailed
ies is

t has
alid
r loca-

n 5.4.

nt is
m:

 be

pro-
The
s. If
oper-
l set
per agent. That means, a mobile agent carries the content of this object with it
when the agent migrates to a new location. Please refer to Section 6.3 in order
to learn about the data state.

The AgentInfo class covers the following components:

• Code base: This component maintains the code base of the agent.
code base can be provided as http address in the form http://
<domain-name>/<path> or as file address in the form file:/
<drive>/<directory>. Detailed information about supported cod
base is given in Section 5.3. (Java type: java.lang.String)

• Home location: The Grasshopper address of the agency in which the a
has been created. The home address has the following form: <proto-
col>://<hostName>:portNumber/<agencyName>. A place
name is not included. Detailed information about addressing agencie
agents can be found in Section 5.4. (Java type: de.ikv.grasshop-
per.communication.GrasshopperAddress)

• Identifier: Each Grasshopper agent has its own unique identifier th
generated by the hosting agency during the agent’s creation. De
information about the identification of Grasshopper agents and agenc
given in Section 5.1. (Java type: de.ikv.grasshop-
per.type.Identifier)

• Last location: The Grasshopper address of the agency that the agen
visited right before the current one. Note that this information is only v
for mobile agents, since stationary agents are not able to change thei
tion. The last location has the following form: <protocol>://
<hostName>:portNumber/<agencyName>/<placeName>.
Detailed information about addressing agents can be found in Sectio
(Java type: de.ikv.grasshopper.communication.Grasshop-
perAddress)

• Location: The Grasshopper address of the agency in which the age
currently residing. The location information has the following for
<protocol>://<hostName>:portNumber/<agencyName>/
<placeName>. Detailed information about addressing agents can
found in Section 5.4. (Java type: de.ikv.grasshopper.communi-
cation.GrasshopperAddress)

• Properties: An agent can maintain a set of properties, e.g., in order to
vide information about its individual characteristics and capabilities.
properties field can be initialized with any set of desired key/value pair
a new property is specified whose key already exists in the agent’s pr
ties field, the old value is replaced with the new one. Note that an initia
32

CHAPTER 5: AGENT RELATED INFORMATION
of properties can be provided to an agent via the createAgent(...)
method, as explained in Chapter 4. Example 2 in Section 4.3 and Example
6 in Section 8.1 show a possible usage of the properties. (Java type:
java.util.Properties)

• Agent presentation: This component comprises descriptive information
about an agent. The class holds the following information: the agent’s
name, type, textual description, and interface name. (Java type:
de.ikv.grasshopper.type.AgentPresentation)

• Agent name: Since an agent identifier is a bit uncomfortable to read and
interpret for human users, a programmer can define an individual name
for an agent that may refer to the agent’s characteristics. Note that, in
contrast to the identifier, there is no guarantee for the agent name to be
unique in the entire Grasshopper environment. Please have a look at
Section 5.2 for information about how to set an agent name. (Java type:
java.lang.String)

• Agent type: This component specifies the type of the agent. The follow-
ing agent types are defined as constants in the class de.ikv.grass-
hopper.util.GrasshopperConstants:
StationaryAgentType, MobileAgentType.

• Textual description: In the first place, this component is meant for
human users in order to get information about the capabilities of the
corresponding agent. Please have a look at Section 5.2 for information
about how to set an agent description. (Java type:
java.lang.String)

• Interface name: This component maintains the full qualified name of
the agent class, i.e., the class name prefixed with the complete package
structure. (Java type: java.lang.String). The agent class is the
class implementing the agent’s live() method.

• Agent security related information: This component maintains a certificate
which defines the owner of a specific agent. Detailed information about
this class can be found in Chapter 12 which describes the security features
of Grasshopper. (Java type: de.ikv.grasshopper.type.Agent-
SecurityRelated)

• Agent specification: This class is just defined in order to support the
Mobile Agent System Interoperability Facility (MASIF) standard of the

Object Management Group (OMG)1. All comprised components have

1. The MASIF specification is available for download on the OMG FTP server. ftp://
ftp.omg.org/pub/docs/orbos/. Please look for the ORBOS document with the number 97-10-
05.
33

PROGRAMMER’S GUIDE

f
h as

ailed
pe:

at
o the

ent.
ava

o-
. For
ava

ate
cifi-

ate
cifi-

ri-
rma-

, sus-
ange
bout
been developed in the context of MASIF. For detailed information, please
refer to the MASIF specification. (Java type: de.ikv.grasshop-
per.type.AgentSpecification)

Note that, in contrast to previous releases of Grasshopper, the current
release does not inherently support MASIF. Instead, a MASIF add-on can
be downloaded from the IKV web site in order to enhance Grasshopper
with MASIF functionality.

• Class qualifier list: A class qualifier allows the unique identification o
a class. Apart from the class name itself, additional information, suc
its version, can be provided by means of the discriminator. For det
information, please refer to the MASIF specification. (Java ty
de.ikv.grasshopper.type.ClassQualifier[])

• Agent system type: The type of the MASIF-compliant agent system th
is able to create the agent. For detailed information, please refer t
MASIF specification. (Java type: short)

• Authenticator: This component specifies the authenticator of the ag
For detailed information, please refer to the MASIF specification. (J
type: short)

• Language identifier: This component contains the identifier of the pr
gramming language in which the agent has been implemented
detailed information, please refer to the MASIF specification. (J
type: short)

• Major version: Major version of the agent system that is able to cre
the agent. For detailed information, please refer to the MASIF spe
cation. (Java type: short)

• Minor version: Minor version of the agent system that is able to cre
the agent. For detailed information, please refer to the MASIF spe
cation. (Java type: short)

• Serialization identifier list: This component specifies the kinds of se
alization that can be applied to serialize the agent. For detailed info
tion, please refer to the MASIF specification. (Java type: short[])

• State: The following states are defined for Grasshopper agents: active
pended, and flushed. During its life time, an agent’s state may ch
numerous times. Please refer to Section 5.5 for more information a
states and life cycles of agents. (Java type: de.ikv.grasshop-
per.type.State).
34

CHAPTER 5: AGENT RELATED INFORMATION
The AgentInfo structure is created and initialized during the creation of the
corresponding agent. Some components of AgentInfo, such as the agent’s
code base and class name, are provided by the agent creator via the agency’s
UI or as parameters of the agency’s createAgent(...) method. Other
components, such as the agent identifier, are automatically generated by the
agency that creates the agent. A third set of components can be initialized in-
side the agent’s init(...) method. These components are the agent’s name
and its textual description. Please refer to Section 5.2 for information about
how to initialize these components.

5.1 Identification

A fundamental management requirement of each agent platform is to enable
the unique identification of its distributed components (i.e., agencies and
agents). The identifier of an agent is generated by the hosting agency during
the agent’s creation and afterwards maintained inside the superclass Agent.

Identifier
structure

A Grasshopper identifier consists of the following components:

• a prefix, describing the kind of component that is associated with the iden-
tifier. The prefix has one of the following values:

• Agent: This value indicates that the identifier belongs to a mobile or sta-
tionary agent.

• AgentSystem: This value indicates that the identifier belongs to an
agency.

• Listener: This value is associated with listeners. Note that this prefix is
reserved for internal usage only.

• the Internet address of the host on which the identifier has been created

• the date on which the identifier has been created: "yyyy-mm-dd"

• the time on which the identifier has been created: "hh-mm-ss-msms"

• the number of copies of the corresponding agent

A Grasshopper identifier is maintained by an instance of the class
de.ikv.grasshopper.type.Identifier. Converted into its string
representation, an identifier has the following form:

<prefix>#<ip-address>#<date>#<time>#<copy-number>

Example of an agent identifier:

"Agent#123.456.789.012#1999-11-19#15:59:59:0#0"
35

PROGRAMMER’S GUIDE

auto-
ency
’s UI

ed by

escrip-
nts is
man

string

rride

 this
The first copy of the second copy of the original agent has the following iden-
tifier:

"Agent#123.456.789.012#1999-11-19#15:59:59:0#0.2.1"

A comparison between the two example identifiers shows that the only differ-
ence is the copy number. That means, the copy of an agent gets the same iden-
tifier as the original agent, suffixed by a new copy number. Detailed
information about copying agents is given in Chapter 8.

5.2 Names and Descriptions

As explained above, most of an agent’s information is either generated
matically by the creating agency (e.g., the identifier) or provided to the ag
by an external entity (human user or software component) via the agency
or API (e.g., the code base).

In contrast to this, the agent name and textual description may be defin
the agent itself. This is achieved by overriding the methods getName() and
getDescription(), respectively.

The methods getName() and getDescription() can be overridden by
agent programmers. These methods return an agent name or textual d
tion, respectively, in form of a Java string. The purpose of both compone
to provide information about the characteristics of a specific agent to hu
users. If the methods are not overridden, they both return the default
„Grasshopper Agent“.

The simplest way to provide an individual name and description is to ove
the methods with those returning a constant string value.

public String getName() {
return „MyAgentName“;

}

Concerning this example, it is obvious that all instances of the corresponding
agent class have the same name.

If an agent programmer wants to be able to provide different names to differ-
ent instances of one agent class, the name can be provided as parameter of the
agent’s init(...) method. Inside the init(...) method, an instance
variable of the agent class has to be initialized with this parameter, and
variable has to be used as return value of the agent’s getName() method.

public class Agent extends MobileAgent {
String agentName;
public void init(Object[] creationArgs) {
36

CHAPTER 5: AGENT RELATED INFORMATION
agentName = (String)creationArgs[0];
}
public String getName() {
return agentName;

}
...

}

Note that the initialization of the name has to be performed inside the
init(...) method if the name is to be maintained by the AgentInfo
structure. The reason is that only the agency which creates the agent is able to
initialize the AgentInfo structure. After running the init(...) method,
the creating agency reads the agent name by invoking the getName() meth-
od and writes this name into the corresponding component of the AgentIn-
fo structure. Any further modifications of the name variable will not be stored
within the AgentInfo structure. The AgentInfo structure is used for reg-
istering the agent inside the local agency and the agency domain service. An
agent’s name can be used as search key in order to enable entities to look for
a specific agent. If the searching entity expects another name than the one
maintained inside the AgentInfo object, the searched agent will not be
found. The name that is used for registering the agent is equal to the name that
has been specified inside the init(...) method, independent whether the name
has been modified afterwards or not. Please have a look at the example in Sec-
tion 5.6 where this mechanism is applied.

The provision of a textual description via the method getDescription()
can be handled in a similar way as the provision of a name as explained above.

Note that an agency automatically invokes an agent’s getName() and get-
Description() methods during the agent’s creation. These method invo-
cations are performed before the agent’s security policies have been
completely initialized. Thus, please do not implement any security-sensitive
operations, such as the access of a file system or system properties, inside the
methods getName() and getDescription(). Otherwise, if the agen-
cy’s security service is active, the agent’s creation may fail due to a security
exception. Please refer to Chapter 12 for further details about the Grasshopper
security service.

5.3 Code base

In order to create an agent or to re-instantiate a mobile agent after its arrival in
a new destination agency, the agency must have access to the agent’s class
code. For this purpose, an agent code base can be specified when creating an
agent via the agency API or UI. If no code base is explicitly provided (or if the
37

PROGRAMMER’S GUIDE

h are
the

 code

ten-
n the
. In
y has
 code-

hed by
t only
stem
e first

e, the
le sys-
demanded agent classes are not included in an explicitly provided code base),
the agency looks for the demanded classes in the directories maintained by the
Java CLASSPATH environment variable.

Grasshopper supports two different kinds of code base:

• File systems

The classes of an agent may be maintained in the file system of an agency.
In this case, the code base, represented as String, must have the following
format:

file:/<directory-path>

where <directory-path> represents a path that leads to the directory
in which the agent’s class files are stored. Single directories of the pat
separated with slash (’/’) characters. Note that on Windows machines,
letter of the maintaining device has to be specified:

file:/<driveLetter>:/<directory-path>

• Http servers

The classes of an agent may be maintained on an Http server. In this case,
the code base, represented as String, must have the following format:

http://<domain-name>/<path>

where <domain-name> and <path> are structured in the usual way
(i.e., domain components separated with a dot (’.’) character, and path
components separated with a slash (’/’) character).

There are different possibilities to grant an agency access to an agent’s
base:

Local file
system

• Class code is maintained by all agencies:

The agent’s class files are initially stored in the file system of every po
tial destination agency, and additionally these class files are included i
CLASSPATH environment variable of the running Java environments
this case, if an agent migrates to a new agency, the agency alread
access to the agent’s classes without the need of contacting a remote
base.

Note: Agent classes that are stored in the system’s classpath are cac
the agency for its entire runtime. The reason is that the classes are no
maintained by the agent’s own class loader, but also by the JVM’s sy
class loader. That means, the agent classes are loaded only during th
creation of the agent. When the agent is created for the second tim
agency uses the internally cached classes instead of accessing the fi
38

CHAPTER 5: AGENT RELATED INFORMATION
tem again. This is also true if the agent’s class files have been re-compiled
before the agent’s second creation.

This caching behavior may cause problems if an agent migrates from
agency A to agency B where both agencies maintain different versions of
the agent class. In this case, the agent will not be able to migrate, since
agency B considers its maintained agent class as different from the agent
class maintained by agency A.

Home agen-
cy

• Class code is only maintained by the agent’s home agency:

Initially, the agent’s classes are only stored in the file system of the agent’s
home agency, i.e., on the host of the agency where the agent was created.
If the agent migrates, each new destination agency has to request the class
code from the home agency.

Note: In this case, a destination agency caches the agent’s classes only
inside the agent’s own class loader (and not in the system class loader).
Thus, if two agents of the same class migrate to the same destination
agency, the agency retrieves the classes both times. That means, the
cached classes of the firstly arrived agent are not used for creating the sec-
ondly arriving agent. Instead, they are loaded again from the agent’s home
agency.

Http server• Class code is only maintained by a central Http server:

Initially, the agent’s classes are only stored on a central Http server. In this
case, even the agent’s home agency has to retrieve the classes from this
code base in order to create the agent.

Note: In this case, a destination agency caches the agent’s classes only
inside the agent’s own class loader (and not in the system class loader).
Thus, if two agents of the same class migrate to the same destination
agency, the agency retrieves the classes both times. That means, the
cached classes of the firstly arrived agent are not used for creating the sec-
ondly arriving agent. Instead, they are loaded again from the agent’s home
agency.

Previous
agency

• Class code is only maintained by the previously visited agency:

In certain scenarios, the home agency of an agent is only temporarily con-
nected to the network. For instance, an agent may be created on a note-
book which is to be disconnected from the network right after sending the
agent to another host. Supposed that no central Http server has been speci-
fied as code base and that the agent’s classes are not maintained by the file
systems of potential destination agencies, the agent’s code can be for-
warded from one agency to the next at each time the agent migrates. That
39

PROGRAMMER’S GUIDE

ly vis-

s only
ader).
ation
s, the
e sec-
ome

sses

ode

.
minis-
e for

ined
stina-
pper

 desti-
sed, a

ol-
means, the agent’s code base is always represented by the previous
ited agency, and it changes with every migration.

Note: In this case, a destination agency caches the agent’s classe
inside the agent’s own class loader (and not in the system class lo
Thus, if two agents of the same class migrate to the same destin
agency, the agency retrieves the classes both times. That mean
cached classes of the firstly arrived agent are not used for creating th
ondly arriving agent. Instead, they are loaded again from the agent’s h
agency.

An agency accesses the different code bases in the following order:

1. System class loader of currently visited agency (maintaining cla
loaded from the classpath of the local agency)

2. Previously visited agency

3. All locations (file system and/or Http server) specified in the agent’s c
base

4. Home agency

5.4 Grasshopper Addresses and Locations

In the context of Grasshopper, the term location or address specifies an agency
or place. Every agency contains one or more places in which agents can run
Each place may have specific characteristics (defined by the agency ad
trator), such as an own security policy. (Please refer to the User’s Guid
more information.)

In order to migrate (or to establish a communication connection as expla
in Chapter 9), an agent has to provide information about the desired de
tion location. The agent specifies this information in terms of a Grassho
address which is an instance of the class
de.ikv.grasshopper.communication.GrasshopperAddress

A Grasshopper address refers to a communication server of the desired
nation agency, region registry, or external object. If an agency is addres
place name can optionally be specified.

A Grasshopper address covers the following components:

Protocol
types

• protocol type: Type of the protocol to be used for the migration. The f
lowing protocols are supported:

• socket: plain socket protocol
40

CHAPTER 5: AGENT RELATED INFORMATION
• rmi: Java Remote Method Invocation (RMI) protocol

• iiop: CORBA’s Interoperable Inter-ORB Protocol (IIOP). This protocol
is only available if a CORBA runtime environment has been installed.
(Please refer to the User’s Guide for more information.)

• socketssl: plain socket protocol, protected via SSL. This protocol is only
available if the security packages have been installed. (Please refer to
the User’s Guide for more information.)

• rmissl: Java Remote Method Invocation (RMI) protocol, protected via
SSL. This protocol is only available if the security packages have been
installed. (Please refer to the User’s Guide for more information.)

• grasshopperiiop: In contrast to the previously mentioned protocol
types, grasshopperiiop is a meta protocol that has to be mapped
onto a concrete protocol type. For instance, an agent can try to establish
a communication connection with a remote Grasshopper component by
specifying the remote address in terms of a grasshopperiiop
address of the form grasshopperiiop://<hostName>/
<agencyName>.
In this case, an agency domain service is required in order to determine
the concrete address of the server side, including the real protocol type
and port number.

• host name: Name or IP address of the destination host

• object name: Name of the destination agency, region registry, or external
object

• port number: Number of the port at which the communication server of the
destination agency is listening.

• place name: Name of the destination place. This component is optional. If
no place name is specified, the agent migrates to the default place „Infor-
mationDesk“ which exists in every Grasshopper agency.

The initialization of a GrasshopperAddress instance can be performed
either by separately specifying the single components or by specifying all
components in terms of a single String object. In the latter case, the address
string has the following syntax:

complete ad-
dress

protocol://hostName:portNumber/agencyName/placeName

Note that, in certain cases, a subset of the address components is sufficient.
The following examples explain all possible cases:

• If an agency domain service is running and both the source and destination
agencies are registered at this service, the minimal address consists of the
41

PROGRAMMER’S GUIDE

 to be
n be

ation
col. If
pletes

k of
e, the

st the

k of
e, the

ined
efines

ctive
host name and agency name:

minimal ad-
dress

hostName/agencyName

In this case, the agency domain service determines all communication
servers of the specified destination agency, automatically selects one of
them, and completes the address. Therefore, this minimal address should
only be used if the migrating agent does not require a specific (e.g., secure)
protocol. Usually, the plain socket protocol is selected.

Note that the agent will migrate to the default place InformationDesk of
the destination agency. If the agent wants to migrate to a specific place, the
place name must be appended to the address:

hostName/agencyName/placeName

• If an agency domain service is running and the migrating agent wants
transferred via a specific protocol, the following address syntax ca
used:

protocol://hostName/agencyName

In this case, the agency domain service checks if the specified destin
agency provides a communication server that uses the desired proto
this is true, the domain service determines the port number and com
the address.

Note that the agent will migrate to the default place InformationDes
the destination agency. If the agent wants to migrate to a specific plac
place name must be appended to the address:

protocol://hostName/agencyName/placeName

• If no agency domain service is running, the agent has to specify at lea
protocol type, host name, port number, and agency name:

protocol://hostName:portNumber/agencyName

Note that the agent will migrate to the default place InformationDes
the destination agency. If the agent wants to migrate to a specific plac
place name must be appended to the address:

protocol://hostName:portNumber/agencyName/placeName

5.5 States and Life Cycles

At any point of its life time, a Grasshopper agent resides in a well-def
state. In each state, an agent has certain characteristics. Grasshopper d
the following state values:

• active: Immediately after its creation, an agent is transferred into the a
42

CHAPTER 5: AGENT RELATED INFORMATION
state. In this state, the agent is executing its task as specified inside the
live() method, i.e., the agent’s thread is running. When the agent’s
live() method has been finished, the agent remains in the active state
and is still accessible by other entities as passive object. That means, other
software components may invoke public methods of an agent via its proxy
if the agent resides in the active state.

• suspended: Suspending an agent means suspending the agent’s thread and
thus interrupting the agent’s active task execution. An agent can be sus-
pended via the hosting agency’s API (method suspendAgent(...))
or via the agency’s UI. In order to transfer a suspended agent back into its
active state, the agent can be resumed via the agency’s API (method
resumeAgent(...)) or via the UI. Note that, in contrast to the active
state, the accessible methods of a suspended agent cannot be invoked by
other components.
Note that a suspended agent is not able to resume itself. Instead, it has to
wait for being resumed by other entities. Thus, the suspendAgent()
method should be handled with care inside an agent’s code.

• flushed: This state is controlled by the agency’s persistence service. When
an agent is flushed, its data state is locally stored, and its instance is
removed from the agency. Usually, the purpose of flushing an agent is to
save system resources in times when the agent’s existence is not required.
A flushed agent is reactivated when another component tries to invoke any
of its accessible methods. Detailed information about flushing agents and
the persistence service in general can be found in Chapter 10.
Note that a flushed agent is not able to re-activate itself. Instead, it has to
wait for being re-activated by the hosting agency. Thus, the flush-
Agent() method should be handled with care inside an agent’s code.
43

PROGRAMMER’S GUIDE

tate.

 its
spec-

e the

omain
 If the
e the
The following figure shows the state diagram of a Grasshopper agent.

In order to change the state of an agent, the hosting agency provides the fol-
lowing methods via its interface de.ikv.grasshopper.agen-
cy.IAgentSystem:

flushAgent(...), flushAgentAfter(...), reload-
Agent(...), resumeAgent(...), saveAgent(...),
saveAgentEvery(...), suspendAgent(...).

Detailed information about these methods can be found in Section 9.11.2
which describes the functionality of the interface IAgentSystem.

Never use the setState(...) method of the class de.ikv.grass-
hopper.type.AgentInfo! This method is just meant to be used inter-
nally by an agency. Invoking this method will not change an agent’s s
Instead, it will lead to an unpredictable behavior!

5.6 Example: PrintInfoAgent

The following example agent prints information about itself, retrieved from
AgentInfo instance. Note that a name and a textual description can be
ified in terms of creation parameters.

As described in Section 5.2, the agent’s name has to be set insid
init(...) method in order to be inserted into the AgentInfo instance.
This fact may be of particular interest since the agent’s AgentInfo instance
is used for registering the agent inside the local agency and the agency d
service. An agent’s name can be used as search key by other entities.
searching entity expects another name than the one maintained insid

Figure 3: Agent State Diagram

suspended

active flushed

reactivation
(indirectly triggered)

resumption

flushing

suspension

creation

deletion
44

CHAPTER 5: AGENT RELATED INFORMATION
AgentInfo object, the searched agent will not be found. As shown by the
last lines of Example 3, a modification of the agent’s name outside the
init(...) method does not modify the corresponding name value that is
maintained by the AgentInfo object. Thus, the name that is used for the
agent’s registration remains the same.

Example 3: PrintInfoAgent

package examples.simple;

import de.ikv.grasshopper.agent.MobileAgent;
import de.ikv.grasshopper.type.AgentInfo;

// This class realizes an agent that prints
// information about itself.
// It shows how to modify an agent’s name and
// textual description, if desired.
public class PrintInfoAgent extends MobileAgent
{
String agentName, agentDescription;

// Creation arguments:
// args[0] = New agent name
// args[1] = New agent description
public void init(Object[] creationArgs) {

agentName = "PrintInfoAgent";
agentDescription =
"This agent tells you about its secrets.";

if (creationArgs != null) {
if (creationArgs.length > 0)
agentName = (String)creationArgs[0];

if (creationArgs.length > 1)
agentDescription = (String)creationArgs[1];

}
}

public String getName() {
return agentName;

}

public String getDescription() {
return agentDescription;

}

public void live() {
AgentInfo myInfo = this.getInfo();
45

PROGRAMMER’S GUIDE

 UI.
econd
d, the

te the
s an

iron-
eation

es its
or by
log("My name: " +
myInfo.getAgentPresentation().getAgentName());
log("My id: " +
myInfo.getIdentifier().toString());
log("My type: " + myInfo.getType());
log("My home: " + myInfo.getHome());
log("My description: " + getDescription());

// Further modifications of the variable
// ’agentName’ do not have any influence on the
// AgentInfo structure. Therefore, the
// initialization of this variable has to be
// performed inside the init(...) method.
agentName = "New name";
log("My registered name remains the same: " +
myInfo.getAgentPresentation().getAgentName());

}
}

Requirements:

• One running agency

Running the example:

Create the PrintInfoAgent inside the running agency via the agency’s
The first creation parameter is interpreted as agent name and the s
one as agent description. If less then two parameters are specifie
missing information is initialized with default values.

If you are using the textual user interface of the agency, please crea
agent by means of the following command (which is meant only a
example, concerning the creation arguments):

cr a examples.simple.PrintInfoAgent InfoAgent „Want
some info?“

If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

5.7 Summary

• Every Grasshopper agent maintain a set of information that describ
characteristics. This information can be accessed by the agent itself
other entities.
46

CHAPTER 5: AGENT RELATED INFORMATION
• Every Grasshopper agent is uniquely identifiable inside the entire Grass-
hopper environment. An identifier describes the type of the associated
component as well as the date, time, and location of the components’s cre-
ation. Exceptions are agent copies which maintain the same identifier as
their original instances, suffixed by a copy number.

• Every Grasshopper agent has a name and a textual description. In contrast
to the identifier which is generated automatically and whose uniqueness is
guaranteed, the name and textual description can be specified by the agent
programmer or by the user (if this has been intended by the programmer
during the implementation) (see Section 5.2).

• During its life time, an agent can reside in different states. In the active
state, an agent is performing its task and is accessible by other entities. In
the suspended state, an agent’s thread is suspended. In the flushed state, an
agent does not exist any more as runtime instance. Instead, the agent’s data
state is persistently stored in a local database, and the runtime instance is
removed. In this case, the agent is automatically re-instantiated when
another entity tries to access it (see Chapter 10). Note that the ability of
persistently storing agents is only available if the hosting agency runs with
an activated persistence service and if the agents are derived from one of
the classes de.ikv.grasshopper.agent.PersistenMobile-
Agent or de.ikv.grasshopper.agent.PersistentSta-
tionaryAgent.
47

PROGRAMMER’S GUIDE
48

CHAPTER 6: MOVE ME!
6 Move Me!

Grasshopper provides three possibilities for moving agents.

• Via the agency’s UI: An agency administrator may move an agent via the
graphical or textual user interface of an agency. This mechanism is associ-
ated with the agency usage rather than with agent programming, and thus
it is not described in this context. Detailed information about the function-
ality of the agency’s user interfaces can be found in the User’s Guide.

• Via the agency’s API: A Grasshopper mobile agent can be moved by
another agent or object via the moveAgent(...) method of the hosting
agency. This mechanism is explained in Section 9.11 which deals with the
functionality provided by agencies.

• Via the agent’s API: A Grasshopper mobile agent may move itself by
invoking the move(...) method of its own superclass MobileAgent.
Note that this is the usual way for an agent to actively migrate through the
distributed environment. In contrast to this, the two possibilities described
above just enable external entities to move an agent.

This section only deals with the third possibility of the above list.

6.1 Strong vs. Weak Migration

A mobile agent is able to perform different parts of its task on different net-
work locations. For example, an agent may need to gather information from
different databases. In order to take advantage of local interactions instead of
remote procedure calls, the agent visits the database hosts one after the other,
accesses the databases, filters the information locally, and just maintains the
most interesting subset of the information before migrating to the next host.
49

PROGRAMMER’S GUIDE

 re-
ently
sk ex-

ernal
cross

agent
te.

lity to
ity to
bjec-
g soft-
ment
at are
gents

tric-
ntal
Figure 4 shows this general procedure.

Two different kinds of migration can be separated:

Strong mi-
gration; exe-
cution state

Strong migration means that an agent migrates together with its whole execu-
tion state. An agent’s execution state contains all stack information that is
quired to characterize the point of execution that the agent has curr
reached. After a strong migration, the agent continues processing its ta
actly at the point at which it has been interrupted before the migration.

Weak mi-
gration;
data state

Weak migration means that an agent just maintains its data state when travel-
ling from one location to another. An agent’s data state consists of int
variable values that are serialized at the agent’s old location, transferred a
the network, and provided to the agent again at the new location. The
programmer has to decide which variables are to be part of the data sta

Restrictions
of Java

The Java programming language does - by default - not offer the possibi
capture the execution state of a process or thread. The only possibil
achieve this is to modify the Java Virtual Machine. However, since one o
tive of Grasshopper is to be as open as possible concerning its underlyin
ware environment, this possibility was not considered during the develop
of the platform. Since Grasshopper has to be executable on all JVMs th
compliant to the Java specifications of Sun Microsystems, Grasshopper a
use weak migration for travelling across the network.

The following section shows how strong migration can - with certain res
tions - be „simulated“ by using weak migration. This principle is fundame
for developing mobile agents on top of Grasshopper.

Figure 4: Agent Migration

Task progress Task progress Task progress

Local ressources Local ressources Local ressources

1

2

3

4

5

50

CHAPTER 6: MOVE ME!
6.2 The Migration Procedure

When we speak of agent migration, we mean the travel of an agent’s code and
data state from one agency or place to another. However, from an implemen-
tation-related point of view, an agent is not really travelling. Instead, after each
migration, a new agent instance is created at the destination agency, and the
old agent instance is removed at the source agency. By supplying the new in-
stance with the data state of the old one (including among others the old
agent’s identifier), the agent seems to remain the same.

The „migration“ consists of the following execution steps:

The migra-
tion proce-
dure

1. The agent’s migration is initiated. This can be done either by the agent
itself (via its own move(...) method), by other software components
(via the moveAgent(...) method offered by the agency’s API), or by
human users (via the agency’s UI).

before-
Move()

2. The agent’s beforeMove() method is automatically called by the
agency in order to enable the agent to prepare its migration, e.g., by releas-
ing occupied resources or removing references. This method may be of
particular importance if the agent’s migration is triggered by external enti-
ties (software components or human users), because in this case the migra-
tion request is usually not expected by the agent. If the agent itself triggers
its migration, it has the possibility to prepare the migration already before
invoking its move(...) method.

VetoExcep-
tion

An agent may prohibit its own migration. If the agent does not want to be
moved, the agent can throw the de.ikv.grasshop-
per.agent.VetoException inside its beforeMove() method. If
the move request has been initiated via the agency’s UI, the user is
informed about the migration rejection via the user interface. If the move
request has been initiated via the agency’s API, the agency forwards the
VetoException to the triggering software component.

3. The agent’s execution is interrupted by stopping the agent thread. Since
each agent is created inside its own thread group, additionally all threads
are stopped that have been created by the agent itself.

4. The agent’s data state is serialized. That means, all instance variable of the
agent that are not declared as transient, are put into a data stream. Please
refer to Section 6.3 for detailed information about the data state.

5. The agent’s serialized data state as well as additional information are
transferred to the destination agency. Among others, the additional infor-
mation covers the agent class name and its code base. This is required by
the destination agency to create a new instance of the agent.
51

PROGRAMMER’S GUIDE

ot ini-
lass
red by

essful
agent
 agent
cupied

 task
t the

is able

hich
grates.

f the
lasses

es
 agent
across
on lo-

iden-
etails

orre-

6. The destination agency creates a new instance of the agent and provides
the agent with its transferred data state. If the agent’s class code is n
tially maintained by the destination agency, it is retrieved via Java c
loading mechanisms by accessing the code base that has been delive
the source agency.

7. The destination agency informs the source agency about the succ
creation of the agent. Now the source agency removes the old
instance. (Exactly speaking, the agency removes its references to the
and thus enables the Java garbage collector to release the agent’s oc
resources.)

afterMove() 8. The destination agency automatically calls the agent’s afterMove()
method. In this way, the agent is able to prepare the resumption of its
execution, e.g., by allocating references and resources. (Note tha
afterMove() method is also called after an agent’s copying.)

9. The destination agency starts the thread of the agent. Now the agent
to continue its task execution.

6.3 The Data State: Mobile Information

When implementing a mobile agent, the developer has to determine w
parts of the agent’s internal data has to be maintained when the agent mi

Definition:
data state

An agent’s data state consists of all non-transient instance variables o
agent class, i.e., the class that is derived from one of the agent super c
MobileAgent, StationaryAgent, PersistentMobileAgent, or
PersistentStationaryAgent1. Note that the data state also compris
all non-transient instance variables of the super classes. When a mobile
migrates, its data state is serialized at the source location, transferred
the network, and provided to the migrated agent instance at the destinati
cation.

AgentInfo One part of the data state of every Grasshopper agent is the AgentInfo
structure which maintains important information of the agent, such as its
tifier, name, type, and properties. Please refer to Chapter 5 for further d
about the AgentInfo structure.

class Serial-
izable

A general prerequisite for the serialization of Java objects is that the c
sponding Java class (or any of its superclasses) implements theja-
va.io.Serializable or java.io.Externalizable interface.

1. Although every Grasshopper agent maintains a data state, the data state is only of importance
for mobile agents, since it’s purpose is to preserve data during an agent’s migration.
52

CHAPTER 6: MOVE ME!
Please refer to the Java documentation for more information about object se-
rialization.

Each Grasshopper agent is by default serializable. However, an agent may in-
stantiate objects that do not fulfill the serialization criteria. Since the serializa-
tion of an agent covers all non-transient instance variables of the agent, all
objects belonging to the agent’s data state have to be serializable.

Defining the
data state

When implementing a mobile agent, the programmer has to evaluate which of
the agent’s instance variables are to be part of the data state. Since the size of
the data state has a high impact on the migration duration, only a minimal set
of instance variables should be included. The following examples are meant
to explain how a programmer can evaluate which variables have to be includ-
ed into the data state:

1. If, after each migration, the value of an instance variable is modified
before the variable is read by the agent or other components, it is not nec-
essary to transfer the old (and not anymore required) value to the new
location. In this case, the variable should be transient in order to exclude it
from the data state.
Especially if an agent creates its own GUI, the GUI should be declared
transient (or defined inside a method instead as instance variables). Beside
the reduction of the agent’s data state, the main reason for this is that sev-
eral Java GUI classes are dependent on a specific operating system. Thus,
if an agent migrates between agencies that run on different operating sys-
tems and if this agent carries a set of GUI classes, failures may occur due
to incompatibility problems associated with these classes.

2. If an instance variable is semantically bound to the current local system
environment, its value may become invalid after the agent’s migration.
This problem often occurs in a CORBA environment with CORBA
objects referenced by the agent. In this case, the variable should be tran-
sient, and the agent should re-instantiate and initialize it anew after each
migration.

3. If an agent instantiates objects that are (entirely or partly) not serializable,
the agency’s attempt to serialize the agent fails. That means, an agent that
has allocated references to non-transient, non-serializable objects can nei-
ther migrate nor be stored by the agency’s persistence service. To avoid
this, non-serializable objects should be transient.
53

PROGRAMMER’S GUIDE

 state
a
r-

 a sin-
ates
r-
w lo-
6.4 Structuring an Agent’s Life

Due to the explanations in Section 6.1, Grasshopper agents use weak migra-
tion for travelling from one agency to another. Parts of the agent’s data
can be used in order to enable an agent to continue its task processing after
migration instead of restarting its task from the beginning on. For this pu
pose, the agent’s live() method can be separated into different execution
blocks, each one covering a set of operations that has to be performed at
gle location. After completing the execution of one block, the agent migr
to the next location, triggered by a move(...) method at the end of the pe
formed block, and starts executing the next block after arriving at the ne
cation (Figure 5).

In Figure 5, ’state’ is a non-transient instance variable, declared in the
agent class. In this way, state becomes part of the data state. By analyzing
the value of this variable, the agent determines which execution block has to
be performed. Inside the performed execution block, the agent sets state to
a new value before invoking the move(...) method. During the migration,

Figure 5: Structure of an Agent’s live() Method

Start live()

state = 0
?

perform block 0
state = state+1
move(place_1)

yes

state = 2
?

perform block 2
state = state+1
move(place_3)

yes

state = n
?

perform block nyes

no

no

no

state = 1
?

perform block 1
state = state+1
move(place_2)

yes

no

place_n-1

place_2

place_1

Starting place

M
igration

M
igration

M
igration
54

CHAPTER 6: MOVE ME!
the new state value is serialized, transferred to the new location, and pro-
vided to the migrated agent instance. Please have a look at Example 4 in Sec-
tion 6.5 which shows an agent that makes use of its data state.

6.5 Example: BoomerangAgent

The following example is our first mobile agent that makes use of its mobility
and of its data state. After starting the agent, a small window appears, request-
ing a new destination address from the user. When pressing the OK button, the
agent migrates to the specified location. After its arrival, the agent asks for the
permission to migrate back to its home location. The different behavior of the
agent, dependent on its current location, is realized by means of the agent’s
data state that is represented in terms of a single integer variable named
state:

• state = 0: This is the initial state, set in the agent’s init(...)
method. In this state, the first execution block inside the live() method
is performed. The agent asks for a new location, increments the state vari-
able, and migrates.

• state = 1: In this state, the agent does not request the input of a new
location, but just asks for the permission to migrate back to its home loca-
tion. Before the agent travels home, state is set back to 0.

Example 4: BoomerangAgent

package examples.simple;

import de.ikv.grasshopper.agent.MobileAgent;
import de.ikv.grasshopper.communication.*;
import javax.swing.*;
import java.awt.*;

// This class realizes an agent that moves to a remote
// agency and, after this, returns to its origin.
public class BoomerangAgent extends MobileAgent
{
// A little data state.
int state;

// No creation arguments needed.
public void init(Object[] creationArgs) {
// Initialize data state
state = 0;
55

PROGRAMMER’S GUIDE
}

public String getName() {
return "BoomerangAgent";

}

public void live() {
String location;

switch(state) {
case 0:
log("Waiting for new location...");
location = JOptionPane.showInputDialog(
null, "Where shall I go?");

if (location != null) {
state = 1;
log("Trying to move...");
try {
// Go away!
move(new GrasshopperAddress(location));

}
catch (Exception e) {
log("Migration failed: ", e);

}
// The next statement is only reached
// if the migration failed!!!
state = 0;

}
break;

case 1:
log("Arrived at destination!");
JOptionPane.showMessageDialog(
null, "Let me go home!");

state = 0;
log("Trying to move...");
try {
// Come home!
move(getInfo().getHome());

}
catch (Exception e) {
log("Return trip failed: ", e);

}
// The next statement is only reached
// if the migration failed!!!
break;

}
log("Terminating my life.");

}

56

CHAPTER 6: MOVE ME!
}

Requirements:

• Optionally a running agency domain service. Note that the domain ser-
vice has to be started before the agencies, and the domain service’s
address has to be specified when starting the agencies in order to regis-
ter them. Please refer to the User’s Guide for information about how to
start agencies and agency domain services.

• At least two running agencies.
Since the BoomerangAgent creates an own GUI that may block the
agency GUI, it is recommended that you do not activate the agency
GUI. Instead, start the agencies just with their textual interface (com-
mand option -tui). Please refer to the paragraphs titled „Running the
Examples“ at the beginning of Chapter 2 in order to get a detailed
explanation about the possibly occurring GUI problems.

Running the example:

Create the BoomerangAgent inside one of the running agencies via the
agency’s UI (1).

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a examples.simple.BoomerangAgent

Figure 6: BoomerangAgent Scenario

BoomerangAgent

Agency 1

11

A
ge

nc
y

U
I

A
ge

nc
y

U
I

Create
BoomerangAgent

22

Type in
new location

BoomerangAgent

Agency 2

33
Migrate

44

Confirm

BoomerangAgent

55

Migrate
back

UU

UU UU

UU User input
57

PROGRAMMER’S GUIDE

iron-
eation

K (2).
plete
 com-
fer-

 there
nd a

ency
ks for
4) in
rig-
nario

Each
ress

es are

these
roto-
ected
IIOP
 the

ent’s
sers

te (i.e.,
If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

Type in the address of one of the other running agencies and press O
If no agency domain service is running, you have to specify the com
address as explained in Section 5.4. You can determine the running
munication servers of each agency via their GUI (Menu: File -> Pre
ences -> Servers) or TUI (Command: ’status’).

Note: If you press the Cancel button, the agent’s GUI disappears, and
is no possibility to re-activate it. Please refer to Chapter 7 in order to fi
solution for this problem.

After pressing the OK button, the agent migrates to the specified ag
(3) and creates another graphical dialog. Once arrived, the agent as
the permission to return to its home agency. Press the OK button (
order to confirm the migration request. After its migration back to its o
inal agency (5), the agent again creates its initial GUI, and the sce
proceeds with step (2).

Example variations:

Run the example with and without a running agency domain service.
time, try different addresses by specifying or not specifying single add
components, and see what happens. All possible address syntax
described in Section 5.4.

Create new communication servers of different protocols and use
new servers for moving the agent around. The kinds of supported p
cols depend on your Grasshopper installation. For instance, SSL-prot
protocols require the security packages, and the CORBA protocol
requires a CORBA runtime environment. Detailed information about
installation of these extensions can be found in the User’s Guide.

6.6 Summary

• An agent’s migration can be triggered by the agent itself (via the ag
API), by other software components (via the agency’s API), or by u
(via the agency’s UI).

• An agent may prohibit its migration by throwing a VetoException
from inside its beforeMove() method.

• Grasshopper uses weak migration. That means, the agent’s data sta
58

CHAPTER 6: MOVE ME!
all non-transient instance variables) is transferred to the destination
agency. Strong migration (i.e., the migration of the agent’s execution
stack) is not realized, since this is not supported by standard Java Virtual
Machines.

• Parts of the agent’s data state can be used to enable an agent to continue its
task execution after a migration (instead of starting its execution from the
beginning on). For this purpose, the agent’s live() method can be sepa-
rated into different execution blocks where one block is completely per-
formed within a single location. See Section 6.4 for a detailed description.

• Grasshopper mobile agents are able to migrate from one place to another.
The source and destination places may be hosted by the same or by differ-
ent agencies. The location of a place is specified in terms of a Grasshopper
address, i.e., an instance of the class de.ikv.grasshopper.commu-
nication.GrasshopperAddress. A complete address (represented
as string) has the following format:

protocol://hostName:portNumber/agencyName/placeName

Under certain conditions, some of the address components are not
required. Please refer to Section 5.4 for detailed information.
59

PROGRAMMER’S GUIDE
60

CHAPTER 7: ACTION!
7 Action!

The class Agent (which is the superclass of all Grasshopper agents, as ex-
plained in Chapter 3) provides a method named action(). This method is
automatically invoked by the agency if a user performs one of the following
actions:

• double-click on the corresponding agent entry in the agency GUI

• selection of an agent in the agency GUI, right-click on the selected agent
entry and left-click on the invoke command of the appearing menu

• left-click on the invoke icon inside the icon bar of the agency GUI

• left-click on the menu item Object->Invoke

• typing the invoke command of the agency TUI

Beside the user interfaces, the action() method of an agent can also be trig-
gered by another software entity via the invokeAgentAction(...)
method of the agency’s programming interface de.ikv.grasshop-
per.agency.IAgentSystem. Please refer to Section 9.11.2 where the
API of agencies is explained.

The intention of the action() method is to enable a user to trigger a certain
action of an agent via the agency’s user interface. For instance, a double-click
on the agent entry may start an agent-specific GUI, as shown in the following
example. Another possibility is shown in Example 6 (Section 8.1) where the
action() method is used to print an agent’s properties.

7.1 Example: ActionAgent

The following example is an extension of the BoomerangAgent introduced in
Section 6.5. The enhancement is that the action method reactivates the agent’s
live() method. Thus, in contrast to the BoomerangAgent, the GUI can be
re-activated by a user via one of the actions listed above.

Note that re-activating an agent’s live() method via its action() method
does not re-activate the agent’s thread (whose execution stopped when the
live() method terminated for the first time). Instead, the re-activated agent
runs in a thread of the communication service of the local agency.

Example 5: ActionAgent

package examples.simple;
61

PROGRAMMER’S GUIDE
import de.ikv.grasshopper.agent.MobileAgent;
import de.ikv.grasshopper.communication.*;
import javax.swing.*;
import java.awt.*;

// This class realizes an agent that moves to a remote
// agency and, after this, returns to its origin.
// The agent can be re-activated via its ’action’
// method.
public class ActionAgent extends MobileAgent
{
// A little data state.
int state;

// No creation arguments needed.
public void init(Object[] creationArgs) {
// Initialize data state
state = 0;

}

public String getName() {
return "ActionAgent";

}

public void action() {
// Re-animate the agent
log("Re-animated!");
live();

}

public void live() {
String location;

switch(state) {
case 0:
log("Waiting for new location...");
location = JOptionPane.showInputDialog(
null, "Where shall I go?");

if (location != null) {
state = 1;
log("Trying to move...");
try {
// Go away!
move(new GrasshopperAddress(location));

}
catch (Exception e) {
log("Migration failed: ", e);
62

CHAPTER 7: ACTION!
}
// The next statement is only reached
// if the migration failed!!!
state = 0;

}
break;

case 1:
log("Arrived at destination!");
JOptionPane.showMessageDialog(
null, "Let me go home!");

state = 0;
log("Trying to move...");
try {
// Come home!
move(getInfo().getHome());

}
catch (Exception e) {
log("Return trip failed: ", e);

}
// The next statement is only reached
// if the migration failed!!!
break;

}
log("Terminating my life.");

}
}

Requirements:

• Optionally a running agency domain service. (Note that the agency
domain service has to be started before the agencies, and the domain
service’s address has to be specified when starting the agencies in order
to register them. Please refer to the User’s Guide for information about
how to start agencies and agency domain services.

• At least two running agencies
Since the ActionAgent creates an own GUI that may block the agency
GUI, it is recommended that you do not activate the agency GUI.
Instead, start the agencies just with their textual interface (command
option -tui). Please refer to the paragraphs titled „Running the Exam-
ples“ at the beginning of Chapter 2 in order to get a detailed explana-
tion about the possibly occurring GUI problems.
63

PROGRAMMER’S GUIDE

te the

iron-
eation

 dou-
ke’
 you

eran-

st-
ther
Running the example:

Create the ActionAgent inside one of the running agencies via the
agency’s UI (1).

If you are using the textual user interface of the agency, please crea
agent by means of the following command:

cr a examples.simple.ActionAgent

If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

Press the Cancel button (2), and the GUI disappears. Now perform a
ble-click on the agent entry in the agency GUI or perform the ’invo
command of the agency TUI (3). The agent’s GUI appears again, and
can continue moving the agent around, as explained in the Boom
gAgent example (see Example 4 in Section 6.5).

7.2 Summary

• The action() method of an agent is automatically invoked by the ho
ing agency on behalf of a user (via the agency’s UI) or on behalf of ano
software entity (via the agency’s API).

Figure 7: ActionAgent Scenario

ActionAgent

Agency 1

11 A
ge

nc
y

U
I

A
ge

nc
y

U
I

Create
ActionAgent

22

Press
<Cancel>

UU

UU

UU User input

33

Invoke agent

UU
64

CHAPTER 7: ACTION!
• The agent programmer can override the action() method in order to
enable a user to trigger certain actions of the corresponding agent.
65

PROGRAMMER’S GUIDE
66

CHAPTER 8: CLONES AND COPIES
8 Clones and Copies

copy(...)Sometimes, it may be desirable for an agent to create a copy of itself and to
order this copy to perform one specific task, while the original instance is oc-
cupied with another task. For this purpose, the agent’s superclass provides the
method copy(...). By invoking this method, an agent creates another in-
stance of its own agent class. The location in which the new instance is to be
created has to be provided as parameter of the copy(...) method.

The copy procedure is realized similar to an agent’s migration. That means,
the new agent instance is created at the desired location, and the data state of
the original instance is transferred (in serialized form) to the new instance. The
important difference is that, in contrast to the migration, the original agent in-
stance is not removed, but continues executing its task.

Note: The previous releases of Grasshopper provided two separate methods:
clone and copy. The difference was that, in contrast to copy, the clone
method did not require any parameter, and the new instance was created in the
same location as the original instance. To achieve this with the new Grasshop-
per release, just specify the current location of the original instance as param-
eter of the copy(...) method, or simply set the value to null.

The copy
procedure

1. The agent’s copying is initiated. This can be done either by the agent itself
(via its own copy(...) method), by other software components (via the
copyAgent(...) method offered by the agency’s API), or by human
users (via the agency’s UI).

before-
Copy()

2. The agent’s beforeCopy() method is automatically called by the
agency in order to enable the agent to prepare its copying. This method
may be of particular importance if the agent’s copying procedure is trig-
gered by external entities (software components or human users), because
in this case the copy request is usually not expected by the agent. If the
agent itself triggers its copying, it has the possibility to prepare the copy-
ing already before invoking its copy(...) method.

VetoExcep-
tion

An agent may prohibit its own copying. If the agent does not want to be
copied, the agent can throw the de.ikv.grasshop-
per.agent.VetoException inside its beforeCopy() method. If
the copy request has been initiated via the agency’s UI, the user is
informed about the copy rejection via the user interface. If the copy
request has been initiated via the agency’s API, the agency forwards the
VetoException to the triggering software component.

3. The agent’s data state is serialized. That means, all instance variable of the
67

PROGRAMMER’S GUIDE

 are
nfor-
red by

ovides
ot ini-
lass
red by

xecu-

is able

er is
 and

 main-
t
e au-
agent
perties
agent that are not declared as transient, are put into a data stream. Please
refer to Section 6.3 for detailed information about the data state.

4. The agent’s serialized data state as well as additional information
transferred to the destination agency. Among others, the additional i
mation covers the agent class name and its code base. This is requi
the destination agency to create a new instance of the agent.

5. The destination agency creates a new instance of the agent and pr
the agent with its transferred data state. If the agent’s class code is n
tially maintained by the destination agency, it is retrieved via Java c
loading mechanisms by accessing the code base that has been delive
the source agency.

afterCopy() 6. The destination agency automatically calls the agent’s afterCopy()
method. In this way, the agent is able to prepare the start of its task e
tion, e.g., by allocating references and resources.

7. The destination agency starts the thread of the agent. Now the agent
to start its task execution.

Identifier
handling

Note that the copied agent instance gets a new identifier. This identifi
composed of the identifier of the original instance, suffixed by a period
the copy number, starting with ’1’.

Example: The identifier of the original agent instance is

Agent#192.168.100.31#1999-09-28#09:51:13:453#0

The first copy of this agent gets the following identifier:

Agent#192.168.100.31#1999-09-28#09:51:13:453#0.1

The fifth copy of this new agent gets the following identifier:

Agent#192.168.100.31#1999-09-28#09:51:13:453#0.1.5

8.1 Example: CopyAgent

Inside its init(...) method, the CopyAgent creates two properties:

• Property 1: key = „generation“; value = „parent“

• Property 2: key = „copyPermission“, value = „true“

(As explained in Chapter 5, an agent may have a set of properties that is
tained by the agent’s AgentInfo object. Initially, no property is defined, bu
the agent may set and modify its properties at any time. All properties ar
tomatically part of the agent’s data state, i.e., they remain valid when the
migrates. If an agent creates a copy of itself, the copy gets the same pro
68

CHAPTER 8: CLONES AND COPIES
as the original agent.)

The agent’s action() method enables a user to watch the agent’s properties
at any time.

The beforeCopy() method of the CopyAgent reads the „copyPermission“
property value. If this property is set to „true“, the agent allows its copying. If
the „copyPermission“ property is set to „false“, the agent prohibits its copying
by throwing the VetoException. (As explained above, the general purpose
of the beforeCopy() method is to enable an agent to react on a copy re-
quest. The method is automatically invoked by the local agency after receiving
a copy request by the agent itself or by another entity.)

The CopyAgent’s afterCopy() method just notifies the user about the suc-
cessful arrival of a copy. (As explained above, the general purpose of the af-
terCopy() method is to enable an agent to react on its arrival in a new
agency after a migration or copy procedure. The method is automatically in-
voked by the local agency before starting the agent’s live() method.)

The CopyAgent uses the „generation“ property inside its live() method in
order to determine whether it is still the original instance (i.e., the „parent“) or
a copied instance (i.e., a „child“). In this way, the „generation“ property rep-
resents the agent’s data state, similar to the state variable of the Boomeran-
gAgent (see Example 4 in Section 6.5).

The agent’s live() method is divided into two parts:

• If the agent’s generation value equals „parent“, the agent requests a list of
all agencies that are registered at the agency domain service. After this, the
agent changes its „generation“ value to „child“ and sends one copy of
itself to every available agency. Finally, the agent resets the generation
value to „parent“, and the live() method terminates. Note that the
method listAgencies(...) has not been explained yet. This exam-
ple does not focus on describing how to contact the agency domain ser-
vice, but this functionality is needed to determine all registered agencies.
Please refer to Section 9.12 for detailed information about contacting a
domain service.

• If the agent’s generation value equals „child“ (which is true for all copies
of the parent agent that have been created in the first part of the live()
method), the agent changes its „copyPermission“ property value to „false“.
After this, it is not possible for a user or software component to create cop-
ies of this agent, since the beforeCopy() method throws a VetoEx-
ception.
69

PROGRAMMER’S GUIDE
Example 6: CopyAgent

package examples.simple;

import de.ikv.grasshopper.agent.*;
import de.ikv.grasshopper.type.*;
import de.ikv.grasshopper.util.*;
import java.util.Properties;

// This class realizes an agent that produces copies of
// itself. The agent uses its internal properties in
// order to prohibit the further copying of its
// children.
public class CopyAgent extends MobileAgent
{
transient AgentSystemInfo availableAgencies[];

public void init(Object[] creationArgs) {
setProperty("generation", "parent");
setProperty("copyPermission", "true");

}

public void action() {
log("Generation = " + getProperty("generation") +
", copyPermission = " +
getProperty("copyPermission"));

}

public String getName() {
return "CopyAgent";

}

public void beforeCopy()
throws VetoException {

if (getProperty("copyPermission").equals("false"))
{
log("Sorry, copying not allowed.");
throw new VetoException();

}
}

public void afterCopy() {
log("Child has arrived.");

}

public void live() {
String generation = getProperty("generation");
70

CHAPTER 8: CLONES AND COPIES
if (generation.equals("parent")) {
// Get a list of all available agencies
availableAgencies = getRegion().listAgencies(
null, new SearchFilter());

// Create properties for the copies
Properties childProps = new Properties();
childProps.setProperty("generation","child");
childProps.setProperty("copyPermission",
"false");

// Send a copy to each agency
log(availableAgencies.length +
" agencies found");

for (int i = 0; i < availableAgencies.length;
i++) {
log("Sending one copy to agency " +
availableAgencies[i].getLocation());
try {
copy(availableAgencies[i].getLocation(),
childProps);

}
catch (Throwable e) {
log("Copy to location " +
availableAgencies[i].getLocation() +
" failed. ", e);

}
}

}
}

}

Requirements:

• A running agency domain service. Note that the domain service has to
be started before the agencies, and the domain service’s address has to
be specified when starting the agencies in order to register them. Please
refer to the User’s Guide for information about how to start agencies
and agency domain services.

• At least two running agencies. (The originally created agent will create
a copy of itself in every available agency, so that more than one agency
should be started. However, the example also runs with a single agency.
In this case, a single copy will be created.)
71

PROGRAMMER’S GUIDE

ncy’s

te the

iron-
eation

list of
elf in
 will
nsole

 will
pied,
ser to
inal
Running the example:

Create the CopyAgent inside one of the running agencies via the age
UI (1).

If you are using the textual user interface of the agency, please crea
agent by means of the following command:

cr a examples.simple.CopyAgent

If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

The agent contacts the agency domain service in order to retrieve a
all registered agencies (2). After this, the agent creates one copy of its
every agency contained in the retrieved list (3). These copies in turn
not create any further copies. They just print a message onto the co
window of their local agency and terminate afterwards.

Try to copy the original agent (4) as well as the copied agents (5). You
find out that the original agent (i.e., the parent agent) can be co
whereas the copied agents (i.e., the child agents) do not allow the u
copy them. A copy of the original agent behaves exactly as the orig

Figure 8: CopyAgent Scenario

CopyAgent
(parent)

Agency 1

11 A
ge

nc
y

U
I

A
ge

nc
y

U
I

Create
CopyAgent

UU

UU User input

Agency
domain
service

22
Get list of

all registered
agencies

CopyAgent
(child)

Agency 2

CopyAgent
(child)

Agency 3

CopyAgent
(child)

Agency 4

3a3a

3b3b

3c3c

Copy

44

Try to copy
agent

UU

55

Try to copy
agent

UU
72

CHAPTER 8: CLONES AND COPIES
agent itself, i.e., the copy will again produce „children“.

Look at the identifiers of all agents. As explained in Section 5.1, the copy
number is appended to the original identifier.

8.2 Summary

• Copying an agent means to create a new instance of an existing agent and
to transfer a copy of the current data state to the new instance. The new
instance can be created in the same location as the original instance or in a
remote agency.

• An agent may prohibit its copying by throwing a VetoException.

• The identifier of the new instance is composed of the complete identifier
of the original instance, suffixed by the copy number.
73

PROGRAMMER’S GUIDE
74

CHAPTER 9: THE COMMUNICATION SERVICE
9 The Communication Service

One of the most significant benefits of mobile agent technology is the ability
of active service agents to migrate to different network locations in order to
access static software components locally instead of interacting via remote
procedure calls. However, in several application scenarios the traditional cli-
ent/server paradigm using RPC still provides efficient solutions.

Proxy ob-
jects

By means of its communication service, Grasshopper achieves an integration
of both, agent migration combined with local interactions, and remote interac-
tions across the network. When using the communication service, clients do
not have direct references to the corresponding servers. Instead, an intermedi-
ate entity is introduced, named proxy object or simply proxy. In order to estab-
lish a communication connection with a server, a client creates a proxy that
corresponds to the desired server. This proxy in turn establishes the connection
to the actual server. In the context of Grasshopper, three different kinds of
servers are possible: agencies, agents, and agency domain services.

Figure 9: Communication via Proxies

Client agent

Server proxy

Communication
service

Protocol
modulesAgency 1

Server agent

Communication
server

Agency 2

ORB

Remote interfaces
for supported protocols

1

2

3

4

1, 2, 4 Local Java method invocation

3 Remote method invocation via one of the supported protocols
75

PROGRAMMER’S GUIDE

rver’s
cation
e de-
y do-
r is

client
ency

 per-

 JDK

te ap-

ice are

r-
of re-
 of an

 soft-
, and
e Sec-

Grass-
ration
ed in-

isting
Location
transparen-
cy

If an agency domain service is running and both the client’s and the se
agency are registered at this service, a location-transparent communi
session can be established. The client simply provides the identifier of th
manded server, and the proxy object automatically contacts the agenc
main service in order to determine the server’s location. If the serve
realized as mobile agent that moves to another location the proxy at the
side keeps track of the server by requesting its new location from the ag
domain service.

In order to use the communication service, the following steps have to be
formed:

1. Implementation of the server side (see Section 9.1)

2. Generation of a server proxy (only required for Java releases prior to
1.3, see Section 9.2)

3. Implementation of the client side (see Section 9.3)

A client can access a server in different ways. Depending on the concre
plication scenario, the programmer has to select between

• Synchronous and asynchronous communication (see Section 9.5)

• Static and dynamic communication (see Section 9.7)

• Unicast and multicast communication (see Section 9.9)

By default, each Grasshopper agency as well as the agency domain serv
accessible via proxies. Agents can retrieve the proxy of the local agency via
the method getAgentSystem() which is provided by the agents’ supe
class Agent (see Section 9.11.3). Besides, agents can create proxies
mote agencies (see Section 9.11.4). Finally, agents can get the proxy
agency domain service via the method getRegion() which is provided by
the agents’ superclass Agent (see Section 9.12).

The main objective of an agency domain service is to enable users and
ware entities to search for specific components (i.e., agencies, places
agents). Demanded components can be described in terms of filters (se
tion 9.13) in order to facilitate the search.

Since clients as well as servers may be realized by mobile agents, the
hopper communication service has been designed to handle their mig
during a communication session. Please refer to Section 9.14 for detail
formation about migrating servers and clients.

In several application scenarios, an integration of Grasshopper into ex
applications is required.
76

CHAPTER 9: THE COMMUNICATION SERVICE
9.1 Implementing the Server Side

The server side of a Grasshopper communication connection is realized in
terms of a Java object that provides at least one public method to the commu-
nication service. All methods that are to be accessible via the communication
service have to be included in a Java interface that is implemented by the serv-
er object. In detail, the following steps have to be performed:

1. Implementation of a server (agent) class

2. Selection of those server methods that are to be accessible via the commu-
nication service

3. Definition of a Java interface that includes the previously selected meth-
ods, called server interface in the scope of this chapter. This interface has
to be implemented by the server class.

If also methods of the agent’s superclasses are to be accessible, the corre-
sponding interfaces (e.g., IAgent or IMobileAgent) have to be inher-
ited by the newly defined server interface. Note that these superclass
interfaces only offer a subset of the methods that are provided by the
superclasses themselves. For instance, the interface IAgent only covers
the method getInfo(), while the superclass Agent provides a large set
of methods to its subclasses.

If a server interface method uses user-defined Java classes as parameters
and/or return types, these classes have to be serializable, i.e., they have to
implement the interface java.io.Serializable. The reason is that
the Grasshopper communication service uses the serialization mechanism
for transferring the information that is associated with a remote method
invocation.

9.2 Creating Proxy Objects

As explained above, a client accesses a locally created proxy object in order
to communicate with a server. This proxy provides all public methods that
have been defined in the server interface.

The way of creating a proxy object depends on the used Java release. If JDK
1.3 or higher is used, the proxy creation can be performed dynamically by a
client agent during its runtime, just by using the class of the server interface
(see Section 9.2.2). If an earlier release of Java is used, the agent programmer
has to generate proxy classes manually by using the Grasshopper stub gener-
ator (see Section 9.2.1). In both cases, the usage of the proxies, i.e., the imple-
77

PROGRAMMER’S GUIDE

Avoid

erver
shop-
gent-
ssible

 as the

 serv-

f the
mentation of the client agent, is exactly the same.

9.2.1 Manual Proxy Generation

Stubgen If a Java release prior to JDK 1.3 is used for running Grasshopper, proxy class-
es have to be created and made accessible for the client agent. For this pur-
pose, Grasshopper provides a stub generator, realized in terms of a batch/shell
script named Stubgen.

In order to use the stub generator, please perform the following steps:

1. Implement your server interface.

2. Compile the server interface.

3. Invoke the stub generator by providing the class file of the server interface
as parameter of the Stubgen batch/shell script. Type in the full qualified
class name, i.e., the classname prefixed by the complete package structure.
Single package names have to be separated by a dot („.“) character.
the suffix „.class“ at the end of the class name.

Earlier releases of Grasshopper required the class of the server agent as
input, and the generated proxy contained all public methods of this s
class. The introduction of server interfaces has been realized in Gras
per 2.0 in order to enable agent programmers to distinguish between a
internal public methods and those public methods that are to be acce
via the communication service.
The stub generator produces a Java source file with the same name
server interface, suffixed with the letter ’P’ (indicating proxy classes).

4. Compile the generated proxy source file.

5. Insert the compiled proxy class file into your Java classpath.

Considering the server agent described in Section 9.4.1, the creation of a
er proxy can be achieved in the following way:

1. Compile the source file of the server interface, i.e., the file IServer-
Agent.java. The output will be a Java class file named IServer-
Agent.class.

2. Invoke the stub generator by using the full qualified class name o
server interface as parameter:

Stubgen examples.simpleCom.IServerAgent

The result will be a Java source file named IServerAgentP.java.
This is the source file of the server proxy.
78

CHAPTER 9: THE COMMUNICATION SERVICE
3. Compile the generated source file. The result will be a Java class file
named IServerAgentP.class.

If you discover problems when compiling proxy classes with JDK 1.3,
please use the compiler option ’-target classic’. If you are using
JDK 1.2, no problems should occur during the compilation.

Please note that, as explained in Section 9.2.2, no manual proxy generation
via Stubgen is required if a JDK 1.3 environment is used. Even if a man-
ually generated proxy class exists, JDK1.3 will not use it.

9.2.1.1 Usage of the Stub Generator
The Grasshopper stub generator is realized as a batch/shell script named
Stubgen. The following line gives an overview of all supported parameters:

Stubgen [-h|--help] [-classpath <addClasspath>]
[-d <stubDir>] [--compile] [--noSource]
<classname>

Invoking Stubgen without any parameters prints out the list of available pa-
rameters, including a short description of their purpose. The same result can
be achieved by using the parameter -h or --help, respectively.

-classpath <addClasspath>:

This optional parameter allows the user to add a set of directories to the
existing Java CLASSPATH environment setting. <addClasspath> has
to be substituted by the directory path(s) that is/are to be added.

-d <stub_dir>:

This optional parameter allows the user to specify a directory into which
the generated Java source file of the proxy class has to be written.

--compile:

When this optional parameter is used, the stub generator automatically
compiles the generated Java source file of the proxy class. Note that this
option only works in a JDK 1.2 environment. In a JDK 1.3 environment,
the Java compiler must be explicitly invoked with the option ’-target
classic’.

--no_source:

This optional parameter can only be applied together with the --com-
pile option. In this case, no source file of the proxy class is generated.

<classname>:

This is the only mandatory parameter and must be substituted with the full
qualified class name of the server interface class file. Full qualified means
79

PROGRAMMER’S GUIDE

 has to

a
time
lass,
.
agent
y any-
r will

iron-
,
ver
-
viron-

 Java
rob-
xy in

auses
ed by
 oppo-

y, the
g. As
xy as
g the
te the
that the complete package structure must be specified where two single
package names are separated by a dot characters. The suffix „.class“
be avoided.

9.2.2 Dynamic Proxy Generation

Due to the enhanced reflection capabilities of JDK 1.3, it is possible for
Grasshopper (client) agent to create server proxies dynamically at run
without the requirement to have access to a previously compiled proxy c
such as the class IServerAgentP.class mentioned in Section 9.2.1
This means that the manual proxy class generation, performed by the
programmer by using the Grasshopper stub generator, is not necessar
more. Even if a manually generated proxy class is available, Grasshoppe
not use it in a JDK 1.3 environment.

Note that the client implementation is independent of the used Java env
ment, since it does not refer to the manually generated proxy class (i.e.IS-
erverAgentP.class in the example below), but instead to the ser
interface class (i.e., IServerAgent.class in the example below). The in
terface class is required in any case, independently of the used Java en
ment.

9.2.3 Issues of Mixed JDK Environments

If the Grasshopper environment consists of agencies running on JDK1.2
Virtual Machines (JVMs) and other agencies running on JDK1.3 JVMs, p
lems may occur in cases where agents migrate while maintaining a pro
their data state. A migration from a JDK1.2 agency to a JDK1.3 agency c
no problems. The proxy remains valid after the migration and can be us
the migrated agents for accessing the associated server. Concerning the
site direction, i.e., a migration from a JDK 1.3 agency to a JDK 1.2 agenc
client agent should exclude all proxies from its data state before migratin
described in Chapter 6, this can be achieved either by declaring the pro
transient instance variable or, in case of a non-transient proxy, by settin
proxy to null before the migration. In both cases, the agent has to re-crea
proxy after the migration.
80

CHAPTER 9: THE COMMUNICATION SERVICE
9.3 Implementing the Client Side

Note that the implementation of a client agent is exactly the same, independent
whether the proxy class has been created manually via the stub generator (as
described in Section 9.2.1) or whether the server proxy is dynamically gener-
ated by the client agent during its runtime, as described in Section 9.2.2. The
internal proxy handling is transparently performed inside the newIn-
stance(...) method of the class de.ikv.grasshopper.communi-
cation.ProxyGenerator by analyzing the used Java runtime
environment. If a Java release prior to JDK 1.3 is detected, the newIn-
stance(...) method automatically tries to access the manually created
proxy class (IServerAgentP.class in the example, see Section 9.4),
while in the case of JDK 1.3 the reflection mechanism is used to generate a
proxy dynamically out of the server interface, (i.e., IServer-
Agent.class in the example).

The prerequisites that must be fulfilled by the client agent are:

• access to the server interface class (IServerAgent.class in the
accompanying example, see Section 9.4)

• access to the server proxy class, only required if a Java release previous to
JDK 1.3 is available and the proxy class thus had to be manually gener-
ated via the stub generator (IServerAgentP.class in the accompa-
nying example, see Section 9.4)

• knowledge about the identifier of the server agent (specified either as
instance of de.ikv.grasshopper.type.Identifier or as
instance of java.lang.String)

• If the client and server agents are not registered at the same agency domain
service and both agents are running in different agencies, the client agent
must provide the current location of the server agent (either as instance of
de.ikv.grasshopper.communication.GrasshopperAd-
dress or as instance of java.lang.String). If both agents are run-
ning inside the same agency, the location need not be specified even if no
agency domain service is running.

• If the client agent wants to invoke the server methods in an asynchronous
way, this must be specified by a byte parameter, set to ProxyGenera-
tor.ASYNC. If synchronous method invocation is to be performed, this
additional parameter may be avoided or set to ProxyGenera-
tor.SYNC. Note that a single proxy supports either synchronous or asyn-
chronous method invocation. If a client agent wants to use both
mechanisms on the same server, two proxies must be created. Please refer
81

PROGRAMMER’S GUIDE
to Section 9.5 for detailed information.

A client agent creates a server proxy by invoking the newInstance(...)
method of the class de.ikv.grasshopper.communication.Prox-
yGenerator. Depending on the running Grasshopper environment and the
requirements of the client agent, the newInstance(...) method can be
invoked with different parameters.

Considering the server agent described in Section 9.4.1, the creation of a serv-
er proxy can be achieved with the following lines of code:

Identifier serverIdentifier = ...;
IServerAgent serverProxy =
(IServerAgent) ProxyGenerator.newInstance(

IServerAgent.class,
serverIdentifier);

Note that IServerAgent represents the interface of the server agent.

The code above requires both client and server agent to be registered at the
same agency domain service or to reside inside the same agency, in order to
enable the proxy to locate the server agent. If both prerequisites are not ful-
filled, the newInstance(...) method must be enhanced with the current
location of the server agent:

String serverLocation = ...;
IServerAgent serverProxy =
(IServerAgent) ProxyGenerator.newInstance(

IServerAgent.class,
serverIdentifier,
serverLocation);

The examples above create a server proxy that supports synchronous commu-
nication. If the client agent wants to invoke the server methods asynchronous-
ly, this has to be specified by a byte variable, as shown below:

IServerAgent serverProxy =
(IServerAgent) ProxyGenerator.newInstance(

IServerAgent.class,
serverIdentifier,
serverLocation,
ProxyGenerator.ASYNC);

In Grasshopper releases 1.x, a single proxy was able to handle both synchro-
nous and asynchronous method invocation. In these early Grasshopper releas-
es, the stub generator inserted additional methods into the proxy class. The
result was a proxy class covering two methods for each public method of the
server agent. One of these methods was meant for synchronous communica-
tion, and the second one (with an additional parameter for maintaining the
asynchronously arriving method result) for asynchronous communication.

In the current Grasshopper release, it is not anymore required to use the stub
82

CHAPTER 9: THE COMMUNICATION SERVICE
generator, supposed that a JDK 1.3 runtime environment is used. In order to
enable a client implementation to be independent of the fact whether a manu-
ally generated proxy class exists or whether the Java reflection mechanism is
used for the dynamic proxy generation, no additional methods are created by
the stub generator. Thus, if a client agent wants to access a server agent syn-
chronously and asynchronously, the client agent has to create two proxies, i.e.,
one proxy for each communication mechanism. Please refer to Section 9.5 for
detailed information about asynchronous communication.

Note that a proxy object is always created as instance of a server interface and
not of the corresponding server class. Do not try to convert the proxy down to
the server class (neither when creating the proxy nor when invoking a method
on the proxy), since this will raise a ClassCastException. Concerning
the example in Section 9.4, the interface IServerAgent has to be used for
proxy-related stuff, and not the class ServerAgent.

9.4 Simple Communication Scenario

The following scenario consists of the following three classes/interfaces, cov-
ered by the package examples.simpleCom:

• ServerAgent (see Example 7 in Section 9.4.1): An agent that provides
one method to the communication service. By means of this method, a
(remote) client can order the ServerAgent to migrate to another location.

• IServerAgent (see Example 8 in Section 9.4.1): The server interface
that contains the method which has to be accessible for client agents. This
interface is the basis for the generation of server proxies.

• ClientAgent (see Example 9 in Section 9.4.2): The agent that invokes
the accessible method on the ServerAgent. In the context of this scenario,
the ClientAgent remains at its initial location and in this way realizes a sta-
tionary user interface for the ServerAgent. By means of the ClientAgent’s
GUI, a user can move the ServerAgent remotely from one agency to
another.

9.4.1 Example: ServerAgent

The agent shown in Example 7 provides the public method go(...) to the
communication service. When this method is invoked, the agent tries to mi-
grate to the location that has been provided as method parameter.
83

PROGRAMMER’S GUIDE
Example 7: ServerAgent

package examples.simpleCom;

import de.ikv.grasshopper.agent.*;
import
de.ikv.grasshopper.communication.GrasshopperAddress;

// This class realizes the server agent of the simple
// communication scenario.
public class ServerAgent extends MobileAgent

implements IServerAgent
{
public String getName() {
return "ServerAgent";

}

// This method is accessible via the communication
// service.
public void go(String location) {
log("Roger, moving to " + location);
try {
move(new GrasshopperAddress(location));

}
catch (Exception e) {
log("Migration failed. Exception = ", e);

}
}

public void live() {
log("ready.");

}
}

In order to make the go(...) method accessible via the communication ser-
vice, a server interface has to be defined that contains the method. This server
interface (see Example 8) must be implemented by the server agent.

Note: As explained in Section 9.2, a special proxy class has to be created with
the Grasshopper stub generator if a Java runtime environment previous to JDK
1.3 is used. If JDK 1.3 is used, this step is not required, since in this case the
proxy is dynamically created by using the Java reflection mechanism.

Example 8: IServerAgent

package examples.simpleCom;
84

CHAPTER 9: THE COMMUNICATION SERVICE
public interface IServerAgent
{
public void go(String location);

}

Note: If the ServerAgent has to provide also the methods of its superclasses,
the interface IMobileAgent has to be extended by the interface IServ-
erAgent.

A description about how to run the example is given in Section 9.4.3.

9.4.2 Example: ClientAgent

The agent below acts as a client that uses the communication service in order
to access the server agent introduced in Section 9.4.1.

Inside its init(...) method, the ClientAgent creates an instance of the
ServerAgent as well as a server proxy, i.e., an instance of the server inter-
face IServerAgent (see Example 8). After this, the client agent is able to
invoke the server agent’s go(...) method.

Note that the client uses a second proxy, i.e., the proxy of the local agency, in
order to create the server agent. The local agency proxy is available for each
agent via the method getAgentSystem() of the agent’s superclass
Agent. Detailed information about possible interactions between agents and
their local agency is given in Section 9.11.

The created server proxy is meant for synchronous communication, since the
parameter ProxyGenerator.ASYNC mentioned in Section 9.3 is not set.
The client just specifies the server interface as well as the server identifier.

A running agency domain service is required for running the example, since
the client moves the server to other locations. In order to maintain the connec-
tion to the server, the proxy has to contact the agency domain service for re-
questing the server’s new location. This is done transparently for the client.

The client agent creates a GUI in order to ask the user for a new location for
the server agent. After the user has pressed the OK button, the client agent in-
vokes the go(...) method of the server proxy, transmitting the previously
specified location via the communication service to the server agent.

Example 9: ClientAgent

package examples.simpleCom;

import de.ikv.grasshopper.agent.*;
85

PROGRAMMER’S GUIDE
import de.ikv.grasshopper.agency.*;
import de.ikv.grasshopper.type.*;
import de.ikv.grasshopper.communication.*;
import javax.swing.*;
import java.awt.*;

// This class realizes the client agent of the simple
// communication scenario.
public class ClientAgent extends MobileAgent
{
// Proxy of local agency = transient
// (i.e., not part of the data state),
// since it becomes invalid if the agent moves
// to another location.
transient IAgentSystem agencyProxy;

// Data state of the agent, since not transient.
// AgentInfo serverInfo;
IServerAgent serverProxy;

public void init(Object[] creationArgs) {
// Get proxy of local agency.
agencyProxy = getAgentSystem();
// Create the server agent.
try {
serverInfo =
agencyProxy.createAgent(
"examples.simpleCom.ServerAgent",
getInfo().getCodebase(),
"InformationDesk", null);

}
catch (AgentCreationFailedException e) {
log("Creation of server agent failed.");

}
// Create proxy of the server agent.
if (serverInfo != null)
serverProxy = (IServerAgent)
ProxyGenerator.newInstance(
IServerAgent.class,
serverInfo.getIdentifier());

}

public String getName() {
return "ClientAgent";

}

public void action() {
live();
86

CHAPTER 9: THE COMMUNICATION SERVICE
}

// This method requests user input via a graphical
// component.
// The user has to specify the new location to which
// the ServerAgent shall migrate.
public String requestLocation() {
String location = null;
log("Request location");
location = JOptionPane.showInputDialog(null,

"Where shall I send the server?");
log("Moving the server to " + location);
return location;

}

public void live() {
String location;
log("Starting life");
location = requestLocation();
while (location != null) {
// Invoke method on server agent via proxy.
serverProxy.go(location);
location = requestLocation();

}
}

}

A description about how to run the example is given in Section 9.4.3.

9.4.3 Running the Scenario

This section explains how to run the communication example whose parts
(i.e., ClientAgent and ServerAgent) have been introduced in the pre-
vious sections.

Requirements:

• A running agency domain service. Note that this service has to be started
before the agencies, and its address has to be specified when starting the
agencies in order to register them. Please refer to the User’s Guide for
more information about how to start agencies and agency domain services.

• At least two running agencies
Since the ClientAgent creates an own GUI that may block the agency GUI,
it is recommended that you do not activate the agency GUI. Instead, start
the agencies just with their textual interface (command option -tui). Please
87

PROGRAMMER’S GUIDE

 of
cur-

roxy
n-

ry
lient-
it is
ated

y’s

te the
refer to the paragraphs titled „Running the Examples“ at the beginning
Chapter 2 in order to get a detailed explanation about the possibly oc
ring problems.

• If you are using a JDK 1.2 environment, you must have generated a p
class (named IServerAgentP) by invoking the Grasshopper stub ge
erator with the interface class IServerAgent as input parameter. The
file IServerAgentP.class should be stored either in a directo
belonging to the Java classpath or in the code base directory of the C
Agent. In a JDK 1.3 environment, this class is not needed. Even if
available, it will not be used. Instead, the proxy is dynamically gener
by the ClientAgent at runtime.

Running the Example:

Create the ClientAgent inside one of the running agencies via the agenc
UI (1).

If you are using the textual user interface of the agency, please crea
agent by means of the following command:

Figure 10: Simple Communication Scenario

ClientAgent

Agency 1

11

A
ge

nc
y

U
I

A
ge

nc
y

U
I

Create
ClientAgent

44 Type in
new location

UU

UU

UU User input

ServerAgent

33

Agency APIAgency API

Create
ServerAgent22

Create
proxy

5a5a

5b5b

move ServerAgent

Agency 2

ServerAgent

5c5c

66 Type in
new location

7a7a

7c7c

Server
Agent

Agency
domain
service

7b7b

IServerAgent

Proxy

IServerAgent

ProxyProxy

7d7d
88

CHAPTER 9: THE COMMUNICATION SERVICE
cr a examples.simpleCom.ClientAgent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

At first, the client agent creates an instance of the server agent (2) and estab-
lishes a connection to this agent via a server proxy (3). The server agent will
appear in the agency’s GUI. (If you are using the TUI, please use the l[ist]
command in order to list all agents running inside the agency. One of them
should be the server agent.)

Use the client agent’s GUI to type in the new location to which the server agent
has to migrate (4). Note that, since an agency domain service is running (and
connected with both agencies!), it is sufficient to specify the host name, agen-
cy name, and (optionally) a place name of the desired destination. As ex-
plained in Section 5.4, the required (simplified) location format is
<hostName>/<agencyName>/<placeName> or <hostName>/
<agencyName>. In the latter case, the agent will migrate to the default place
Informationdesk of the destination agency.

After pressing the OK button, the ClientAgent uses the server proxy to trigger
the ServerAgent’s migration to the specified location (5).

Location-
transparent
communica-
tion

Note that the client does not know that the server agent has changed its loca-
tion. Thus, after you have specified a new server location for the second time
and pressed OK (6), the ClientAgent again contacts the server proxy (7a)
which tries to contact the server agent at its former location. After noticing that
the server agent is not accessible anymore, the proxy automatically contacts
the agency domain service in order to determine the server agent’s new loca-
tion (7b). Since each agency automatically registers all hosted agents at the
agency domain service (if existent), this service is aware of the locations of all
agents at any time. In this way, the re-establishment of the connection between
the proxy and the server agent is performed completely transparent for the cli-
ent agent. The proxy forwards the migration order from the ClientAgent to the
new location of the ServerAgent (7c), and the ServerAgent migrates to its new
destination (7d).

9.4.4 Summary

• The purpose of the Grasshopper communication service is to enable local
and remote interactions between Grasshopper components (agents, agen-
cies, region registries).

• A communication session is initiated by a client (agent) that establishes a
89

PROGRAMMER’S GUIDE

A cli-
 the
face
 com-

d by
ast to
 the

ed by
nicate
way.

erver
 re-

block

 made

is
mu-

ault

eci-
connection to a server (agent) via a so called proxy object or proxy.

• A Grasshopper proxy (object) represents the server at the client side.
ent always contacts a proxy locally, and the proxy in turn contacts
(locally or remotely residing) server. A proxy is based on a Java inter
that defines those server methods which are to be accessible via the
munication service.

• Concerning JDK 1.2 environments, a proxy object has to be generate
the programmer by using the Grasshopper stub generator. In contr
this, JDK 1.3 environments allow a dynamic proxy generation during
runtime of the communicating components.

9.5 Sync. vs. Async. Communication

As described in Section 9.3, two different server proxies have to be creat
a client agent, depending on whether the client agent wants to commu
with the corresponding server agent in a synchronous or asynchronous

Synchronous communication means that, after invoking a method of a s
agent via its proxy, the client agent is blocked until the invoked method
turns. In contrast to this, an asynchronously invoked method does not
the invoking client.

The decision between synchronous and asynchronous communication is
when the client agent creates a server proxy by invoking the newIn-
stance(...) method of the class de.ikv.grasshopper.communi-
cation.ProxyGenerator. The default communication mode
synchronous communication. If a proxy has to support asynchronous com
nication, this has to be specified by means of an additional [byte] parameter.

• Creation of a proxy for synchronous communication. This is the def
mode, i.e., no specification of the communication mode is required:

IServerAgent serverProxy =
(IServerAgent) ProxyGenerator.newInstance(

IServerAgent.class,
serverIdentifier);

• Creation of a proxy for synchronous communication with (optional) sp
fication of the communication mode:

IServerAgent serverProxy =
(IServerAgent) ProxyGenerator.newInstance(

IServerAgent.class,
serverIdentifier,
ProxyGenerator.SYNC);
90

CHAPTER 9: THE COMMUNICATION SERVICE
• Creation of a proxy for asynchronous communication. The communication
mode must be specified:

IServerAgent serverProxy =
(IServerAgent) ProxyGenerator.newInstance(

IServerAgent.class,
serverIdentifier,
ProxyGenerator.ASYNC);

More information about the usage of the newInstance(...) method is
provided in Section 9.3.

9.5.1 Asynchronous Provision of Results

Asynchronously invoked methods do not block the invoking client. That
means, the client may continue its task after invoking the method, while the
corresponding server performs the invoked method in parallel. This does not
cause any problems for the client if the invoked server method neither returns
a result nor throws an exception. However, if a result or an exception is to be
transmitted by the server, the client must have the possibility to receive it.

FutureRe-
sult

For this purpose, a proxy that supports asynchronous communication imple-
ments the interface de.ikv.grasshopper.communication.IFu-
tureResult which provides a method named getFutureResult().
This method, invoked by the client, returns an instance of the class
de.ikv.grasshopper.communication.FutureResult which
represents an intermediate storage for asynchronously arriving results. That
means, when an asynchronously invoked method returns a result in terms of a
return value or an exception, this result is transmitted to and maintained by the
FutureResult object of the server proxy. The client may perform its own
task in parallel without being influenced by the interactions between the server
and its proxy.

When needed, the client can access the FutureResult object via the fol-
lowing methods:

• getResult(): This method returns the result that the server agent has
sent to the proxy. If no result is available, the method waits for a result for
a certain period of time which can be set via the setTimeout(...)
method. If the server agent does not deliver a result to the proxy within the
specified timeout period, a de.ikv.grasshopper.communica-
tion.AsyncTimeoutException is thrown by the method, and the
client can continue its task.
91

PROGRAMMER’S GUIDE

ng
od,

rom
d
e

ng a

on-

 this

 the

n or

ance,
d
the

ts

 the

 this

 be
able
mu-
Return
types de-
rived from
Object

The default return type of the getResult() method is
java.lang.Object. If the corresponding server method provides a
return type that is derived from java.lang.Object, the client can
retrieve the server’s return value simply by converti
java.lang.Object to the concrete return type of the server meth
such as java.lang.String.

Simple re-
turn types

If a server method returns a primitive data type that is not derived f
java.lang.Object, such as int, this return type cannot be retrieve
directly from the getResult() method via converting. That means, th
return type int of a server method can only be retrieved as Integer,
since Integer is derived from java.lang.Object. An additional
cast is required in order to get the primitive data type, e.g., by invoki
method like intValue(). Another possibility for retrieving primitive
data type values is to use one of the methods get<Type>Result().
These methods are provided in order to simplify the retrieval of n
Object values.

Exception
handling

If the asynchronously invoked server method throws an exception,
exception is forwarded to the getResult() method. Thus, the getRe-
sult() method has to catch all exceptions that may be thrown by
corresponding server method, as well as the Throwable exception in
order to handle failures that may be associated with communicatio
platform related problems.

• get<Type>Result(): Several specialized getResult() methods
are defined that provide primitive data types as return types. For inst
return values of the type double can be retrieved by invoking the metho
getDoubleResult(). Those specialized methods are defined for
following return types: <Type> = boolean, byte, char, double,
float, int, long, short. If no result is available, the method wai
for a result for a certain period of time which can be set via the setTim-
eout(...) method. If the server agent does not deliver a result to
proxy within the specified timeout period, a de.ikv.grasshop-
per.communication.AsyncTimeoutException is thrown by
the method, and the client can continue its task.

Exception
handling

If the asynchronously invoked server method throws an exception,
exception is forwarded to the getResult() method. Thus, the
get<Type>Result() method has to catch all exceptions that may
thrown by the corresponding server method, as well as the Throw
exception in order to handle failures that may be associated with com
nication or system related problems.

• getTimeout(): If a get<...>Result() method is invoked before
92

CHAPTER 9: THE COMMUNICATION SERVICE
a result is available, the method blocks for a certain period of time, waiting
for the result. The getTimeout() method returns the blocking period
that is specified for the get<...>Result() methods. The blocking
period is given in milliseconds, and the default value is one minute. If the
get<...>Result() method does not return a result during the speci-
fied timeout period, a de.ikv.grasshopper.communica-
tion.AsyncTimeoutException is thrown by the method, and the
client can continue its task.

• setTimeout(...): This method allows the client to specify the block-
ing period for the get<...>Result() methods. If a get<...>Result()
method is invoked before a result is available, the method blocks for the
specified period of time, waiting for the result. The blocking period is
given in milliseconds, and the default blocking period is one minute. A
value of ’0’ defines an infinite blocking period. If the
get<...>Result() method does not return a result during the speci-
fied timeout period, a de.ikv.grasshopper.communica-
tion.AsyncTimeoutException is thrown by the method, and the
client can continue its task.

• isAvailable(): This method informs the client whether an asynchro-
nously invoked method has already returned a result or not. In contrast to
the get<...>Result() methods, this method is non-blocking. If no
result is available, the method returns at once.

• isUserException(): In case the method invocation ends with an
exception (thrown by the get<...>Result() method), the isUser-
Exception() method indicates whether the exception has been thrown
by the server agent (true) or due to other errors that may be associated
with communication or system failures (false).

• addResultListener(...): By adding a result listener to the
FutureResult object, a client is automatically informed about incom-
ing results from a server. If a result arrives, the method resultHasAr-
rived(...) of the associated listener is invoked. Inside this method,
the client can react on the result. For more information, please refer to the
paragraphs on page 96 which are titled 3. notification.

• removeResultListener(...): This method removes an attached
result listener from the FutureResult object.

The only possibility for a client to retrieve the result of an asynchronously in-
voked method is to invoke a get<...>Result() method of the Futur-
eResult object that is associated with the server proxy. An asynchronous
method call like
93

PROGRAMMER’S GUIDE
result = asyncServerProxy.serverMethod();

will not initialize the result variable! This is the reason why this method is
called without allocating a return variable in the examples below. In contrast
to this, the result of a synchronous method invocation can of course be re-
trieved in this way.

By using the FutureResult methods, a client can realize three different
mechanisms for accessing an asynchronously arriving result:

Blocking 1. Blocking
After the client has asynchronously invoked a server method, it continues
its task, while the server performs the invoked method in parallel. At a cer-
tain point of execution, the client may require the result of the invoked
method in order to continue. In this case, the client can set the Future-
Result timeout to infinite (value = 0), and call one of the
get<...>Result() methods.

// Invoke server method via asynchronous proxy.
try {
asyncServerProxy.serverMethod();

catch ... // server & other exception
// Get FutureResult object
FutureResult futureResult =
((IFutureResult) asyncServerProxy).\\
getFutureResult();

// Client performs its task.
...
// Client needs the result.
// Set infinite timeout
futureResult.setTimeout(0);
try {
int result = futureResult.getIntResult();

} catch ... // server & other exceptions
...

Exception
handling is
required
two times

The example code above contains two try/catch blocks. The first block
may be surprising to you, since an asynchronous method call does neither
directly return a result nor throw an exception. The reason for the need of
this try/catch block is that Grasshopper generates proxies via the Java
reflection mechanism. This mechanism uses the server interface as input
for the proxy generation. If exceptions are specified inside this interface,
these exceptions are automatically adopted by the proxy.

After each asynchronous method call, a new FutureResult object is
created by the proxy. This object can be retrieved by the client by invoking
the getFutureResult() method.
94

CHAPTER 9: THE COMMUNICATION SERVICE
Note: It is required for the client to invoke the getFutureResult()
method directly after performing an asynchronous method call. The reason
is that the proxy only maintains a single FutureResult instance. Thus,
if the client performs several asynchronous calls on the same proxy with-
out requesting the FutureResult object after each call, the proxy only
maintains the FutureResult object of the latest method call, and all
previously created FutureResult objects are lost.

In the example code above, the client sets an infinite timeout for the
retrieved FutureResult object. In this way, the subsequently invoked
getIntResult() method will block until the server method has
returned (either with a return value or an exception).

Usually, the client does not know if the server is still working on the
invoked method, or if something unexpected has happened, such as a sys-
tem crash on the server side. Thus, it is recommended for the client not to
wait to the end of time, but to set a finite timeout that may be a bit longer
than the expected duration of the server’s method performance. If the tim-
eout period is over and the server method has still not returned, a
de.ikv.grasshopper.communication.AsyncTimeoutEx-
ception is thrown by the FutureResult object.

As shown in the example code above, the second try/catch block is placed
around the getIntResult() method. The purpose of this method is to
transmit the server result to the client, either in terms of a return value or
an exception. Thus, this method has to be handled in the same way as the
real server method (i.e., serverMethod()) is handled in case of a syn-
chronous invocation.

Polling2. Polling
If the client is able to perform some tasks while waiting for the result of an
asynchronously invoked server method, the client can periodically check
whether a result has arrived or not. For this purpose, the FutureResult
object provides the non-blocking method isAvailable() that returns a
boolean value. If this method returns true, the client can retrieve the
result via the getIntResult() method (which will not block in this
case, independent of the defined timeout period, since the client has
assured that the result has already arrived).

// Invoke server method via asynchronous proxy.
try {
asyncServerProxy.serverMethod();

} catch ... // server & other exceptions
// Get FutureResult object
FutureResult futureResult =
((IFutureResult) asyncServerProxy).\\
95

PROGRAMMER’S GUIDE
getFutureResult();
// Start polling
while(!futureResult.isAvailable()) {
// Client performs its task.

...
}
// Now the result is available.
try {
int result = futureResult.getIntResult();

} catch ... // server & other exceptions
...

The first eight lines of this example code have already been explained
above.

Concerning the example, the return value of the method isAvail-
able() is used for evaluating the condition of a while loop. The loop
ends if the server method has returned, i.e., if the method isAvail-
able() returns the value true. After this, the client retrieves the result
via getIntResult().

Notification 3. Notification
Beside the possibilities to perform a blocking call or to periodically check
whether a result is available, a client can order to be notified when the
called server method returns. This is achieved by adding a result listener to
the FutureResult object:

// Instantiate listener
Listener listener = new Listener();
// Invoke server method via asynchronous proxy.
try {
asyncServerProxy.serverMethod();

} catch ... // server & other exceptions
// Get FutureResult object
futureResult =
((IFutureResult) asyncServerProxy).\\
getFutureResult();

// Add result listener
futureResult.addResultListener(listener);
index++;

The corresponding Listener class has to implement the
de.ikv.grasshopper.communication.ResultListener
interface. This interface defines the method resultHasAr-
rived(...) which is called by the proxy when the asynchronous server
method has returned.

class Listener implements ResultListener {
public void resultHasArrived(ResultEvent e){
96

CHAPTER 9: THE COMMUNICATION SERVICE
// Get FutureResult object
FutureResult fResult =
(FutureResult) e.getSource();

try {
int result = fResult.getIntResult();

} catch ... // server & other exceptions
...

}
}

Note that a client may initiate a listener-based call without waiting for the
result of a previously performed call. In this case, a client must be able to
associate an incoming result with the corresponding method call. Concern-
ing the example above where the existence of only one Listener object
is assumed, this can be achieved by creating a new FutureResult
object for each method call. Inside the method resultHasAr-
rived(...), the FutureResult object that is associated with the
result event can be compared with the FutureResult objects that are
associated with the single method calls.

In some cases, a client may want to migrate to another location before the
result of a previously initiated asynchronous call has arrived. In this case,
the client agent has to add itself as listener to the FutureResult object.
In order to do this, the client agent has to implement the ResultLis-
tener interface. If the result listener is not realized by the client agent
class itself, incoming results will be lost if the client migrates. Please refer
to Section 9.14 for more information about migrating clients and servers.

9.6 Asynchronous Communication Scenario

The example scenario for asynchronous communication consists of four class-
es/interfaces, covered by the package examples.asyncCom:

• AsyncServerAgent (see Example 10 in Section 9.6.1): An agent that
provides one method to the communication service. For each single
method call, the user can decide, whether the result is to be a regular return
value or an exception. This is to show how the exception handling of asyn-
chronously invoked methods can be achieved.

• IAsyncServerAgent (see Example 11 in Section 9.6.1): The server
interface that contains the method which has to be accessible for the client
agent. This interface is the basis for the generation of server proxies.

• AsyncServerException (see Example 12 in Section 9.6.1): This
exception may be thrown by the server agent’s accessible method.
97

PROGRAMMER’S GUIDE

nt
decide

This

g ap-
ly, or

client
s ex-

er side
ncre-

ction
• AsyncClientAgent (see Example 13 in Section 9.6.2): The clie
agent that invokes the accessible method of the server. The user can
between four invocation mechanisms: synchronous, asynchronous block-
ing, asynchronous polling, or asynchronous notification.

9.6.1 Example: AsyncServerAgent

The AsyncServerAgent implements the interface IAsyncServerAgent.
interface contains the method requestConfirmation() that is accessi-
ble via the communication service. When this method is invoked, a dialo
pears, asking the user whether the method has to terminate regular
whether an exception is to be thrown. The purpose is to show how a
agent retrieves asynchronously arriving return values and how it handle
ceptions.

In order to enable the user to associate a specific method call at the serv
with the corresponding result arrival at the client side, the server agent i
ments the result value each time the requestConfirmation() method
is invoked.

The source code of the corresponding client agent is described in Se
9.6.2.

Example 10: AsyncServerAgent

package examples.asyncCom;

import de.ikv.grasshopper.agent.*;
import de.ikv.grasshopper.communication.*;
import javax.swing.*;
import java.awt.*;

// This class realizes the server agent of the async.
// communication scenario.
public class AsyncServerAgent extends MobileAgent

implements IAsyncServerAgent
{
int result;

// No creation arguments are required.
public void init(Object[] creationArgs) {
result = 1;

}

public String getName() {
98

CHAPTER 9: THE COMMUNICATION SERVICE
return "AsyncServerAgent";
}

// This method requests user input via a graphical
// component.
// The user has to decide whether the server method
// (invoked by the AsyncClientAgent) shall return
// regularly or throw an exception.
public int requestConfirmation()
throws AsyncServerException {

int yesOrNo = 0;

result++;
log("Client request arrived. Result will be = " +
result);

yesOrNo = JOptionPane.showConfirmDialog(
null,
"Throw exception to client?",
"AsyncServerAgent",
JOptionPane.YES_NO_OPTION);

if (yesOrNo == JOptionPane.YES_OPTION) {
log("No result. Throwing exception instead!");
throw new AsyncServerException();

}
else
return result;

}

public void live() {
log("ready.");

}
}

The server interface just contains the method requestConfirmation().

Note: In Section 9.5.1 it has been mentioned that, concerning asynchronous
calls, a client has to perform an exception handling twice: at first when the
server method is called, and the second time when the result is retrieved via
one of the get<...>Result() methods. The reason for the first exception
handling is that the server proxy is dynamically generated out of the server in-
terface by using the Java reflection mechanism. Since all server exceptions are
defined in the server interface (as shown in Example 11), the reflection mech-
anism creates a proxy that expects an exception handling. However, actually
neither a server exception nor a return value can appear directly when a server
method is invoked in an asynchronous way. Instead, both results arrive at the
99

PROGRAMMER’S GUIDE

ss

rface
ables
ain.

nt to

n
s

ode
t

client side only when the client invokes a get<...>Result() method.

Note: As explained in Section 9.2, a special proxy class has to be created with
the Grasshopper stub generator if a Java runtime environment previous to JDK
1.3 is used. If JDK 1.3 is used, this step is not required, since in this case the
proxy is dynamically created by using the Java reflection mechanism.

Example 11: IAsyncServerAgent

package examples.asyncCom;

public interface IAsyncServerAgent
{
public int requestConfirmation()
throws AsyncServerException;

}

Example 12: AsyncServerException

package examples.asyncCom;

public class AsyncServerException extends Exception
{
public AsyncServerException() {}

}

A description about how to run the example is given in Section 9.6.3.

9.6.2 Example: AsyncClientAgent

The AsyncClientAgent maintains the following instance variables:

• regionProxy: A proxy of the local agency, instantiated from the cla
IRegion. In contrast to the agency interface IAgentSystem that
enables a client to look for agents inside the local agency, the inte
IRegion provides access to the agency domain service and thus en
a client to look for agents (and agencies) inside a whole region/dom
Note that this proxy has to be transient in order to enable the age
migrate.

• syncServerProxy: A variable maintaining a server proxy (i.e., a
instance of IAsyncServerProxy) that is able to handle synchronou
communication (referred to as synchronous proxy in the following para-
graphs). This variable is created by setting the communication m
parameter to ProxyGenerator.SYNC. Since this variable is no
100

CHAPTER 9: THE COMMUNICATION SERVICE
declared transient, it represents a part of the agent’s data state and is main-
tained by the agent when the agent migrates.

• asyncServerProxy: A variable maintaining a server proxy (i.e., an
instance of IAsyncServerProxy) that is able to handle asynchronous
communication (referred to as asynchronous proxy in the following para-
graphs). This variable is created by setting the communication mode
parameter to ProxyGenerator.ASYNC. Since this variable is not
declared transient, it represents a part of the agent’s data state and is main-
tained by the agent when the agent migrates.

• futureResult: A variable for handling asynchronously arriving server
results, i.e., return values or exceptions. Since this variable is not declared
transient, it represents a part of the agent’s data state and is maintained by
the agent when the agent migrates.

The following paragraphs describe the functionality of each client method.

init(Object[] creationArgs)

Get agency
proxy

In its init(...) method, the agent requests the IRegion interface of
the local agency in order to look for the AsyncServerAgent. The interface
is retrieved via the method getRegion() which is provided by the
agent’s superclass Agent.

Look for
server agent

In order to find the AsyncServerAgent, the client sets a search filter by
specifying the server agent’s name, and invokes the listAgents(...)
method on the IRegion interface. Invoking this method orders the local
agency to contact an agency domain service in order to look for all agents
matching the specified filter. All agencies that are registered at the con-
tacted agency domain service are included in the search. Detailed informa-
tion about functionality associated with the interface IRegion is given in
Section 9.12.1.

The reason for the client to look for the server agent is that the client needs
the server’s identifier in order to create corresponding server proxies. The
identifier is part of the AgentInfo object that is returned by the method
listAgents(...). (A detailed list of all components of AgentInfo
is given in Chapter 5.) Note that the method listAgents(...) returns
a set of AgentInfos, representing the set of all agents that match the
specified filter criteria. The client agent simply selects the first agent from
the list.

Proxy gen-
eration

The client agent creates two proxies of the server: one for synchronous and
one for asynchronous communication. For this purpose, the client speci-
fies the server interface, the server identifier, and a [byte] variable that
defines the communication mode (SYNC or ASYNC). No provision of the
101

PROGRAMMER’S GUIDE

mu-

nce
s call
o be

tion
nces

n han-

ious
 syn-

er

 the

erver
value
server location is needed, since an agency domain service is available. The
proxy is able to locate the server agent transparently for the client by auto-
matically contacting the agency domain service.

requestCommunicationMode()

This method, called from inside the agent’s live() method, activates the
client’s GUI that enables the user to select between the following com
nication modes:

• synchronous communication
(method synchronousInvocation())

• asynchronous blocking communication
(method blockingResultHandling())

• asynchronous polling communication
(method pollingResultHandling())

• asynchronous notification-based communication
(method notificationResultHandling())

Concerning the invocation of the server method, the only differe
between synchronous and asynchronous calls is that the synchronou
directly returns a result, while the result of asynchronous calls has t
requested by invoking a get<...>Reault() method.

There are no differences between the blocking, polling, and notifica
based server method calls. Concerning asynchronous calls, differe
only exist in handling the result after invoking the method.

In order to keep the code as short as possible, the required exceptio
dling is performed only once inside the live() method instead of inside
each single method.

synchronousInvocation()

The synchronous method invocation is already known from the prev
communication scenario, described in Section 9.4. The client uses the
chronous proxy for invoking the server method requestConfirma-
tion(). After the invocation, the client is blocked until the serv
method returns.

blockingResultHandling()

In this method, the client uses the asynchronous proxy for invoking
server method. After requesting the FutureResult object, the client is
free to perform its own task, represented by the for loop. After perform-
ing the loop, it is assumed that the client needs the result of the s
method. Thus, the client sets the timeout to an appropriate value (the
102

CHAPTER 9: THE COMMUNICATION SERVICE
’0’ represents an infinite timeout) and requests the server result by calling
getIntResult(). If the result does not arrive within the specified tim-
eout period, a de.ikv.grasshopper.communication.Async-
TimeoutException will be thrown. This mechanism is meant to
prevent the client from waiting till the end of time if for instance the server
or its hosting system has crashed.

pollingResultHandling()

After invoking the server method and requesting the FutureResult
object, the client continues its own task, represented by a while loop.
Inside this loop, the client periodically checks whether the server method
has returned. If this is true, the client requests the result by invoking the
proxy’s getIntResult() method.

notificationResultHandling()

After invoking the server method and requesting the FutureResult
object, the client adds a result listener to the proxy. Note that in the given
example the client agent itself represents the result listener by implement-
ing the ResultListener interface. (Another possibility would have
been to define a separate listener class.)

After adding the listener, the client does not have to care about polling for
the result. Instead, the client’s method resultHasArrived(...) is
automatically invoked by the proxy when a result has arrived.

live()

The live() method of the client agent has two purposes:

• to delegate the invocation of the server method to that client method
which corresponds to the communication mode selected by the user (via
the GUI)

• to perform the exception handling that is required by the asynchronous
invocation.

resultHasArrived(ResultEvent e)

If the client has added itself as listener to the FutureResult object (see
method notificationResultHandling() above), the method
resultHasArrived(...) is automatically called by the proxy as
soon as the previously invoked server method has returned. In this case,
the result handling is performed in the usual way, i.e., by invoking the
getIntResult() method. Note that the FutureResult object on
which the getIntResult() method is invoked is associated with the
listener event (see statement fResult = (FutureResult)
e.getSource();).
103

PROGRAMMER’S GUIDE
Example 13: AsyncClientAgent

package examples.asyncCom;

import de.ikv.grasshopper.agent.*;
import de.ikv.grasshopper.agency.*;
import de.ikv.grasshopper.type.*;
import de.ikv.grasshopper.communication.*;
import de.ikv.grasshopper.util.*;
import javax.swing.*;
import java.awt.*;

// This class realizes the client agent of the async.
// communication scenario.
public class AsyncClientAgent extends MobileAgent

implements ResultListener
{
// Proxy of local agency = transient
// (i.e., not part of the data state),
// since it is not serializable.
// A non-transient agency proxy would not
// allow the agent to migrate.
transient IRegion regionProxy;

// Data state of the agent, since not transient
IAsyncServerAgent syncServerProxy;
IAsyncServerAgent asyncServerProxy;
FutureResult futureResult;

// No creation arguments are required.
public void init(Object[] creationArgs) {
AgentInfo[] serverInfos;

// Get proxy of local agency
regionProxy = getRegion();
// Look for the server agent in the
// agency domain service
SearchFilter filter = new
SearchFilter(
SearchFilter.NAME+"=AsyncServerAgent");

serverInfos =
regionProxy.listAgents(null, filter);

// Create proxies of the server agent
// (One for sync. and one for async. communication)
if (serverInfos != null) {
syncServerProxy = (IAsyncServerAgent)
ProxyGenerator.newInstance(
104

CHAPTER 9: THE COMMUNICATION SERVICE
IAsyncServerAgent.class,
serverInfos[0].getIdentifier().toString(),
ProxyGenerator.SYNC);

asyncServerProxy = (IAsyncServerAgent)
ProxyGenerator.newInstance(
IAsyncServerAgent.class,
serverInfos[0].getIdentifier().toString(),
ProxyGenerator.ASYNC);

}
}

public String getName() {
return "AsyncClientAgent";

}

public void action() {
live();

}

// This method requests user input via a graphical
// component.
// The user has to select one of the communication
// modes:
// - synchronous
// - asynchronous blocking
// - asynchronous polling
// - asynchronous notification-based
public String requestCommunicationMode() {
String comMode = null;
String options[] = {
"sync.",
"async. blocking",
"async. polling",
"async. notification"};

comMode = (String)
JOptionPane.showInputDialog(
null, "Communication mode:",
"AsyncClientAgent",
JOptionPane.QUESTION_MESSAGE, null, options,
options[0]);

return comMode;
}

// This method performs a synchronous invocation of
// the method ’requestConfirmation’,
// provided by the AsyncServerAgent.
public int synchronousInvocation() throws Throwable {
int result = -1;
105

PROGRAMMER’S GUIDE
log("Starting synchronous call");
// Invoke server method synchronously
// by using the sync. server proxy
result = syncServerProxy.requestConfirmation();
return result;

}

// This method performs an asynchronous blocking
// invocation of the method
// ’requestConfirmation’, provided by the
// AsyncServerAgent.
public int blockingResultHandling()

throws Throwable {
int result = -1;

log("Starting blocking call");
// Invoke server method asynchronously
// by using the async. server proxy
asyncServerProxy.requestConfirmation();
// Get futureResult object from the proxy
futureResult = ((IFutureResult)
asyncServerProxy).getFutureResult();

// Perform some task until the result is required.
for (int i = 0; i < 20; i++)
log("I’m doing something serious!");

log("Now I need the server’s result.");
// Set timeout of 10 seconds
futureResult.setTimeout(10000);
// getIntResult() will block until the server
// method returns or until the timeout is over.
log("Waiting for the result for 10 seconds");
result = futureResult.getIntResult();
log("Waiting time is over");
return result;

}

// This method performs an asynchronous polling
// invocation of the method
// ’requestConfirmation’, provided by the
// AsyncServerAgent.
public int pollingResultHandling() throws Throwable {
int result = -1;

log("Starting polling call");
// Invoke server method asynchronously
// by using the async. server proxy
asyncServerProxy.requestConfirmation();
106

CHAPTER 9: THE COMMUNICATION SERVICE
// Get futureResult object from the proxy
futureResult = ((IFutureResult)
asyncServerProxy).getFutureResult();

// Check periodically if the server method
// has returned
while (!futureResult.isAvailable())
log("I’m doing something serious!\n");

// Now a result is available
log("Result has arrived");
result = futureResult.getIntResult();
return result;

}

// This method performs an asynchronous notification-
// based invocation of the method
// ’requestConfirmation’, provided by the
// AsyncServerAgent.
public void notificationResultHandling()

throws Throwable {

log("Starting notifying call");
// Invoke server method asynchronously
// by using the async. server proxy
asyncServerProxy.requestConfirmation();
// Get futureResult object from the proxy
futureResult = ((IFutureResult)
asyncServerProxy).getFutureResult();

// The client agent adds itself as result
// listener to the futureResult object
futureResult.addResultListener(this);
// Note: The result will be retrieved by the
// method resultHasArrived
// of the client’s result listener.
log("Listening for notification");

}

// The live method requests the desired communication
// mode from the user and performs a remote method
// call on the AsyncServerAgent, using the selected
// mode.
public void live() {
String comMode;
int serverResult;

comMode = requestCommunicationMode();
while (comMode != null) {
serverResult = -1;
try {
107

PROGRAMMER’S GUIDE
if (comMode.equals("sync."))
// Synchronous method incocation
serverResult = synchronousInvocation();

else if (comMode.equals("async. blocking"))
// Asynchronous, blocking method invocation
serverResult = blockingResultHandling();

else if (comMode.equals("async. polling"))
// Asynchronous, polling method invocation
serverResult = pollingResultHandling();

else if (comMode.equals(
"async. notification"))

// Notif. based method invocation
notificationResultHandling();

log("Server result = " + serverResult);
}
catch (AsyncServerException e) {
log("User exception caught: ", e);

}
catch (AsyncTimeoutException e) {
log("Timeout! Server seems to be busy.");

}
catch (Throwable t) {
log("Communication exception caught: ", t);

}
comMode = requestCommunicationMode();

}
}

// This method is automatically called when a server
// method, previously invoked in a notification-based
// way, has returned. In this way, the
// client agent is automatically notified about the
// arrival of the method result.
public void resultHasArrived(ResultEvent e){
FutureResult fResult;
int serverResult = -1;
log("Listener notified.");
fResult = (FutureResult) e.getSource();
try {
serverResult = fResult.getIntResult();

}
catch (Throwable t) {
log("Exception caught: ", t);

}
if (serverResult != -1)
log("Notified server result = " + serverResult);

}

108

CHAPTER 9: THE COMMUNICATION SERVICE
}

9.6.3 Running the Scenario

Requirements:

• A running agency domain service. Note that this service has to be started
before the agencies, and the service’s address has to be specified when
starting the agencies in order to register them. Please refer to the User’s
Guide for information about how to start agencies and agency domain ser-
vices.

• Two running agencies
Since the agents in this example create an own GUI that may block the
agency GUI, it is recommended that you do not activate the agency GUI.
Instead, start the agencies just with their textual interface (command
option -tui). Please refer to the paragraphs titled „Running the Examples“
at the beginning of Chapter 2 in order to get a detailed explanation about
the possibly occurring GUI problems.

• If you are using a JDK 1.2 environment, you must have generated a proxy
class (named IAsyncServerAgentP) by invoking the Grasshopper stub
generator with the interface class IAsyncServerAgent as input parameter.
The file IAsyncServerAgentP.class should be stored either in a directory
belonging to the Java classpath or in the code base directory of the Async-
ClientAgent. In a JDK 1.3 environment, this class is not needed. Even if it
is available, it will not be used. Instead, the proxy is dynamically gener-
ated by the AsyncClientAgent at runtime.
109

PROGRAMMER’S GUIDE

te the

iron-
eation

I (2).
agents

te the
Running the Example:

Create the AsyncServerAgent inside one of the running agencies via the agen-
cy’s UI (1). (This agent has to be created first, since the AsyncClient-
Agent tries to contact the AsyncServerAgent via the communication
service.)

If you are using the textual user interface of the agency, please crea
agent by means of the following command:

cr a examples.asyncCom.AsyncServerAgent

If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

Create the AsyncClientAgent inside the other agency via the agency’s U
(You should not create both agents inside the same agency, since both
provide modal dialogs that may block each other.)

If you are using the textual user interface of the agency, please crea
agent by means of the following command:

Figure 11: Asynchronous Communication Scenario

Perform
task in
parallel

Agency 1

A
ge

nc
y

U
I

A
ge

nc
y

U
I

Create
AsyncClientAgent

UU User input

22UU Async
Client
Agent

Agency 2

A
ge

nc
y

U
I

A
ge

nc
y

U
I

Create
AsyncServerAgent

11UU

AsyncServerAgent

Select
communication
mode

44

UU

Select kind
of result

88

UU

Agency APIAgency API 33
Create
proxy

5a5a

5b5b

Invoke
server
method

66 get
Future
Result1010

9b9b

ProxyProxy

Future
Result
Future
Result

77

9a9aReturn result
asynchronously

Get
result
110

CHAPTER 9: THE COMMUNICATION SERVICE
cr a examples.asyncCom.AsyncClientAgent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

After creating the AsyncClientAgent, this agent creates a proxy of the Async-
ServerAgent (3) and asks you to select a communication mode that is to be
used for contacting the server (4). After pressing the OK button, the client in-
vokes the server method (5), and the call is forwarded by the proxy to the
AsyncServerAgent. The server in turn starts its GUI, requesting the user
to specify whether the method is to return regularly or whether an exception
is to be thrown. In parallel, the client agent acts in one of the following ways,
depending on the previously selected communication mode:

• If the server method has been invoked synchronously, the client agent is
blocked until the server method has returned (9a), i.e., until the user has
pressed one of the buttons of the server GUI (8). After this, the client’s
GUI appears again, and a new communication mode can be selected (4).
Note that in this case, the remaining steps (6, 9b, and 10) of the above fig-
ure are not performed.

• If the server method has been invoked asynchronously, the client agent
creates a FutureResult object via the server proxy (6) and is then free
to perform its own tasks in parallel to the server agent (7). After you have
pressed one of the buttons of the server agent’s GUI (8), the result of the
server method (i.e., a return value or an exception, depending on your pre-
viously made choice) is transferred to the server proxy (9a) which in turn
forwards the result to the FutureResult object (9b). Now the client
agent is able to retrieve the result via one of the get<...>Result()
methods, to be invoked on the FutureResult object (10).

Note that the steps (7) and (10) of the above figure depend on the selected
kind of asynchronous behavior:

• If the server method has been invoked asynchronously and blocking, the
client prints some outputs in order to show that the server method is per-
formed independently of the client’s thread (7). After this, the client
waits for the server’s result for 10 seconds (10). If the server method
does not return within this time frame, the client stops waiting, caused
by an exception thrown by the proxy.
Please check this behavior by selecting the asynchronous blocking call
at the client side. At the server side, press one of the GUI buttons within
the client’s time frame, and the next time wait for more than 10 seconds
before pressing the button.
111

PROGRAMMER’S GUIDE

d (7).

rver
ener

not
code

asyn-
ected
 time
nous
.

e an
is

, the

 be
ions
class
le

The
eri-

e pre-
ode of
• If the server method has been invoked asynchronously and polling, the
client enters a loop that ends when the server method has returne
After this, the client retrieves the result (10).

• If the server method has been invoked asynchronously notification-
based, the client’s GUI re-appears at once after invoking the se
method. When the server method has returned, the client’s list
method (i.e., the method ResultHasArrived(...)) is invoked.
(For the sake of simplicity, the notification-based behavior is
reflected in the above figure. Please have a look at the source
instead.)

9.6.4 Summary

• A Grasshopper proxy object is able to handle either synchronous or
chronous communication. The communication mode has to be sel
when the proxy is created, and it remains the same for the entire life
of the proxy. If a client wants to use synchronous as well as asynchro
communication on a single server, the client has to create two proxies

• A proxy maintains the result of an asynchronous method call insid
object of the class FutureResult. A client can get a reference to th
object in order to perform the asynchronous result handling.

• In order to retrieve the result of an asynchronously invoked method
client can use one of the get<...>Result() methods provided by the
FutureResult object which is associated with the method invocation.

• In order to catch exceptions, the get<...>Result() method has to
included in a try/catch block. The catch blocks must include all except
that may be thrown by the server method as well as the super
java.lang.Throwable. The latter one is meant to catch possib
communication exceptions/errors.

• A client can handle asynchronously arriving results in different ways:
client can block its own execution until the result has arrived, it can p
odically poll for the result, or it can order the FutureResult object to
be notified when the result has arrived.

9.7 Static vs. Dynamic Method Invocation

Concerning the communication scenarios that have been explained in th
vious sections, the client agents must have access to the proxy class c
112

CHAPTER 9: THE COMMUNICATION SERVICE
the corresponding server agent. A proxy provides all methods of the server
agent that are to be accessible via the communication service and that are
therefore included in the server interface.

Generic
proxy

In addition to this static communication where the concrete server methods are
available for the client agents, Grasshopper supports dynamic communication
where the clients invoke a generic method on a generic proxy class.

Dynamic communication is of particular importance if a client knows the
method signatures of a server agent, but does not have access to the server’s
proxy code.

Dynamic
method calls

In order to perform a dynamic method call on a server agent, a client invokes
the static method invoke(...) of the class de.ikv.grasshop-
per.communication.DynamicInvoker. This method requires the
following information about the server method:

• The identifier of the server agent (Java type: de.ikv.grasshop-
per.type.Identifier)

• The name of the server method that is to be invoked (Java type:
java.lang.String)

• The classes of all method parameters in the order of their appearance in the
concrete server method (Java type: java.lang.Class[])

• The object values of all method parameters in the order of their appearance
in the concrete server method (Java type: java.lang.Object[])

• The current location of the server agent, only needed if no agency domain
service is available. If no location is to be specified, this parameter has to
be set to null. (Java type: de.ikv.grasshopper.communica-
tion.GrasshopperAddress)

User-de-
fined classes

• If the server method defines a return type that is not a standard Java type,
the client has to specify the class loader that is responsible for retrieving
the class of the return type. (Java type: java.lang.ClassLoader)
As described in Section 9.1, user-defined classes have to be serializable if
they are to be used as parameters and/or return types of server methods. In
order to achieve this, the classes have to implement the interface
java.io.Serializable.

Asynchro-
nous dy-
namic call

• If the dynamic method call is to be performed asynchronously, a Futur-
eResult object has to be provided for maintaining the result of the
invoked method. Please refer to Section 9.5 for detailed information about
asynchronous communication. (Java type: de.ikv.grasshop-
per.communication.FutureResult)
113

PROGRAMMER’S GUIDE

nt
thod
dling
The return type of the invoke(...) method is java.lang.Object.
Thus, the client agent has to convert a retrieved return value to the concrete
type of the real server method.

Consider the following method of a server proxy:

public int method1(int a, Integer b);

The following lines of code represent the corresponding dynamic method call
performed at the client side:

Integer result = (Integer)DynamicInvoker.invoke (
serverId, "method1",
new Class[]
{java.lang.Integer.TYPE, java.lang.Integer.class},

new Object[]
{new Integer(123), new Integer(456)},

null);
Handling
primitive
types

Concerning this example, please note that the return type as well as the first
parameter of the server method are primitive data types, not derived from ja-
va.lang.Object. Since the dynamic invoke(...) method is only able
to return subtypes of Object, the client has to perform a cast to an Object
type. In the example, the return value as well as the first method parameter are
converted to Integer. In order to get the original simple type int, the client
can perform the following additional call:

int simpleResult = result.intValue();

Beside the return value, also the first parameter of the server method is of the
simple type int. Concerning the dynamic call, this simple type has to be con-
sidered when specifying the classes/types of the server method parameters. As
shown in the example, the primitive data type is specified as ja-
va.lang.Integer.TYPE, while the Object type is specified as ja-
va.lang.Integer.class. The parameter values are both handled as
java.lang.Integer.

9.8 Dynamic Communication Scenario

The example scenario for dynamic communication consists of four classes/in-
terfaces, covered by the package examples.dynamicCom:

• DynamicServerAgent (see Example 14 in Section 9.8.1): An age
that provides four methods to the communication service. Each me
has different parameter and return types which require a specific han
at the client side.
114

CHAPTER 9: THE COMMUNICATION SERVICE
• IDynamicServerAgent (see Example 15 in Section 9.8.1): The server
interface that contains the methods which have to be accessible for the cli-
ent agent. This interface is the basis for the generation of server proxies.

• TestDataPacket (see Example 16 in Section 9.8.1): A class that is
used as parameter as well as return type of one server method. Note that
for handling this class, the client has to specify a class loader when dynam-
ically invoking the server method.

• DynamicClientAgent (see Example 17 in Section 9.8.2): The client
agent that invokes the accessible methods of the server.

9.8.1 Example: DynamicServerAgent

The DynamicServerAgent implements the interface IDynamicServerAgent.
This interface contains four methods that are to be accessible via the commu-
nication service. Each method has different parameter and return types which
require a specific handling at the client side. Concerning the methods them-
selves, there is nothing more to say, since their internals are not very exciting.

Note that method3(...) tries to access the String array at an invalid in-
dex. Thus, an ArrayOutOfBound exception is thrown. This programming
error is intended in order to show that the client retrieves this exception.

The source code of the corresponding client agent is described in Section
9.8.2.

Example 14: DynamicServerAgent

package examples.dynamicCom;

import de.ikv.grasshopper.agent.*;
import de.ikv.grasshopper.communication.*;
import javax.swing.*;
import java.awt.*;

// This class realizes the server agent of the dynamic
// communication scenario
public class DynamicServerAgent extends MobileAgent

implements IDynamicServerAgent
{
public String getName() {
return "DynamicServerAgent";

}

// The following four methods are to be called by the
115

PROGRAMMER’S GUIDE
// DynamicClientAgent by using
// the dynamic communication mechanism provided by
// Grasshopper.

public Integer method1(int a, Integer b) {
log("method1(" + a + ", " + b + ") called.");
log(" returning 42.");
return new Integer(42);

}

public int method2() {
log("method2() called.");
log(" returning -42.");
return -42;

}

public void method3(String[] s) {
log("method3(");
for (int i = 0; i < s.length; i++)
log(" " + s[i]);

// The next line will cause an ArrayOutOfBound
// exception.
// Let’s see if the client will notice this.
log(" " + s[s.length] + ") called.");

}

public TestDataPacket method4(TestDataPacket s) {
log("method4(" + s + ") called.");
return s;

}

public void live() {
log("ready.");

}
}

Example 15: IDynamicServerAgent

package examples.dynamicCom;

public interface IDynamicServerAgent
{
public Integer method1(int a, Integer b);
public int method2();
public void method3(String[] s);
public TestDataPacket method4(TestDataPacket s);

}

116

CHAPTER 9: THE COMMUNICATION SERVICE
}

The DynamicServerAgent uses the class TestDataPacket as parameter as
well as return type of method4(...). Note that this class has to implement
the interface java.io.Serializable in order to be usable for the com-
munication service. The following listing defines this additional class. Please
do not wonder about its semantic meaning. Its only purpose is to show how to
handle user-defined classes in the context of the communication service.

Example 16: TestDataPacket

package examples.dynamicCom;

// This class is just meant to show how to use a ’self
// made’ object type as parameter and return type of
// dynamically invoked methods.
// (See method4(...) of the DynamicServerAgent.)
public class TestDataPacket implements

java.io.Serializable {

public TestDataPacket(){
}

public Integer i = new Integer(1);
public char c = ’c’;
public Float f = new Float((float) 5.0);
public Long l = new Long((long) 4.0);
public String s = "I’m the outer class";

public String toString(){
StringBuffer b =
new StringBuffer("Class TestDataPacket");

return b.toString();
}

class AnInnerClass{
String s = new String("I’m the inner class");
public AnInnerClass(){
}
public String toString(){
return new String("Class AnInnerClass\n" + s);

}
}

}

A description about how to run the example is given in Section 9.8.3.
117

PROGRAMMER’S GUIDE

e
en-

and
n/do-

lient
okup
 per-

the
ethod

en
hown
as

s

 both
9.8.2 Example: DynamicClientAgent

At the beginning of its live(...) method, the client agent requests the
IRegion interface of the local agency in order to look for the DynamicServ-
erAgent. The interface is retrieved via the method getRegion() which is
provided by the agent’s superclass Agent. In contrast to the agency interfac
IAgentSystem that enables a client to look for agents inside the local ag
cy, the interface IRegion provides access to the agency domain service
thus enables a client to look for agents (and agencies) in a whole regio
main. The client uses the IRegion proxy in order to look for an agent with
the name ’DynamicServerAgent’. If more than one agent is found, the c
agent just takes the first one from the retrieved list. The reason for this lo
is that the client agent needs the identifier of the server agent in order to
form dynamic method calls.

After retrieving the server identifier, the DynamicClientAgent invokes
methods of the server agent. The following paragraphs explain each m
call in detail.

method1(...) Dynamic call of method1(...):

The server method method1(...) is dynamically called with the fol-
lowing parameter values:

• serverId:
The identifier of the server agent that is to be contacted.

• „method1“ :
The name of the server method that is to be invoked.

• new Class[]
{java.lang.Integer.TYPE,
java.lang.Integer.class}:
This server method requires parameters of the simple type int and of
the Object type Integer. The simple type has to be considered wh
specifying the classes/types of the server method parameters. As s
in the source code, the primitive data type is specified
java.lang.Integer.TYPE, while the Object type is specified a
java.lang.Integer.class.

• new Object[]
{new Integer(para01), para02)}:
The parameter values that are to be transferred to the server are
handled as java.lang.Integer, since the invoke(...) meth-
ods expects subclasses of java.lang.Object.

• null:
118

CHAPTER 9: THE COMMUNICATION SERVICE
Via the last parameter of the invoke(...) method, the server’s loca-
tion can be specified. This parameter is set to null, since the example
assumes a running agency domain service, so that the DynamicInvoker
is able to locate the server agent by itself.

• null:
Since a standard Java class is used as return type, no class loader has to
be specified.

The return type of method1(...) is java.lang.Integer. Since
this is a subclass of java.lang.Object, the client agent can directly
convert the return value of the invoke(...) method from Object to
Integer in order to retrieve the result.

method2(...)Dynamic call of method2():

The server method method2(...) is dynamically called with the fol-
lowing parameter values:

• serverId:
The identifier of the server agent that is to be contacted.

• „method2“ :
The name of the server method that is to be invoked.

• new Class[0], new Object[0]:
The server method itself does not require any parameters, so that the
third and fourth parameter of the invoke(...) method are initialized
with an empty Class respectively Object array.

• null:
Via the fifth parameter of the invoke(...) method, the server’s
location can be specified. This parameter is set to null, since the
example assumes a running agency domain service, so that the Dynam-
icInvoker is able to locate the server agent by itself.

• null:
Since a standard Java class is used as return type, no class loader has to
be specified.

• futureResult2:
The dynamic invocation of method2() is performed asynchronously,
so that a FutureResult object is provided as last parameter. The
handling of the asynchronously arriving result is exactly the same as
described in Section 9.5.

Note that the invoke(...) method is called without directly specifying
a variable for retrieving the result. The reason is, as explained in Section
9.5, that the result of an asynchronously called method cannot be retrieved
119

PROGRAMMER’S GUIDE

meter

ethod,
er to

nam-

r has to

rame-
 for
 user-

sual
directly by the method call itself. Instead, the getResult() method or
one of the get<Type>Result() methods provided by the Future-
Result object have to be invoked. Concerning the example, the client
agent invokes the getIntResult() method, since the expected return
value is of the simple Java type int.

method3(...) Dynamic call of method3(...):

The server method method3(...) is dynamically called with the fol-
lowing parameter values:

• serverId:
The identifier of the server agent that is to be contacted.

• „method3“ :
The name of the server method that is to be invoked.

• classArray:
The required parameter of the server method is an array of String.
Please have a look at the source code in order to see how this para
has been constructed.

• argumentArray:
This parameter represents the actual parameter of the server m
i.e., the String array. Please have a look at the source code in ord
see how this parameter has been constructed.

• null:
Via the fifth parameter of the invoke(...) method, the server’s
location can be specified. This parameter is set to null, since the
example assumes a running agency domain service, so that the Dy
icInvoker is able to locate the server agent by itself.

• null:
Since a standard Java class is used as return type, no class loade
be specified.

method3(...)
oneway

Dynamic oneway call of method3(...):

Dynamic method invocations can be performed oneway. That means, the cli-
ent ignores possibly arriving return values and exceptions. Thus, the pa
ter FutureResult is not required. Besides, there is generally no need
specifying a class loader, even if the return value is realized in terms of a
defined class, as in method4(...) of the current example.

For enabling oneway calls, the DynamicInvoker provides the method in-
vokeOneway(...). The parameters are the same as known from the u
invoke(...) method.
120

CHAPTER 9: THE COMMUNICATION SERVICE
The server method method3(...) is dynamically called with the fol-
lowing parameter values:

• serverId:
The identifier of the server agent that is to be contacted.

• „method3“ :
The name of the server method that is to be invoked.

• classArray:
The required parameter of the server method is an array of String.
Please have a look at the source code in order to see how this parameter
has been constructed.

• argumentArray:
This parameter represents the actual parameter of the server method,
i.e., the String array. Please have a look at the source code in order to
see how this parameter has been constructed.

• null:
Via the fifth parameter of the invoke(...) method, the server’s
location can be specified. This parameter is set to null, since the
example assumes a running agency domain service, so that the Dynam-
icInvoker is able to locate the server agent by itself.

method4(...)Dynamic call of method4(...):

The server method method4(...) is dynamically called with the fol-
lowing parameter values:

• serverId:
The identifier of the server agent that is to be contacted.

• „method4“ :
The name of the server method that is to be invoked.

• new Class[]{TestDataPacket.class}:
This method requires a user-defined Java type as parameter. However,
the provision of the corresponding class is handled exactly as a standard
Java class.

• new Object[]{tdp}:
Also the provision of the parameter value corresponds to the handling
of standard Java classes.

• null:
Via the fifth parameter of the invoke(...) method, the server’s
location can be specified. This parameter is set to null, since the
example assumes a running agency domain service, so that the Dynam-
121

PROGRAMMER’S GUIDE

sed as
o be
icInvoker is able to locate the server agent by itself.

• this.getClass().getClassLoader():
Since a self-defined Java class (i.e., non-standard Java type) is u
return type of a dynamically invoked method, a class loader has t
specified which is responsible for retrieving the class.

Example 17: DynamicClientAgent

package examples.dynamicCom;

import de.ikv.grasshopper.agent.*;
import de.ikv.grasshopper.agency.*;
import de.ikv.grasshopper.type.*;
import de.ikv.grasshopper.communication.*;
import de.ikv.grasshopper.util.*;
import javax.swing.*;
import java.awt.*;

// This class realizes the client agent of the dynamic
// communication scenario
public class DynamicClientAgent

extends MobileAgent
{
Identifier serverId;

public String getName() {
return "DynamicClientAgent";

}

public void action() {
live();

}

// Inside the live() method, the agent sequentially
// calls the four methods provided
// by the DynamicServerAgent in a dynamic way.
public void live() {
IRegion regionProxy;
AgentInfo serverInfos[];

// Get proxy of local agency
regionProxy = getRegion();
// Look for the server agent in the
// agency domain service
SearchFilter filter = new
SearchFilter(
SearchFilter.NAME+"=DynamicServerAgent");
122

CHAPTER 9: THE COMMUNICATION SERVICE
serverInfos = regionProxy.listAgents(
null, filter);

serverId = serverInfos[0].getIdentifier();
log("Server located: " + serverId);

// method1:
int para01 = 123;
Integer para02 = new Integer(456);
log("Invoking method1(123, 456) synchronously.");
try {
// Invoke method1 synchronously
Integer result1 =
(Integer)DynamicInvoker.invoke(
serverId, "method1",
new Class[]{java.lang.Integer.TYPE,
java.lang.Integer.class},
new Object[]{new Integer(para01), para02},
null, null);

log("Result of method1 = " + result1);
}
catch (Throwable e) {
log("Exception caught: ", e);

}

// method2:
FutureResult futureResult2 = new FutureResult();
log("Invoking method2 asynchronously polling.");
try {
// Invoke method2 asynchronously polling
DynamicInvoker.invoke(
serverId, "method2",
new Class[0], new Object[0],
null, null, futureResult2);

}
catch (java.lang.reflect.
InvocationTargetException e) {
log("Exception caught: ", e);

}
log("I’m doing something serious!");
while (!futureResult2.isAvailable())
System.out.print(".");

System.out.println();
try {
// Get asynchronous result.
int result2 = futureResult2.getIntResult();
log("Result of method2 = " + result2);

}
catch (Throwable t) {
123

PROGRAMMER’S GUIDE
log("Exception caught: ", t);
}

// method3:
log("Invoking method3(\"I\", \"am\", \"the\",
\"client\").");

String para03[] = {"I", "am", "the", "", "client"};

Class classArray[] = new Class[1];
Object argumentArray[] = new Object[1];
argumentArray[0] = para03;
classArray[0] = para03.getClass();

try {
DynamicInvoker.invoke(
serverId, "method3", classArray,
argumentArray, null, null);

}
catch (java.lang.reflect.
InvocationTargetException e) {
log("Exception caught: ",
e.getTargetException());

}
catch(Throwable e){
log("Exception caught: ", e);

}

// method3 oneway:
log("Invoking method3(\"I\", \"am\", \"the\",
\"Oneway\" \"client\").");

para03[3] = "oneway";
try {
DynamicInvoker.invokeOneWay(
serverId, "method3", classArray,
argumentArray, null);

log("Exceptions do not harm me...");
}
catch(Throwable e){
log("Exception caught: ", e);

}

// method4:
log("Invoking method4()");
TestDataPacket tdp = new TestDataPacket();
try {
tdp = (TestDataPacket)
DynamicInvoker.invoke(
serverId, "method4",
124

CHAPTER 9: THE COMMUNICATION SERVICE
new Class[]{TestDataPacket.class},
new Object[]{tdp}, null,
this.getClass().getClassLoader());

log("What you send is what you get..." + tdp);
}
catch(Throwable e){
log("Exception caught: ", e);

}
}

}

9.8.3 Running the Scenario

Requirements:

• A running agency domain service. Note that this service has to be started
before the agencies, and the service’s address has to be specified when
starting the agencies in order to register them. Please refer to the User’s
Guide for more information about how to start agencies and agency
domain services.

• At least one running agency
125

PROGRAMMER’S GUIDE

te the

iron-
eation

cy

te the
Running the Example:

Create the DynamicServerAgent inside a running agency via the agen-
cy’s UI (1). (This agent has to be created first, since the DynamicClient-
Agent tries to contact the DynamicServerAgent via the communication
service.)

If you are using the textual user interface of the agency, please crea
agent by means of the following command:

cr a examples.dynamicCom.DynamicServerAgent

If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

Create the DynamicClientAgent either in the same or a different agen
(2).

If you are using the textual user interface of the agency, please crea
agent by means of the following command:

cr a examples.dynamicCom.DynamicClientAgent

Figure 12: Dynamic Communication Scenario

Agency 1

A
ge

nc
y

U
I

A
ge

nc
y

U
I

Create
DynamicClientAgent

UU User input

22UU DynamicClientAgent

Agency 2

A
ge

nc
y

U
I

A
ge

nc
y

U
I

Create
DynamicServerAgent

11UU

DynamicServerAgent

3a3a

3b3b

Invoke
server
methods

Generic
proxy

Generic
proxy
126

CHAPTER 9: THE COMMUNICATION SERVICE
If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

After creating both agents in the order mentioned above, the client agent in-
vokes the methods on the server agent by using a generic proxy (3). Both
agents run without the need for any user interaction. Thus, there is no need for
any further explanations. Just have a look at the agents’ output and compare it
with the agents’ source code.

Note that the server throws an ArrayOutOfBound exception inside
method3(...). This is intended in order to show that the client receives
this exception.

9.8.4 Summary

• In contrast to static communication where the concrete server methods are
available for the client agents via a specific server proxy, Grasshopper sup-
ports dynamic communication where the clients invoke a generic method
on a generic proxy class.

• Dynamic communication is of particular importance if a client knows the
method signatures of a server, but does not have access to the server’s
proxy code.

• In order to perform a dynamic method call on a server, a client invokes the
static method invoke(...) of the generic proxy class
de.ikv.grasshopper.communication.DynamicInvoker.
The following information of the server has to be provided: the server
identifier, the name of the server method, and the classes and values of the
method parameters. In specific cases, additional information is needed: the
server location, a class loader, and a reference of a FutureResult
object.

• The result of a dynamically invoked method is provided as an instance of
the class java.lang.Object. The client has to convert this class to the
actual result type of the invoked method.

9.9 Unicast vs. Multicast Communication

In specific scenarios, a client may want to invoke the same method successive-
ly on a set of server agents. Considering the communication mechanisms that
have been explained in the previous sections, the client agent would require a
127

PROGRAMMER’S GUIDE

m-

up

lti-
9.8),
 of all
t it is
roup
e

roup
ided.
nly

rom
to be
proxy of each server agent that is to be contacted, and the method calls would
have to be performed sequentially on each proxy.

Group
proxy

In order to simplify such a scenario for the client agent, Grasshopper supports
multicast communication. Instead of creating a set of server proxies and se-
quentially invoking the same method on each single proxy, a client agent may
create a group proxy and register a set of server agents at this proxy. When the
client invokes a method on the group proxy, the proxy forwards the call to all
registered agents. Internally, the group proxy contacts all registered server
agents sequentially. Thus, only little advantage concerning the performance of
the method invocations is achieved by using multicast communication. The
main purpose of this mechanism is to facilitate the implementation at the client
side.

Group inter-
faces

A Grasshopper group proxy is a Java object that implements two interfaces:
the interface de.ikv.grasshopper.communication.IGroup and
the server interface of those server agents that are to be added to the group,
such as IMulticastServerAgent, concerning the example introduced
in Section 9.10.

Interface
IGroup

The interface IGroup is implemented by every group object and provides the
following methods for group establishment and maintenance:

• getMembers(): This method returns the identifiers of all group me
bers in form of String objects.

• getResult(): This method returns a MulticastResult object. The
purpose of this object is similar to the purpose of a FutureResult
object in asynchronous unicast scenarios (see Section 9.5): The Multi-
castResult object retrieves asynchronously arriving results of gro
members. Detailed information is provided below.

• invoke(...): This method enables a client agent to perform a mu
cast call dynamically. Similar to dynamic unicast calls (see Section
the name of the server method as well as the classes and values
method parameters have to be specified. However, please note tha
also possible to call the concrete server method directly, since the g
proxy implements, besides the IGroup interface, also the server interfac
of the group members.

• add(...): Via this method, a server agent can be added to a g
proxy. For this purpose, the server agent’s identifier has to be prov
Optionally, the server agent’s location can be specified which is o
required no agency domain service is available.

• remove(...): This method enables the removal of a server agent f
the group proxy. For this purpose, the server agent’s identifier has
128

CHAPTER 9: THE COMMUNICATION SERVICE
provided.

• setType(...): This method sets the termination mode of the subse-
quent multicast calls to be performed on the group proxy. Grasshopper
supports three types: AND termination, OR termination, and INCRE-
MENTAL termination. Detailed information is provided below.

Creating a
group proxy

A group proxy is created by calling the method createGroup(...) on the
class de.ikv.grasshopper.communication.ProxyGenerator.
Note that the group proxy should be of the generic Java class Object. The
reason is that, as mentioned above, a group proxy implements two interfaces.
By creating a group proxy as instance of the class Object, the proxy can be
casted to both interfaces, depending on the method that is to be performed.

When creating a group proxy, the class of the server interface of the intended
group members has to be provided as parameter.

Object serverGroup = ProxyGenerator.createGroup(
IMulticastServerAgent.class);

Via the interface IGroup, new members can be added to the group proxy:

((IGroup)serverGroup).join(
serverAgentIdentifier);

Via the server interface, such as IMulticastServerAgent concerning
the example introduced in Section 9.10, the methods of the group members
can directly be invoked on the group proxy:

((IMulticastServerAgent)serverGroup).
requestConfirmation("Client message");

Termina-
tion mode...

The termination mode

Since a multicast call is usually sent to more than one server agent, the result
of such a call is represented by a set of return values and/or exceptions. Due
to the fact that a group proxy sequentially contacts all server agents, the mul-
ticast results do usually not arrive at the client side exactly at the same time.
In order to fulfill the individual needs of the client concerning the retrieval of
multicast results, the group proxy provides the following three mechanisms:

...AND1. AND Termination

The server method returns when all server results have arrived at the client
side. Up to this point in time, the client agent is blocked.

...OR2. OR Termination

The server method returns when the first server result has arrived at the
client side. Up to this point in time, the client agent is blocked.
129

PROGRAMMER’S GUIDE

ted by

f

ver
ntifier.

od.

the

s
e
oup,
t to
ock-

t. Via

er
e re-
 clar-
...INCRE-
MENTAL

3. INCREMENTAL Termination

The server method returns at once. The client agent can request the results
when they are needed.

The kind of termination can be set via the method setType(...) of the in-
terface IGroup.

Result han-
dling

The group proxy generally performs a multicast call asynchronously. Thus, the
result handling is similar to asynchronous unicast invocations, as described in
Section 9.5.1. After invoking a server method on the group proxy, the client
agent has to call the method getResult() on the group proxy’s interface
IGroup. This method returns an instance of the class de.ikv.grass-
hopper.communication.MulticastResult which offers the fol-
lowing methods:

• getFirst(): This method returns the FutureResult object of the
server agent whose result has arrived first.

• getFutureResult(...): This method returns the FutureResult
object of a specific server agent. The demanded server agent is selec
means of its identifier.

• getNumberOfReturned(...): This method returns the number o
server agents that have already returned a result.

• getResult(...): This method returns the result of a specific ser
agent. The demanded server agent is selected by means of its ide
Since the return type of this method is java.lang.Object, the client
agent has to cast this type to the actual return type of the server meth

• isAvailable(...): This method checks whether at least one of
contacted server agents has already returned a result.

Note that the handling of the FutureResult object is exactly the same a
described in Section 9.5.1. By enabling the client agent to get a separatFu-
tureResult object for each server agent of the contacted multicast gr
a high degree of flexibility is provided, for instance by enabling the clien
set different timeouts or to apply different result handling mechanisms (bl
ing, polling, notification) to different server agents.

Note that it is not necessary for a client agent to retrieve a FutureResult
object of a specific server agent before retrieving the actual server resul
the method getResult() of the class de.ikv.grasshopper.com-
munication.MulticastResult, a client agent can retrieve the serv
result directly. However, in this case the client agent should verify that th
sult is already available. Please have a look at the following example for
ification.
130

CHAPTER 9: THE COMMUNICATION SERVICE
9.10 Multicast Communication Scenario

The example scenario for multicast communication consists of three classes/
interfaces, covered by the package examples.multicastCom:

• MulticastServerAgent (see Example 18 in Section 9.10.1): An
agent that provides one method to the communication service.

• IMulticastServerAgent (see Example 19 in Section 9.10.1): The
server interface that contains the method which has to be accessible for the
client agent. This interface is the basis for the generation of server proxies.

• MulticastClientAgent (see in Example 20 Section 9.10.2): The cli-
ent agent that invokes the accessible method of the server.

9.10.1 Example: MulticastServerAgent

The MulticastServerAgent implements the interface IMulticastServerAgent.
This interface contains one method that is to be accessible via the communi-
cation service. This method creates a modal dialog, requesting the user to
press a button that terminates the method. Finally, the method returns the iden-
tifier of the server agent.

The source code of the corresponding client agent is described in Section
9.10.2.

Example 18: MulticastServerAgent

package examples.multicastCom;

import de.ikv.grasshopper.agent.*;
import de.ikv.grasshopper.communication.*;
import javax.swing.*;
import java.awt.*;

// This class realizes the server agent of the multicast
// communication scenario.
public class MulticastServerAgent extends MobileAgent

implements IMulticastServerAgent
{
int result;

// No creation arguments needed.
public void init(Object[] creationArgs) {
result = 1;

}

131

PROGRAMMER’S GUIDE

nce
rder to
, the
public String getName() {
return "MulticastServerAgent";

}

// This method requests user input via a graphical
// component.
// The user just has to confirm the dialog by clicking
// the OK button.
public String requestConfirmation(

String clientMessage) {

log("Client request arrived. Returning my ID: " +
getInfo().getIdentifier().toString());

JOptionPane.showMessageDialog(
null, clientMessage,
"MulticastServerAgent",
JOptionPane.PLAIN_MESSAGE);

return getInfo().getIdentifier().toString();
}

public void live() {
log("ready.");

}
}

Example 19: IMulticastServerAgent

package examples.multicastCom;

public interface IMulticastServerAgent
{
public String requestConfirmation(
String clientMessage);

}

A description about how to run the example is given in Section 9.10.3.

9.10.2 Example: MulticastClientAgent

init(...) Inside its init(...) method, the MulticastClientAgent contacts the agency
domain service via the IRegion interface of the local agency and requests a
list of all agents with the name ’MulticastServerAgent’. This is required si
the client agent needs the identifiers of the demanded server agents in o
add them to a group proxy. After retrieving a list of available server agents
132

CHAPTER 9: THE COMMUNICATION SERVICE
client creates a group proxy, i.e. a proxy object for multicast communication,
and adds all retrieved server agents to this proxy. This is done by providing the
server agents’ identifiers to the group proxy via the join(...) method.

requestTer-
mination-
Mode()

The method requestTerminationMode() is called from inside the
agent’s live() method and activates the client’s GUI that enables the user
to select between the following termination modes:

• AND Termination
A multicast call returns after all server results have arrived. Up to this
point in time, the client agent is blocked.

• OR Termination
A multicast call returns after the first server results has arrived. Up to this
point in time, the client agent is blocked.

• INCREMENTAL Termination
A multicast call returns at once. The client can request the results when
they are needed.

live()Inside its live() method, the client requests the selection of a termination
mode via its GUI and performs a multicast call by applying this termination
mode to the method invocation. After this, the client prints out all retrieved re-
sults.

Example 20: MulticastClientAgent

package examples.multicastCom;

import de.ikv.grasshopper.agent.*;
import de.ikv.grasshopper.agency.*;
import de.ikv.grasshopper.type.*;
import de.ikv.grasshopper.communication.*;
import de.ikv.grasshopper.util.*;
import javax.swing.*;
import java.awt.*;

// This class realizes the client agent of the multicast
// communication scenario.
public class MulticastClientAgent extends MobileAgent
{
// Proxy of local agency = transient
// (i.e., not part of the data state),
// since it is not serializable.
// A non-transient agency proxy would not
// allow the agent to migrate.
transient IRegion regionProxy;
133

PROGRAMMER’S GUIDE
// Data state of the agent, since not transient
Object serverGroup;
int numberOfServers;
AgentInfo[] serverInfos;

// No creation arguments needed.
public void init(Object[] creationArgs) {

// Get proxy of local agency
regionProxy = getRegion();
// Look for the server agent in the
// agency domain service
SearchFilter filter =
new SearchFilter(
SearchFilter.NAME+"=MulticastServerAgent");

serverInfos = regionProxy.listAgents(
null, filter);

// Create multicast group for server agents that
// implement the interface IMulticastServerAgent
serverGroup = ProxyGenerator.createGroup(
IMulticastServerAgent.class);

numberOfServers = serverInfos.length;
for (int i = 0; i < numberOfServers; i++)
// Add all found MulticastServerAgents to the
// group
((IGroup)serverGroup).join(
serverInfos[i].getIdentifier());

}

public String getName() {
return "AsyncClientAgent";
}

// This method requests user input via graphical
// component.
// The user has to select the termination mode of the
// following multicast invocation.
public String requestTerminationMode() {
String termMode = null;
String options[] = {
"AND Termination",
"OR Termination",
"Incremental Termination"};

termMode = (String) JOptionPane.showInputDialog(
null, "Termination mode:",
"MulticastClientAgent",
JOptionPane.QUESTION_MESSAGE, null, options,
options[0]);
134

CHAPTER 9: THE COMMUNICATION SERVICE
return termMode;
}

public void live() {
String termMode;
String serverId;
String serverResult;
MulticastResult mcResult = null;

termMode = requestTerminationMode();
while (termMode != null) {
serverResult = null;
if (termMode.equals("AND Termination")) {
// Method incocation with AND termination
log("I’m waiting for ALL results...");
// Perform multicast call
((IGroup)serverGroup).setType(
MulticastResult.AND);

((IMulticastServerAgent)serverGroup).
requestConfirmation("Client message: AND");

mcResult = ((IGroup)serverGroup).getResult();
// All(!) results have arrived, or timeouts
// have exceeded.

}
else if (termMode.equals("OR Termination")) {
// Method incocation with OR termination
log("I’m waiting for ONE results...");
// Perform multicast call
((IGroup)serverGroup).setType(
MulticastResult.OR);

((IMulticastServerAgent)serverGroup).
requestConfirmation("Client message: OR");

mcResult = ((IGroup)serverGroup).getResult();
// At least one results has arrived, or
// timeouts have exceeded.

}
else if (termMode.equals(

"Incremental Termination")) {
// Method incocation with INCREMENTAL
// termination
log("I’m not waiting at all!");
// Perform multicast call
((IGroup)serverGroup).setType(
MulticastResult.INCREMENTAL);

((IMulticastServerAgent)serverGroup).
requestConfirmation(
"Client message: INCREMENTAL");

mcResult =
135

PROGRAMMER’S GUIDE

arted
 when
ser’s

ency

es“
((IGroup)serverGroup).getResult();
// Method has returned without waiting for
// any result.
while (mcResult.getNumberOfReturned() == 0)
log("I’m doing something serious!\n");

}
// Evaluating the results
log(mcResult.getNumberOfReturned() +
" result(s) available:");

for (int i = 0; i < numberOfServers; i++) {
serverId =
serverInfos[i].getIdentifier().toString();

try {
if (mcResult.isAvailable(serverId)) {
serverResult =
(String)mcResult.getResult(serverId);

log("Result from server ’" + serverId +
"’ = " + serverResult);

}
}
catch (Throwable t) {
log("Exception caught from server ’" +
serverId + "’: ", t);

}
}
termMode = requestTerminationMode();

}
}

}

9.10.3 Running the Scenario

Requirements:

• A running agency domain service. Note that this service has to be st
before the agencies, and the service’s address has to be specified
starting the agencies in order to register them. Please refer to the U
Guide for more information about how to start agencies and ag
domain services.

• Several running agencies
Since the agents in this scenario create own GUIs that may block the
agency GUI, it is recommended that you do not activate the agency GUI.
Instead, start the agencies just with their textual interface (command
option -tui). Please refer to the paragraphs titled „Running the Exampl
136

CHAPTER 9: THE COMMUNICATION SERVICE
at the beginning of Chapter 2 in order to get a detailed explanation about
the possibly occurring GUI problems.

• If you are using a JDK 1.2 environment, you must have generated a proxy
class (named IMulticastServerAgentP) by invoking the Grasshop-
per stub generator with the interface class IMulticastServerAgent
as input parameter. The file IMulticastServerAgentP.class
should be stored either in a directory belonging to the Java classpath or in
the code base directory of the MulticastClientAgent. In a JDK 1.3 environ-
ment, this class is not needed. Even if it is available, it will not be used.
Instead, the proxy is dynamically generated by the MulticastClientAgent
at runtime.

Running the Example:

Create a set of MulticastServerAgents in the running agencies via the agen-
cies’ UI (1). (All server agents have to be created before the client agent.)

If you are using the textual user interface of the agency, please create the
agents by means of the following command:

cr a examples.multicastCom.MulticastServerAgent

If the agents’ classes are not included in the Java CLASSPATH environ-

Figure 13: Multicast Communication Scenario

Agency 1

A
ge

nc
y

U
I

A
ge

nc
y

U
I

Create
MulticastClientAgent

UU User input

22UU

Agency 2

A
ge

nc
y

U
I

A
ge

nc
y

U
I

Create
Multicast
Server
Agent

1a1aUU MulticastServerAgent

7a7a

Invoke
server

methods

Agency 3

A
ge

nc
y

U
I

A
ge

nc
y

U
I 1b1b UUMulticastServerAgent

Create
Multicast
Server
Agent

Agency
domain
service

33

Group
proxy
Group
proxy

55

66

7b7b 7b7b

8a8a 8b8b

Get list of
all registered
MulticastServerAgents

Agency
API

Agency
API

Multicast
Client
Agent

44 Create
group proxy

Register
group
members

Select
mode

Confirm Confirm
137

PROGRAMMER’S GUIDE

 you
ning,
rt the

te the

iron-
eation

egis-
rs all
 mode
ur in-
h for-
n the
ent:

ave
Is of

 has

us
ked
e for

lt has

reat-

 the
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

Create one MulticastClientAgent in one of the running agencies (2). (If
start the client agent in an agency in which a server agent is already run
the agents’ GUIs may block each other. Thus, it is recommended to sta
client agent in a separate agency.

If you are using the textual user interface of the agency, please crea
agent by means of the following command:

cr a examples.multicastCom.MulticastClientAgent

If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

The client agent contacts the agency domain service in order to find all r
tered MigratingServerAgents (3), creates a group proxy (4), and registe
found server agents as members of the group (5). Select the termination
in the client’s GUI, press OK (6), and see what happens. Triggered by yo
teraction, the client agent invokes a method on the group proxy (7a) whic
wards the invocation to all members of the group (7b, 7c). Depending o
termination mode, a different number of results will be retrieved by the cli

• AND termination causes the client agent to block until all servers h
returned a result, i.e., until you have pressed the OK button on the GU
all server agents ((8a) and (8b)).

• OR termination causes the client agent to block until the first result
arrived, i.e., until you have pressed the OK button on the GUI of one
server agent ((8a) or (8b)).

• INCREMENTAL termination allows the client to do something serio
while the server agents are performing their asynchronously invo
method. Concerning the example, the client agent uses its waiting tim
making some outputs on the agency’s text console until the first resu
arrived, i.e., until you have pressed the OK button on the GUI of one
server agent ((8a) or (8b)).

After handling the asynchronous result(s), the client agent continues by c
ing its own GUI again, and the scenario proceeds with step (6).

9.10.4 Summary

• Instead of creating a set of server proxies and sequentially invoking
same method on each single proxy, a client agent may create a group proxy
138

CHAPTER 9: THE COMMUNICATION SERVICE
and register a set of server agents at this proxy. When the client invokes a
method on the group proxy, the proxy forwards the call to all registered
agents.

• A Grasshopper group proxy is a Java object that implements two inter-
faces: the interface de.ikv.grasshopper.communica-
tion.IGroup and the server interface of those server agents that are to
be added to the group.

• The group proxy generally performs a multicast call asynchronously. The
method getResult() on the group proxy’s interface IGroup returns
an instance of the class de.ikv.grasshopper.communica-
tion.MulticastResult. This class offers several methods for han-
dling the asynchronously arriving results.

• For retrieving the multicast results, a client can select one of the following
modes: AND termination (blocks the client until all server results have
arrived or a timeout period has expired), OR termination (blocks the client
until the first server result has arrived or a timeout period has expired), or
INCREMENTAL termination (does not block the client at all; the client
can request the server result(s) on demand).

9.11 Accessing Agencies

A Grasshopper agency offers two programming interfaces to all locally resid-
ing agents as well as to remote entities:

• IAgentSystem: This interface contains methods that are directly asso-
ciated with the offering agency itself. Among others, this interface enables
the monitoring and control of local places as well as locally running
agents.

• IRegion: This interface provides access to an agency domain service,
i.e., a region registry or an LDAP server. Please refer to Section 9.12 for
detailed information about this interface.

9.11.1 Agency Related Information

Every Grasshopper agency carries information about itself that may be access-
ed by other entities. This information is maintained by an instance of the class
de.ikv.grasshopper.type.AgentSystemInfo. (similar to
de.ikv.grasshopper.type.AgentInfo which covers agent-related
139

PROGRAMMER’S GUIDE

e

ncy
ted
ture

ype:

s of
rass-
ation

he
 more

en set

pper

are
information, described in Chapter 5).

When a new agency is created, the agency generates a new AgentSystem-
Info instance and uses creation arguments as well as environmental proper-
ties for its initialization. The AgentSystemInfo object is accessible for
other entities via the getInfo() method of the agency’s interfac
IAgentSystem.

AgentSys-
temInfo

The AgentSystemInfo class covers the following components:

• Identifier: The purpose of this component is to uniquely identify an age
in the distributed environment. The identifier is automatically genera
by the agency during its creation. Detailed information about the struc
of a Grasshopper identifier is provided in Section 5.1. (Java t
de.ikv.grasshopper.type.Identifier)

• Location: This component maintains the location of the agency in term
a Grasshopper address. Detailed information about the structure of G
hopper addresses is provided in Section 5.4. A concrete communic
receiver can be determined by invoking the method lookupCommuni-
cationServer(...) on the agency domain service at which t
demanded agency is registered. Please refer to Section 9.12.1 for
information about this method. (Java type: de.ikv.grassgop-
per.communication.GrasshopperAddress)

• Name: This component maintains the name of the agency that has be
by the user who created the agency. (Java type: java.lang.String)

• Type: This component maintains the type of the agency. A Grassho
agency is always of the type GrasshopperAgentSystemType. Other
types may occur in the context of the MASIF standard. All of them

Figure 14: AgencyInfo Class Diagram

A gen tS y s tem In fo

ge tLoc a ti on ()
ge tN am e()
ge t Ident ifie r()
ge tTy pe ()
toS t ring ()

Iden t ifi e r

toB y teAr ra y ()
equa ls ()
toS tr ing ()
140

CHAPTER 9: THE COMMUNICATION SERVICE
defined as String constants in the class de.ikv.grasshop-
per.util.GrasshopperConstants. (Java type:
java.lang.String)

Example 21 in Section 9.11.6 describes an agent that prints the contents of an
agency’s AgentSystemInfo object.

9.11.2 Interface IAgentSystem

The interface IAgentSystem represents the main access point to an agency
for software entities. Its methods are meant to monitor and control locally run-
ning agents, local places, or the agency itself. The interface is accessible by
locally running agents (see Section 9.11.3) as well as by remote entities (see
Section 9.11.4).

Figure 15: IAgentSystem Class Diagram

IAgentSystem

listMobileAgents()
listStationaryAgents()
listAgents()
listPlaces()
getAgentState()
getPlaceState()
createAgent()
moveAgent()
copyAgent()
removeAgent()
suspendAgent()
resumeAgent()
invokeAgentAction()
createPlace()
removePlace()
suspendPlace()
resumePlace()
hasPersistence()
flushAgent()
flushAgentAfter()
saveAgent()
saveAgentEvery()
reloadAgent()
ping()
getInfo()

<<Interface>>

ISystemListenerProvider

addSystemListener()
removeSystemListener()

<<Interface>>
141

PROGRAMMER’S GUIDE

lly
or at
ing

cal

is
vice.

g
with
etailed

pe-

bout

g
o Sec-

po-

-
lease
pper

ilters.
hing

to
 the

ity
fer to
Agent-relat-
ed methods

The interface IAgentSystem provides the following agent-related meth-
ods:

• copyAgent(...): This method creates a copy of a specific, loca
residing agent. The copy may be created inside the local agency
another location. (Note that the agent may prohibit its copying by throw
a VetoException from inside the beforeCopy() method, as
described in Chapter 8.)

• createAgent(...): This method creates a new agent in the lo
agency.

• flushAgent(...): This method flushes a locally residing agent. (Th
functionality is associated with the Grasshopper persistence ser
Please refer to Chapter 10 for detailed information.)

• flushAgentAfter(...): This method flushes a locally residin
agent after a certain period of time. (This functionality is associated
the Grasshopper persistence service. Please refer to Chapter 10 for d
information.)

• getAgentState(...): This method returns the current state of a s
cific agent.

• invokeAgentAction(...): This method invokes the action()
method of a specific agent. Please refer to Chapter 7 for information a
an agent’s action() method.

• listAgents(...): This method returns a list of locally residin
agents. The search can be restricted by setting filters. Please refer t
tion 9.13 for detailed information about searching Grasshopper com
nents.

• listMobileAgents(...): This method returns a list of locally resid
ing mobile agents. The search can be restricted by setting filters. P
refer to Section 9.13 for detailed information about searching Grassho
components.

• listStationaryAgents(...): This method returns a list of locally
residing stationary agents. The search can be restricted by setting f
Please refer to Section 9.13 for detailed information about searc
Grasshopper components.

• moveAgent(...): This method moves a locally residing agent
another location. (Note that the agent may prohibit its migration via
beforeMove() method, as described in Section 6.2.)

• reloadAgent(...): This method reloads an agent. (This functional
is associated with the Grasshopper persistence service. Please re
142

CHAPTER 9: THE COMMUNICATION SERVICE
Chapter 10 for detailed information.)

• removeAgent(...): This method removes an agent from the local
agency. (Note that the agent may prohibit its removal via its beforeRe-
move() method.)

• resumeAgent(...): This method resumes a suspended agent. (Infor-
mation about the different states of an agent is provided in Section 5.5.)

• saveAgent(...): This method saves an agent. (This functionality is
associated with the Grasshopper persistence service. Please refer to Chap-
ter 10 for detailed information.)

• saveAgentEvery(...): This method saves an agent periodically.
(This functionality is associated with the Grasshopper persistence service.
Please refer to Chapter 10 for detailed information.)

• suspendAgent(...): This method suspends an active agent. (Infor-
mation about the different states of an agent is provided in Section 5.5.)

Place-relat-
ed methods

The interface IAgentSystem provides the following place-related meth-
ods:

• createPlace(...): This method creates a new place in the agency.

• getPlaceState(...): This method returns the current state of a spe-
cific place.

• listPlaces(...): This method returns a list of local places. The
search can be restricted by setting filters. Please refer to Section 9.13 for
detailed information about searching Grasshopper components.

• removePlace(...): This method removes a place from the agency.

• resumePlace(...): This method resumes a suspended place. (Similar
to agents, places can be suspended and resumed. To suspend a place means
to suspend all agents that are currently running inside the place. When a
suspended place is resumed, all agents inside this place are also resumed.)

• suspendPlace(...): This method suspends an active place. (Similar
to agents, places can be suspended and resumed. To suspend a place means
to suspend all agents that are currently running inside the place. When a
suspended place is resumed, all agents inside this place are also resumed.)

Agency-re-
lated meth-
ods

The interface IAgentSystem provides the following agency-related meth-
ods:

• addSystemListener(...) : This method enables a software compo-
nent (e.g., an agent) to add a listener to an agency. The listener is notified
about specific events occurring inside the attached agency, such as the cre-
143

PROGRAMMER’S GUIDE

er

d
nfor-

ethod
ss
-

ction
l
ss
ation, state change, and removal of agents and places. Please refer to Sec-
tion 9.11.5 for detailed information about listening to agencies.

• getInfo(): This method returns the AgentSystemInfo object of the
agency.

• hasPersistence(): This method provides information about wheth
the agency supports persistence or not.

• removeSystemListener(...): This method removes an attache
listener from an agency. Please refer to Section 9.11.5 for detailed i
mation about listening to agencies.

9.11.3 Local Access

An agent can get access to the functionality of the local agency via the m
getAgentSystem() which is provided by the agent’s supercla
de.ikv.grasshopper.agent.Agent. This method returns a refer
ence to the interface IAgentSystem.

The following example code has been extracted from Example 9, Se
9.4.2. In this code fragment, the ClientAgent gets a reference to the loca
agency (interface IAgentSystem) in order to create an instance of the cla
ServerAgent.

IServerAgent serverProxy;
public void init(Object[] creationArgs) {
// Get proxy of local agency.
agencyProxy = getAgentSystem();
// Create the server agent.
try {
serverInfo =
agencyProxy.createAgent(

"ServerAgent",
getInfo().getCodebase(),
"InformationDesk",
null);

}
catch (AgentCreationFailedException e) {
System.out.println("## ClientAgent: Creation\\
of server agent failed.");

}

144

CHAPTER 9: THE COMMUNICATION SERVICE
9.11.4 Remote Access

In order to contact a remote agency, an agent has to create an agency proxy.
Similar to the creation of agent proxies (see Section 9.3), the agency that is to
be contacted must be addressed correctly.

In contrast to the creation of an agent proxy which always requires the provi-
sion of the agent’s identifier, the creation of an agency proxy can be performed
by simply specifying the agency’s name as well as the name of the host on
which the agency is running. Of course this assumes that all agencies running
on the same host have different names.

Proxy cre-
ation

For creating an agency proxy, the (client) agent uses the newIn-
stance(...) method of the class de.ikv.grasshopper.communi-
cation.ProxyGenerator. As explained in Section 9.3, the second
parameter of this method requires the identification of the component that is
to be associated with the proxy. Concerning agency proxies, this parameter
may be initialized in two different ways:

• The parameter may be initialized with the agency’s identifier which can be
retrieved from the agency’s AgentSystemInfo object (method getI-
dentifier()). In order to get the AgentSystemInfo object, the cli-
ent has to contact a running agency domain service via its
listAgencies(...) method, assuming that the demanded agency is
registered at this service.

• If the client knows the agency’s name as well as the name of the host on
which the agency is running, these two components can be used instead of
the identifier. For this purpose, the host name and agency name have to be
written into a String object, separated by a slash character: <host-
Name>/<agencyName>.
If the client knows the complete address of the agency in terms of a
GrasshopperAddress object (which is required for generating a
proxy if no agency domain service is available), the client can invoke the
method generateAgentSystemId() on the GrasshopperAd-
dress object in order to get the <hostName>/<agencyName>
string.

GrasshopperAddress agencyAddress = ...;
// Get proxy of remote agency.
agencyProxy = (IAgentSystem)
ProxyGenerator.newInstance(

IAgentSystem.class,
agencyAddress.generateAgentSystemId(),
agencyAddress);

// Invoke method on agency proxy
145

PROGRAMMER’S GUIDE

rface

of the
these
s.

e, a
remoteAgents = agencyProxy.listAgents(
new SearchFilter());

9.11.5 Listening to Agencies

Grasshopper agencies enable locally or remotely running software compo-
nents to listen to internal events. This can be achieved by registering a listener
object at an agency. In the following, the agency at which the listener object is
registered is called destination agency. The listening component, i.e., the com-
ponent that registers the listener at the destination agency and that wants to be
notified about occurring events, may run at a another location, called source
location or source side in the scope of this section.

The destination agency automatically notifies all registered listener objects
about the occurrence of the following events:

• Agent creation

• Agent state change (suspension / resumption)

• Agent removal

• Place creation

• Place state change (suspension / resumption)

• Place removal

Listener ob-
jects

A listener object is an instance of a Java class that implements the inte
de.ikv.grasshopper.agency.ISystemListener. This interface
provides a set of methods where each method is associated with one
events mentioned above. The agency automatically invokes one of
methods on all registered listeners when the corresponding event occur

Methods for
detecting
events

• agentAdded(AgentInfo info)

• agentChanged(AgentInfo info)

• agentRemoved(AgentInfo info)

• placeAdded(PlaceInfo info)

• placeChanged(PlaceInfo info)

• placeRemoved(PlaceInfo info)

The parameter AgentInfo or PlaceInfo , respectively, provides informa-
tion about the agent or place that is associated with the occurred event.

beforeRe-
move()

• beforeRemove(): Beside the event-detecting methods listed abov
system listener class has to implement the method beforeRemove().
146

CHAPTER 9: THE COMMUNICATION SERVICE
Similar to the beforeRemove() method of Grasshopper agents, this lis-
tener method is automatically called before the listener object is removed.
Inside the method, the listener may prepare its removal, e.g., by releasing
occupied resources.

getIdentifi-
er()

• getIdentifier(): Finally, the method getIdentifier() has to
be implemented by your listener class. This method has to return the iden-
tifier of the listener which is an instance of the class de.ikv.grass-
hopper.type.Identifier. Please generate the identifier during the
listener’s creation, and use „listener“ as parameter value of the Identifier’s
constructor. The variable that maintains the listener identifier should be an
instance variable of your listener class. Note that this identifier has the
same structure as agent identifiers as described in Section 5.1.

Example:

class MyListener implements ISystemListener {
Identifier listenerId;
public MyListener() {

listenerId = new Identifier(„listener“);
}
public Identifier getIdentifier() {

return listenerId;
}
public void beforeRemove() {

...
}
agentAdded(...) {...}
agentChanged(...) {...}
agentRemoved(...) {...}
placeAdded(...) {...}
placeChanged(...) {...}
placeRemoved(...) {...}

}
Registering
listeners

A listener object is registered at an agency via the method addSystemLis-
tener(...) which is provided by the agency’s interface
de.ikv.grasshopper.agency.IAgentSystem. This method is im-
plemented with two different signatures:

void addSystemListener(ISystemListener listener)

A previously created listener object is transferred to the agency.

By using the Java reflection mechanism, the listener object is transferred
by value to the demanded agency. In order to enable the destination
agency to instantiate the listener, the listener class as well as all classes
used by the listener class have to be inserted into the classpath environ-
ment setting of the destination agency. If this prerequisite is not fulfilled,
147

PROGRAMMER’S GUIDE

ame,
nd the
ject.

 in the
rieved

s of a

er to
ethod

 this

nent
ation
on,
ject is
 con-
ns.
d in-

on be-
the listener should be added by using the method signature described
below.

Identifier addSystemListener(
java.lang.String className,
java.lang.String codeBase,
java.lang.Object[] arguments)

By using this signature, the listener is not created previously to the
method invocation at the source side. Instead, the listener’s class n
code base, and constructor parameters (if required) are specified, a
destination agency uses this information to create the listener ob
Since a code base is given, the listener class need not be inserted
destination agency’s classpath. Instead, all required classes are ret
via the Java class loading mechanism.

Note that the destination agency creates the listener object by mean
constructor that requires an object array (Object[]) as parameter.
Thus, the listener class must implement such a constructor in ord
enable the destination agency to create it. (In contrast to this, the m
addSystemListener(ISystemListener) allows a listener
object to be created by means of any individual constructor, since in
case the listener creation is performed at the source side.)

Usually, the creation of an agency listener object is initiated by a compo
that wants to be notified about specific events occurring at the destin
agency. This listening component may reside at the same or a remote locati
compared to the location of the destination agency. Since the listener ob
running inside the destination agency, it has to establish a communication
nection to the listening component in order to forward event notificatio
This can be achieved by creating a proxy of the listening component an
voking methods on this proxy due to occurring events.

Listening
mechanism

Figure 16 shows the general process of establishing a listener connecti
148

CHAPTER 9: THE COMMUNICATION SERVICE
tween an agent (i.e., the listening component) and a remote destination agency.

1. The listening agent creates a proxy of the destination agency as explained
in Section 9.11.4.

2. The agent registers a listener object at the destination agency by invoking
the addSystemListener(...) method on the agency proxy (2a, 2b).
The listener object is automatically connected to the listener service (2c)
of the destination agency. In order to forward event notifications to the lis-
tening agent, the listener object has to create a proxy of the agent (2d).
Required information, such as the agent’s identifier, location, and server
interface name, must have been provided to the listener object as construc-
tor arguments.

3. From now on, the listener object is notified by the listener service about
occurring events, i.e., the creation, state change, and removal of an agent
or place (3a). The listener object forwards corresponding event notifica-
tions to the listening agent by invoking a method on the agent’s proxy (3b,
3c).

9.11.6 Example: AgencyClientAgent

The following example scenario consists of three classes/interfaces:

• AgencyClientAgent: This class represents the listening agent, i.e.,
the agent that wants to be notified about events occurring inside the local
and inside a remote agency.

• IListeningAgent: This interface is implemented by the AgencyCli-

Figure 16: Listening Mechanism for Agencies

Listening Agent

Source agency Destination agency

Listener serviceListener service

Listener object
Listener object

Listener object

Listener objectListener object
Listener objectListener object

Listener objectListener object

Agent proxy

2b2b

2d2d

2c2c
3a3a

3b3b

3c3c

Agency proxy
11

2a2a
149

PROGRAMMER’S GUIDE

ent-

:

nt
e
ed.

te
 lis-

e
e the
eded

is-

ion
he ad-

ore
. The
sten-

ncy
ves it-

ethod

h
 de-
of the
is set
entAgent and used by the listener object in order to create a proxy of the
AgencyClientAgent for the purpose of forwarding event notifications.

• GHListener: This class realizes the actual listener object by implem
ing the interface de.ikv.grasshopper.agency.ISystemLis-
tener.

Class AgencyClientAgent

Instance
variables

The class AgencyClientAgent maintains the following instance variables

• agencyAddress: This variable is initialized with a creation argume
inside the agent’s init(...) method. The variable maintains th
address of a remote agency at which a listener object is to be register

• agencyProxy: This variable is initialized with a proxy of a remo
agency. The AgencyClientAgent uses this proxy in order to register a
tener object at the remote agency.

• remoteListenerId: This variable maintains the identifier of th
remotely registered listener object. This identifier is needed to enabl
agent to remove the listener from the remote agency when it is not ne
anymore.

• localListener: This variable maintains a reference to a locally reg
tered listener.

init(...) Inside its init(...) method, the AgencyClientAgent retrieves a creat
argument that has to be specified by the user. This argument maintains t
dress of the remote agency at which a listener object is to be registered.

beforeRe-
move()

The beforeRemove() method is automatically called by the agency bef
the agent is removed (please refer to Section 4.2 for more information)
AgencyClientAgent uses this method to remove all previously attached li
ers.

live() Inside its live() method, the AgencyClientAgent checks whether an age
address has been provided as creation argument. If not, the agent remo
self at once.

If the user has specified a valid agency address, the agent invokes the m
newInstance(...) of the class ProxyGenerator in order to create a
proxy of the remote agency’s IAgentSystem interface. In order to establis
a communication connection via the proxy, the agent has to identify the
manded agency by specifying the agency’s name as well as the name
host on which the agency is running. As explained in Section 9.11.4, th
of information can be retrieved by calling the method generateAgent-
SystemId() on the GrasshopperAddress object that maintains the
150

CHAPTER 9: THE COMMUNICATION SERVICE
complete agency address. The last parameter of the newInstance(...)
method specifies the complete agency address that has been provided by the
user as creation argument of the AgencyClientAgent. (In the case of an avail-
able agency domain service, the newInstance(...) method can also be
invoked without specifying the complete agency address. In this case, agency
name and host name are sufficient for identification purposes.)

By invoking methods on the created proxy, the AgencyClientAgent requests
the following information from the contacted agency: its identifier, name, type
location, and a list of all currently hosted agents. After this, the agent registers
a listener object at the remote agency by calling the method addSystem-
Listener(...) on the proxy.

The last action of the agent is to register a listener object at the local agency.
Please have a look at both calls of the method addSystemListen-
er(...):

• The first call creates a listener object at the remote agency. The method
parameters specify the name of the listener class, the code base from
which the listener class can be retrieved (in this case, the agent’s own code
base is assumed to maintain the listener class), as well as arguments for the
constructor of the listener class. As explained in Section 9.11.5, the remote
agency tries to create the listener object via a constructor that uses an
Object array as parameter. Thus, all required listener arguments are
stored in a variable of the type Object[].
The method returns the identifier of the new listener object. The identifier
is required for removing the listener later on (see the beforeRemove()
method of the AgencyClientAgent).
Note that also the second signature of the method addSystemLis-
tener(...) could have been used for registering the listener object at
the remote agency. However, in this case, the listener class as well as all
classes referenced by the listener class (such as the class IListeningAgent)
would have to be stored in the Java CLASSPATH environment setting of
the remote agency.

• The second call registers a listener object at the agency in which the Agen-
cyClientAgent is running. In contrast to the first method call, the listener
object is created by the AgencyClientAgent itself instead of the agency
where the listener is to be registered. The agent creates the listener object
by using an individual constructor, so that the required arguments do not
have to be converted to Object[]. After its creation, the listener object
itself is used as parameter of the addSystemListener(...) method.
Note that in this case the method does not return a listener identifier. In
order to remove the listener later on, its object reference is used for identi-
151

PROGRAMMER’S GUIDE

r-
nt-
tener
en-
fication purposes (see the beforeRemove() method of the AgencyCli-
entAgent).
Since no code base is specified when the listener is registered, the listener
class as well as the class IListeningAgent have to be maintained in the
Java CLASSPATH environment setting of the local agency. (The class
IListeningAgent is needed because the listener object tries to create a
proxy of the AgencyClientAgent after being registered at the local
agency.)

eventDe-
tected(...)

The method eventDetected(...) is defined in the agent’s server inte
face IListeningAgent. By implementing this interface, the AgencyClie
Agent is accessible via the communication service. The created lis
objects invoke this method (via an agent proxy) in order to inform the Ag
cyClientAgent about events that occur inside the monitored agencies.

Example 21: AgencyClientAgent

package examples.simple;

import examples.util.*;
import de.ikv.grasshopper.agent.*;
import de.ikv.grasshopper.agency.*;
import de.ikv.grasshopper.type.*;
import de.ikv.grasshopper.util.*;
import de.ikv.grasshopper.communication.*;

// This class realizes an agent that contacts a remote
// agency.
public class AgencyClientAgent extends StationaryAgent

implements IListeningAgent
{
GrasshopperAddress agencyAddress;
IAgentSystem agencyProxy;
Identifier remoteListenerId;
GHListener localListener;

// Creation argument:
// args[0] = address of the agency that has to be
// contacted by the AgencyAccessAgent.
public void init(Object[] args) {
// The init method expects the address of an agency
// as argument.
// If no argument is provided, the agent removes
// itself at the beginning of its live method.
if (args == null || args.length < 1)
agencyAddress = null;

else
152

CHAPTER 9: THE COMMUNICATION SERVICE
agencyAddress =
new GrasshopperAddress((String) args[0]);

}

public String getName() {
return "AgencyClientAgent";

}

// This method is automatically called before the
// agent is removed.
// The agent uses this method to remove the previously
// attached listener(s).
public void beforeRemove() {
if (agencyAddress == null)
log("No agency address specified. Removing...");

if (remoteListenerId != null) {
log("Removing remote listener...");
try {
// Remove remote listener.
agencyProxy.removeSystemListener(

remoteListenerId);
}
catch (ListenerRemovalFailedException e) {
log("Listener removal failed: ", e);

}
}
if (localListener != null) {
log("Removing local listener...");
// Remove local listener
getAgentSystem().removeSystemListener(
localListener);

}
log("Removing myself...");

}

public void live() {
AgentInfo remoteAgents[];
GHListener agencyListener;

if (agencyAddress == null)
// No agency address has been specified as
// creation argument.
try {
remove();

}
catch (Exception e) {
log("Cannot remove myself. ", e);

}

153

PROGRAMMER’S GUIDE
log("Contacting agency ’" +
agencyAddress.toString() + "’.");

// Create proxy of remote agency
agencyProxy = (IAgentSystem)
ProxyGenerator.newInstance(
IAgentSystem.class,
agencyAddress.generateAgentSystemId(),
agencyAddress);

// Print some information about the contacted
// agency
log("Agency contacted.");
log(" Identifier: " +
agencyProxy.getInfo().getIdentifier());

log(" Name : " +
agencyProxy.getInfo().getName());

log(" Type : " +
agencyProxy.getInfo().getType());

log(" Location : " +
agencyProxy.getInfo().getLocation());

log(" Hosted agents:");
if (agencyProxy != null) {
// List all agents hosted by the remote agency.
remoteAgents =
agencyProxy.listAgents(new SearchFilter());

if (remoteAgents != null)
for (int i = 0; i < remoteAgents.length; i++)
log(" " +
remoteAgents[i].getAgentPresentation().
getAgentName() + " - " +
remoteAgents[i].getIdentifier());

// Register a listener at the remote agency
try {
Object[] listenerArgs = new Object[4];
// The following objects are constructor
// arguments for the listener object
listenerArgs[0] = (Identifier)
getInfo().getIdentifier();

listenerArgs[1] = (GrasshopperAddress)
getInfo().getHome();

listenerArgs[2] = (String) "Remote";
// Add listener
remoteListenerId =
agencyProxy.addSystemListener(
"examples.util.GHListener",
getInfo().getCodebase(), listenerArgs);

}
catch (ListenerCreationFailedException e) {
154

CHAPTER 9: THE COMMUNICATION SERVICE
log("Cannot listen to " +
agencyProxy.getInfo().getName() +
". ", e);

}
if (remoteListenerId != null)
log("Listener added to remote agency ’" +
agencyProxy.getInfo().getName() +
"’. Listening...");

}
else
log("Agency ’" + agencyAddress +
"’ not found.");

// Register a listener at the local agency.
// This is only possible if the classes
// GHListener as well as IAgencyClientAgent are
// contained in the classpath.
localListener = new
GHListener(getInfo().getIdentifier(),
getInfo().getHome(), "Local");

try {
getAgentSystem().addSystemListener(
localListener);

}
catch (Throwable e) {
log("Cannot register local listener. ", e);
localListener = null;

}
}

// The following method is called by the listener
// object(s) due to events occurring inside the
// monitored agencies.
public void eventDetected(String event) {
log(event);

}
}

Interface IListeningAgent

By means of this interface, the AgencyClientAgent is accessible via the Grass-
hopper communication service. The listener objects use the method event-
Detected(...) defined by this interface in order to inform the agent about
events that occur inside the monitored agencies (or, concerning Example 24 in
Section 9.12.6, inside the monitored region registry).

Example 22: IListeningAgent
155

PROGRAMMER’S GUIDE
package examples.util;

import de.ikv.grasshopper.agent.IAgent;

// This interface is implemented by the following
// agents:
// - examples.simple.AgencyClientAgent
// - examples.simple.RegionClientAgent
// The method ’eventDetected’ is called by a GHListener
// object due to a detected event. In this way, a
// listening agent is automatically
// informed about events occurring inside agencies or
// region registries.
public interface IListeningAgent
{
public void eventDetected(String event);

}

Class GHListener

By implementing the interface ISystemListener, this class realizes a lis-
tener that is able to monitor the events occurring inside Grasshopper agencies
or region registries.

Construc-
tors

The class provides two constructors:

public GHListener(
String Identifier agentId,
GrasshopperAddress agentLocation,
String lName)

This (individual) constructor can be used if the listening object (i.e., the
AgencyClientAgent or, concerning Example 24 in Section 9.12.6, the
RegionClientAgent) creates the GHListener object by itself. In this case,
the already created listener object is transferred to the demanded destina-
tion agency via the method addSystemListener(ISystemLis-
tener).
Concerning the AgencyClientAgent (see Example 21 above), the agent
uses this constructor for creating the listener for the local agency.

public GHListener(Object[] creationArgs)

This constructor is automatically used by the destination agency if the lis-
tening object instructs the destination agency to create the listener by
invoking the method addSystemListener(String, String,
Object[]).
Concerning the AgencyClientAgent (see Example 21 above), the agent
uses this constructor for registering a listener at the remote agency. The
156

CHAPTER 9: THE COMMUNICATION SERVICE
RegionClientAgent (see Example 24 in Section 9.12.6) uses this construc-
tor for registering a listener at a region registry.

Inside the constructor, the listener object creates a proxy of the AgencyClient-
Agent or RegionClientAgent, respectively. For this purpose, the constructor
arguments provide sufficient information: the agent’s identifier and its loca-
tion. The agent’s class name is hard coded in the call of the newIn-
stance(...) method. Via the last constructor argument, the agent
specifies a name for the listener object. The purpose of this name is just to en-
able the user to distinguish between the textual outputs of both listeners, since
both are printed in the text console of the agency in which the agent is running.

Listener
methods

The remaining methods of the class GHListener implement the interface ISys-
temListener. These methods are automatically called by the monitored agency
when a corresponding event, such as the creation of a new agent, has occurred.
Inside the methods, the listener object invokes the method eventDe-
tected(...) of the AgencyClientAgent (or RegionClientAgent concern-
ing Example 24) via the previously created agent proxy, in this way
forwarding an event notification to the agent.

Example 23: GHListener

package examples.util;

import de.ikv.grasshopper.agency.*;
import de.ikv.grasshopper.type.*;
import de.ikv.grasshopper.communication.*;

// This class realizes a system listener which can be
// used by Grasshopper agents in order to listen for
// events occurring inside agencies or region
// registries.
// The GHListener class is used by the following agents:
// - examples.simple.AgencyClientAgent
// - examples.simple.RegionClientAgent
public class GHListener implements ISystemListener
{
IListeningAgent agentProxy;
String listenerName;
Identifier listenerId;

// This constructor can be used when the listener
// object is created at the source side and
// transferred to the destination agency via the
// method ’addSystemListener(ISystemListener)’.
public GHListener(

Identifier agentId,
157

PROGRAMMER’S GUIDE
GrasshopperAddress agentLocation,
String lName) {

listenerName = lName;

// Create a proxy of the agent that has added this
// listener object to the agency.
// The proxy is used by the listener for forwarding
// event notifications to the agent.
agentProxy = (IListeningAgent)
ProxyGenerator.newInstance(
IListeningAgent.class,
(Identifier) agentId,
(GrasshopperAddress) agentLocation);

System.out.println("## " + listenerName +
" GHListener: Created.");

if (agentProxy != null)
System.out.println("## Agent proxy created.");

else
System.out.println("## Could not create \\
agent proxy.");

// Generate listener identifier
listenerId = new Identifier("listener");

}

// This constructor is automatically used by the
// destination agency is the listener is added via
// the method
// ’addSystemListener(String, String, Object[])’
public GHListener(Object[] creationArgs) {
listenerName = (String) creationArgs[2];
// Create a proxy of the agent that has added this
// listener object to the agency.
// The proxy is used by the listener for forwarding
// event notifications to the agent.
agentProxy = (IListeningAgent)
ProxyGenerator.newInstance(
IListeningAgent.class,
(Identifier) creationArgs[0],
(GrasshopperAddress) creationArgs[1]);

System.out.println("## " + listenerName +
" GHListener: Created.");

if (agentProxy != null)
System.out.println("## Agent proxy created.");

else
System.out.println("## Could not create \\
agent proxy.");

}

158

CHAPTER 9: THE COMMUNICATION SERVICE
// The following methods are automatically called by
// the listener service when a corresponding event
// occurs inside the agency or region registry to
// which the listener has been attached.

public void agencyAdded(AgentSystemInfo info) {
// This event can only occur when the listener is
// attached to an agency domain service.
System.out.println("## " + listenerName +
" GHListener: Forwarding agency creation\\
event...");

agentProxy.eventDetected("## " + listenerName +
" GHListener: Creation of agency ’" +
info.getName() + "’ detected.");

}

public void agencyRemoved(AgentSystemInfo info) {
// This event can only occur when the listener is
// attached to an agency domain service.
System.out.println("## " + listenerName +
" GHListener: Forwarding agency removal\\
event...");

agentProxy.eventDetected("## " + listenerName +
" GHListener: Removal of agency ’" +
info.getName() + "’ detected.");

}

public void agentAdded(AgentInfo info) {
System.out.println("## " + listenerName +
" GHListener: Forwarding agent creation event...");
agentProxy.eventDetected("## " + listenerName +
" GHListener: Creation of agent ’" +
info.getAgentPresentation().getAgentName() +
"’ detected.");

}

public void agentChanged(AgentInfo info) {
System.out.println("## " + listenerName +
" GHListener: Forwarding agent change event...");

agentProxy.eventDetected("## " + listenerName +
" GHListener: Change of agent ’" +
info.getAgentPresentation().getAgentName() +
"’ detected. New state = " + info.getState());

}

public void agentRemoved(AgentInfo info) {
System.out.println("## " + listenerName +
159

PROGRAMMER’S GUIDE
" GHListener: Forwarding agent removal\\
event...");

agentProxy.eventDetected("## " + listenerName +
" GHListener: Removal of agent ’" +
info.getAgentPresentation().getAgentName() +
"’ detected.");

}

public void placeAdded(PlaceInfo info) {
System.out.println("## " + listenerName +
" GHListener: Forwarding place creation\\
event...");

agentProxy.eventDetected("## " + listenerName +
" GHListener: Creation of place ’" +
info.getName() + "’ detected.");

}

public void placeChanged(PlaceInfo info) {
System.out.println("## " + listenerName +
" GHListener: Forwarding place change event...");

agentProxy.eventDetected("## " + listenerName +
" GHListener: Change of place ’" +
info.getName() + "’ detected. New state = " +
info.getState());

}

public void placeRemoved(PlaceInfo info) {
System.out.println("## " + listenerName +
" GHListener: Forwarding place removal\\
event...");

agentProxy.eventDetected("## " + listenerName +
" GHListener: Removal of place ’" +
info.getName() + "’ detected.");

}

public void beforeRemove() {
System.out.println("## " + listenerName +
" GHListener: Removing...");

}

public Identifier getIdentifier() {
return listenerId;

}
}

Requirements:

• Two running agencies
160

CHAPTER 9: THE COMMUNICATION SERVICE
• In order to enable the agent to register a listener object at the local
agency, the classes GHListener and IAgencyClientAgent have
to be inserted in the Java CLASSPATH environment setting of the
agency in which the AgencyClientAgent is started. Note that this condi-
tion need not be fulfilled if the agent uses the other signature of the
method addSystemListener(...) for registering a listener at the
local agency. Detailed information about the two signatures is provided
above, inside the description of the live() method of the AgencyCli-
entAgent.
If one of the classes GHListener and IAgencyClientAgent are
missing in the CLASSPATH, you will see that the agent is still able to
register the listener object at the remote agency, while the local listener
registration fails.

Running the Example:

Create some simple agents (e.g., the HelloAgent and PrintInfoAgent) in
each running agency.

Create the AgencyClientAgent in one of the running agencies, specifying
the address of the remote agency as creation argument (1).

Figure 17: AgencyClientAgent Scenario

Agency 1

Agency
Client
Agent

3a3a
Get agency
information

Agency UIAgency UI

Create
AgencyClientAgent

Agency
API

Agency
API

22

Create
agency

proxy

Listener
service
Listener
service

Agency 2

Listener
service
Listener
service

4a4a
Create/add
remote listener

9b9b

GH
Listener

Agency
API

Agency
API

55

Create
agent
proxy

9c9c

Agency UIAgency UI

UU
11

UU User input

66 Create/add local
listener

GH
Listener

8a8a
9a9a

8b8b

Trigger agency event

Trigger agency event

3b3b

4b4b

Agency
proxy

Agency
proxy

Agent
proxy
Agent
proxy

Listener
object

Listener
object

9d9d

Listener
object

Listener
object

77
Create
agent proxy

8c8c

Agent
proxy
Agent
proxy

8d8d
161

PROGRAMMER’S GUIDE

ency
can be
d by a

iron-
eation

. Af-
gent
his,
e local
7) in

h agen-
corre-
etect
). The
 no-

y be
ance

ess,

ce

tified
If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a examples.simple.AgencyClientAgent socket://
Host1:7000/Agency1

Note that you have to adapt the agency address in the line above to the
address of your concrete agency. You can determine this address via the
command ’status’ of the agency’s text console. If you have an ag
domain service running and connected to both agencies, the address
specified just in terms of the host name and agency name, separate
slash character: Host1/Agency1.

If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

Look at the output of the AgencyClientAgent in the local agency console
ter creating a proxy of the previously specified remote agency (2), the a
will print a list of all agents that are running inside this agency (3). After t
the agent adds a listener to the remote agency (4) and another one to th
agency (6). Both listeners create a proxy of the AgencyClientAgent (5,
order to be able to forward event notifications.

Now create, suspend, resume, and remove agents and places inside bot
cies via the agencies’ user interfaces (8a, 9a), and have a look at the
sponding console windows. The listener services of the agencies will d
the events and send a notification to the attached listener object (8b, 9b
listeners in turn will use their agent proxies (8c, 9c) in order to forward the
tifications to the AgencyClientAgent (8d, 9d).

9.11.7 Summary

• Every Grasshopper agency carries information about itself that ma
accessed by other entities. This information is maintained by an inst
of the class de.ikv.grasshopper.type.AgentSystemInfo.
The maintained information includes an agency’s identifier, addr
name, and type.

• An agency’s functionality is accessible via the interfa
de.ikv.grasshopper.agency.IAgentSystem. Agents can get
a reference of the IAgentSystem interface of their local agency via
their superclass de.ikv.grasshopper.agency.Agent. Access to
remote agencies can be achieved by creating an agency proxy.

• Agents can register listener objects at agencies in order to be no
162

CHAPTER 9: THE COMMUNICATION SERVICE
about agency-internal events.

9.12 Accessing an Agency Domain Service

An agency domain service can be contacted by an agent in two different ways:

1. Via the interface de.ikv.grasshopper.agency.IRegion of the
local agency, i.e., of the agency in which the agent is currently running:

The agent can chose between contacting the agency domain service at
which the local agency is registered or contacting any other available
agency domain service. In the latter case, the agent has to specify the
address of the demanded agency domain service when invoking a method
on the IRegion interface. In both cases, the agent accesses the service
via the local IRegion interface. Note that, in contrast to accessing a
remote agency, there is no need for an agent to create an own proxy of an
agency domain service. An agent can retrieve a reference to the IRegion
interface by invoking the method getRegion() of its superclass Agent
(which is similar to the access of the local IAgentSystem interface, as
described in Section 9.11.3).

Note that the agent uses the same methods of the IRegion interface,
independent of whether a Grasshopper region registry or an LDAP server
is contacted.

Detailed information about the available methods of the IRegion interface
are provided in Section 9.12.1.

2. Via a proxy of the interface
de.ikv.grasshopper.agency.RegionRegistration:

The IRegionRegistration interface is explicitly associated with
Grasshopper region registries. That means, in contrast to the IRegion
interface provided by Grasshopper agencies, no LDAP server can be con-
tacted. An agent can get access to the IRegionRegistration inter-
face in the usual way, i.e., by creating a proxy object via the method
newInstance(...) of the class de.ikv.grasshopper.commu-
nication.ProxyGenerator, (cf. Section 9.3).

The IRegionRegistration interface is of particular importance if an
agent wants to add a listener to a region registry, since this cannot be
achieved via the IRegion interface. For detailed information about this
aspect, please refer to Section 9.12.5. If an agent just wants to invoke the
list methods of an agency domain service, it is, from an implementation
point of view, more comfortable to use the IRegion interface of the local
163

PROGRAMMER’S GUIDE

pe-

is-
tricted
tion

e
. The
3 for

-
rvice.
 9.13

f a
agency.

Detailed information about the available methods of the IRegionReg-
istration interface are provided in Section 9.12.2.

9.12.1 Interface IRegion

Agent-relat-
ed methods

The IRegion interface provides the following agent-related methods:

• getAgentState(...): This method returns the current state of a s
cific agent.

• listAgents(...): This method returns a list of agents that are reg
tered at the contacted agency domain service. The search can be res
by setting filters. Please refer to Section 9.13 for detailed informa
about searching Grasshopper components.

• listMobileAgents(...): This method returns a list of mobil
agents that are registered at the contacted agency domain service
search can be restricted by setting filters. Please refer to Section 9.1
detailed information about searching Grasshopper components.

• listStationaryAgents(...): This method returns a list of sta
tionary agents that are registered at the contacted agency domain se
The search can be restricted by setting filters. Please refer to Section
for detailed information about searching Grasshopper components.

• lookupLocation(...): This method returns the current location o
specific agent.

Figure 18: IRegion Class Diagram

IRegion

listM obileAgents()
listS tat ionaryAgents()
listA gents()
listA gencies()
listP laces ()
getA gentState()
getP laceState()
lookupLocat ion()
lookupComm unicationServer()

<<Interface>>
164

CHAPTER 9: THE COMMUNICATION SERVICE
Place-relat-
ed methods

The IRegion interface provides the following place-related methods:

• getPlaceState(...): This method returns the state of a specific
place.

• listPlaces(...): This method returns a list of places that are regis-
tered at the contacted agency domain service. The search can be restricted
by setting filters. Please refer to Section 9.13 for detailed information
about searching Grasshopper components.

Agency-re-
lated meth-
ods

The IRegion interface provides the following agency-related methods:

• listAgencies(...): This method returns a list of agencies that are
registered at the contacted agency domain service. The search can be
restricted by setting filters. Please refer to Section 9.13 for detailed infor-
mation about searching Grasshopper components.

• lookupCommunicationServer(...): This method requires a
String parameter, specifying the agency’s name as well as the name of
the host on which the agency is running. This information has to be pro-
vided with the following syntax: <hostName>/<agencyName>.
If the invoking entity knows the complete address of the agency in terms
of a GrasshopperAddress object (which is required for generating a
proxy if no agency domain service is available), the client can invoke the
method generateAgentSystemId() on the GrasshopperAd-
dress object in order to get the <hostName>/<agencyName>
string.

9.12.2 Interface IRegionRegistration

The interface IRegionRegistration inherits the interfaces ISystemListen-
erProvider, enabling the registration and de-registration of listener ob-
jects, and the interface IDirectoryService, providing access to the
registration information of the registry.
165

PROGRAMMER’S GUIDE

pe-

is-
y set-
out

e
ch can
ailed

-
. The
3 for

f a
Agent-relat-
ed methods

The IRegionRegistration interface provides the following agent-relat-
ed methods:

• getAgentState(...): This method returns the current state of a s
cific agent.

• listAgents(...): This method returns a list of agents that are reg
tered at the contacted region registry. The search can be restricted b
ting filters. Please refer to Section 9.13 for detailed information ab
searching Grasshopper components.

• listMobileAgents(...): This method returns a list of mobil
agents that are registered at the contacted region registry. The sear
be restricted by setting filters. Please refer to Section 9.13 for det
information about searching Grasshopper components.

• listStationaryAgents(...): This method returns a list of sta
tionary agents that are registered at the contacted region registry
search can be restricted by setting filters. Please refer to Section 9.1
detailed information about searching Grasshopper components.

• lookupLocation(...): This method returns the current location o
specific agent.

Figure 19: IRegionRegistration Class Diagram

ISystemListenerProvider

addSystemListener()
removeSystemListener()

<<Interface>>

IRegionRegistration
<<Interface>>

IDirectoryService

listMobileAgents()
listStationaryAgents()
listAgents()
listAgencies()
listPlaces()
lookupLocation()
getAgentState()
getPlaceState()
lookupCommunicationServer()

<<Interface>>
166

CHAPTER 9: THE COMMUNICATION SERVICE
Place-relat-
ed methods

The IRegionRegistration interface provides the following place-relat-
ed methods:

• getPlaceState(...): This method returns the state of a specific
place.

• listPlaces(...): This method returns a list of places that are regis-
tered at the contacted region registry. The search can be restricted by set-
ting filters. Please refer to Section 9.13 for detailed information about
searching Grasshopper components.

Agency-re-
lated meth-
ods

The IRegionRegistration interface provides the following agency-re-
lated methods:

• listAgencies(...): This method returns a list of agencies that are
registered at the contacted region registry. The search can be restricted by
setting filters. Please refer to Section 9.13 for detailed information about
searching Grasshopper components.

• lookupCommunicationServer(...): This method requires a
String parameter, specifying the agency’s name as well as the name of
the host on which the agency is running. This information has to be pro-
vided with the following syntax: <hostName>/<agencyName>.
If the invoking entity knows the complete address of the agency in terms
of a GrasshopperAddress object (which is required for generating a
proxy if no agency domain service is available), the client can invoke the
method generateAgentSystemId() on the GrasshopperAd-
dress object in order to get the <hostName>/<agencyName>
string.

Registry-re-
lated meth-
ods

The IRegionRegistration interface provides the following registry-re-
lated methods:

• addSystemListener(...) : This method enables a software compo-
nent (e.g., an agent) to add a listener to a region registry. The listener is
notified about specific events occurring inside the attached registry, such
as the creation, state change, and removal of agencies, agents, and places.
Please refer to Section 9.12.5 for detailed information about listening to
region registries.

• removeSystemListener(...): This method removes an attached
listener from a region registry. Please refer to Section 9.12.5 for detailed
information about listening to region registries.
167

PROGRAMMER’S GUIDE

ss

tional.
e host-
ddress

ess is
but the

 agent
by an

gistry,
n 5.4.

s has
9.12.3 Local Access

Similar to Section 9.11.3 and Section 9.11.4 where a separation was made be-
tween the local and remote access of an agency, there are two ways of contact-
ing an agency domain service. However, it has to be noted that the local access
described in the current section allows the access of both Grasshopper region
registries as well as LDAP servers, while the remote access described in Sec-
tion 9.12.4 is restricted to the access of region registries.

Concerning the local access, an agent does not need to create a proxy of an
agency domain service, since the functionality of this service is provided via
the interface IRegion of the local agency. The actual access of the domain
service is performed by the local agency and hidden behind the IRegion in-
terface.

An agent can retrieve a reference to the IRegion interface via the method
getRegion() which is provided by the agent’s supercla
de.ikv.grasshopper.agent.Agent.

Note that the registration of an agency at an agency domain service is op
If an agent wants to contact an agency domain service in the case that th
ing agency is not registered at this service, the agent has to provide the a
of the domain service when invoking a method on the IRegion interface.
Another case in which an agent has to specify the domain service addr
that the hosting agency has access to a specific agency domain service,
agent wants to contact a different domain service.

When an agent specifies the address of an agency domain service, the
has to know whether the service is represented by a region registry or
LDAP server, since their address schemes are slightly different:

Addressing a region registry

If the demanded agency domain service is a Grasshopper region re
its address is a usual Grasshopper address as described in Sectio
Represented as String, the address has the following format:

<protocol>://<hostName>:<portNumber>/<regionRegistryName>

Addressing an LDAP server

If the demanded agency domain service is an LDAP server, its addres
the following format:

ldap://<hostName>:portNumber>/<distinguishedName>

As shown above, the protocol type must be set to ldap, and a distin-
guished name has to be provided, such as ’o=IKV,c=DE’.
168

CHAPTER 9: THE COMMUNICATION SERVICE
The following example code, extracted from Example 13 in Section 9.6.2,
shows how a client agent can access an agency domain service via the methods
of the IRegion interface of the local agency. Concerning the code below, the
default agency domain service is to be contacted, i.e., the domain service at
which the local agency is registered. Therefore, no address is specified, and
the value null is used as first parameter of the listAgents(...) meth-
od.

// Get proxy of local agency
regionProxy = getRegion();
// Look for the server agent in the
// agency domain service
SearchFilter filter = new SearchFilter(

SearchFilter.NAME+"=AsyncServerAgent");
serverInfos = regionProxy.listAgents(null, filter);

9.12.4 Remote Access

In order to contact a remote region registry, an agent has to create a registry
proxy, based on the interface IRegionRegistration (see Section
9.12.2).

Similar to the creation of agent proxies (see Section 9.3), the registry that is to
be contacted must be addressed correctly. In contrast to the creation of an
agent proxy which always requires the provision of the agent’s identifier, the
creation of a registry proxy can be performed by simply specifying the regis-
try’s name as well as the name of the host on which the registry is running.

Proxy cre-
ation

For creating a region registry proxy, the (client) agent uses the newIn-
stance(...) method of the class de.ikv.grasshopper.communi-
cation.ProxyGenerator. As explained in Section 9.3, the second
parameter of this method requires the identification of the component that is
to be associated with the proxy.

The identification of a region registry can be achieved by specifying the reg-
istry’s name as well as the name of the host on which the registry is running.
For this purpose, the host name and registry name have to be written into a
String object, separated by a slash character: <hostName>/<regis-
tryName>.
If the client knows the complete address of the registry in terms of a Grass-
hopperAddress object, the client can invoke the method generateRe-
gionId() on the GrasshopperAddress object in order to get the
<hostName>/<registryName> string.
169

PROGRAMMER’S GUIDE

rface

of the
e of
ccurs.
GrasshopperAddress registryAddress = ...;
// Get proxy of region registry.
registryProxy = (IRegionRegistration)
ProxyGenerator.newInstance(

IRegionRegistration.class,
registryAddress.generateRegionId(),
registryAddress);

// Invoke method on registry proxy
remoteAgents = registryProxy.listAgents(
new SearchFilter());

9.12.5 Listening to Region Registries

Grasshopper region registries enable locally or remotely running software
components to listen to internal events. This can be achieved by registering a
listener object at a registry. The region registry automatically notifies all reg-
istered listener objects about the occurrence of the following events:

• Agency creation

• Agency removal

• Agent creation

• Agent state change (suspension / resumption)

• Agent removal

• Place creation

• Place state change (suspension / resumption)

• Place removal

Listener ob-
jects

A listener object is an instance of a Java class that implements the inte
de.ikv.grasshopper.agency.ISystemListener. This interface
provides a set of methods where each method is associated with one
events mentioned above. The region registry automatically invokes on
these methods on all registered listeners when the corresponding event o

Methods for
event detec-
tion

• agencyAdded(AgentSystemInfo info)

• agencyRemoved(AgentSystemInfo info)

• agentAdded(AgentInfo info)

• agentChanged(AgentInfo info)

• agentRemoved(AgentInfo info)

• placeAdded(PlaceInfo info)
170

CHAPTER 9: THE COMMUNICATION SERVICE
• placeChanged(PlaceInfo info)

• placeRemoved(PlaceInfo info)

The parameter AgentSystemInfo , AgentInfo , or PlaceInfo , re-
spectively, provides information about the agency, agent, or place that is asso-
ciated with the occurred event.

beforeRe-
move()

• beforeRemove(): Beside the event-detecting methods listed above, a
system listener class has to implement the method beforeRemove().
Similar to the beforeRemove() method of Grasshopper agents, this lis-
tener method is automatically called before the listener object is removed.
Inside the method, the listener may prepare its removal, e.g., by releasing
occupied resources.

• getIdentifier(): Finally, the method getIdentifier() has to
be implemented by your listener class. This method has to return the iden-
tifier of the listener which is an instance of the class de.ikv.grass-
hopper.type.Identifier. Please generate the identifier during the
listener’s creation, and use „listener“ as parameter value of the Identifier’s
constructor. The variable that maintains the listener identifier should be an
instance variable of your listener class. Note that this identifier has the
same structure as agent identifiers as described in Section 5.1.

Example:

class MyListener implements ISystemListener {
Identifier listenerId;
public MyListener() {

listenerId = new Identifier(„listener“);
}
public Identifier getIdentifier() {

return listenerId;
}
public void beforeRemove() {

...
}
agencyAdded(...) {...}
agencyRemoved(...) {...}
agentAdded(...) {...}
agentChanged(...) {...}
agentRemoved(...) {...}
placeAdded(...) {...}
placeChanged(...) {...}
placeRemoved(...) {...}

}
Registering
listeners

A listener object is registered at a region registry via the method addSys-
temListener(...) which is provided by the registry’s interface
171

PROGRAMMER’S GUIDE

iron-
 be

 the
ame,

nd the
ce a
istry’s
 class

 of a

er to

e lis-

ants
e the
nica-
fica-
t and

on be-
de.ikv.grasshopper.agency.IRegionRegistration. This
method is implemented with two different signatures:

void addSystemListener(ISystemListener listener)

A previously created listener object is transferred to the region registry.

By using the Java reflection mechanism, the listener object is transferred
by value to the demanded registry. In order to enable the registry to
instantiate the listener, the listener class as well as all classes used by the
listener class have to be inserted into the registry’s classpath env
ment setting. If this prerequisite is not fulfilled, the listener should
added by using the method signature described below.

Identifier addSystemListener(
java.lang.String className,
java.lang.String codeBase,
java.lang.Object[] arguments)

By using this signature, the listener is not created previously to
method invocation at the source side. Instead, the listener’s class n
code base, and constructor parameters (if required) are specified, a
region registry uses this information to create the listener object. Sin
code base is given, the listener class need not be inserted in the reg
classpath. Instead, all required classes are retrieved via the Java
loading mechanism.
Note that the region registry creates the listener object by means
constructor that requires an object array (Object[]) as parameter.
Thus, the listener class must implement such a constructor in ord
enable the registry to create it. (In contrast to this, the method addSys-
temListener(ISystemListener) allows a listener object to be
created by means of any individual constructor, since in this case th
tener creation is performed at the source side.)

Usually, the creation of a listener object is initiated by a component that w
to be notified about specific events occurring at the region registry. Sinc
listener object is running inside the registry, it has to establish a commu
tion connection to the listening component in order to forward event noti
tions. This can be achieved by creating a proxy of the listening componen
invoking methods on this proxy due to occurring events.

Listening
mechanism

Figure 16 shows the general process of establishing a listener connecti
172

CHAPTER 9: THE COMMUNICATION SERVICE
tween an agent (i.e., the listening component) and a region registry.

1. The listening agent creates a proxy of the registry as explained in Section
9.12.4.

2. The agent registers a listener object at the registry by invoking the add-
SystemListener(...) method on the proxy (2a, 2b). The listener
object is automatically connected to the listener service (2c) of the registry.
In order to forward event notifications to the listening agent, the listener
object has to create a proxy of the agent (2d). Required information, such
as the agent’s identifier, location, and server interface name, must have
been provided to the listener object as constructor arguments.

3. From now on, the listener object is notified by the listener service about
occurring events, i.e., the creation, state change, and removal of an agency,
agent, or place (3a). The listener object forwards corresponding event noti-
fications to the listening agent by invoking a method on the agent’s proxy
(3b, 3c).

9.12.6 Example: RegionClientAgent

The following example scenario consists of three classes/interfaces:

• RegionClientAgent: This class represents the listening agent, i.e.,
the agent that wants to be notified about events occurring inside a specific
region registry.

• IListeningAgent: This interface is implemented by the RegionCli-

Figure 20: Listening Mechanism for Region Registries

Listening Agent

Source agency Region Registry

Listener serviceListener service

Listener object
Listener object

Listener object

Listener objectListener object
Listener objectListener object

Listener objectListener object

Agent proxy

2b2b

2d2d

2c2c
3a3a

3b3b

3c3c

Agency proxy
11

2a2a
173

PROGRAMMER’S GUIDE

ent-

de
 of
d.

ce in
 has

n

shop-
ent

stry
Client-
ry.

g-
nt to
any-

ion
he ad-
gister
s of a

ore
. The
isten-

the
rder

ervice
entAgent and used by the listener object in order to create a proxy of the
RegionClientAgent for the purpose of forwarding event notifications.

• GHListener: This class realizes the actual listener object by implem
ing the interface de.ikv.grasshopper.agency.ISystemLis-
tener.

Class RegionClientAgent

Instance
variables

The class RegionClientAgent maintains the following instance variables:

• adsAddress: This variable is initialized with a creation argument insi
the agent’s init(...) method. The variable maintains the address
the agency domain service at which a listener object is to be registere

• adsProxy: This variable is initialized with a reference of the IRegion
interface of the local agency. The RegionClientAgent uses this interfa
order to retrieve information from the domain service whose address
been provided by the user as creation argument of the agent.

• registryProxy: This variable is initialized with a proxy of a regio
registry, based on the interface IRegionRegistration. (Note that,
for this purpose, the address provided by the user must refer to a Gras
per region registry and not to an LDAP server.) The RegionClientAg
uses this proxy in order to retrieve information from the region regi
whose address has been provided by the user. Besides, the Region
Agent uses this proxy in order to register a listener object at the regist

• listenerId: This variable maintains the identifier of the remotely re
istered listener object. This identifier is needed to enable the age
remove the listener from the region registry when it is not needed
more.

init(...) Inside its init(...) method, the RegionClientAgent retrieves a creat
argument that has to be specified by the user. This argument maintains t
dress of an agency domain service. Note that, since the agent tries to re
a listener at the domain service, it is recommended to specify the addres
region registry and not the address of an LDAP server.

beforeRe-
move()

The beforeRemove() method is automatically called by the agency bef
the agent is removed (please refer to Section 4.2 for more information)
RegionClientAgent uses this method to remove the previously attached l
er.

live() Inside its live() method, the RegionClientAgent gets a reference to
IRegion interface of the local agency. The agent uses this interface in o
to retrieve a list of all agents that are registered at the agency domain s
whose address has been previously specified by the user.
174

CHAPTER 9: THE COMMUNICATION SERVICE
After this, the agent creates a region registry proxy, based on the interface
IRegionRegistration. Similar to the IRegion interface mentioned
above, the agent uses the proxy for retrieving a list of all registered agents. The
retrieved list should be the same in both cases, since the same agency domain
service is contacted.

Finally, the agent uses the IRegionRegistration proxy for registering a
listener at the contacted region registry. For this purpose, the agent calls the
method addSystemListener(...) on the proxy, providing the class
name of the listener object, the code base from which the listener class can be
retrieved, as well as listener-specific parameters. Detailed information about
registering listeners at a region registry is given in Section 9.12.5.

eventDe-
tected(...)

The method eventDetected(...) is defined in the agent’s server inter-
face IListeningAgent. By implementing this interface, the RegionClientAgent
is accessible via the communication service. The created listener objects in-
voke this method (via an agent proxy) in order to inform the RegionClient-
Agent about events that occur inside the monitored region registry.

Example 24: RegionClientAgent

package examples.simple;

import examples.util.*;
import de.ikv.grasshopper.agent.*;
import de.ikv.grasshopper.agency.*;
import de.ikv.grasshopper.type.*;
import de.ikv.grasshopper.util.*;
import de.ikv.grasshopper.communication.*;

// This class realizes an agent that contacts a remote
// region registry.
public class RegionClientAgent extends StationaryAgent

implements IListeningAgent
{
GrasshopperAddress adsAddress;
IRegion adsProxy;
IRegionRegistration registryProxy;
Identifier listenerId;

// Creation argument:
// args[0] = address of a region registry
public void init(Object[] args) {
// The init method expects the address of a region
// registry as argument.
if (args == null || args.length < 1)
adsAddress = null;
175

PROGRAMMER’S GUIDE
else
adsAddress = new GrasshopperAddress((
String) args[0]);

listenerId = null;
}

public String getName() {
return "RegionClientAgent";

}

public void beforeRemove() {
if (listenerId != null) {
log("Removing listener...");
try {
registryProxy.removeSystemListener(
listenerId);

}
catch (ListenerRemovalFailedException e) {
log("Listener removal failed: ", e);

}
}
log("Removing myself...");

}

public void live() {
AgentInfo registeredAgents[];
SearchFilter filter;

if (adsAddress == null)
// No domain service address has been specified
// as creation argument.
try {
remove();

}
catch (Exception e) {
log("Cannot remove myself. ", e);

}
// Get access to an agency domain service via the
// IRegion interface of the local agency.
adsProxy = getRegion();
// Test the proxy by listing all agents that are
// registered at the domain service.
filter = new SearchFilter();
log("Agent list retrieved via IRegion interface:");
registeredAgents = adsProxy.listAgents(
adsAddress, filter);

for (int i = 0; i < registeredAgents.length; i++)
log(" " + registeredAgents[i].
176

CHAPTER 9: THE COMMUNICATION SERVICE
getAgentPresentation().getAgentName() + ": " +
registeredAgents[i].getIdentifier());

// Get access to an agency domain service via a
// proxy based on the IRegionRegistration
// interface.
registryProxy = (IRegionRegistration)
ProxyGenerator.newInstance(
IRegionRegistration.class,
adsAddress.generateRegionId(),
adsAddress);

// Test the proxy by listing all agents that are
// registered at the domain service.
filter = new SearchFilter();
log("Agent list retrieved via \\
IRegionRegistration proxy:");

registeredAgents =
registryProxy.listAgents(filter);

for (int i = 0; i < registeredAgents.length; i++)
log(" " + registeredAgents[i].
getAgentPresentation().getAgentName() +
": " + registeredAgents[i].getIdentifier());

// Register a listener at the
// IRegionRegistration proxy
Object[] listenerArgs = new Object[3];
try {
// The following objects are constructor
// arguments for the listener object
listenerArgs[0] =
(Identifier) getInfo().getIdentifier();

listenerArgs[1] = (
GrasshopperAddress) getInfo().getHome();

listenerArgs[2] = (String) "Region";
// Add listener
listenerId = registryProxy.addSystemListener(
"examples.util.GHListener",
getInfo().getCodebase(), listenerArgs);

}
catch (ListenerCreationFailedException e) {
log("Cannot listen to registry. Reason: ", e);

}
if (listenerId != null)
log("Listener added to registry. Listening...");

}

// The following method is called by the listener
// object(s) due to events occurring inside the
177

PROGRAMMER’S GUIDE

as to
 when
tion
// monitored agencies.
public void eventDetected(String event) {
log(event);

}
}

Interface IListeningAgent

By implementing this interface, the RegionClientAgent is accessible via the
Grasshopper communication service. The listener object invokes the method
eventDetected(...) defined by this interface in order to inform the
agent about events that occur inside the monitored region registry. Note that
also the AgencyClientAgent described in Section 9.11.6 implements this in-
terface. Please refer to this section for detailed information as well as a source
code listing.

Class GHListener

By implementing the interface ISystemListener, the class GHListen-
er realizes a listener that is able to monitor the events occurring inside Grass-
hopper agencies or region registries. Note that also the AgencyClientAgent
described in Section 9.11.6 uses this class. Please refer to this section for de-
tailed information as well as a source code listing.

Requirements:

• A running agency domain service. Note that the domain service h
be started before the agencies, and its address has to be specified
starting an agency. Please refer to the User’s Guide for informa
about how to start agencies and agency domain services.

• At least one running agency
178

CHAPTER 9: THE COMMUNICATION SERVICE
Running the Example:

Create some simple agents (e.g., the HelloAgent or PrintInfoAgent) in
each running agency.

Create the RegionClientAgent in one of the running agencies (1).

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a examples.simple.RegionClientAgent socket://
Host1:7020/Registry1

Note that you have to adapt the region registry address in the line above to
the address of your concrete registry. You can determine this address via
the command ’status’ of the registry’s text console.

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

The RegionClientAgent will print a list of all agents that are currently reg-
istered at the contacted agency domain service. Note that this list will be
printed two times: The agent retrieves the first list via the IRegion inter-

Figure 21: RegionClientAgent Scenario

Agency

Region
Client
Agent

5a5a

Agency UIAgency UI

Create
RegionClientAgent

33
Create
registry

proxy

Region registry

Listener
service
Listener
service

4a4a
List registered agents via
IRegionRegistration proxy

7b7b

GH
Listener

Registry
API

Registry
API

66
Create
agent
proxy

7c7c

UU
11

UU User input

2a2a
List registered agents via
IRegion interface

7a7a Trigger registry event

4b4b

5b5b

Registry
proxy

Registry
proxy

Agent
proxy
Agent
proxy

Listener
object

Listener
object

7d7d

2b2b
Agency

API
Agency

API

Create/add
remote listener
179

PROGRAMMER’S GUIDE

ice.
ible

 repre-

-

s.
 regis-

 a
try-
face of the local agency (2) and the second one via a IRegionRegis-
tration proxy (4). Both lists should comprise the same set of agents.

After retrieving and printing the agent lists, the RegionClientAgent adds a
listener to the registry (5). The listener in turn creates a proxy of the
RegionClientAgent for the purpose of notification forwarding (6).

The last output of the agent should be the following:

Listener added to registry. Listening...

In order to prove that the agent is now listening to the registry, please cre-
ate a new agency and provide the registry address as creation argument, so
that the new agency registers itself at the monitored registry. The Region-
ClientAgent should notice the creation and confirm it by means of a corre-
sponding textual output. Now create, suspend, resume, and remove agents
and places in all running agencies (7) and look at the textual output of the
RegionClientAgent.

9.12.7 Summary

• An agent can use the interface de.ikv.grasshop-
per.agency.IRegion in order to access an agency domain serv
The interface IRegion is provided by each agency, and it is access
for locally residing agents via the agents’ superclass de.ikv.grass-
hopper.agency.Agent. The interface IRegion offers a unified
access to agency domain services, independent of whether they are
sented by a Grasshopper region registry or by an LDAP server.

• An agent can use the interface de.ikv.grasshop-
per.agency.IRegionRegistration in order to access a Grass
hopper region registry. In contrast to the interface IRegion, the interface
IRegionRegistration is not provided by Grasshopper agencie
Instead, an agent has to use this interface in order to create a region
try proxy.

• The interface IRegionRegistration enables an agent to register
listener object at a region registry in order to be notified about regis
internal events.

9.13 Searching Grasshopper Components

The interfaces IAgentSystem (see Section 9.11.2) and IRegion (see Sec-
180

CHAPTER 9: THE COMMUNICATION SERVICE
tion 9.12.1) of a Grasshopper agency provide several methods for searching
agencies, places, and agents. These methods are of particular interest for
agents acting as communication clients in order to find suitable server agents.
Usually, a client needs a server with specific capabilities. When using the
available list methods, a client can define a search filter by specifying the de-
manded server characteristics. In this case, the list methods only return infor-
mation about those servers that match to the defined filter criteria.

Search filters are represented as instances of the class de.ikv.grasshop-
per.util.SearchFilter. The filter criteria are specified in terms of a
String object whose content must match to the following syntax:

Filter syntaxfilter = not-filter
not-filter = (’!’)? or-filter*
or-filter = and-filter (’|’ and-filter)*
and-filter = item (’&’ item)*
item = key comperator value

| ’(’ not-filter ’)’
comperator = ’=’ # equals

| ’^’ # starts with
| ’$’ # ends with
| ’~’ # contains

key = java.lang.String
value = java.lang.String

Syntax ex-
planation

The syntax considers the following rules (where the character sequence sym-
bol represents any symbol in the above syntax, such as filter or item):

• symbol

Non-terminal symbol. A non-terminal symbol at the left side of the ’=’
character substitutes the rule that is defined at the right side of the same
line.

Example:
The rule filter = not-filter
is equal to filter = (!)? or-filter*.

• ’symbol’

Terminal symbol. A terminal symbol cannot be substituted anymore. It is
represented by the concrete character sequence surrounded by ’’ .

• symbol1 symbol2

symbol2 follows symbol1

• symbol1 | symbol2

symbol1 or symbol2
181

PROGRAMMER’S GUIDE
• symbol?

symbol is optional. If it occurs, than only once.

• symbol*

symbol is optional. If it occurs, than with any number of repetitions

• (symbol1 symbol2)

Group of symbols. Any operator typed behind the closing bracket is
applied to the whole group.

Minimal fil-
ter

The minimal filter consists of a single item , represented by a key and a
value which are connected by means of a comparator . The correspond-
ing rule is

item = key comperator value

Filter keys The supported keys are defined in the class de.ikv.grasshop-
per.util.SearchFilter . Note that some keys cannot be applied to all
kinds of Grasshopper components (i.e., agencies, places, and agents). For in-
stance, the CODEBASE key can only be applied to agents, and the LASTLO-
CATION key is only valid for mobile agents. If, for example, a list method is
invoked with a filter that contains the LASTLOCATION key, all Grasshopper
components that cannot be applied to this key are automatically excluded from
the search. Thus, a method call that uses the LASTLOCATION key within its
filter can only return a list of mobile agents.

The following table lists all available keys and the components to which they
can be applied.

Table 3: Filter Keys

Filter key Description
 Can be
applied to

CODEBASE Code base of the searched compo-
nent’s Java classes. The corre-
sponding value must match to the
code base syntax defined in Sec-
tion 5.3.

A value of this key corresponds to
the return value of the method
getCodebase() of the class
AgentInfo.

• Agents
182

CHAPTER 9: THE COMMUNICATION SERVICE
DESCRIPTION Textual description of the
searched component.

A value of this key corresponds to
the return value of the method
getAgentDescription()
of the class AgentPresenta-
tion, respectively to the return
value of the method getDe-
scription() of the class
PlaceInfo.

• Agents

• Places

HOME Home location of the searched
component.

A value of this key corresponds to
the return value of the method
getHome() of the class
AgentInfo.

The syntax of the corresponding
value must match to a textual rep-
resentation of the class
de.ikv.grasshopper.
communication.
GrasshopperAddress,

as defined in Section 5.4.

• Agents

(Equal to LO-
CATION for
stationary
agents)

INTERFACENAME Full qualified class name of the
searched component.

A value of this key corresponds to
the return value of the method
getAgentInterface-
Name() of the class AgentIn-
fo.

• Agents

Table 3: Filter Keys

Filter key Description
 Can be
applied to
183

PROGRAMMER’S GUIDE
DESCRIPTION Textual description of the
searched component.

A value of this key corresponds to
the return value of the method
getAgentDescription()
of the class AgentPresenta-
tion, respectively to the return
value of the method getDe-
scription() of the class
PlaceInfo.

• Agents

• Places

HOME Home location of the searched
component.

A value of this key corresponds to
the return value of the method
getHome() of the class
AgentInfo.

The syntax of the corresponding
value must match to a textual rep-
resentation of the class
de.ikv.grasshopper.
communication.
GrasshopperAddress,

as defined in Section 5.4.

• Agents

(Equal to LO-
CATION for
stationary
agents)

INTERFACENAME Full qualified class name of the
searched component.

A value of this key corresponds to
the return value of the method
getAgentInterface-
Name() of the class AgentIn-
fo.

• Agents

Table 3: Filter Keys

Filter key Description
 Can be
applied to
184

CHAPTER 9: THE COMMUNICATION SERVICE
LASTLOCATION Previous location of the searched
component.

A value of this key corresponds to
the return value of the method
getLastLocation() of the
class AgentInfo.

The syntax of the corresponding
value must match to a textual rep-
resentation of
de.ikv.grasshopper.
communication.
GrasshopperAddress,

as defined in Section 5.4.

• Mobile
agents

LOCATION Current location of the searched
component.

A value of this key corresponds to
the return value of the method
getLocation() of the
AgentInfo of the class
AgentSystemInfo.

The syntax of the corresponding
value must match to a textual rep-
resentation of the class
de.ikv.grasshopper.
communication.
GrasshopperAddress,

as defined in Section 5.4.

• Agents

• Agencies

• Places

Table 3: Filter Keys

Filter key Description
 Can be
applied to
185

PROGRAMMER’S GUIDE
NAME Name of the searched component.

A value of this key corresponds to
the return value of the method
getName() of the class Pla-
ceInfo or AgentSystemIn-
fo, respectively to the return
value of the method getAgent-
Name() of the class Agent-
Presentation.

• Agents

• Agencies

• Places

SERVICEID Identifier of the searched compo-
nent.

A value of this key corresponds to
the return value of the method
getIdentifier() of the class
AgentInfo or AgentSys-
temInfo.

The syntax of the corresponding
value must match to a textual rep-
resentation of
de.ikv.grasshopper.
type.Identifier,

as defined in Section 5.1.

• Agents

• Agencies

STATE Current state of the searched com-
ponent.

A value of this key corresponds to
the return value of the method
getState() of the class
AgentInfo or PlaceInfo.

• Agents

• Places

TYPE Type of the searched component.

A value of this key corresponds to
the return value of the method
getType() of the class
AgentInfo or AgentSys-
temInfo.

• Agents

• Agencies

Table 3: Filter Keys

Filter key Description
 Can be
applied to
186

CHAPTER 9: THE COMMUNICATION SERVICE
Creating a
Filter

To create an empty filter which matches all entries, just create an empty
SearchFilter object.

SearchFilter filter = new SearchFilter();

To define a specific filter, create a String object and initialize it with a filter
rule that matches the above syntax. Create a SearchFilter object and pro-
vide the previously defined filter rule as parameter of the SearchFilter
constructor. Another possibility is to create an empty SearchFilter object
and use its setFilter(...) method in order to specify the filter rule.

9.14 Migrating Servers and Clients

The fundamental characteristic of mobile agents is their ability to autono-
mously migrate from one network location to another. This ability may cause
problems if an agent wants to migrate while being involved in a communica-
tion session. The Grasshopper communication service is able to handle the fol-
lowing scenarios of migrating agents:

First Migration Scenario: Migrating Server Agent

A client agent creates a proxy of a server agent and starts a communication
session by periodically invoking methods on the proxy. The communication
service forwards the method invocations to the remotely running server agent.
After a few invocations performed by the client agent, the server agent mi-
grates to a new location. After the server agent’s migration, the client agent
again tries to invoke a server method.

Concerning this scenario, two aspects have to be considered:

1. The server agent migrates away before the invoked method has returned a
result to the client agent.

In this case, the method will be completed, even in the absence of the
server agent. The reason is that the method is performed in a separate
thread, created by the communication service. The server agent’s own
thread runs independently in parallel. If the server agent moves away, its
own thread terminates, but its (passive) object instance remains valid as
long as it is referenced by other objects. After completing the method, the
communication service returns the result to the client agent, terminates the
thread that has performed the method, and releases its references to the
server agent’s object instance. After this, the Java garbage collector is able
to remove the server object.

2. The client agent again tries to invoke a server method after the server
187

PROGRAMMER’S GUIDE

t can

is not
ve to
t. If
t does
trieve
 must
ple-

king

g it
 au-
r in-
ner
per in
agent has migrated to a new location.

In this case, both involved agencies (i.e., the agency hosting the client
agent as well as the agency hosting the server agent) must be registered at
the same agency domain service. If this condition is fulfilled, the proxy
automatically contacts the agency domain service in order to retrieve the
new location of the server agent. After this, the proxy forwards the method
invocation to the new location. The client agent does not need to be aware
of the fact that the server agent has moved.

Second Migration Scenario: Migrating Client Agent

A client agent creates a proxy of a server agent and starts a communication
session by periodically invoking methods on the proxy. The communication
service forwards the method invocations to the remotely running server agent.
After a few invocations, the client agent migrates to a new location. Once ar-
rived at the new location, the client agent again tries to invoke a method on the
server agent.

The client agent’s proxy remains valid after the migration. Thus, the clien
continue invoking the server methods via the same proxy.

If the client agent invokes the server method asynchronously, the agent
blocked until the server method returns. Thus, the client agent may mo
another location right after the invocation, i.e., without waiting for a resul
the invoked server method does not return any result or the client agen
not need it, nothing special has to be considered. If the client wants to re
the server result at its new location, the asynchronous method invocation
be performed with the listener approach. Concerning the client agent’s im
mentation, the following conditions must be fulfilled:

• The client agent itself must implement the interface de.ikv.grass-
hopper.communication.ResultListener. Thus, the client
agent must provide the method resultHasArrived(...).

• After invoking the server method and retrieving the FutureResult
object, the client agent must add itself as listener to this object by invo
the method addResultListener(...).

When the server method returns, the method resultHasArrived(...)
is automatically called, in this way notifying the client agent and allowin
to handle the result. If the conditions above are fulfilled, the notification is
tomatically forwarded to the client agent if it has changed its location afte
voking the server method. For detailed information about the liste
approach and the asynchronous communication capabilities of Grasshop
general, please refer to Section 9.6.
188

CHAPTER 9: THE COMMUNICATION SERVICE
The following example incorporates all migration scenarios described above.

9.15 Migration Scenario

The example scenario for showing the migration capabilities of communicat-
ing agents consists of three classes/interfaces, covered by the package exam-
ples.migratingCom:

• MigratingServerAgent (see Example 25 in Section 9.15.1): An
agent that provides one method to the communication service.

• IMigratingServerAgent (see Example 26 in Section 9.15.1): The
server interface that contains the method which has to be accessible for the
client agent. This interface is the basis for the generation of server proxies.

• MigratingClientAgent (see in Example 27 Section 9.15.2): The cli-
ent agent that invokes the accessible method of the server.

9.15.1 Example: MigratingServerAgent

The purpose of the MigratingServerAgent is to perform a method that is in-
voked by the MigratingClientAgent via the Grasshopper communication ser-
vice. This method suspends the thread in which it is running, just in order to
produce a delay before returning a result. The purpose of this delay is to enable
the MigratingClientAgent to move to another location before the server meth-
od has returned a result.

init(...)Inside its init(...) method, the MigratingServerAgent expects a creation
parameter, defining the delay for the server method in milliseconds. If no de-
lay is defined by the user, the default value of 4000 milliseconds is used.

live()The live() method creates a graphical user interface, requesting a new lo-
cation from the user. After the user has pressed the OK button of the GUI, the
agent tries to migrate to the specified location where the live() method is
started again.

server-
Method(...)

The method named serverMethod(...) is meant to be called by the Mi-
gratingClientAgent. This method produces a delay in order to enable the Mi-
gratingClientAgent to migrate to another location before returning a result.

Example 25: MigratingServerAgent

package examples.migratingCom;
189

PROGRAMMER’S GUIDE
import de.ikv.grasshopper.agent.MobileAgent;
import de.ikv.grasshopper.communication.*;
import javax.swing.*;
import java.awt.*;

// This class realizes the server agent of the migrating
// communication scenario.
public class MigratingServerAgent extends MobileAgent

implements IMigratingServerAgent
{
// Data state of the agent, since not transient
int delay;

// Required creation argument:
// args[0] = delay time between invocation and
// termination of the method ’serverMethod’.
public void init(Object[] creationArgs) {

if (creationArgs == null ||
creationArgs.length < 1){

log("Creation argument needed: <delayTime>");
log("Exiting.");
throw new RuntimeException();

}
if (creationArgs != null)
delay =
Integer.parseInt((String)creationArgs[0]);

else
delay = 4000;

}

public String getName() {
return "MigratingServerAgent";

}

public void live() {
String location;

log("Waiting for new location...");
// Wait for user input
location = JOptionPane.showInputDialog(
null, "Where shall I go?");

if (location != null) {
log("Trying to move...");
try {
// Go away!
move(new GrasshopperAddress(location));

}

190

CHAPTER 9: THE COMMUNICATION SERVICE
catch (Exception e) {
log("Migration failed: ", e);

}
}

}

// The following method is accessible via the
// communication service.
public String serverMethod(int value) {
log("Performing client request with value = " +
value);

try {
Thread.currentThread().sleep(delay);

}
catch (InterruptedException e) {
log("Sleep interrupted.");

}
log("Returning result to client.\n");
return new String("Server result = " +
Integer.toString(value));

}
}

Example 26: IMigratingServerAgent

package examples.migratingCom;

public interface IMigratingServerAgent
{
public String serverMethod(int value);

}

9.15.2 Example: MigratingClientAgent

The MigratingClientAgent periodically invokes the method named server-
Method(...) of the MigratingServerAgent via the communication service.
By invoking the client agent’s action() method, a user can order the agent to
move to another location.

The MigratingClientAgent maintains the following instance variables which
are, since not declared transient, part of the agent’s data state:

• syncServerProxy: This variable maintains a proxy of the Migrating-
ServerAgent which is able to handle synchronous method calls. Its initial-
ization is performed inside the init(...) method of the
191

PROGRAMMER’S GUIDE

-
itial-

rom

m-

rver-
rmed
lved

is
gent
o

ed

r as
are
ent

ed
agent

gent
 prox-
nally,

ent to
a the
d, re-
ined
MigratingClientAgent.

• asyncServerProxy: This variable maintains a proxy of the Migrating
ServerAgent which is able to handle asynchronous method calls. Its in
ization is performed inside the init(...) method of the
MigratingClientAgent.

• futureResult: This variable maintains a FutureResult object
which is responsible for retrieving an asynchronously arriving result f
the MigratingServerAgent.

• serverParameter: The integer value of this variable is used as para
eter of the method serverMethod(...) of the MigratingServerAgent.
The value is incremented after each method call on the MigratingSe
Agent in order to enable the user to find corresponding outputs perfo
by the client and the server in the text console windows of both invo
agencies.

• requestedLocation: This variable is initialized inside the
action() method of the MigratingClientAgent. By means of th
method, which can be called by the user via the agency’s UI, the a
requests a new location. Inside the live() method, the agent migrates t
this location as soon as it has been specified by the user.

• serverId: This variable maintains the identifier of the contact
MigratingServerAgent.

• comMode: The value of this variable has to be specified by the use
first creation argument for the MigratingClientAgent. Allowed values
„sync“ and „async“. Depending on the specified value, the client ag
performs the server method synchronously or asynchronously.

init(...) Inside its init(...) method, the MigratingClientAgent stores the provid
creation arguments in its non-transient instance variables. After this, the
contacts an agency domain service via the IRegion interface of the local
agency in order to look for a running MigratingServerAgent. The client a
selects the first server agent from the retrieved list and creates two server
ies: one for synchronous and one for asynchronous communication. Fi
the instance variable serverParameter is set to 0.

action() The action() method of the client agent enables a user to send the ag
a new location. Inside the method (which can be invoked by the user vi
agency’s UI, as explained in Chapter 7), an input dialog window is create
questing a new destination location from the user. The location is mainta
by the instance variable requestedLocation. The corresponding
move(...) operation is called inside the agent’s live() method.
192

CHAPTER 9: THE COMMUNICATION SERVICE
syncLive()The method syncLive() is called from inside the agent’s live() method,
if the synchronous communication mode has been selected by the user. Inside
this method, the agent periodically invokes the method server-
Method(...) of the MigratingServerAgent via the synchronous server
proxy. The method calls are performed inside a while loop which ends either
due to a caught communication exception or due to a retrieved migration re-
quest performed by the user.

An ObjectNotBoundException may occur due to the call of the server
method if the server agent is not available for communication. Two possible
reasons may lead to this exception:

• The MigratingServerAgent is not alive anymore.

• The MigratingServerAgent is currently migrating to another location.

In the second case, the MigratingServerAgent will probably become available
again after a short time. Thus, the client agent retries the method invocation
five times, waiting for one second between two communication attempts.

If any other exception is thrown, the client agent assumes that the server agent
will not become available again and thus terminates its while loop at once.

If the reason for terminating the while loop was a migration request per-
formed by a user, the client agent tries to move to the new destination location.

asyncLive()The method asyncLive() is called from inside the agent’s live() meth-
od, if the asynchronous communication mode has been selected by the user.
Inside this method, the agent invokes the method serverMethod(...) of
the MigratingServerAgent via the asynchronous server proxy.

After invoking the server method, the client agent retrieves a reference of the
FutureResult object from the asynchronous server proxy and uses this
object for registering itself as result listener. After this, the client agent’s meth-
od resultHasArrived(...) is automatically called due to an incoming
server result. Please refer to Section 9.5 for detailed information about asyn-
chronous communication in Grasshopper.

live()Inside its live() method, the agent checks the availability of the Migrating-
ServerAgent. If one of the server proxies refers to null, the client agent as-
sumes that no server agent has been found and removes itself. Otherwise, the
client agent invokes either the method syncLive() or asyncLive(), de-
pending on the communication mode that has been selected by the user.

re-
sultHasAr-
rived(...)

If the user has selected the asynchronous communication mode, the method
resultHasArrived(...) is automatically invoked after retrieving an
asynchronously incoming server result. Please refer to Section 9.5 for detailed
information about asynchronous communication in Grasshopper.
193

PROGRAMMER’S GUIDE
Example 27: MigratingClientAgent

package examples.migratingCom;

import de.ikv.grasshopper.agent.*;
import de.ikv.grasshopper.agency.*;
import de.ikv.grasshopper.type.*;
import de.ikv.grasshopper.communication.*;
import de.ikv.grasshopper.util.*;
import javax.swing.*;
import java.awt.*;

// This class realizes the client agent of the migrating
// communication scenario.
public class MigratingClientAgent extends MobileAgent

implements ResultListener
{
// Data state of the agent, since not transient
IMigratingServerAgent syncServerProxy;
IMigratingServerAgent asyncServerProxy;
FutureResult futureResult;
int serverParameter;
String requestedLocation;
String serverId;
String comMode;

// Required creation arguments:
// args[0] = communication mode. Expected values =
// "sync" or "async"
public void init(Object[] creationArgs) {
IRegion regionProxy;
AgentInfo[] serverInfos;

if (creationArgs == null ||
creationArgs.length < 1) {

log("Creation argument needed: <comMode>");
log("Exiting.");
throw new RuntimeException();

}
// Get creation argument
// comMode: Expected values = "sync" or "async"
comMode = (String) creationArgs[0];

// Get domain service proxy of local agency
regionProxy = getRegion();
// Look for the server agent in the
// agency domain service
194

CHAPTER 9: THE COMMUNICATION SERVICE
SearchFilter filter =
new SearchFilter(
SearchFilter.NAME+"=MigratingServerAgent");

serverInfos = regionProxy.listAgents(
null, filter);

// Create proxies of the server agent
// (One for sync. and one for async. communication)
syncServerProxy = null;
asyncServerProxy = null;
serverId = null;
if (serverInfos != null) {
serverId =
serverInfos[0].getIdentifier().toString();

syncServerProxy = (IMigratingServerAgent)
ProxyGenerator.newInstance(
IMigratingServerAgent.class,
serverId, ProxyGenerator.SYNC);

asyncServerProxy = (IMigratingServerAgent)
ProxyGenerator.newInstance(
IMigratingServerAgent.class,
serverId, ProxyGenerator.ASYNC);

}
// Initialize parameter for server method.
serverParameter = 0;

}

public String getName() {
return "MigratingClientAgent";

}

// By invoking this method via the agency’s user
// interface, the user can move the agent to another
// location.
public void action() {
if (comMode.equals("sync")) {
log("Waiting for new location...");
requestedLocation =
JOptionPane.showInputDialog(
null, "Where shall I go?");

}
}

public void beforeMove() {
log("Moving.");

}

public void afterMove() {
log("Arrived.");
195

PROGRAMMER’S GUIDE
}

// This method is performed if the agent has been
// started with the communication mode set to "sync".
public void syncLive() {
String serverResult;
int numberOfRetries;

numberOfRetries = 0;
requestedLocation = null;
while (numberOfRetries < 5 &&

requestedLocation == null) {
try {
log("Calling server method with value = " +
serverParameter);

// Invoke server method synchronously
// by using the sync. server proxy
serverResult =
syncServerProxy.serverMethod(
serverParameter);

serverParameter++;
log("Result has arrived: " + serverResult +
"\n");

}
catch (ObjectNotBoundException e) {
// Server agent not found. Possible reason:
// server agent is currently migrating
// or server agent has been removed.
// Retry 5 times.
log("Server agent currently not available.\\
Retrying " +
Integer.toString(5 - numberOfRetries) +
" times...");
numberOfRetries++;
serverParameter--;
// Wait for a second until retrying contact.
try {
Thread.currentThread().sleep(1000);

}
catch (InterruptedException e2) {
log("Sleep interrupted.");

}
}
catch (Throwable t) {
// Something unexpected happened. Terminate
// while loop.
log("Communication exception caught: ", t);
196

CHAPTER 9: THE COMMUNICATION SERVICE
numberOfRetries = 5;
}

}
if (requestedLocation != null) {
log("Trying to move...");
try {
// Go away!
move(
new GrasshopperAddress(requestedLocation));

}
catch (Exception e) {
requestedLocation = null;
log("Migration failed: ", e);

}
}

}

// This method is performed if the agent has been
// started with the communication mode set to
// "async".
public void asyncLive() {
int numberOfRetries;
String requestedLocation;

log("Waiting for new location...");
requestedLocation =
JOptionPane.showInputDialog(
null, "Where shall I go?");

// Invoke server method asynchronously
// by using the async. server proxy
try {
log("Starting asynchronous call");
// Invoke server method asynchronously
// by using the async. server proxy
asyncServerProxy.serverMethod(serverParameter);
// Get futureResult object from the proxy
futureResult = ((IFutureResult)
asyncServerProxy).getFutureResult();

// The client agent adds itself as result
// listener to the futureResult object
futureResult.addResultListener(this);
// Note: The result will be retrieved by the
// method resultHasArrived
// of the client’s result listener.
log("Listening for notification");
serverParameter++;

}

197

PROGRAMMER’S GUIDE
catch (Throwable t) {
log("Cannot contact server: ", t);

}

log("Trying to move...");
try {
// Go away!
move(new GrasshopperAddress(requestedLocation));

}
catch (Exception e) {
log("Migration failed: ", e);

}
}

public void live() {
if (syncServerProxy == null ||

asyncServerProxy == null) {
log("No MigratingServerAgent found. Removing\\
myself...");
try {
remove();

}
catch (Exception e) {
log("Removal failed.");

}
}

if (comMode.equals("sync"))
syncLive();

else
asyncLive();

}

// The following method is only needed if the client
// agent has been started in asynchronous mode.
// The method is automatically called when an
// asynchronous server result has arrived.
public void resultHasArrived(ResultEvent e){
FutureResult fResult;
String serverResult = null;
log("Listener notified.");
fResult = (FutureResult) e.getSource();
try {
serverResult = (String) fResult.getResult();

}
catch (Throwable t) {
log("Exception caught: ", t);

}

198

CHAPTER 9: THE COMMUNICATION SERVICE
if (serverResult != null)
log("Notified server result = " + serverResult);

}
}

9.15.3 Running the Scenario

Requirements:

• A running agency domain service. Note that this service has to be started
before the agencies, and the service’s address has to be specified when
starting the agencies in order to register them. Please refer to the User’s
Guide for more information about how to start agencies and agency
domain services.

• Three running agencies
Since the agents in this scenario create own GUIs that may block the
agency GUI, it is recommended that you do not activate the agency GUI.
Instead, start the agencies just with their textual interface (command
option -tui). Please refer to the paragraphs titled „Running the Examples“
at the beginning of Chapter 2 in order to get a detailed explanation about
the possibly occurring GUI problems.

• If you are using a JDK 1.2 environment, you must have generated a proxy
class (named IMigratingServerAgentP) by invoking the Grasshop-
per stub generator with the interface class IMigratingServerAgent
as input parameter. The file IMigratingServerAgentP.class
should be stored either in a directory belonging to the Java classpath or in
the code base directory of the MigratingClientAgent. In a JDK 1.3 envi-
ronment, this class is not needed. Even if it is available, it will not be used.
Instead, the proxy is dynamically generated by the MigratingClientAgent
at runtime.

Running the Example:

Create a MigratingServerAgent in one of the running agencies (1). This agen-
cy will be referred to as Agency_1 in the scope of this section. As creation ar-
gument, you can optionally provide a delay time in milliseconds. This delay
time will be used by the agent to delay the method that is remotely called by
the MigratingClientAgent. If you do not specify a delay time, the default value
of 4000 milliseconds will be used.

If you are using the textual user interface of the agency, please create the
agent by means of the following command:
199

PROGRAMMER’S GUIDE

iron-
eation

t use
. The
 as
 one
ode

hro-

te the
sired

iron-
eation

f the
as cre-

reat-
cr a examples.migratingCom.MigratingServerAgent 5000

Note that you may specify any other (positive) delay time that fits into the
range of an int variable. The only purpose of this delay time is to enable
the user to send the client agent to another location before the server
method returns.

If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

Create a MigratingClientAgent in one of the running agencies (2). Do no
the agency in which the MigratingServerAgent has been created before
hosting agency of the MigratingClientAgent agency will be referred to
Agency_2 in the scope of this section. The MigratingClientAgent expects
creation argument, specifying the desired communication mode. The m
may be set to „sync“ for synchronous communication or „async“ for async
nous communication.

If you are using the textual user interface of the agency, please crea
agent by using one of the following commands, depending on the de
communication mode:

• cr a examples.migratingCom.MigratingClientAgent
sync

• cr a examples.migratingCom.MigratingClientAgent
async

If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

After creating both agents in the order mentioned above, the behavior o
scenario depends on the communication mode that has been specified
ation argument of the MigratingClientAgent:

Synchro-
nous scenar-
io

Synchronous scenario, performed if the MigratingClientAgent has been c
200

CHAPTER 9: THE COMMUNICATION SERVICE
ed with the value „sync“ as demanded communication mode:

The MigratingServerAgent creates a graphical input dialog window,
requesting a new destination location from the user.

The MigratingClientAgent creates a proxy of the MigratingServerAgent
(3) and periodically invokes the method serverMethod(...) via the
proxy (4). Before returning, the server method produces the previously
specified delay or the default delay of 4000 milliseconds, as described
above.

Please type the address of the third agency into the server agent’s GUI, i.e.,
the address of the agency in which no agent is currently running, and press
the OK button (5a). This agency is referred to as Agency_3 in the scope of
this section. You will see that the server agent is migrating at once (5b),
and you will also notice that the currently running method server-
Method(...), invoked by the MigratingClientAgent before the migra-
tion request, is completed in spite of the absence of the server agent (6).
Finally you will notice that all subsequent method invocations, performed
by the client agent (7a), are automatically forwarded to the new location of
the MigratingServerAgent (7b).

Please invoke the action() method of the MigratingClientAgent. If you
are using the textual user interface of the agency, you can do this via the

Figure 22: Synchronous Migration Scenario

Agency 2

Agency UIAgency UI

Create
MigratingClientAgent

UU User input

UU

4a4a

Invoke
server

method

ProxyProxy

Agency
API

Agency
API

Migrating
Client
Agent

33 Create
server proxy

22

Agency 1

Agency UIAgency UI

Migrating
Server
Agent

Create
MigratingClientAgent

UU

11

4b4b

5a5a

Agency 3

Migrating
Server
Agent

5b5b66

7b7b

Order
migration

Return
result

7a7a
201

PROGRAMMER’S GUIDE

ma-
ient
 loca-
. You
sly

rived
rver

 text
prise

e that
nde-

 forth

 cre-
invoke command. (Please refer to the User’s Guide for detailed infor
tion about this command.) After performing this command, the cl
agent creates a graphical user interface, requesting a new destination
tion. Please type in the address of Agency_2 and press the OK button
will see that the client agent waits for the completion of the previou
invoked server method and, after this, migrates to Agency_2. Once ar
at its new destination, the client agent continues invoking the se
method.

The client agent as well as the server agent perform outputs on the
consoles of their hosting agency. Among others, these outputs com
the value of the integer variable serverParameter which is incre-
mented after each method call. By looking at this number, you can se
the result of every invoked method is retrieved by the client agent, i
pendent of the migration behavior of both agents.

Please proceed with the scenario by moving both agents back and
and looking at the output occurring in the agencies’ text consoles.

Asynchro-
nous scenar-
io

Asynchronous scenario, performed if the MigratingClientAgent has been
ated with the value „async“ as demanded communication mode:

Figure 23: Asynchronous Migration Scenario

Agency 2
Agency UIAgency UI

Create
MigratingClientAgent

UU User input

UU

5a5a

Invoke
server

methodAgency
API

Agency
API

Migrating
Client
Agent

33

Create server proxy

22

66
get
Future Result

Future
Result
Future
Result

44

Order
migration

Agency 3

Migrating
Client
Agent

Agency 1

88

Migrating
Server
Agent

5b5b

Server
proxy

Server
proxy

77

add
Listener

9a9a

Return
result9b9b

9c9c

Create
Migrating
Server
Agent

UU

11
202

CHAPTER 9: THE COMMUNICATION SERVICE
The MigratingServerAgent creates a graphical input dialog window,
requesting a new destination location from the user.

After creating a server proxy (3), the MigratingClientAgent also creates a
graphical input dialog window, requesting a new destination location from
the user.

Please type the address of Agency_3 into the input dialog window of the
client agent and press the OK button (4).

The client agent invokes the server method asynchronously (5), gets a
FutureResult object from the server proxy (6), and registers itself as result
listener (7). After this, the client agent and migrates to Agency_3 without
waiting for the result of the invoked method (8). By looking at the client
agent’s output in the text console of Agency_3, you will notice that the
result of the server method is automatically forwarded to the client agent’s
new location (9).

Please proceed with the scenario by moving both agents back and forth
and looking at the output occurring in the agencies’ text consoles.

9.15.4 Summary

• The Grasshopper communication service is able to keep track of migrating
server and client agents.

• If a client agent invokes a method on a server agent and the server agent
migrates to another location before completing the method, the method is
completed by the agency even without the presence of the server agent. All
subsequent invocations, performed by the client agent, are automatically
forwarded to the server agent’s new location. Note that this forwarding
mechanism only works if the same agency domain service is available at
all involved agencies.

• If a client agent uses asynchronous, notification-based communication for
invoking methods of a server agent, and if the client agent itself imple-
ments the required result listener interface, then the client agent may
migrate before retrieving the result of a previously invoked server method.
The communication service will automatically forward the result to the
client agent’s new location.
203

PROGRAMMER’S GUIDE

 inter-
inter-
t as

ternal
on just

r ad-
ation
nts if

pplied.
nal ap-
istry
low).

ent a
 to be
9.1 for
ction

unica-

n

d it is
com-
ethod

m-
9.16 Interacting with External Applications

The sections above have described how to use the different communication
mechanisms of Grasshopper for interactions between agents, agencies, and
agency domain services. However, beside these „Grasshopper-internal“
actions, the communication service also allows external applications to
act with the Grasshopper platform. The external application may ac
communication client and/or server.

External Client Applications

In order to use the Grasshopper communication service as a client, an ex
application has to behave exactly as a Grasshopper agent: the applicati
creates a proxy of the desired server object/agent by using the newIn-
stance(...) method of the class de.ikv.grasshopper.communi-
cation.ProxyGenerator.

Note: An external application always has to specify the complete serve
dress, when creating a server proxy. The simplification to use a combin
of host name and agency name instead (which is possible for client age
the local agency is registered at an agency domain service) cannot be a
In order to determine the address of a server agent or agency, the exter
plication can contact an appropriate region registry by creating a reg
proxy and specifying the complete registry address (see the example be

External Server Applications

Similar to agents acting as servers, an external application must implem
server interface, i.e., an interface that defines those methods that have
made accessible via the communication service. Please refer to Section
detailed information. Concerning the proxy generation, please refer to Se
9.2.

External-
CommSer-
vice

In order to enable an external application to use the Grasshopper comm
tion service as a server, Grasshopper provides the class de.ikv.grass-
hopper.communication.ExternalCommService. This class
provides the following methods:

• startReceiver(...): This method starts a new communicatio
receiver at the ExternalCommunicationService object. A com-
munication receiver is characterized by a Grasshopper address, an
needed by communication clients for accessing server objects. The
plete address of the communication receiver has to be provided as m
parameter. Note that one instance of the class ExternalCommunica-
tionService can maintain several communication receivers, for exa
204

CHAPTER 9: THE COMMUNICATION SERVICE
ple in order to support different protocols.

• registerObject(...): This method registers a server object at the
ExternalCommunicationService instance. Similar to Grasshop-
per server agents, a server object is characterized by implementing a server
interface, i.e., a Java interface that defines those methods of the server
object which are to be accessible for clients via the communication ser-
vice.

• deregisterObject(...): This method deregisters a server object
from the ExternalCommunicationService object.

• shutdown(): This method terminates the ExternalCommunica-
tionService object.

The external application has to perform the following steps in order to become
accessible as server:

1. Create an instance of the class de.ikv.grasshopper.communica-
tion.ExternalCommService.

2. Create an instance of the class de.ikv.grasshopper.communica-
tion.GrasshopperAddress. As constructor argument, provide a
complete Grasshopper address. This address will be used later on by cli-
ents to connect themselves to the server object.

3. Start a communication receiver on the ExternalCommService object
that has been created in step 1. As method parameter, provide the Grass-
hopper address object that has been created in step 2. (Note that, similar to
Grasshopper agencies and region registries, multiple communication
receivers can be started, e.g., in order to support multiple protocols.)

4. Register the server object (i.e., the object that implements the server inter-
face of the external application) at the ExternalCommService object.
The server object may be the application itself or a separate Java object.
As method parameters, an identifier for the server object as well as a refer-
ence of the server object have to be specified. The identifier will be used
later on for identifying the server object when a client wants to create a
server proxy. (Note that in the case of Grasshopper agents, the automati-
cally generated agent identifier is used for this purpose. In the case of an
external application, the identifier is user-defined, and thus its uniqueness
is not guaranteed.)
205

PROGRAMMER’S GUIDE

d-
nt as

rver
lica-

ent to

ter-
ct.

s-
 as a

e

shop-
at re-

 the

 the
lAc-

 the
9.17 External Communication Scenario

The following examples shows how an external application can use the Grass-
hopper communication service. The external application acts in the client and
in the server role.

The example scenario consists of the following classes/interfaces, covered by
the package examples.externalCom:

• ExternalApplication (see Example 28 in Section 9.17.1): A stan
alone Java application that interacts with the Grasshopper environme
communication client and server.

• ServerObject (see Example 29 in Section 9.17.1): The actual se
object class. An instance of this class is created by the ExternalApp
tion, and it is contacted by the ExternalAccessAgent that acts as a cli
this object.

• IServerObject (see Example 30 in Section 9.17.1): The server in
face of the external application, implemented by the class ServerObje

• ExternalAccessAgent (see Example 31 in Section 9.17.2): A Gras
hopper agent that is created by the ExternalApplication and that acts
client on the ServerObject.

• IExternalAccessAgent (see Example 32 in Section 9.17.2): Th
server interface of the ExternalAccessAgent.

9.17.1 Example: ExternalApplication

Class ExternalApplication

The class ExternalApplication acts as client as well as server of the Gras
per communication service. It realizes a stand-alone Java application th
quires the following creation arguments:

Creation ar-
guments

• The complete address of a running region registry

• An identifier for the server object. This name will be used later on by
ExternalAccessAgent to create a proxy of the server object.

• an address for the communication receiver that will be created by
ExternalApplication. This address will be used later on by the Externa
cessAgent to create a proxy of the server object.

main(...) At the beginning of its main(...) method, the ExternalApplication performs
following steps:
206

CHAPTER 9: THE COMMUNICATION SERVICE
1. creation of the server object

2. creation of a ExternalCommService object

3. start of a communication receiver on the ExternalCommService
object

4. registration of the server object at the ExternalCommService object.

After these steps, the server object is accessible for clients via the Grasshopper
communication service, provided that the client knows the address of the com-
munication receiver as well as the class and (user-defined) identifier of the
server object.

Now the ExternalApplication acts as client on several Grasshopper compo-
nents by performing the following steps:

5. creation of a proxy of the region registry.

6. retrieval of a list of all agencies that are registered at the region registry

7. creation of a proxy of the first agency in the retrieved list

8. creation of a new place inside the contacted agency

9. creation of an ExternalAccessAgent in the place ’InformationDesk’ of the
contacted agency

10.creation of a proxy of the created agent by using the agent’s server inter-
face IExternalAccessAgent

11.invocation of an agent method, ordering the agent to move to the place
that has been created in step 8.

Example 28: ExternalApplication

package examples.externalCom;

import de.ikv.grasshopper.communication.*;
import de.ikv.grasshopper.agency.*;
import de.ikv.grasshopper.util.SearchFilter;
import de.ikv.grasshopper.type.*;
import examples.simpleCom.*;

// This class realizes a stand-alone application that
// acts as client as well as a server for the agent
// ’ExternalAccessAgent’.
public class ExternalApplication
{
public static void main(String args[])

throws Exception {
207

PROGRAMMER’S GUIDE
// Creation arguments:
// args[0] = Region registry address
// args[1] = Server object identifier
// args[2] = Communication service address
// args[3] = Agent code base
if (args == null || args.length < 4) {
System.out.println("## ExternalApplication:\\
Creation arguments needed: <registryAddress>\\
<serverObjectId> <commServiceAddress>\\
<agentCodebase>");
System.out.println("## Exiting.");
System.exit(1);

}
String registryAddress = args[0];
String serverObjectId = args[1];
GrasshopperAddress commServiceAddress =
new GrasshopperAddress(args[2]);

String agentCodebase = args[3];

// Create server object
System.out.println("## ExternalApplication:\\
Creating server object");
ServerObject serverObject = new ServerObject();

// Create communication service
ExternalCommService commService = new
ExternalCommService();

// Start communication receiver
commService.startReceiver(commServiceAddress);

// Register server object at communication service
System.out.println("## ExternalApplication:\\
Registering server object");
commService.registerObject(serverObjectId,
(ServerObject) serverObject);

// Contact region registry
System.out.println("## ExternalApplication:\\
Contacting region registry ’" + registryAddress +
"’.");

GrasshopperAddress regionAddr =
new GrasshopperAddress(registryAddress);

IRegionRegistration regionProxy =
(IRegionRegistration)
ProxyGenerator.newInstance(
IRegionRegistration.class,
regionAddr.generateRegionId(),
208

CHAPTER 9: THE COMMUNICATION SERVICE
regionAddr);

// Request a list of all registered agencies from
// the region registry
AgentSystemInfo[] agentSystemInfo =
regionProxy.listAgencies(new SearchFilter());

System.out.println("## ExternalApplication: " +
agentSystemInfo.length + " agencies found.");

for (int i = 0; i < agentSystemInfo.length; i++){
System.out.println("## " + (i+1) + ". " +
agentSystemInfo[i].getLocation());

}

// Contact first agency of the list
System.out.println("## ExternalApplication:\\
Contacting agency ’" +
agentSystemInfo[0].getLocation().
generateAgentSystemId() + "’.");
GrasshopperAddress address =
agentSystemInfo[0].getLocation();

String serverAddresses[] =
regionProxy.lookupCommunicationServer(
address.generateAgentSystemId());

System.out.println("## ExternalApplication:\\
The agency has the following communication\\
servers:");
for(int i = 0; i < serverAddresses.length; i++){
System.out.println("## " +
serverAddresses[i]);

}
System.out.println("## ExternalApplication:\\
Selecting server " + serverAddresses[0]);
GrasshopperAddress agencyAddress =
new GrasshopperAddress(serverAddresses[0]);

IAgentSystem agencyProxy = (IAgentSystem)
ProxyGenerator.newInstance(
IAgentSystem.class,
agencyAddress.generateAgentSystemId(),
agencyAddress);

// Create a new place inside the contacted agency.
System.out.println("## ExternalApplication:\\
Creating place ’NewPlace’ in contacted agency.");
agencyProxy.createPlace("NewPlace", "");

// Create an agent in the place ’InformationDesk’
// of the contacted agency.
System.out.println("## ExternalApplication:\\
209

PROGRAMMER’S GUIDE
Creating agent inside the place\\
’InformationDesk’.");
Object agentCreationArgs[] = new Object[2];
agentCreationArgs[0] = (String)serverObjectId;
agentCreationArgs[1] =
(String)commServiceAddress.toString();

AgentInfo agentInfo =
agencyProxy.createAgent(
"examples.externalCom.ExternalAccessAgent",
agentCodebase, "", agentCreationArgs);

// Contact the new agent.
System.out.println("## ExternalApplication:\\
Contacting the new agent.");
IExternalAccessAgent agentProxy =
(IExternalAccessAgent)
ProxyGenerator.newInstance(
IExternalAccessAgent.class,
agentInfo.getIdentifier(),
agencyAddress);

// Move the agent to the new place via the agent’s
// own ’go(...)’ method.
System.out.println("## ExternalApplication: \\
Moving the agent to the place ’NewPlace’.");
GrasshopperAddress newLocation = agencyAddress;
newLocation.setPlace("NewPlace");
agentProxy.go(newLocation.toString());

// That’s all
System.out.println("## ExternalApplication:\\
Ready.");
System.exit(0);

}
}

Class ServerObject

This class represents the server part of the ExternalApplication. It implements
the method printMessage(...) that is defined in the corresponding
server interface IServerObject.

Example 29: ServerObject

package examples.externalCom;

// This class realizes a server object that is offered
210

CHAPTER 9: THE COMMUNICATION SERVICE
// by the stand-alone application
// ’ExternalApplication’.
// It is accessible for Grasshopper agents via the
// communication service.
public class ServerObject implements IServerObject
{
public void printMessage(String msg) {
System.out.println("## ServerObject: \\
Receiving message: ’" + msg + "’.");

}
}

Interface IServerObject

This interface represents the server interface that is implemented by the class
ServerObject and that is used by the ExternalAccessAgent for creating a proxy
of the server object.

Example 30: IServerObject

package examples.externalCom;

public interface IServerObject
{
public void printMessage(String msg);

}

9.17.2 Example: ExternalAccessAgent

Class ExternalAccessAgent

Instance
variables

The ExternalAccessAgent maintains the following instance variables:

• serverObjectAddress: the complete address of the server object
that is provided by the ExternalApplication. This address is delivered to
the agent as creation argument.

• serverObjectId: the (user-defined) identifier of the server object.
This identifier is delivered to the agent as creation argument.

• serverObjectProxy: a proxy to the server object, created inside the
agent’s init(...) method

init(...)Inside its init(...) method, the agent creates a proxy of the server object
and invokes the printMessage(...) method on this object. For the cre-
ation of the proxy, the client agent uses the server object’s interface, the server
211

PROGRAMMER’S GUIDE

ent’s

ice,
 The

okes
-

object identifier, and the address of the communication receiver. All these pa-
rameters have been delivered by the ExternalApplication during the ag
creation.

go(...) The agent’s go(...) method is accessible via the communication serv
since it is defined in the agent’s server interface IExternalAccessAgent.
ExternalApplication uses this method to move the agent to a new place.

After its creation as well as before and after its migration, the agent inv
the method printMessage(...) on the server object of the ExternalAp
plication.

Example 31: ExternalAccessAgent

package examples.externalCom;

import de.ikv.grasshopper.agent.*;
import de.ikv.grasshopper.communication.*;
import de.ikv.grasshopper.type.Identifier;
import de.ikv.grasshopper.agency.
AgentCreationFailedException;

// This class realizes an agent that acts as client as
// well as a server for the stand-alone application
// ’ExternalApplication’.
public class ExternalAccessAgent extends MobileAgent

implements IExternalAccessAgent
{
GrasshopperAddress serverObjectAddress;
Identifier serverObjectId;
IServerObject serverObjectProxy;

// Creation arguments:
// args[0] = Name of the external server object that
// has to be contacted by the agent
// args[1] = Address of the external communicytion
// receiver that has to be contacted by the agent
public void init(Object[] args) {

if (args == null || args.length < 2) {
log("Creation arguments needed:\\
<ServerObjectName> <ComReceiverAddress>");
log("Exiting.");
throw new RuntimeException();

}
String serverObjectName = (String)args[0];
String serverObjectAddr = (String)args[1];
212

CHAPTER 9: THE COMMUNICATION SERVICE
// Contact the server object which has been
// created by the server application
log("Creating proxy of server object");
serverObjectAddress = new
GrasshopperAddress(serverObjectAddr);

serverObjectId = new
Identifier(serverObjectName.getBytes());

serverObjectProxy =
(IServerObject)ProxyGenerator.newInstance(
examples.externalCom.IServerObject.class,
serverObjectId,
serverObjectAddress);

// Invoke the server object’s method
log("Notifying server about my creation.");
serverObjectProxy.printMessage(
"ExternalAccessAgent created.");

}

public String getName() {
return "ExternalAccessAgent";

}

public void afterMove() {
log("Notifying server about my arrival.");
serverObjectProxy.printMessage(
"ExternalAccessAgent arrived.");

}

public void go(String location) {
log("Roger, moving to " + location);
try {
log("Notifying server about my migration.");
serverObjectProxy.printMessage(
"ExternalAccessAgent moving.");

move(new GrasshopperAddress(location));
}
catch (Exception e) {
log("Migration failed. Exception = ", e);
serverObjectProxy.printMessage(
"ExternalAccessAgent couldn’t move.");

}
}

public void live() {
}

}

213

PROGRAMMER’S GUIDE

e the
g the
more

roxy

ace

g-
 1.3

ilable,
d by

wing

eter-
Interface IExternalAccessAgent

This interface represents the server interface that is implemented by the Exter-
nalAccessAgent and that is used by the ExternalApplication for creating a
proxy of the agent.

Example 32: IExternalAccessAgent

package examples.externalCom;

public interface IExternalAccessAgent
{
public void go(String location);

}

9.17.3 Running the Scenario

Requirements:

• A running region registry. Note that the registry has to be started befor
agency, and the registry’s address has to be specified when startin
agency in order to register them. Please refer to the User’s Guide for
information about how to start agencies and region registries.

• One running agency

• If you are using a JDK 1.2 environment, you must have generated p
classes (named IServerObjectP and IExternalAccessA-
gentP) by invoking the Grasshopper stub generator with the interf
classes IServerObject respectively IExternalAccessAgent as
input parameter. The files IServerObjectP.class and IExterna-
lAccessAgentP.class should be stored either in a directory belon
ing to the Java classpath or in the code base directory. In a JDK
environment, the proxy classes are not needed. Even if they are ava
they will not be used. Instead, the proxies are dynamically generate
the respective clients at runtime.

Running the Example:

Start the ExternalApplication as a stand-alone Java application. The follo
creation arguments are required:

• The complete address of the previously started region registry. (To d
mine the address, please use the ’status’ command in the registry’s
TUI.
214

CHAPTER 9: THE COMMUNICATION SERVICE
• An identifier for the server object that will be created by the ExternalAp-
plication. This identifier will be used by the ExternalAccessAgent for cre-
ating a proxy of the server object.

• A complete Grasshopper address for the communication receiver of the
ExternalApplication. This address will be used by the ExternalAccessA-
gent for creating a proxy of the server object.

java examples.externalCom.ExternalApplication <reg-
istryAddress> <serverId> <comServiceAddress>

Now have a look at the output in the terminal window of the ExternalApplica-
tion and at the text console and GUI of the running agency.

After its creation, the ExternalApplication establishes its server side (1) by
creating the server object, creating a communication service instance, register-
ing the server object at the communication service, and starting a communica-
tion receiver.

After this, the ExternalApplication acts as a client by creating a proxy of the
region registry (2), contacting the registry by listing all registered agencies (3),
and creating a proxy of the first agency in the retrieved list (4). The External-
Application contacts the agency in order to create a new place (5) and a new
agent (6). From this point in time on, the ExternalApplication also acts as com-

Figure 24: External Application Scenario

External application

AgencyRegion registry

IA
ge

nt
S

ys
te

m

IS
er

ve
rO

bj
ec

t

IRegionRegistration

Server
object/

External
comService

11

33

Registry
proxy

Registry
proxy22

Agency
proxy

Agency
proxy44

Agent
proxy
Agent
proxy99

55 66

Establish
server

side

Create
registry
proxy

Create
agency
proxy

Create
agent
proxy

List
agencies

Create
place

Create
agent in

InformationDesk

1010

Move
agent

In
fo

rm
at

io
nD

es
k

N
ew

P
la

ce

ExternalAccessAgent

1111
External

proxy
External

proxy

88 1212

1313
External

proxy
External

proxy

Create
external
proxy 77
215

PROGRAMMER’S GUIDE

s the
, the
 the

tions/
, and
lient.

ve in
xternal
nent

ment
mple-
 class

rver

mati-
ires a

) Cli-
ation
munication server, accessed by the ExternalAccessAgent that has been created
in step (6). The ExternalAccessAgent creates a proxy of the ServerObject (7)
and invokes the object’s printMessage(...) method (8).

Now, the ExternalApplication creates a proxy of the agent (9) and move
agent to the previously created place (10). Before and after its migration
agent again notifies the ExternalApplication about its actions by invoking
server object’s method printMessage(...) (12, 13).

9.17.4 Summary

• The Grasshopper communication service enables external applica
objects to interact with Grasshopper components (agents, agencies
region registries). The external application may act as server and/or c

• To act as communication client, an external application has to beha
the same way as usual Grasshopper client agents. That means, the e
application simply creates a proxy of the desired server side compo
(e.g., a server agent) and is then able to invoke server methods.

• To act as communication server, the external component has to imple
a server interface (similar to Grasshopper server agents). The object i
menting the server interface has to be registered at an instance of the
de.ikv.grasshopper.communication.ExternalCommSer-
vice. After starting a communication receiver on this instance, the se
object is available for communication clients.

• In contrast to Grasshopper agents where a unique identifier is auto
cally generated by the creating agency, an external server object requ
user-defined identifier (whose uniqueness is usually not guaranteed.
ents have to use this identifier as well as the address of the communic
receiver (started on the ExternalCommService instance) in order to
create a proxy on the external server object.
216

CHAPTER 10: THE PERSISTENCE SERVICE
10The Persistence Service

The persistence service is part of the core functionality of Grasshopper agen-
cies. Its purpose is to persistently store the data states of all currently hosted
agents as well as runtime information about all places that exist on the agency.

Note that the persistence service is de-activated by default. In order to use its
functionality, an agency has to be started with the parameter ’-persis-
tence’. Besides, only those agents can be persistently stored which are de-
rived from one of the Grasshopper super classes
PersistentMobileAgent or PersistentStationaryAgent,
both contained in the package de.ikv.grasshopper.agent.

The reason for disabling the persistence service by default is that it has a neg-
ative impact on an agency’s performance. The advantage of preserving the
data states of all running agents is combined with a slower execution.

The API of the persistence service is divided into two parts, one provided by
the agency (interface de.ikv.grasshopper.agency.IAgentSys-
tem) and the other provided by the persistence-supporting agent (classes
PersistentMobileAgent, or PersistentStationaryAgent).

Before describing the persistence API, some terms have to be explained:

save• save: Saving an agent means to store the agent’s data state (i.e., the
agent’s AgentInfo structure as well as all user-defined, non-transient
instance variables of the agent class) in the local file system of the hosting
agency. After the save procedure, the agent continues its task execution.
The save procedure can be performed either automatically by the hosting
agency after a predefined time interval or explicitly via the agency’s or the
agent’s API.

To save a place means to save all agents inside the place. An agency with
activated persistence service automatically saves all places periodically
after a predefined time interval.

The purpose of saving agents and places is to preserve their important
runtime information in case of a system crash or agency shutdown. After
restarting the agency, all saves agents and places are automatically
restarted. The agents are supplied with their preserved data states, so that
they are able to continue their tasks.

flush• flush: To flush an agent means to save the agent and, after this, remove
its instance and thread from the hosting agency. (In contrast to this, the
save procedure does not stop the agent’s execution.
217

PROGRAMMER’S GUIDE

of an
essed
y is
med

er to
e-cre-
 sup-
ed. In
ecu-

nent
oxy.
d of a

t to

an
been
 of its

ser-

 at

at

an
ed is
An agent can be flushed either automatically after a certain timeout period
in which the agent has not been accessed by any clients, or explicitly via
the agency’s or the agent’s API.

The purpose of flushing an agent is to save the runtime resources
agency by removing those agents from the memory which are not acc
by any clients for a certain period in time. Note that, if an agenc
ordered to flush an agent automatically, this flush procedure is perfor
independent of the agent’s active behavior. That means, even if the agent is
currently performing important tasks inside its live() method, the
agency flushes the agent when the predefined timeout period has passed.
To avoid this, the agent itself can set an infinite timeout period and explic-
itly initiate its flushing after performing its tasks.

reload • reload: The reload procedure is performed on flushed agents in ord
re-activate them. During the reload procedure, the agent instance is r
ated in the agency in which it has been flushed before. The agent is
plied with its preserved data state, and the agent’s thread is re-start
this way, the agent continues its task execution from that point in ex
tion at which it has been flushed.

An agency automatically reloads a flushed agent if any client compo
tries to access it by invoking a method on the flushed agent’s pr
Besides, an agency provides a method that enables the explicit reloa
flushed agent.

Persistence support via agency API (interface IAgentSystem)

• flushAgent(...): This method flushes an agent at once. The agen
be flushed is specified in terms of its identifier.

• flushAgentAfter(...): This method orders the agency to flush
agent after a certain timeout period in which the agent has not
accessed by any client. The agent to be flushed is specified in terms
identifier.

• hasPersistence(): This methods checks whether the persistence
vice of the agency is active.

• reloadAgent(...): This method explicitly reloads a flushed agent
once. The agent to be reloaded is specified in terms of its identifier.

• saveAgent(...): This method explicitly saves a flushed agent
once. The agent to be saved is specified in terms of its identifier.

• saveAgentEvery(...): This method orders the agency to save
agent periodically after a certain time period. The agent to be sav
specified in terms of its identifier.
218

CHAPTER 10: THE PERSISTENCE SERVICE
Persistence support via agent API (classes PersistentMobileAgent
and PersistentStationaryAgent)

• flush(...): This method flushes the agent at once. Note that an agent
should handle this method with care, since the agent itself is not able to
reload itself. Instead, the agent has to be reloaded by the hosting agency.

• getFlushTimeout(): This method returns the currently valid timeout
period after which the agent is automatically flushed. The timeout period
defines the period in which the agent has not been accessed by any client.

• getSaveInterval(): This method returns the currently valid interval
after which the agency automatically saves the agent’s data state.

• beforeFlush(): This method is automatically invoked by the local
agency before an agent is flushed. In this way, similar to the methods
beforeCopy() and beforeMove() of mobile agents, the agent is
able to prepare its flushing, if required.

• afterLoad(): This method is automatically invoked by the local
agency after a flushed agent has been reloaded. In this way, similar to the
methods afterMove() and afterCopy() of mobile agents, the agent
is able to prepare the continuation of its task, if required.

• beforeSave(): This method is automatically invoked by the local
agency before an agent is saved. In this way, similar to the methods
beforeCopy() and beforeMove() of mobile agents, the agent is
able to prepare its saving, if required.

• save(): This method saves the agent’s data state at once.

• setFlushTimeout(...): This method sets the flush timeout, i.e., the
period after which the agency flushes the agent if no client has tried to
access the agent.

• setSaveInterval(...): This method sets the save interval of the
agent, i.e., the period after which the agency automatically saves the
agent’s data state.

10.1 Example: SleepyAgent

The following examples shows how an agent can access the functionality of
the Grasshopper persistence service.

init(...)Inside its init(...) method, the SleepyAgent configures its personal per-
sistence settings: its save interval and its flush timeout period. Both parame-
ters have to be provided to the agent as creation arguments.
219

PROGRAMMER’S GUIDE

 they

sting
 of the
gen-
t that
ntact

been
 agent

ery
 after
before-
Flush(), af-
terLoad(),
beforeSave()

The methods beforeFlush(), afterLoad(), and beforeSave()
just perform an output in the agency’s text console in order to show that
are invoked automatically.

action() As explained above, a persistent agent is automatically flushed by the ho
agency if the agent has not been accessed by any clients for the duration
flush timeout period. The flushed agent is automatically reloaded by the a
cy if a client tries to access the agent. This client may be another agen
maintains a proxy of the flushed agent, or it may be a user who tries to co
the agent via the agency’s UI. Concerning the SleepyAgent, the agent’sac-
tion() method is used for triggering the agent’s reload: If the agent has
flushed and the user invokes the action() method via the agency’s UI, the
is automatically reloaded.

live() Inside its live() method, the agent periodically performs an output ev
second. The purpose of this behavior is to show the automatic flushing
the predefined timeout period.

Example 33: SleepyAgent

package examples.simple;

import de.ikv.grasshopper.agent.*;

public class SleepyAgent extends PersistentMobileAgent
{
long sheepCount;
long saveInterval;
long flushTimeout;

// Creation arguments:
// args[0] = save interval
// args[1] = flush timeout
public void init(Object[] args) {

if (args == null || args.length < 2) {
log("Creation arguments needed: <saveInterval>\\
<flushTimeout>");
log("Exiting.");
throw new RuntimeException();

}

saveInterval = new
Integer((String)args[0]).longValue();

flushTimeout = new
Integer((String)args[1]).longValue();

sheepCount = 0;
220

CHAPTER 10: THE PERSISTENCE SERVICE
// configure persistence behaviour
setSaveInterval(saveInterval);
setFlushTimeout(flushTimeout);

}

public String getName() {
return "SleepyAgent";

}

public void action() {
}

// This method is automatically invoked before the
// agent is saved by the agency.
public void beforeSave() {
log("Saving my memory...");

}

// This method is automatically invoked before the
// agent is flushed by the agency.
public void beforeFlush() {
log("Falling asleep...");

}

// This method is automatically invoked after the
// agent has been loaded by the agency.
public void afterLoad() {
log("Waking up...");

}

public void live() {

while (true) {
log("Counting sheeps (" + sheepCount + ")...");
sheepCount++;
try {
Thread.currentThread().sleep(1000);

}
catch (InterruptedException e) {
log("Exception caught.", e);

}
}

}
}

Requirements:
221

PROGRAMMER’S GUIDE

 to the

I (1).
eout

te the
s are

iron-
eation

cy’s
ime,

ent
load,
nter

ed.

bove,
 saved

cre-
iable
re the

pper

y has

.

• one running agency, started with enables persistence. Please refer
User’s Guide for information about how to start an agency.

Running the example:

Create the SleepyAgent inside the running agency via the agency’s U
The required parameters are the agents save interval and its flush tim
period, both given in milliseconds.

If you are using the textual user interface of the agency, please crea
agent by means of the following command (the given parameter value
just meant as examples and may be changed):

cr a examples.simple.SleepyAgent 4000 10000

If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

After its creation, the agent periodically performs an output in the agen
text console, until its timeout period has exceeded. At this point in t
the agency flushes the agent.

In order to re-activate the agent, invoke its action() method via the
’invoke’ command of the agency. In this way, you try to contact the ag
as a client, and this orders the agency to reload the agent. After its re
the agent continues performing its boring outputs. Note that the cou
variable starts with the value that was valid when the agent was flush

As a variation of the scenario, please start the agent as described a
and shutdown the agency after a while. (The agent should have been
at least once before the shutdown.)

Restart the agency. You will see that the agent will be automatically re
ated and continue performing its outputs. Note that the counter var
starts with the value that was valid when the agent was saved befo
agency’s shutdown.

10.2 Summary

• The persistence service is part of the core functionality of Grassho
agencies.

• By default, the persistence service is disabled. To activate it, an agenc
to be started with the parameter ’-persistence’. The reason is that the
persistence service has negative impact on an agency’s performance
222

CHAPTER 10: THE PERSISTENCE SERVICE
• Only those agents can be persistently stored which are derived from one of
the Grasshopper super classes PersistentMobileAgent or Per-
sistentStationaryAgent.

• Saving an agent means to preserve its data state in the file system of the
hosting agency. Saving a place means to save all agents running inside the
place.

• Flushing an agent means to save the agent and afterwards remove the
agent from the agency.

• Reloading an agent means to re-activate a flushed agent. The agent contin-
ues its task from that point in execution at which it has been flushed.
223

PROGRAMMER’S GUIDE
224

CHAPTER 11: SPECIAL PLACES
11Special Places

By default, every Grasshopper agency offers the same functionality to all host-
ed agents, provided via the interface IAgentSystem (see Section 9.11).
This functionality is associated with the entire agency. That means, an agent
can access the interface IAgentSystem independent of the place in which
the agent is currently running. Even remote access across a network is possi-
ble.

In addition to this default functionality, a user can add specific capabilities to
single places within an agency. This place-related functionality is only acces-
sible from within the place.

Defining a
place service

The following steps are needed for allocating additional functionality to a
place:

1. Definition of a Java interface whose methods shall represent the place
functionality. These interface methods will only be accessible for agents
running within this place.

Example:
interface IPlaceService {...}

2. Realization of a Java class that implements the methods defined by the
interface.

Example:
class PlaceService implements IPlaceService {...}

Place prop-
erty file

3. Creation of a place property file which defines the association between a
specific place name and its desired functionality.

The place property file must be stored within a directory that belongs to
the system’s Java classpath, and the filename must be <Place-
Name>.properties where <PlaceName> has to be substituted by
the name of the place which shall provide the additional functinality.

Inside the file, the following two properties must be defined:

• InterfaceClass (referring to the place interface as defined in step 1
above)

• InterfaceImpl (referring to the interface implementation as defined in
step 2 above)
225

PROGRAMMER’S GUIDE

name
e

arch
 ser-
ce of-

igrate

the
the

nter-
 it is
those
rther
Example:

File name = „SpecialPlace.properties“

File content:

InterfaceClass=IPlaceService
InterfaceImpl=PlaceService

After performing the three steps described above, every place with the
’SpecialPlace’ will automatically offer the functionality realized by th
class PlaceService.

Searching a
place service

In order to find a place that offers a specific functionality, an agent can se
for this place either inside the local agency or inside an agency domain
vice. The search key may be the place name or the name of the interfa
fered by the place.

Example:

Looking for a place inside the local agency

PlaceInfo placeList[];
placeList = getAgentSystem().listPlaces(
new SearchFilter(
"INTERFACENAME=examples.place.IPlaceService"));

Looking for a place inside the whole region

PlaceInfo placeList[];
placeList = getRegion().listPlaces(
new SearchFilter(
"INTERFACENAME=examples.place.IPlaceService"));

Accessing a
place service

In order to access the functionality of a specific place, an agent has to m
to this place and invoke the method getPlace() which is provided by the
agent’s superclass Agent. On the returned reference, the agent invokes
method getInterface() and cast the result to the interface class of
place service.

Example:

IPlaceService placeService =
(IPlaceService)(getPlace().getInterface());

The concept of adding functionality to single places can be of particular i
est in combination with defining place-specific access rights. In this way
possible to restrict the access to a specific place (and its functionality) to
agents which have certain certificates. Please refer to Chapter 12 for fu
information.
226

CHAPTER 11: SPECIAL PLACES
The idea behind place services is that they should only be accessible within
the offering places. In order to follow this concept when implementing your
own place service, simply avoid making the service class or interface serializ-
able. In this way, an agent must release its reference to the place service before
leaving the place, since an agent is generally not able to migrate while main-
taining non-serializable instance variables.

11.1 Example Scenario for Special Places

The following scenario consists of the following three classes/interfaces, cov-
ered by the package examples.place:

• PlaceService (see Example 34 in Section 11.1.1): The class that real-
izes the place functionality and that is accessible only from inside the
place.

• IPlaceService (see Example 35 in Section 11.1.1): The interface that
defines the place functionality and that is implemented by the class
PlaceService.

• PlaceAccessAgent (see Example 37 in Section 11.1.2): An agent
accessing the place functionality that is realized by the class PlaceSer-
vice.

Beside these classes/interfaces, this example scenario comprises a place prop-
erty file (see Example 36 in Section 11.1.1). This file defines which place shall
offer the additional functionality.

11.1.1 Example: PlaceService

The purpose of the class shown in Example 34 is to be added to a specific place
inside an agency. The method serviceAccess() represents the function-
ality of the place which shall be only accessible for agents running inside the
place.

Example 34: PlaceService

package examples.place;

import de.ikv.grasshopper.type.*;

public class PlaceService implements IPlaceService
{
227

PROGRAMMER’S GUIDE
int accessCount;

public PlaceService() {
System.out.println("I’m a special place.");
accessCount = 1;

}

public void serviceAccess() {
System.out.println("You’re the " + accessCount++
+ ". agent accessing my service.");

}
}

The interface IPlaceService shown below is meant to be used by agents
in order to access the class PlaceService.

Example 35: IPlaceService

package examples.place;

public interface IPlaceService
{
public void serviceAccess();

}

Example 36 shows a place property file which specifies that the interface IP-
laceService and the corresponding implementation PlaceService re-
alize the additional functionality for specific places. This file has to be stored
inside the classpath of the agency which shall be able to create such special
places. The name of the property file must be

<placeName>.properties

where <placeName> is the name of the place that shall offer the additional
functionality.

Example 36: Place Property File

InterfaceClass=examples.place.IPlaceService
InterfaceImpl=examples.place.PlaceService

11.1.2 Example: PlaceAccessAgent

The PlaceaccessAgent maintains the following instance variables:
228

CHAPTER 11: SPECIAL PLACES
• state: This variable indicates the case statement within the live()
method with which the agent shall start its execution after the next migra-
tion. Please refer to Chapter 6 for learning about the concept of execution
states in the context of Grasshopper.

• placeName: This variable maintains the name of the place which pro-
vides the additional functionality needed by the agent.

• placeService: This variable holds a reference of the place’s service
class. Note that this variable is not declared transient and thus belongs to
the agent’s data state. However, in contrast to the remaining data state
(comprised by the variables state and placeName), the interface
IPlaceService as well as the associated implementaton PlaceSer-
vice are intentionally(!) not serializable (i.e. they do not extend/imple-
ment the interface java.io.Serializable). Thus, the agent has to
set placeName to null before its next migration. In this way it is not
possible for the agent to access the place service from outside the place.

The agent’s action() method is used to set the instance variable placeService
to null.

The live() method is separated into two execution blocks.

Within the first block (state = 0), which the agent processes after its ini-
tial creation, the agent looks for a place that offers the interface exam-
ples.place.IPlaceService. If such a place exists within the local
agency, the agent determines the place name, sets state to 1 and
migrates to this place.

The agent performs its second execution block (state = 1) after migrat-
ing to the desired place. Inside this block, the agent retrieves a reference to
the place service class PlaceService and invokes the offered method
serviceAccess(). After this, the live() method ends.

Example 37: PlaceAccessAgent

package examples.place;

import de.ikv.grasshopper.agent.*;
import de.ikv.grasshopper.type.*;
import de.ikv.grasshopper.util.*;
import de.ikv.grasshopper.communication.*;

public class PlaceAccessAgent extends MobileAgent
{
int state;
String placeName;
229

PROGRAMMER’S GUIDE
IPlaceService placeService;

public void init(Object[] creationArgs) {
state =0;

}

public String getName() {
return "PlaceAccessAgent";

}

public void action() {
log("Releasing place reference.");
placeService = null;

}

public void live() {
PlaceInfo placeList[];
GrasshopperAddress newLocation;

switch (state) {
case 0:
// Look for a place with the needed
// functionality.
log("Looking for place with interface\\
’IPlaceService’...");
placeList = null;
placeList = getAgentSystem().listPlaces(
new SearchFilter("INTERFACENAME=examples.\\
place.IPlaceService"));

if ((placeList != null) &&
(placeList.length > 0)) {

// Take first place of the found list
placeName = placeList[0].getName();
// Move to the special place
newLocation = new GrasshopperAddress(

getAgentSystem().getInfo().
getLocation().toString() + "/" +
placeName);

try {
log("Moving to " + placeName);
state = 1;
move(newLocation);

}
catch(Exception e) {
log("Coudn’t move to right place." +
newLocation.toString());

state = 0;
}

230

CHAPTER 11: SPECIAL PLACES
}
else
log("Couldn’t find right place.");

break;
case 1:
// Check if agent is running inside the
// desired place
if (getInfo().getLocation().getPlace().

equals(placeName)) {
// Desired place reached.
// Get place interface
placeService = (IPlaceService)
(getPlace().getInterface());

// Access place functionality
log("Accessing place functionality");
if (placeService != null)
placeService.serviceAccess();

else
log("I got lost. Place does not \\
provide needed service.");

}
else {
// Agent is not in the desired place
log ("Migration has failed. Place ’" +
placeName + "’ not reached.");

if (getInfo().getLocation().getPlace().
equals("InformationDesk"))

log("Maybe I don’t have the needed \\
access rights :-(");

}
state = 0;
break;

}
log("Exiting.");

}
}

11.1.3 Running the Scenario

This section explains how to run the example whose parts (i.e., PlaceSer-
vice, IPlaceService and PlaceAccessAgent) have been intro-
duced in the previous sections.

Requirements:

• One running agency.
231

PROGRAMMER’S GUIDE

 class-

eated
le is

e that

ace by

ut:

using
ans of

iron-
eation

d, the

ter-

 Once

ncy’s
UI,
um-

f the
• The classes PlaceService and IPlaceService have been stored in the
path of the running agency.

• A place property file (see Example 36 in Section 11.1.1) has been cr
and stored in the classpath of the running agency. The name of this fi
SmartPlace.properties.
(Note that you may use any filename ending with ’.properties’. The
character sequence before this suffix represents the name of the plac
shall offer the additional functionality.)

Running the Example:

Create a place named ’SmartPlace’ inside the running agency. If you
are using the textual user interface of the agency, please create the pl
means of the following command:

cr p SmartPlace

The place will confirm its creation in terms of the following textual outp
’I'm a special place.’.

Create the PlaceAccessAgent inside the running agency. If you are
the textual user interface of the agency, please create the agent by me
the following command:

cr a examples.place.PlaceaccessAgent

If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

Since you did not define the place in which the agent shall be crerate
agency creates the agent within the default place InformationDesk.

The first action of the agent is to look for a place which provides the in
face ’examples.place.IPlaceService’. After this, the agent
determines the corresponding place name and migrates to this place.
arrived, the agent invokes the method serviceAccess().

Now try to move the agent to another place. If you are using the age
GUI, you can simply do this via drag and drop. If you are using the T
please perform the following command (after substituting the agent n
ber ’#4’, the host name ’myhost’ as well as the port number ’7000’ by
the corresponding values of your running agency):

m #4 socket://myhost:7000/InformationDesk

You will see that the agent cannot migrate. The error message o
agency will be

Failed to move agent!
232

CHAPTER 11: SPECIAL PLACES
An agent could not be externalized

The reason for this failure is that the agent tried to run away with the refer-
ence of the place service in its data state.

Now invoke the agent’s action() method, either by double-klicking on
the agent icon inside the agency GUI or by invoking the following com-
mand on the textual console (again by substituting the agent number ’#4’
with the number of your agent):

invoke #4

The agent releases its reference to the place service.

Try again to migrate the agent by repreating the move command men-
tioned above. You will see that the agent now migrates to the place
InformationDesk. (However, since the guy seems to be crazy about
using the place service, he migrates back to the place SmartPlace right
after arriving at the InformationDesk.)
233

PROGRAMMER’S GUIDE
234

CHAPTER 12: THE SECURITY SERVICE
12The Security Service

Grasshopper supports two kinds of security mechanisms:

• External security protects all remote interactions that are performed via the
Grasshopper communication service. For this purpose, X.509 certificates
and the Secure Socket Layer (SSL) protocol are used. SSL is an industry
standard protocol that makes use of both symmetric and asymmetric cryp-
tography. By using SSL, confidentiality, data integrity, and mutual authen-
tication of clients and servers can be achieved.

• Internal security protects interfaces of agencies and agents as well as cer-
tain agency resources (such as the local file system) from unauthorized
access, performed by agents. This access control is achieved by authenti-
cating and authorizing the owner of the accessing agent. Due to the
authentication/authorization results, access control policies are activated.
Internal security within Grasshopper is mainly based on the inherent secu-
rity mechanisms of Java.

Both external and internal security is mainly transparent for agent program-
mers. The following two sections explain those security aspects which have to
be considered when programming Grasshopper agents.

12.1 External Security

The administration of the external security comprises the start of secure com-
munication receivers on agencies and region registries, i.e., receivers using
one of the protocol types ’socketssl’ or ’rmissl’. This has to be done by an
agency user and is thus explained in the User’s Guide.

The only aspect of interest for agent programmers is that an agent can actively
select a secure protocol for interacting with remote components or for moving
to another agency. Note that in both cases the involved agencies must support
external security which requires the installation of a set of additional Java se-
curity packages. Please refer to the User’s Guide for further details.

In order to use a secure protocol for remote interactions, the agent has to spec-
ify a suitable communication receiver when creating the server proxy.

Example:

serverProxy = (IAsyncServerAgent)ProxyGenerator.
newInstance(
IAsyncServerAgent.class,
235

PROGRAMMER’S GUIDE

on an
ccess
ption

e ac-
:

ter of

r the
er se-

en-
serverId,
„socketssl://myHost:7000/myAgency“);

In order to use a secure protocol for its migration, the agent has to specify a
suitable communication receiver as parameter of its move method.

Example:

move(new GrasshopperAddress(
„socketssl://myHost:7000/myAgency“));

The examples above assume that a secure communication receiver is running
on the contacted agency. Apart from the general availability of external secu-
rity in all involved agencies, this is a prerequisite for agents.

12.2 Internal Security

The administration of the internal security comprises the configuration of se-
curity policies. This has to be done by an agency user and is thus explained in
the User’s Guide.

The only aspect of interest for agent programmers is that, depending
agent’s access rights, an exception may be thrown if the agent tries to a
resources without having the associated permission. The following exce
is thrown in this case:

de.ikv.grasshopper.security.AccessControlException

The first parameter of this exception presents a textual description of th
cess violation. This description has one of the following general contents

1. Agent from <owner> has no, bad or unknown signature.

2. Agent from <owner> is denied access to place <placeName>

3. Access denied for <subject>

If the third description applies to a thrown exception, the second parame
the exception contains an instance of the class java.security.Permis-
sion which specifies the permission that would have been required fo
denied action. The following permissions are checked by the Grasshopp
curity manager (for a detailed description, please refer to the HTML docum
tation of the class
de.ikv.grasshopper.security.GHSecurityManager):

• accept connections from a specified host address

• access a specified thread or thread group

• access the AWT event queue
236

CHAPTER 12: THE SECURITY SERVICE
• connect to a specified host/port

• connect to a specified object on a specified host/port

• create a new class loader

• delete a specified file

• execute a specified command

• exit the virtual machine

• link a native library

• listen to a specified port

• access members of a specified class

• use multicast communication

• access a specified package

• define classes in a specified package

• initiate a print job

• access system properties

• access a specified system property

• read from a file descriptor

• read from a specified file

• define the security subsystem and trigger the specified action

• set a socket or stream handler factory

• access the system clipboard

• bring up a top-level window

• write to a file descriptor

• write to the specified file

12.3 Example: SecretAgent

This example shows how to configure

Example 38: Keytool Usage: Generate Key

D:\Utils\jdk1.3\bin>keytool -genkey -alias Bond
Enter keystore password: agent-007
What is your first and last name?
237

PROGRAMMER’S GUIDE
 [Unknown]: James
What is the name of your organizational unit?
 [Unknown]: GH
What is the name of your organization?
 [Unknown]: IKV
What is the name of your City or Locality?
 [Unknown]: Berlin
What is the name of your State or Province?
 [Unknown]: Berlin
What is the two-letter country code for this unit?
 [Unknown]: DE
Is <CN=James, OU=GH, O=IKV, L=Berlin, ST=Berlin, C=DE>
correct?
 [no]: y

Enter key password for <Bond>
 (RETURN if same as keystore password):

D:\Utils\jdk1.3\bin>

Example 39: Keytool Usage: List Keys

D:\Utils\jdk1.3\bin>keytool -list
Enter keystore password: agent-007

Keystore type: jks
Keystore provider: SUN

Your keystore contains 2 entries:

bond, Fri Aug 18 10:35:48 GMT+02:00 2000, keyEntry,
Certificate fingerprint (MD5):
DE:4B:B0:6C:99:D9:9C:73:59:16:8E:A0:58:73:3B:6F
mykey, Thu Jul 27 10:01:51 GMT+02:00 2000, keyEntry,
Certificate fingerprint (MD5):
3D:9B:B3:E8:6C:8D:43:BA:60:7D:04:AC:AA:B7:DF:BD

Example 40: Keytool Usage: Export Key

D:\Utils\jdk1.3\bin>keytool -export -alias Bond -file
Bond.cer
Enter keystore password: agent-007
Certificate stored in file <Bond.cer>
238

CHAPTER 12: THE SECURITY SERVICE
239

PROGRAMMER’S GUIDE
240

CHAPTER 13: GRASSHOPPER AND CORBA
13Grasshopper and CORBA

As described in Chapter 9, Grasshopper provides an advanced communication
service in order to enable local and remote interactions between the platform
components (agencies, agents, and region registries). This service has been
designed for coping with the specific demands of mobile, communicating en-
tities. Please refer to Section 9.14 in order to see how the Grasshopper com-
munication service handles migrating client and server agents by forwarding
method invocations and results.

What is
CORBA?

CORBA (Common Object Request Broker Architecture) is the standard dis-
tributed object architecture developed by the Object Management Group
(OMG) consortium. Since 1989, the OMG has specified an architecture for an
Object Request Broker (ORB), i.e., an open software bus, on which object
components written by different vendors in different programming languages
can interoperate across networks and operating systems. This standard allows
CORBA objects to invoke each other in a location-transparent way, i.e., with-
out knowing where the accessed objects reside. Interfaces to CORBA objects
are defined by using the OMG-specified Interface Definition Language (IDL).
Up to now, a standardized IDL language mapping exists for numerous pro-
gramming languages.

Why Grass-
hopper and
CORBA?

In some cases, a Grasshopper agent may need to interact with existing appli-
cations which provide their own programming interfaces. Due to the wide dis-
semination of distributed applications that are based on CORBA, this chapter
explains how Grasshopper agents can act as CORBA clients and/or servers.

Which
CORBA?

Currently, numerous CORBA implementations are available, realizing more
or less parts of the CORBA specifications. Several products offer additional
capabilities that go beyond the specifications standardized by the Object Man-
agement Group (OMG), providing for example specific communication pro-
tocols or services. Concerning the integration of Grasshopper into a CORBA
environment, the only prerequisite is that the used CORBA implementation is
compliant with the CORBA/IIOP 2.0 Specification (orbos/97-02-25) and the
IDL-to-Java Language Mapping (orbos/98-01-06 Final)1. Besides, for run-
ning the examples included in this chapter, a CORBA Naming Service is re-
quired which is compliant with the Naming Service Specification described in
CORBAservices: Common Object Services Specification.

Java IDLJava IDL is a CORBA/IIOP 2.0 compliant Object Request Broker provided
with the JDK 1.2 (and higher releases). Together with the idltojava compiler

1. The mentioned OMG documents are available via download from the OMG’s FTP server:
ftp://ftp.omg.org/pub/docs/orbos/.
241

PROGRAMMER’S GUIDE

y be
c.) at

 the
arate
e the
t be

t. Oth-
 part
(downloadable from the Java Developer Connection) which realizes the stan-
dardized IDL-to-Java Language Mapping, it can be used to define, implement,
and access CORBA objects from the Java programming language.

The CORBA parts of the examples included in this chapter have been gener-
ated by using Java IDL. However, it should be possible to use any other Object
Request Broker that fulfils the requirements described above.

Note that this chapter does not include an introduction into CORBA. Before
working through this chapter, you should know about the concepts and pro-
gramming basics of this architecture.

13.1 CORBA Enhanced Grasshopper Agents

Some time ago, the OMG has initiated several specifications concerning the
realization of mobility in a CORBA environment, such as the Objects by Value
specification (orbos/98-01-01). However, our objective for achieving an inte-
gration of Grasshopper and CORBA is to use only a minimal set of function-
ality of the underlying CORBA platform, in this way granting compatibility
with most of the currently available CORBA/IIOP 2.0 compliant implementa-
tions.

In order to implement a Grasshopper mobile agent that provides a CORBA in-
terface, the following issues have to be taken into account:

1. The CORBA-related part of the agent, i.e., the CORBA object maintained
by the agent, consists partly of classes that have been generated automati-
cally by the IDL-to-Java compiler of the used CORBA implementation.
Depending on the IDL-to-Java compiler, these classes may not be serializ-
able. In this case, a mobile agent that declares these classes as non-tran-
sient instance variables will not be able to migrate (see Section 6.3 for an
explanation). Even if all classes are serializable, problems may occur after
the agent’s migration, since some CORBA-related variable values ma
associated with the local environment (IP address, port number, et
which they have been assigned. These considerations lead to the

First requirement for CORBA-enhanced Grasshopper agents:

The CORBA-related part of an agent has to be separated from
remaining code, e.g., by encapsulating this part in one or more sep
Java classes. In order to avoid the attempt of an agency to serializ
CORBA-related part during an agent’s migration, this part should no
declared as non-transient instance variable of the associated agen
erwise, the agent must release all its references to the CORBA
242

CHAPTER 13: GRASSHOPPER AND CORBA
before migrating to a new location. Once arrived at its destination, the
agent can re-create its CORBA part.

2. In a CORBA 2.0 compliant environment, a usual way for a client to
retrieve the reference of a CORBA object (i.e., the object’s Interoperable
Reference, IOR), is to contact a CORBA Naming Service. This service is
part of the CORBA Common Object Services Specification (COSS), and
its purpose is to maintain name bindings, i.e., mapping between composed
object names and IORs. In order to announce the availability of a new
CORBA object, a name binding for the object has to be provided to the
Naming Service.
If a Grasshopper mobile agent maintains a CORBA object, and assuming
that (according to the serialization issue mentioned above) this CORBA
object is not part of the agent’s data state, the agent has to re-create the
object after each migration. In this way, the object gets a new IOR, and its
previous IOR (which is still registered at the Naming Service) becomes
invalid. Thus, the CORBA object has to update its name binding by con-
tacting the Naming Service and providing its new IOR. This leads to the

Second requirement for CORBA-enhanced Grasshopper agents:

If a Grasshopper mobile agent provides a CORBA object, the Naming
Service entry of this object has to be updated after each migration of the
agent.

The following scenarios show all CORBA-related aspects and procedures that
have to be considered when implementing a CORBA-enhanced Grasshopper
mobile agent
243

PROGRAMMER’S GUIDE
As shown in Figure 25, the initial steps for CORBA servers as well as clients
is to initialize the Object Request Broker (1s, 1c)1 and to request the reference
to the running Naming Service from the ORB (2s, 2c).

The next step for the server (agent) is to create the CORBA object (3), to con-
nect this object to the ORB (4), and to bind the object to the Naming Service
(5).

Now the CORBA object is available for CORBA clients. That means, a client
can contact the Naming Service in order to retrieve the IOR of the CORBA
object (6). By using this reference, the client is able to invoke the methods be-
longing to the interface of the CORBA object (7).

Figure 25: CORBA Object Creation and Connection Establishment

1. The letters s and c indicate whether an interaction step is associated with the server (s) or the
client (c) side.

CORBA
Naming Service

CORBA
Naming Service

CORBA object
provided by the agent

33
Create
object

Bind
object
to NS

Resolve IOR
of CORBA object

Init
ORB

1s1s

Agency 1

ORB

Connect CORBA
object to ORB

44

55

66

Resolve reference
of Naming Service

2s2s

1c1c

2c2c

Init
ORB

Resolve reference
of Naming Service

CORBA
Client

77Invoke
method
244

CHAPTER 13: GRASSHOPPER AND CORBA
Figure 26 shows the migration procedure of a CORBA-enhanced Grasshopper
agent. At first, the agent has to unbind the object from the Naming Service (1)
and to disconnect the object from the ORB (2). If the CORBA object has been
declared as non-transient instance variable of the agent, the agent has to re-
lease all references of the object (3) before migrating to the new location (4).
Once arrived at its destination agency, the agent has to perform the same initial
steps that have already been described in Figure 25 above: the initialization of
the ORB (5), the retrieval of the Naming Service IOR (6), the (re-)creation of
the CORBA object (7), the connection of the object to the ORB (8), and the
object’s registration at the Naming Service (9).

Figure 26: Migration of a CORBA Server Agent

Agency 1

CORBA
Naming Service

CORBA
Naming Service

CORBA object
provided by the agent

33 Remove
object

Agency 2

44

Migrate
(without

CORBA part)

77
Create new
CORBA object

New CORBA object,
created after migration

ORB

22

11
Unbind
object
from NSDisconnect

CORBA object
from ORB Connect CORBA

object to ORB
88

Resolve reference
of Naming Service

66

Init
ORB

55

Bind
object
to NS

99
245

PROGRAMMER’S GUIDE

 25
the
ted, it
n in
cep-
 this
rvice
BA

 a
on-
other,
After the agent’s migration, the client application (mentioned in Figure
above) may still want to interact with the CORBA object provided by
agent. Since the client is not aware of the fact that the agent has migra
still uses the old (and now invalid) IOR of the CORBA object, as show
step (1) of Figure 27. The underlying Object Request Broker throws an ex
tion to the client, indicating that the IOR has become invalid, and due to
exception the client requests the new IOR by contacting the Naming Se
(2). By using the retrieved IOR, the client is now able to contact the COR
object at its new location (3).

13.1.1 Example: CORBA Enhanced Agents

The following example scenario consists of the following classes:

• CORBAServerAgent: This class realizes an agent that maintains
CORBA object and, in this way, offers a CORBA interface to its envir
ment. On request of a user, the agent migrates from one agency to an

Figure 27: Connection Re-establishment by CORBA Client Agent

Agency 2

CORBA object
provided by the agent

CORBA
Client

Agency 1
?

CORBA
Naming Service

CORBA
Naming Service

ORB

Resolve IOR
of CORBA object

Invoke
method

Try to
invoke
method

11

33

22
246

CHAPTER 13: GRASSHOPPER AND CORBA
taking into account the CORBA-related issues described in Section 13.1.

• CORBAServant: This class represents the implementation of the IDL
interface CI_CORBAServerAgent. Note that this class is covered by the
same source file as the class CORBAServerAgent.

• CORBAClientAgent: This class realizes an agent that acts as CORBA
client by periodically invoking a method on the CORBAServerAgent.
Once the server agent has changed its location, the client agent requests
the new IOR of the server agent’s CORBA object from the Naming Ser-
vice and re-establishes the connection to the server agent.

IDL Interface CI_CORBAServerAgent

The following listing shows the CORBA interface to be offered by the COR-
BAServerAgent. The interface is described by means of the CORBA Interface
Definition Language (IDL), and it has to be translated into the Java program-
ming language by means of the IDL to Java compiler of the installed CORBA
platform. The prefix ’CI’ of the interface stands for ’CORBA Interface’.

Example 41: CI_CORBAServerAgent

module examples {
module corbaCom {
module idl {
interface CI_CORBAServerAgent {
string getAgencyName();

};
};

};
};

Class CORBAServant

Instance
variables

The class CORBAServant maintains the following instance variable:

• agencyName: This variable holds the name of the agency in which the
CORBAServerAgent is currently running. The name is provided to the
CORBAServant object during its creation, and it is used as return value of
the method getAgencyName().

getAgen-
cyName()

The method getAgencyName() can be called by any CORBA client that
maintains the IOR of the CORBAServant object. The method just performs a
textual output and returns the name of the agency in which the associated
CORBAServerAgent is currently running.

The source code of this class is shown in Example 42 below.
247

PROGRAMMER’S GUIDE

e

e.

ister

 them

-

OR-

 refer

t

ject

thod
m

Class CORBAServerAgent

Instance
variables

The class CORBAServerAgent maintains the following instance variables:

• corbaObjectRef: This variable is initialized with a reference of th
CORBA object (which is an instance of the class CORBAServant).

• ncRef: This variable holds a reference of the CORBA Naming Servic

• name: This variable maintains the CORBA name which is used to reg
the CORBAServant object at the Naming Service.

• orb: This variable holds a reference to the Object Request Broker.

Note that all instance variables are declared transient in order to exclude
from the agent’s data state.

createCor-
baPart()

Inside its method createCorbaPart(), the CORBAServerAgent per
forms all CORBA-related steps that have been described in Figure 25:

• ORB initialization

• Retrieval of the Naming Service reference

• Creation of the CORBA object (i.e., an instance of the class C
BAServant)

• Connection of the CORBA object with the ORB

• Registration of the CORBA object at the Naming Service

Note that the method createCorbaPart() is not only performed after the
agent’s initial creation, but also after each migration of the agent. Please
to the beginning of Section 13.1 for a detailed explanation.

before-
Move()

The agent uses its beforeMove() method to unbind the CORBA objec
from the Naming Service and to disconnect it from the ORB.

beforeRe-
move()

The beforeRemove() method is implemented similar to the before-
Move() method: Before the agent is removed, it unbinds its CORBA ob
from the Naming Service and disconnects it from the ORB.

live() Inside its live() method, the agent creates its CORBA object (see me
createCorbaPart()). After this, the agent requests a new location fro
the user and migrates to this location.

Example 42: CORBAServerAgent

package examples.corbaCom;

import de.ikv.grasshopper.agent.MobileAgent;
import de.ikv.grasshopper.agency.*;
import de.ikv.grasshopper.communication.
248

CHAPTER 13: GRASSHOPPER AND CORBA
GrasshopperAddress;
import javax.swing.*;
import java.awt.*;
// import files generated by idltojava compiler
import examples.corbaCom.idl.*;
// import general CORBA stuff
import org.omg.CORBA.*;
// import naming service stuff
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;

// The following class represents the actual CORBA
// object that will be created by the CORBAServerAgent
class CORBAServant

extends _CI_CORBAServerAgentImplBase
{
String agencyName;

public CORBAServant(String agyName) {
agencyName = agyName;

}

// This method is the implementation of the IDL method
// inside the CORBA interface CI_CORBAServerAgent
public String getAgencyName() {
System.out.println("## CORBAServerAgent:\\
Retrieving client request. Returning ’" +
agencyName + "’.");
return agencyName;

}
}

// This class realizes the server agent of the CORBA
// communication scenario.
public class CORBAServerAgent extends MobileAgent
{
// All CORBA-related instance variables are
// declared transient, since they must not
// be serialized when the agent migrates.
transient CORBAServant corbaObjectRef;
transient NamingContext ncRef;
transient NameComponent[] name;
transient ORB orb;

public String getName() {
return "CORBAServerAgent";

}

249

PROGRAMMER’S GUIDE
// This method initializes the ORB, retrieves the IOR
// of the CORBA Naming Service, creates the CORBA
// object, connects it to the ORB,
// and registers it at the Naming Service.
public void createCorbaPart() {
try {
// Initialize the ORB
log("Initializing ORB...");
orb = ORB.init(new String[0], null);

// Get the reference of the Naming Context
// interface, provided by the CORBA Naming
// Service
log("Connecting to Naming Service...");
org.omg.CORBA.Object objRef =
orb.resolve_initial_references(
"NameService");

ncRef = NamingContextHelper.narrow(objRef);

// Create the CORBA object
log("Creating CORBA object...");
corbaObjectRef = new
CORBAServant(
getAgentSystem().getInfo().getName());

// Connect the CORBA object to the ORB
log("Connecting CORBA object to ORB...");
orb.connect(corbaObjectRef);

// Bind the agent’s CORBA object to the Naming
// Service.
// The object name will be "CORBAServerAgent"
log("Binding CORBA object to NS...");
name = new NameComponent[1];
name[0] = new NameComponent("CORBAServerAgent",
"");

ncRef.bind(name, corbaObjectRef);
log("Ready for client requests.");

}
catch(Exception e) {
log("Exception: ", e);

}
}

// The agent’s beforeMove() method is used to unbind
// from the Naming Service and to disconnect from
// the ORB.
public void beforeMove() {
250

CHAPTER 13: GRASSHOPPER AND CORBA
try {
// Unbind from Naming Service
log("Unbinding from NS...");
ncRef.unbind(name);

// Disconnect from ORB
log("Disconnecting from ORB...");
orb.disconnect(corbaObjectRef);
orb.shutdown(false);

}
catch (Exception e) {
log("Exception caught. ", e);

}
}

// The agent’s beforeRemove() method is used to
// unbind from the Naming Service
// and to disconnect from the ORB.
public void beforeRemove() {
try {
// Unbind from Naming Service
log("Unbinding from NS...");
ncRef.unbind(name);

// Disconnect from ORB
log("Disconnecting from ORB...");
orb.disconnect(corbaObjectRef);
orb.shutdown(false);

}
catch (Exception e) {
log("Exception caught. ", e);

}
}

public void live() {
String location;

// Create the CORBA object
createCorbaPart();

// Request a new location from the user
location = JOptionPane.showInputDialog(null,
"Where shall I go?");

while (location != null) {
log("Moving...");
try {
// Go away!
// All CORBA-related procudures required for
251

PROGRAMMER’S GUIDE

e.

r-

 them

l-

s
R is
at the
 Ser-
 bad

ts loop.

cts
iodi-

s an
// the migration are included in the agent’s
// beforeMove() method (see above).
move(new GrasshopperAddress(location));

}
catch (Exception e) {
log("Migration failed. ", e);
location = JOptionPane.showInputDialog(null,
"Where shall I go?");

}
}

}
}

Class CORBAClientAgent

The class CORBAClientAgent maintains the following instance variable:

Instance
variables

• ncRef: This variable holds a reference of the CORBA Naming Servic

• serverAgentRef: This variable maintains the IOR to the CORBASe
vant, i.e., the CORBA object provided by the CORBAServerAgent.

• orb: This variable holds a reference to the Object Request Broker.

Note that all instance variables are declared transient in order to exclude
from the agent’s data state.

connect-
ToOrb()

Inside its method connectToOrb(...), the client agent performs the fo
lowing CORBA-related steps that have been described in Figure 25:

• ORB initialization

• Retrieval of the Naming Service reference

connect-
ToServer-
Agent()

Inside the method connectToServerAgent(), the client agent request
the IOR of the CORBAServant object from the Naming Service. If the IO
not available at once, the client agent performs five retries, assuming th
server agent is currently migrating (and thus not registered at the Naming
vice). After five fruitless retries, the client agent assumes that something
has happened to the server agent (such as its removal), and thus exists i

before-
Move()

The agent uses its beforeMove() method to shut down the ORB.

beforeRe-
move()

The beforeRemove() method is implemented similar to the before-
Move() method: Before the agent is removed, it shuts down the ORB.

Inside its live() method, the client agent initializes the ORB and conne
itself to the server agent’s CORBA object. After this, the client agent per
cally (i.e., once per second) invokes the CORBA method getAgencyN-
ame() of the server agent’s CORBA object. If the client agent catche
252

CHAPTER 13: GRASSHOPPER AND CORBA
exception, it tries to re-establish the connection to the CORBA object (see
method connectToServerAgent()). After five fruitless attempts, the
client agent terminates.

Example 43: CORBAClientAgent

package examples.corbaCom;

import de.ikv.grasshopper.agent.MobileAgent;
// import files generated by idltojava compiler
import examples.corbaCom.idl.*;
// import general CORBA stuff
import org.omg.CORBA.*;
// import naming service stuff
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;

// This class realizes the client agent of the CORBA
// communication scenario.
public class CORBAClientAgent extends MobileAgent
{
// All CORBA-related instance variables are
// declared transient, since they must not
// be serialized when the agent migrates.
transient NamingContext ncRef;
transient CI_CORBAServerAgent serverAgentRef;
transient ORB orb;

public String getName() {
return "CORBAClientAgent";

}

// This method initializes the ORB and
// retrieves the IOR of the CORBA Naming Service.
public void initOrb() {
try {
orb = null;
ncRef = null;
// Initialize the ORB
log("Initializing ORB...");
orb = ORB.init(new String[0], null);

// Get the reference of the Naming Context
// interface, provided by the CORBA Naming
// Service
log("Connecting to Naming Service...");
org.omg.CORBA.Object objRef =
253

PROGRAMMER’S GUIDE
orb.resolve_initial_references(
"NameService");

ncRef = NamingContextHelper.narrow(objRef);
}
catch (Exception e) {
log("Exception caught. ", e);

}
}

// This method establishes a connection to the CORBA
// object provided by the CORBAServerAgent.
public CI_CORBAServerAgent connectToServerAgent() {
short numberOfRetries;
CI_CORBAServerAgent ref;

log("Connecting to CORBAServerAgent...");

// Generate the CORBA name of the server agent’s
// CORBA object
NameComponent nc = new
NameComponent("CORBAServerAgent", "");

NameComponent path[] = {nc};

numberOfRetries = 0;
ref = null;
while (numberOfRetries < 5) {
try {
// Resolve IOR of the server agent’s CORBA
// object
ref =
CI_CORBAServerAgentHelper.narrow(
ncRef.resolve(path));

log("Reference retrieved.");
numberOfRetries = 5;

}
catch (Exception e) {
// The exception may have occurred because the
// server agent is currently moving.
// Thus, wait a bit and then retry to establish
// the connection.
log("Could not connect to server agent.", e);
log(" Retrying " + (5-numberOfRetries) +
" time(s)...");

try {
Thread.currentThread().sleep(1000);

}
catch (InterruptedException i) {
log("CORBAClientAgent:", e);
254

CHAPTER 13: GRASSHOPPER AND CORBA
}
numberOfRetries++;

}
}
return ref;

}

// The agent’s beforeMove() method is used to shut
// down the ORB.
public void beforeMove() {
try {
// Shutdown ORB
log("Shutdown ORB...");
orb.shutdown(false);

}
catch (Exception e) {
log("Exception caught. ", e);

}
}

// The agent’s beforeRemove() method is used to shut
// down the ORB.
public void beforeRemove() {
try {
// Shutdown ORB
log("Shutdown ORB...");
orb.shutdown(false);

}
catch (Exception e) {
log("Exception caught. ", e);

}
}

public void live() {
String agencyName;

initOrb();
serverAgentRef = connectToServerAgent();

while (serverAgentRef != null) {
try{
// Invoke server method via CORBA
agencyName = serverAgentRef.getAgencyName();
log("Server agency = ’" + agencyName + "’.");
Thread.currentThread().sleep(1000);

}
catch(Exception e) {
// The exception may have occurred because the
255

PROGRAMMER’S GUIDE

sed
ired.
BA
BA
// server agent is currently moving.
// Try to re-connect to server agent.
log("Exception when invoking server method. ",
e);

log(" Server agent may have moved.");
log(" Try to re-establish connection.");
serverAgentRef = connectToServerAgent();

}
}
// The server agent has not re-appeared for five
// seconds. Thus, the client agent assumes that
// something terrible has happened to the server...
log("Permanent failure. Server agent may be dead.\\
Exiting...");

}
}

Requirements:

• A running CORBA environment. Note that, depending on the u
CORBA platform, different components/processes may be requ
The minimal environment (as required in the current Java 2 COR
installation of Sun Microsystems) consists just of a running COR
Naming Service.

• At least two running agencies
256

CHAPTER 13: GRASSHOPPER AND CORBA
Running the example:

Create the CORBAServerAgent in one of the running agencies (1).

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

cr a examples.corbaCom.CORBAServerAgent

If the agent’s classes are not included in the Java CLASSPATH environ-
ment variable, you have to provide a code base as argument of the creation
command. Please refer to the User’s Guide for detailed information.

The CORBAServerAgent initializes the ORB, resolves the Naming Ser-
vice IOR, creates its CORBA object, and connects it to the ORB. All these
steps are summarized by step (2) of Figure 28. After binding the object to
the Naming Service (3), the server agent creates a graphical dialog win-
dow, requesting a new location from the user (4).

Create the CORBAClientAgent in one of the running agencies (5).

If you are using the textual user interface of the agency, please create the
agent by means of the following command:

Figure 28: CORBA Agent Scenario

Agency 1

ORB

UU

A
ge

nc
y

U
I

A
ge

nc
y

U
I

11

CORBA
Naming Service

CORBA
Naming Service

44

22
33

99
Agency 2

A
ge

nc
y

U
I

A
ge

nc
y

U
I

UU55

CORBA
Server
Agent

CORBA
Client
Agent

66

77

88

1010
1111

Agency 3

CORBA
Server
Agent

1212

1313

1414

1515

1616
257

PROGRAMMER’S GUIDE

iron-
eation

ing
BA

i.e.,

f the

 OK
ing

(11).
steps
(13)/
og-
lient
of the
con-
ent

gent
local
cr a examples.corbaCom.CORBAClientAgent

If the agent’s classes are not included in the Java CLASSPATH env
ment variable, you have to provide a code base as argument of the cr
command. Please refer to the User’s Guide for detailed information.

The CORBAClientAgent initializes the ORB and resolves the Nam
Service IOR (6). After requesting the IOR of the server agent’s COR
object from the Naming Service (7), the client agent periodically (
once per second) invokes the method getAgencyName() of the server
agent’s CORBA object (8) and prints the result on the text console o
local agency.

Type in a new location into the server agent’s GUI. After pressing the
button (9), the server agent unbinds its CORBA object from the Nam
Service (10), disconnects it from the ORB, and shuts down the ORB
After its migration (12), the server agent again performs the same
that have been performed in step (2) and (3) after its initial creation
(14). The client agent, still periodically invoking the server method, rec
nizes that the CORBA object is not available any more. Thus, the c
agent again contacts the Naming Service and requests the new IOR
CORBA object (15). Then the client uses this IOR for establishing a
nection to the CORBA object at its new location, and finally the cli
continues invoking the server method (16).

You can also move the client agent to another location. Since this a
does not provide an own user interface, please use the UI of the
agency.
258

ANNEX A: ACRONYMS
A Acronyms

ADS Agency Domain Service

API Application Programming Interface

CORBA Common Object Request Broker Architecture

GUI Graphical User Interface

IIOP Internet Inter-ORB Protocol

IOR Interoperable Reference

JDK Java Development Kit

JVM Java Virtual Machine

MASIF Mobile Agent System Interoperability Facility

OMG Object Management Group

ORB Object Request Broker

RMI Remote Method Invocation

SSL Secure Socket Layer

TUI Textual User Interface

UI User Interface
Annex-1

PROGRAMMER’S GUIDE
Annex-2

ANNEX B: GLOSSARY

ol-
issl,

n

er

nal.
lace

llowing

d by
rther
B Glossary

Active

one possible >state of an >agent or >place. An agent or place is active
when it is currently executing its task, i.e., when the corresponding Java
thread is running. Other possible states are >suspended (possible for
agents and places) and >flushed (possible only for agents). After their cre-
ation, agents and places are active. For further information about states,
please refer to Section 5.5.

Address

A Grasshopper address refers to a >communication receiver of the desired
destination agency, region registry, or external object. Note that multiple
communication receivers can be created on single agencies, region regis-
tries, and external objects. The purpose may be the need to support differ-
ent protocols.

A Grasshopper address covers the following components:

• protocol type: Type of the protocol to be used for the migration. The f
lowing protocols are supported: socket, rmi, iiop, socketssl, rm
grasshopperiiop.

• host name: Name or IP address of the destination host

• agency/registry/object name: Name of the destination agency, regio
registry, or external object

• port number: Number of the port at which the communication receiv
of the destination agency is listening.

• place name: Name of the destination place. This component is optio
If no place name is specified, the agent migrates to the default p
„InformationDesk“ which exists in every Grasshopper agency.

Represented as a String, a complete Grasshopper address has the fo
format:

protocol://hostName:portNumber/agencyName/placeName

Depending on the concrete scenario, the address may be simplifie
skipping several components. Please refer to Section 5.4 for fu
details.

ADS

see >agency domain service.
Annex-3

PROGRAMMER’S GUIDE

other.

erac-
nd/or

-

ssing
ferent

ation.
viron-
he rea-
ency
Agency

the runtime environment for Grasshopper >agents. An agency is realized
as a Java process, running on its own Java Virtual Machine (JVM). All
hosted agents are running inside >places maintained by the agency. An
agency provides the required functionality for supporting the execution
and management of the hosted agents, including a >communication ser-
vice, >security service, >persistence service, and access to a management
API and an >agency domain service. Besides, an agency provides graphi-
cal and/or textual user interfaces for administration purposes.

Agency Domain Service (ADS)

a registration facility, supporting the localization of Grasshopper agents.
Two kinds of agency domain services are supported: Grasshopper-specific
>region registries and LDAP servers. When starting an agency, the user
can (optionally) associate the agency with a running agency domain ser-
vice. The entire set of all agencies that are registered at the same ADS
build a >region. During its runtime, an agency automatically registers all
hosted agents at this agency domain service, and it de-registers the agents
after their removal or after their migration to another location. By access-
ing the domain service’s API, agents are able to search for each
Besides, the >proxies of the Grasshopper >communication service access
the agency domain service in order to enable location-transparent int
tions between agents. An agency domain service provides graphical a
textual user interfaces for administration purposes.

Agency Identifier

a data type for uniquely identifying an >agency. Grasshopper uses a com
mon >identifier structure for agencies, >agents, and listeners. Concerning
an agency, a combination of host name and >agency name can be used
instead of the unique identifier, e.g., in order to create an agency >proxy
(see Section 9.11.4). The precondition of this alternative way of addre
an agency is that all agencies running on the same host have dif
names.

Agency Name

a user-defined name of an agency, specified during the agency’s cre
Agency names do not have to be unique in the scope of the entire en
ment, but an agency name should only be used once on each host. T
son for this convention is that a combination of host name and ag
name may be used for addressing purposes instead of the unique >agency
identifier.
Annex-4

ANNEX B: GLOSSARY

side a
e
ir

f the

-
he

-
r

in

imes
er to

ce
er.
n by

nique.
ated
Agent

a self-contained software component which is responsible for autono-
mously carrying out one or multiple tasks on behalf of a user or another
software entity. An Grasshopper agent is implemented in terms of Java
classes. An agent’s „core“ class is referred to as >agent class. During its
runtime, a Grasshopper agent is realized as a Java thread, running in
>place of an >agency. >Mobile agents are able to migrate from one plac
to another, while >stationary agents reside at their creation place for the
entire runtime.

Agent Class

the „core“ of a Grasshopper agent, characterized by inheriting one o
classes MobileAgent, StationaryAgent, PersistentMobile-
Agent, or PersistentStationaryAgent. The agent class imple
ments the live() method which defines the agent’s active behavior. T
live() method runs inside the agent’s own thread.

Agent Identifier

a data type for uniquely identifying an >agent. Grasshopper uses a com
mon >identifier structure for >agencies, agents, and listeners. For furthe
details, please refer to Section 5.1.

Agent State

the mode of existence of an >agent. All Grasshopper agents can exist
the states ’active’ and ’suspended’. >Persistent agents can additionally
exist in the state ’flushed’. Agents may change their state several t
during their runtime. After their creation, agents are active. Please ref
Section 5.5 for further information about states.

Agent Type

Grasshopper supports two general types of agents: >mobile agents and
>stationary agents. Both agent types may optionally support persisten
(see >persistence service), thus resulting in four agent types all togeth
The type of an agent is allocated during the agent’s implementatio
deriving the >agent class from one of the super classes MobileAgent,
StationaryAgent, PersistentMobileAgent, or Persis-
tentStationaryAgent.

Agent Name

a user-defined name of an agent. Agent names do not have to be u
For the unique identification of an agent, the automatically gener
Annex-5

PROGRAMMER’S GUIDE

is

vok-
ermi-
g its

 the
cu-
sult
the

ods
. A

pports
xt of
de of
 in

f an
ve the

ec-
f the
>agent identifier has to be used. Please refer to Section 5.2 for further
details.

Agent Platform

the entire distributed agent environment. The Grasshopper platform con-
sists of a set of >agencies and one or more >agency domain service.

Agent System

a synonym for the term >agency. Among others, the term ’agent system’
used in the context of the >MASIF specification.

Asynchronous Communication

a communication mechanism between clients and servers. After in
ing a method on the server, the client does not have to wait for the t
nation of the server method. Instead, the client continues performin
own task. There are different possibilities for the client to retrieve
method result: it can periodically poll for the result, block its task exe
tion until the result arrives, or subscribe to be notified about the re
arrival. Asynchronous communication is one possible mode of
Grasshopper >communication service. For further information, please
refer to Section 9.5.

Client Agent

an >agent acting as communication client. A client agent invokes meth
on a >server agent which may run on the same or a remote agency
Grasshopper agent may act as client and server at the same time.

Code Base

a network location that maintains Java class code. Grasshopper su
two kinds of code bases: file systems and HTTP servers. In the conte
Grasshopper, code bases are particularly required for the class co
>agents. A Grasshopper >agency uses Java class loading mechanisms
order to dynamically retrieve the required (agent) classes

• File systems

The classes of an agent may be maintained in the file system o
agency. In this case, the code base, represented as String, must ha
following format:

file:/<directory-path>

where <directory-path> represents a path that leads to the dir
tory in which the agent’s class files are stored. Single directories o
Annex-6

ANNEX B: GLOSSARY

s

 this
g for-

y

ction

 that

 num-

time.

rass-
he
hop-
 and
 9.9),
s of
ach

the
 redi-
tions
path are separated with slash (’/’) characters. Note that on Window
machines, the letter of the maintaining device has to be specified:

file:/<driveLetter>:/<directory-path>

• Http servers

The classes of an agent may be maintained on an Http server. In
case, the code base, represented as String, must have the followin
mat:

http://<domain-name>/<path>

where <domain-name> and <path> are structured in the usual wa
(i.e., domain components separated with a dot (’.’) character, and path
components separated with a slash (’/’) character).

Further details about the class loading mechanism are provided in Se
5.3.

Communication Receiver

realized the server side access point of a communication relationship
has been established via the Grasshopper >communication service. A com-
munication receiver is represented by a Grasshopper >address which
defines the server’s protocol type, IP address, object name, and port
ber. By default, each Grasshopper >agency and >region registry has one
communication receiver that uses the plain >socket protocol. Additional
communication receivers can be added at start-up time or during run
Please refer to the User’s Guide for further information.

Communication Service

a core service of Grasshopper >agencies and >region registries. The com-
munication service supports local and remote interactions between G
hopper components (>agents, agencies, region registries). Besides, t
service enables external applications to communicate with the Grass
per environment. The communication service enables synchronous
asynchronous (see Section 9.5), unicast and multicast (see Section
static and dynamic method (see Section 9.7) invocations. By mean
>proxy objects, Grasshopper agents are able to communicate with e
other in a location-transparent way. That means, >client agents and
>server agents may migrate during a communication session, while
communication service keeps track of the agents and transparently
rects the method invocations and the return values to the actual loca
(see Section 9.14).
Annex-7

PROGRAMMER’S GUIDE

 an
ong-
CORBA

see >common object request broker architecture

Common Object Request Broker Architecture (CORBA)

a comprehensive architecture for the realization of distributed applica-
tions, developed by the >Object Management Group (OMG). For further
details, please refer to http://www.omg.org.

Data State

the set of variable values that a >mobile agent carries with it during a
>migration. The data state of a Grasshopper mobile agent consists of all
instance variables that are not declared transient (see Section 6.3). Before
a migration, the data state is >serialized, i.e., transformed into a data
stream. After transferring this stream to the destination agency, the original
object structure is re-created and delivered to the associated agent. In order
to improve the migration performance, the data state should be minimized.
A set of hints for defining a data state is provided in Section 6.3.

Dynamic Method Invocation

a mechanism for client/server interactions where the client is able to con-
struct a method call without having access to the corresponding server (or
proxy) class. Dynamic method invocations can be performed synchro-
nously or asynchronously. Dynamic method invocation is one feature of
the Grasshopper >communication service. For further information, please
refer to Section 9.5.

Dynamic Proxy Generation

the generation of a >proxy object during the runtime of the associated
application, without the need for a manually created >proxy class. Cur-
rently, Grasshopper supports dynamic proxy generation in a JDK 1.3 envi-
ronment. If a JDK 1.2 environment is used, proxy classes have to be
created manually before running the associated application. The manual
proxy creation can be achieved by using the Grasshopper >stub generator.
Please refer to Section 9.2 for further details.

Execution Block

a part of the program logic of a >mobile agent that is entirely executed at a
single location. In the context of Grasshopper, the live() method of a
mobile agent can be divided into a set of execution blocks. Invocations of
the agent’s move() method should only be performed at the end of
execution block. Before the agent’s migration, a counter variable (bel
Annex-8

ANNEX B: GLOSSARY

-
r to
ks.

s or
xtract
-based

d
i-
e
 this

save
hen

nt is

is-

ls.

ist
, the

Other
nd
ction
hop-
o
ting
s

ing to the agent’s >data state) may be initialized, indicating which execu
tion block to perform after the arrival at the new location. Please refe
Section 6.4 for more information about the concepts of execution bloc

Execution State

a set of information indicating the exact point in execution of a proces
thread. The standard Java language does not offer the possibility to e
the execution state of a process or thread, and thus (standard) Java
mobile agent platforms are usually not able to take advantage of >strong
migration. The current point in an >agent’s execution must be mappe
onto the agent’s >data state, e.g., in terms of a counter variable that ind
cates the number of the >execution block that has to be performed after th
next migration. Please refer to Section 6.4 for more information about
concept.

Flush

the procedure of persistently storing a Grasshopper >agent in the file sys-
tem of the hosting agency. The purpose of flushing an agent is to
agency resources. A flushed agent is automatically re-activated w
another entity tries to access it. The functionality of flushing an age
associated with the Grasshopper >persistence service. An agent can only
be flushed if the following two preconditions are fulfilled: 1.) The pers
tence service of the hosting agency is active; 2.) the >agent class is derived
from one of the classes PersistentMobileAgent or Persis-
tentStationaryAgent. Please refer to Chapter 10 for further detai

Flushed

one possible >state of an >agent. A flushed agent does not anymore ex
as a living object or running thread inside the hosting agency. Instead
agent has been persistently stored inside the agency’s file system.
possible states are >suspended (possible for agents and places) a
>active. For further information about agent states, please refer to Se
5.5. The functionality of flushing an agent is associated with the Grass
per >persistence service. An agent can only be flushed if the following tw
preconditions are fulfilled: 1.) The persistence service of the hos
agency is active; 2.) the >agent class is derived from one of the classe
PersistentMobileAgent or PersistentStationaryAgent.
Please refer to Chapter 10 for further details.

Home Location

the >location at which a Grasshopper agent has been created.
Annex-9

PROGRAMMER’S GUIDE

 the
er’

 been

"

wing

tion

ia

ent
desti-
esk
Identifier

enables the unique identification of Grasshopper >agents, >agencies, and
listeners in the entire distributed environment. A Grasshopper identifier
consists of the following components:

• a prefix, describing the kind of component that is associated with
identifier (Agent, AgentSystem, Listener). Note that the prefix ’listen
is reserved for internal usage only.

• the Internet address or name of the host on which the identifier has
created

• the date on which the identifier has been created: "yyyy-mm-dd"

• the time on which the identifier has been created: "hh-mm-ss-msms

• the number of copies of the corresponding agent

Represented as String, a complete Grasshopper identifier has the follo
format:

<prefix>#<ip-address>#<date>#<time>#<copy-number>

Example of a Grasshopper identifier:

"Agent#123.456.789.012#1999-11-19#15:59:59:0#0"

More information about Grasshopper identifiers can be found in Sec
5.1.

iiop (Grasshopper protocol type)

one possible protocol used by the Grasshopper >communication service.
iiop uses CORBA >Internet Inter-ORB Protocol. The protocol type ’iiop’
is part of a Grasshopper >address. Note that, in order to communicate v
iiop, the server side (represented by an >agency, >region registry, or exter-
nal application) must provide a >communication receiver that supports this
protocol. iiop required a CORBA runtime environment.

IIOP

see >Internet Inter-ORB Protocol

InformationDesk

the default >place that exists in every Grasshopper agency. If an ag
wants to migrate and does not provide a specific place of the desired
nation agency, the agent automatically moved to the InformationD
place.
Annex-10

ANNEX B: GLOSSARY

rtant

er
Internet Inter-ORB Protocol (IIOP)

a protocol specified by the >Object Management Group (OMG) in the
context of the >Common Object Request Broker Architecture (CORBA).
IIOP enables interactions between CORBA client and server objects that
are implemented in different languages and residing remotely in different
computing environments. For more information, please refer to the
CORBA specification, available from the OMG (http://
www.omg.org).

Location

in the context of Grasshopper, the network location of an >agency, a
>place inside an agency , or a >region registry. The location of a Grass-
hopper >agent is equal with the location of the place in which the agent is
currently running. A location is specified in terms of an >address.

Manual Proxy Generation

the creation of a >proxy class by using the Grasshopper >stub generator.
Currently, Grasshopper supports >dynamic proxy generation in a JDK 1.3
environment. If a JDK 1.2 environment is used, proxy classes have to be
created manually before running the associated application. Please refer to
Section 9.2 for further details.

MAFAgentSystem

a CORBA interface for >agencies, specified in the >Mobile Agent System
Interoperability Facility (MASIF) specification. Please refer to the MASIF
standard for detailed information.

MAFFinder

a CORBA interface for >region registries, specified in the >Mobile Agent
System Interoperability Facility (MASIF) specification. Please refer to the
MASIF standard for detailed information.

MASIF

see >Mobile Agent System Interoperability Facility

Migration

the movement of a >mobile agent from one >agency to another. During the
migration, not only the agent’s class code is transferred, but also impo
internal information. Two kinds of migration can be distinguished: >strong
migration and >week migration. Please refer to Section 6.1 for furth
details.
Annex-11

PROGRAMMER’S GUIDE

 the

current
d, a
 look

lient
ulti-

ave
ames
e and
ection

es).

dent
 to
en-
Mobile Agent

an >agent that is able to move from one >agency to another during its runt-
ime. By dividing live() method of a Grasshopper mobile agent into
several >execution blocks, the agent is able to perform different tasks at
different locations. Please refer to Chapter 6 for detailed information about
the characteristics of Grasshopper mobile agents.

Mobile Agent System Interoperability Facility (MASIF)

the first >mobile agent standard of the >Object Management Group
(OMG). The idea behind MASIF is to improve the interoperability
between mobile agent platforms of different manufacturers. Please refer to
the MASIF standard for detailed information, available via download from
the OMG’s FTP server. Please look for the ORBOS document with
number 97-10-05.

Please note that, in contrast to previous Grasshopper releases, the
release does not cover the MASIF functionality in its kernel. Instea
MASIF library is available as a Grasshopper extension. Please have a
at the IKV Web sites.

Mobility

the ability of a >mobile agent to migrate from one >agency to another dur-
ing its runtime.

Multicast Communication

a communication mechanism between clients and servers. A c
addresses a set of servers by performing just a single method call. M
cast communication is one possible mode of the Grasshopper >communi-
cation service. For further information, please refer to Section 9.5.

Name

In the context of Grasshopper, names are associated with >agents, >agen-
cies, and >region registries. Names are user-defined, and they do not h
to be unique in the distributed environment. Concerning agencies, n
should be unique on single hosts, since the combination of host nam
agency name may be used for addressing agencies. Please refer to S
5.2 (agent names) and to Section 9.11.1/Section 9.11.4 (agency nam

Object Management Group (OMG)

founded in April 1989 by eleven companies, the OMG began indepen
operations as a not-for-profit corporation. The OMG’s objective is
develop technically excellent, commercially viable and vendor-indep
Annex-12

ANNEX B: GLOSSARY

s of
t be
g the
gative
ired,

r

s

e

dent specifications for the software industry. Its best-known achievement
is the development of the >Common Object Request Broker Architecture,
comprising its worldwide standard specifications: CORBA/IIOP, Object
Services, Internet Facilities and Domain Interface specifications. Please
refer to http://www.omg.org for further details.

OMG

see >Object Management Group

Object Request Broker (ORB)

a communication channel, supporting RPC interactions between distrib-
uted software components. Each component belongs to the category client
and/or server. The object request broker manages the connection establish-
ment. A well-known specification in this context is the >Common Object
Request Broker Architecture of the >Object Management Group.

ORB

see >Object Request Broker

Persistence Service

a part of the core functionality of a Grasshopper >agency. An agency’s
persistence service is responsible for continuously storing the >data states
of all >agents that are running on the agency. In contrast to other part
an agency’s core functionality which are active by default and canno
deactivated, the persistence service must explicitly be activated durin
agency’s start-up. The reason is that the persistence service has a ne
impact on an agency’s performance. Thus, if persistence is not requ
this service should not be activated.

Note that only those agents can be persistently stored whose >agent class
inherits one of the Grasshopper super classes PersistentMobile-
Agent or PersistentStationaryAgent. Please refer to Chapte
10 for further details.

Persistent Agent

a Grasshopper >agent whose >agent class inherits one of the super classe
PersistentMobileAgent or PersistentStationaryAgent.
Such Grasshopper agents can be persistently stored if the >persistence ser-
vice of the hosting agency is active.

Place

a logical entity inside a Grasshopper >agency. Each agency has at least on
Annex-13

PROGRAMMER’S GUIDE

t the

place

h sin-
rma-

e’
 their
n 5.5

rass-
roxy
iated
 1.3

Even
ction
anual
rass-

-

with
roxy
o the
a the

tion
 1.3
Even
ction
place, named ’InformationDesk’. Additional places can be added a
agency’s start-up or later during its runtime. Grasshopper >agents always
run inside a place of an agency. Mobile agents can migrate from one
to another. The destination place of an agent’s >migration may exist on the
same or a remote agency. A user can define a security policy for eac
gle place of an agency. Please refer to the User’s Guide for more info
tion.

Place State

the mode of existence of a >place. Places can exist in the states ’activ
and ’suspended’. They may change their state several times during
runtime. After their creation, places are active. Please refer to Sectio
for further information about states.

Proxy Class

a Java class that has been created via the Grasshopper >stub generator.
The required input of the stub generator is a >server interface. A >client
(agent) needs an instance of the proxy class, i.e., a >proxy object, in order
to interact with a >server (agent) via the Grasshopper >communication
service. A proxy class, created via the stub generator, is needed if G
hopper runs in a JDK 1.2 environment. In JDK 1.3 environments, a p
object can be dynamically generated during the runtime of the assoc
application. In this case, no proxy class is required. (Note that in a JDK
environment the dynamic proxy generation is performed in any case.
if a proxy class is accessible, it will not be used.) Please refer to Se
9.2 in order to learn about the differences between dynamic and m
proxy creation, and about how to create a proxy class by using the G
hopper stub generator.

Proxy (Object)

a Java object that represents a >server (agent) at the location of the corre
sponding >client (agent). When using the Grasshopper >communication
service, a client has to locally create a proxy object that corresponds
the derived server. After this, the client invokes methods on the p
object, and the communication service forwards these invocations t
remote server. The method result is transferred back to the client vi
proxy. A proxy object can by created either as an instance of a >proxy
class that has been generated with the Grasshopper >stub generator
(required in JDK 1.2 environments, or dynamically via the Java reflec
mechanism (possible in JDK 1.3 environments). (Note that in a JDK
environment the dynamic proxy generation is performed in any case.
if a proxy class is accessible, it will not be used.) Please refer to Se
Annex-14

ANNEX B: GLOSSARY

tates,
9.2 in order to learn about the differences between dynamic and manual
proxy creation, and about how to create a proxy class by using the Grass-
hopper stub generator.

Region

a set of Grasshopper >agencies that are registered at the same >agency
domain service (ADS). One advantage of having a region is that all agents
running inside the region can be easily located. Concerning the >communi-
cation service, a >client (agent) need not be aware of the current location
of the desired >server (agent). Instead, the communication service auto-
matically contacts the agency domain service for determining the server
location. Each agency automatically registers all currently hosted agents at
the ADS, and it de-registers the agents after their removal or their migra-
tion to another location. Of course, a mobile agent can migrate to an
agency that belongs to another region than the agency in which the agent is
currently running. However, in this case the complete >address of the des-
tination agency must be provided by the agent, while the migration
between agencies belonging to the same region just requires the specifica-
tion of the destination host and destination >agency name.

Region Registry

one special type of >agency domain service. A region registry is a Grass-
hopper-specific registration service that is responsible for maintaining
information about >agents and >agencies. Beside region registry, Grass-
hopper supports LDAP servers as agency domain services.

Remote Method Invocation (RMI)

a Java communication mechanism, enabling remote interactions between
Java objects that are running on different Java Virtual Machines.

Resumed

one possible >state of an >agent or >place. (see >resumption). For further
information about states, please refer to Section 5.5.

Resumption

the procedure of re-activating a suspended >agent or >place. After the
resumption of an agent, the agent continues performing its task which has
been interrupted by the agent’s >suspension. The resumption of a place
resumes all agents inside the place. For further information about s
please refer to Section 5.5.
Annex-15

PROGRAMMER’S GUIDE

sl,

by an

nal
bout

t and
rass-
s

SSL,
Please
.

opper

d by
, the

ac-
of
e
lease
rmi (Grasshopper protocol type)

one possible protocol used by the Grasshopper >communication service.
rmi uses Java >Remote Method Invocation. The protocol type ’rmi’ is part
of a Grasshopper >address. Note that, in order to communicate via rmis
the server side (represented by an >agency, >region registry, or external
application) must provide a >communication receiver that supports this
protocol.

RMI

see >Remote Method Invocation

rmissl (Grasshopper protocol type)

one possible protocol used by the Grasshopper >communication service.
rmissl uses >Remote Method Invocation, protected via >Secure Socket
Layer. The protocol type ’rmissl’ is part of a Grasshopper >address. Note
that, in order to communicate via rmissl, the server side (represented
>agency, >region registry, or external application) must provide a >com-
munication receiver that supports this protocol. rmissl requires exter
security packages. Please refer to the User’s Guide for information a
these packages.

Secure Socket Layer (SSL)

SSL is one of the most widely used security protocols on the Interne
can be used to protect almost all traffic over TCP/IP networks. The G
hopper >communication service is able to protect all remote interaction
(covering for instance agent communication and agent migration) via
presupposed that additional security packages have been installed.
refer to the User’s Guide for information about the required packages

Security Service

one part of the core functionality of Grasshopper agencies. Grassh
distinguishes between external and internal security:

• External security protects all remote interactions that are performe
using the Grasshopper >communication service. For this purpose
communication service makes use of X.509 certificates and the >Secure
Socket Layer protocol. In order to take advantage of protected inter
tions, a >communication receiver must be used which supports one
the secure protocols >socketssl or >rmissl. Note that these protocols ar
only available, if external security packages have been installed. P
refer to the User’s Guide for information about these packages.

• Internal security protects the resources inside a Grasshopper >agency
Annex-16

ANNEX B: GLOSSARY

ure

ream.

.

ods
ass-
thods

server

f a

for

 pro-
t’ is
ia

ocket

f pro-
by defining access rights for >agents. Internal security is active by
default and does not require the installation of any external packages.
Please refer to the User’s Guide for information about how to config
the internal security of Grasshopper.

Serialization

the procedure of transforming a Java object structure into a data st
Serialization is a fundamental requirement for >agent >migration, since it
enables the transfer of an agent’s >data state from one location to another

Server Agent

an >agent acting as communication server. A server agent offers meth
to a >client agent which may run on the same or a remote agency. A Gr
hopper agent may act as client and server at the same time. The me
that are to be accessible for client agents must be declared in the
agent’s >server interface.

Server Interface

a Java interface that has to be implemented by the >agent class of a Grass-
hopper >server agent. The server interface declares those methods o
server agent that are to be accessible for >client agents. The server inter-
face is used as input for the Grasshopper >stub generator. The correspond-
ing output is a >proxy class. Please refer to Section 9.1 to Section 9.3
further details.

Server Proxy

see >proxy (object)

socket (Grasshopper protocol type)

one possible protocol used by the Grasshopper >communication service.
socket uses a plain socket protocol, representing the lowest level of
gramming to the TCP/IP layer of a network. The protocol type ’socke
part of a Grasshopper >address. Note that, in order to communicate v
socket, the server side (represented by an >agency, >region registry, or
external application) must provide a >communication receiver that sup-
ports this protocol. (Concerning agencies and region registries, a s
communication receiver is running by default.)

socketssl

one possible protocol used by the Grasshopper >communication service.
socketssl uses a plain socket protocol, representing the lowest level o
gramming to the TCP/IP layer of a network., protected via >Secure Socket
Annex-17

PROGRAMMER’S GUIDE

epre-
-
sl
e for

n

tive’
everal
 are
.

t

 its
igra-

f
r

Layer. The protocol type ’socketssl’ is part of a Grasshopper >address.
Note that, in order to communicate via socketssl, the server side (r
sented by an >agency, >region registry, or external application) must pro
vide a >communication receiver that supports this protocol. sockets
requires external security packages. Please refer to the User’s Guid
information about these packages.

SSL

see >Secure Socket Layer

State

the mode of existence of an >agent or >place. All Grasshopper agents ca
exist in the states ’active’ and ’suspended’. >Persistent agents can addi-
tionally exist in the state ’flushed’. Places can exist in the states ’ac
and ’suspended’. Agents as well as places may change their states s
times during their runtime. After their creation, agents and places
active. Please refer to Section 5.5 for further information about states

Stationary Agent

a Grasshopper >agent that is running on the same >place for its entire life
time. In contrast to this, >mobile agents are able to migrate to differen
locations.

Strong Migration

a kind of >migration where an agent moves together with its whole >exe-
cution state. After a strong migration, the agent continues processing
task exactly at the point at which it has been interrupted before the m
tion. Please refer to Section 6.1 for further details.

stubgen

the name of the shell script that starts the Grasshopper >stub generator.

Stub Generator

a Grasshopper tool for generating >proxy classes. The required input o
the stub generator is a >server interface. Please refer to Section 9.2.1 fo
information about how to use this tool.

Suspended

one possible >state of an >agent or >place. (see >suspension). For further
information about states, please refer to Section 5.5.
Annex-18

ANNEX B: GLOSSARY

 agent
n of
gents
,

king
f the
f the

ernal
erred
ation.
of the
Suspension

the procedure of temporarily interrupting an >agent’s task execution. After
the suspension of an agent, the agent’s thread is stopped, while the
still exists inside the >agency as a (passive) Java object. The suspensio
a place suspends all agents inside the place. The re-activation of a
and places is called >resumption. For further information about states
please refer to Section 5.5.

Synchronous Communication

a communication mechanism between clients and servers. After invo
a method on the server, the client is blocked until the termination o
server method. Synchronous communication is one possible mode o
Grasshopper >communication service. For further information, please
refer to Section 9.5.

Weak Migration

a kind of >migration where an agent maintains its >data state when travel-
ling from one location to another. An agent’s data state consists of int
variable values that are serialized at the agent’s old location, transf
across the network, and provided to the agent again at the new loc
The agent programmer has to decide which variables are to be part
data state. Please refer to Section 6.1 for further details.
Annex-19

PROGRAMMER’S GUIDE
Annex-20

ANNEX C: INDEX
C Index

A
access control 236
active 42, Annex - 3
Address Annex - 3
address 40, Annex - 3

complete structure 41
host name 41
minimal structure 42
object name 41
place name 41
port number 41
protocol type 40

ADS Annex - 3
agency Annex - 4

access
local 144
remote 145

access by agents 139
address 40
identifier 140, Annex - 4
information 139
listening to 146
location 40, 140
name 140, Annex - 4
proxy 145
type 140

agency domain service 163, Annex - 4
access 163

local 168
agent Annex - 5

address 40
class Annex - 5
client Annex - 6
clone 67
code base 37
constructors 24
copy 67
creation 23

parameters 25
via API 25
via UI 25

data state 52
description 33
identification 35

identifier 35, Annex - 5
interface name 33
life cycle 42
location 40
migration 49

procedure 51
strong 50
weak 50

mobile 13, Annex - 12
name 33, Annex - 5
names & descriptions 36
persistent 13, Annex - 13
platform Annex - 6
properties 32
removal 25
server Annex - 17
state 34, 42, Annex - 5
stationary 13, Annex - 18
system Annex - 6
thread 19
type Annex - 5
types 14, 33

asynchronous communication 90, An-
nex - 6

dynamic calls 113
result handling 91

blocking 94
notification 96
polling 95

C
certificate 235
class

ActionAgent 61
AgencyClientAgent 152
AgencyInfo 140

identifier 140
location 140
name 140
type 140

Agent 15
action() 15, 61
afterCopy() 16
Annex-21

PROGRAMMER’S GUIDE
beforeCopy() 16
beforeRemove() 16, 26
copy() 16
getAgentSystem() 16
getDescription() 16
getInfo() 16
getName() 16
getProperties() 17
getProperty() 17
getRegion() 17
getType() 17
init() 17, 24
live() 17, 19

structure 54
log() 17
remove() 17
setProperties() 18
setProperty() 18

AgentInfo 31
AgentPresentation 33
AgentSecurityRelated 33
AgentSpecification 33
code base 32
home location 32
identifier 32
last location 32
location 32
properties 32
state 34

AgentPresentation 33
agent name 33
agent type 33
description 33
interface name 33

AgentSecurityRelated 33
AgentSpecification 33
AsyncClientAgent 103
AsyncServerAgent 98
BoomerangAgent 55
ClientAgent 85
CopyAgent 69
CORBAClientAgent 252
CORBAServant 247
CORBAServerAgent 248
DynamicClientAgent 122
DynamicServerAgent 115
ExternalAccessAgent 212
ExternalApplication 207

ExternalCommService 204
deregisterObject() 205
registerObject() 205
shutdown() 205
startReceiver() 204

FutureResult 91
addResultListener() 93
getResult() 91
getResult() 92
getTimeout() 92
isAvailable() 93
isUserException() 93
removeResultListener() 93
setTimeout() 93

GHListener 156
GHSecurityManager 236
HelloAgent 19
MigratingClientAgent 193
MigratingServerAgent 189
MobileAgent 18

afterCopy() 68
afterMove() 18, 52
beforeCopy() 67
beforeMove() 18, 51
getType() 18
move() 18

MulticastClientAgent 133
MulticastServerAgent 131
PersistentMobileAgent 219

afterLoad() 219
beforeFlush() 219
beforeSave() 219
flush() 219
getFlushTimeout() 219
getSaveInterval() 219
save() 219
setFlushTimeout() 219
setSaveInterval() 219

PersistentStationaryAgent 219
afterLoad() 219
beforeFlush() 219
beforeSave() 219
flush() 219
getFlushTimeout() 219
getSaveInterval() 219
save() 219
setFlushTimeout() 219
setSaveInterval() 219
Annex-22

ANNEX C: INDEX
PlaceAccessAgent 229
PlaceService 227
PrintInfoAgent 45
PrintStringAgent 27
RegionClientAgent 175
Serializable 52
ServerAgent 83
ServerObject 210
SleepyAgent 220
StationaryAgent 18

getType() 18
TestDataPacket 117

class diagram
AgencyInfo 140
Agent 14
AgentInfo 31
IAgentSystem 141
IRegion 164
IRegionRegistration 166

client agent Annex - 6
clone 67
code base 32, 37, Annex - 6
communication receiver Annex - 7
communication service 75, Annex - 7

asynchronous com. 90
client side 81
dynamic com 112
external clients 204
external interactions 204
external servers 204
general usage 76
location transparency 76
migration handling 187
multicast com. 127
proxy

concept 75
creation 77

dynamic 80
manual 78

server side 77
static com. 112
synchronous com. 90
unicast com. 127

contact 4
copy 67

procedure 67
CORBA 241, Annex - 8

D
data state 52, Annex - 8

defining the 53
dynamic communication 112

async. calls 113
generic proxy 113
method calls 113
primitive types 114
user defined classes 113

dynamic method invocation Annex - 8
dynamic proxy generation Annex - 8

E
example

ActionAgent 61
AgencyClientAgent 149
BoomerangAgent 55
class loading 11
CopyAgent 68
fault tolerance 10
HelloAgent 19
overview 6
PrintInfoAgent 44
PrintStringAgent 26
RegionClientAgent 173
running the 10
scenario

async. communication 97
AsyncClientAgent 100
AsyncServerAgent 98
running the 109

CORBA 246
CORBAClientAgent 252
CORBAServerAgent 248
running the 256

dynamic communication 114
DynamicClientAgent 118
DynamicServerAgent 115
running the 125

external communication 206
ExternalAccessAgent 211
ExternalApplication 206
running the 214

migration 189
MigratingClientAgent 191
MigratingServerAgent 189
running the 199
Annex-23

PROGRAMMER’S GUIDE
multicast communication 131
MulticastClientAgent 132
MulticastServerAgent 131
running the 136

simple communication 83
ClientAgent 85
running the 87
ServerAgent 83

special places 227
IPlaceService 228
PlaceAccessAgent 228
PlaceService 227
property file 228
running the 231

SleepyAgent 219
execution block Annex - 8
execution state Annex - 9
external communication 204
external security 235

F
file

place property 225
filter 181
flush 217, Annex - 9
flushed 43

G
grasshopperiiop 41
group interface 128
group proxy 128

creation 129

H
home location 32, Annex - 9

I
identifier 32, Annex - 10
IDL 241
iiop 41, Annex - 10
InformationDesk Annex - 10
installation requirements 5
interface

CI_CORBAServerAgent 247
IAgent 19
IAgentSystem 141, 218

addSystemListener() 143
copyAgent() 142
createAgent() 23, 142
createPlace() 143
flushAgent() 142, 218
flushAgentAfter() 142, 218
getAgentState() 142
getInfo() 144
getPlaceState() 143
hasPersistence() 144, 218
invokeAgentAction() 142
listAgents() 142
listMobileAgents() 142
listPlaces() 143
listStationaryAgents() 142
moveAgent() 142
reloadAgent() 142, 218
removeAgent() 143
removePlace() 143
removeSystemListener() 144
resumeAgent() 143
resumePlace() 143
saveAgent() 143, 218
saveAgentEvery() 143, 218
suspendAgent() 143
suspendPlace() 143

IAsyncServerAgent 100
IDirectoryService 165
IDynamicServerAgent 116
IExternalAccessAgent 214
IFutureResult 91
IGroup 128

add() 128
getMembers() 128
getResult() 128
invoke() 128
remove() 128
setType() 129

IListeningAgent 155
IMigratingServerAgent 191
IMobileAgent 19
IMulticastServerAgent 132
IPersistent 19
IPlaceService 228
IRegion 163, 164

getAgentState() 164
getPlaceState() 165
listAgencies() 165
Annex-24

ANNEX C: INDEX
listAgents() 164
listMobileAgents() 164
listPlaces() 165
listStationaryAgents() 164
lookupCommunicationSer-

ver() 165
lookupLocation() 164

IRegionRegistration 163, 165
addSystemListener() 167
getAgentState() 166
getPlaceState() 167
listAgencies() 167
listAgents() 166
listMobileAgents() 166
listPlaces() 167
listStationaryAgents() 166
lookupCommunicationSer-

ver() 167
lookupLocation() 166
removeSystemListener() 167

IServerAgent 84
IServerObject 211
IStationaryAgent 19
ISystemListener 146, 170

agencyAdded() 170
agencyRemoved() 170
agentAdded 146
agentAdded() 170
agentChanged() 146, 170
agentRemoved() 146, 170
beforeRemove() 146, 171
getIdentifier() 147, 171
placeAdded() 146, 170
placeChanged() 146, 171
placeRemoved() 146, 171

ISystemListenerProvider 165
internal security 235, 236
invoke action() 61

L
last location 32
listener

identifier 147, 171
result 96
system 146, 170

registration 147, 171
location 32, 40, Annex - 11

location transparency 76

M
MAFAgentSystem Annex - 11
MAFFinder Annex - 11
manual proxy generation Annex - 11
MASIF Annex - 11
method

action() 15, 61
add() 128
addResultListener() 93
addSystemListener() 143, 167
afterCopy() 16, 68
afterLoad() 219
afterMove() 18, 52
agencyAdded() 170
agencyRemoved() 170
agentAdded() 146, 170
agentChanged() 146, 170
agentRemoved() 146, 170
beforeCopy() 16, 67
beforeFlush() 219
beforeMove() 18, 51
beforeRemove() 16, 26, 146, 171
beforeSave() 219
copy() 16
copyAgent() 142
createAgent() 23, 142
createPlace() 143
deregisterObject() 205
flush() 219
flushAgent() 142, 218
flushAgentAfter() 142, 218
getAgentState 142
getAgentState() 164, 166
getAgentSystem() 16
getDescription() 16
getFlushTimeout() 219
getIdentifier() 147, 171
getInfo() 16, 144
getMembers() 128
getName() 16
getPlaceState() 143, 165, 167
getProperties() 17
getProperty() 17
getRegion() 17
getResult() 91, 128
Annex-25

PROGRAMMER’S GUIDE
getSaveInterval() 219
getTimeout() 92
getType() 17, 18
hasPersistence() 144, 218
init() 17, 24
invoke() 128
invokeAgentAction() 142
isAvailable() 93
isUserException() 93
listAgencies() 165, 167
listAgents() 142, 164, 166
listMobileAgents() 142, 166
listPlaces() 143, 165, 167
listStationaryAgents() 142, 164,

166
live() 17, 19

structure 54
log() 17
lookupCommunicationServer()

165, 167
lookupLocation() 164, 166
move() 18
moveAgent() 142
placeAdded() 146, 170
placeChanged() 146, 171
placeRemoved() 146, 171
registerObject() 205
reloadAgent() 142, 218
remove() 17, 128
removeAgent() 143
removePlace() 143
removeResultListener() 93
removeSystemListener() 144, 167
resumeAgent() 143
resumePlace() 143
save() 219
saveAgent() 143
saveAgentEvery() 143, 218
serProperty() 18
setFlushTimeout() 219
setProperties() 18
setSaveInterval() 219
setTimeout() 93
setType() 129
shutdown() 205
startReceiver() 204
suspendAgent() 143
suspendPlace() 143

migration 49, Annex - 11
handling 187
procedure 51
strong 50, Annex - 18
weak 50, Annex - 19

mobile agent 13, Annex - 12
mobility Annex - 12
multicast communication Annex - 12

group interface 128
group proxy 128
result handling 130
termination mode 129

and 129
incremental 130
or 129

N
name Annex - 12

O
object request broker Annex - 13
OMG Annex - 13
ORB Annex - 13

P
permission 236
persistence service 217, Annex - 13

flush 217
reload 218
save 217

persistent agent 13, Annex - 13
place Annex - 13

service 225
special 225

place property file 225
place state Annex - 14
properties 32
protocol 40

type 40
grasshopperiiop 41
iiop 41
rmi 41
rmissl 41
socket 40
socketssl 41

proxy
Annex-26

ANNEX C: INDEX
concept 75
creation 77

dynamic 80
manual 78

generic 113
group 128

proxy class Annex - 14
proxy object Annex - 14

R
region Annex - 15
region registry Annex - 15

access 163
local 168
remote 169

listening to 170
proxy 169

reload 218
remote method invocation Annex - 15
result listener 96
resume Annex - 15
resumption Annex - 15
rmi 41, Annex - 16
rmissl 41, Annex - 16

S
save 217
search filter 181
searching 180
secure socket layer 235, Annex - 16
security service 235, Annex - 16
serialization Annex - 17
server agent Annex - 17
server interface Annex - 17
server proxy Annex - 17
socket 40, Annex - 17
socketssl 41, Annex - 17
source code

ActionAgent 61
AgencyClientAgent 152
AsyncClientAgent 104
AsyncServerAgent 98
AsyncServerException 100
BoomerangAgent 55
CI_CORBAServerAgent 247
ClientAgent 85
CopyAgent 70

CORBAClientAgent 253
CORBAServerAgent 248
DynamicClientAgent 122
DynamicServerAgent 115
ExternalAccessAgent 212
ExternalApplication 207
GHListener 157
HelloAgent 19
IAsyncServerAgent 100
IDynamicServerAgent 116
IExternalAccessAgent 214
IListeningAgent 155
IMigratingServerAgent 191
IMulticastServerAgent 132
IServerAgent 84
IServerObject 211
MigratingClientAgent 194
MigratingServerAgent 189
MulticastClientAgent 133
MulticastServerAgent 131
PrintInfoAgent 45
PrintStringAgent 27
RegionClientAgent 175
ServerAgent 84
ServerObject 210
SleepyAgent 220
TestDataPacket 117

special places 225
SSL 235
ssl Annex - 16
state 42, Annex - 18

active 42
diagram 44
flushed 43
suspended 43

static communication 112
stationary agent 13, Annex - 18
strong migration 50, Annex - 18
stub generator Annex - 18

usage 79
stubgen Annex - 18

See stub generator
suspended 43, Annex - 18
suspension Annex - 19
synchronous communication 90, An-
nex - 19
system listener 146, 170
Annex-27

PROGRAMMER’S GUIDE
T
termination mode 129

and 129
incremental 130
or 129

W
weak migration 50, Annex - 19

X
X.509 235
Annex-28

	1 Preface
	1.1 About this Document
	1.2 Document Structure
	1.3 Related Documents
	1.4 Notational Conventions
	1.4.1 Fonts
	1.4.2 Icons

	1.5 How to Get in Contact

	2 Introduction
	3 Hello Agent!
	3.1 Example: HelloAgent
	3.2 Summary

	4 Creation and Removal of Agents
	4.1 Agent Creation
	4.2 Agent Removal
	4.3 Example: PrintStringAgent
	4.4 Summary

	5 Agent Related Information
	5.1 Identification
	5.2 Names and Descriptions
	5.3 Code base
	5.4 Grasshopper Addresses and Locations
	5.5 States and Life Cycles
	5.6 Example: PrintInfoAgent
	5.7 Summary

	6 Move Me!
	6.1 Strong vs. Weak Migration
	6.2 The Migration Procedure
	6.3 The Data State: Mobile Information
	6.4 Structuring an Agent’s Life
	6.5 Example: BoomerangAgent
	6.6 Summary

	7 Action!
	7.1 Example: ActionAgent
	7.2 Summary

	8 Clones and Copies
	8.1 Example: CopyAgent
	8.2 Summary

	9 The Communication Service
	9.1 Implementing the Server Side
	9.2 Creating Proxy Objects
	9.2.1 Manual Proxy Generation
	9.2.1.1 Usage of the Stub Generator

	9.2.2 Dynamic Proxy Generation
	9.2.3 Issues of Mixed JDK Environments

	9.3 Implementing the Client Side
	9.4 Simple Communication Scenario
	9.4.1 Example: ServerAgent
	9.4.2 Example: ClientAgent
	9.4.3 Running the Scenario
	9.4.4 Summary

	9.5 Sync. vs. Async. Communication
	9.5.1 Asynchronous Provision of Results

	9.6 Asynchronous Communication Scenario
	9.6.1 Example: AsyncServerAgent
	9.6.2 Example: AsyncClientAgent
	9.6.3 Running the Scenario
	9.6.4 Summary

	9.7 Static vs. Dynamic Method Invocation
	9.8 Dynamic Communication Scenario
	9.8.1 Example: DynamicServerAgent
	9.8.2 Example: DynamicClientAgent
	9.8.3 Running the Scenario
	9.8.4 Summary

	9.9 Unicast vs. Multicast Communication
	9.10 Multicast Communication Scenario
	9.10.1 Example: MulticastServerAgent
	9.10.2 Example: MulticastClientAgent
	9.10.3 Running the Scenario
	9.10.4 Summary

	9.11 Accessing Agencies
	9.11.1 Agency Related Information
	9.11.2 Interface IAgentSystem
	9.11.3 Local Access
	9.11.4 Remote Access
	9.11.5 Listening to Agencies
	9.11.6 Example: AgencyClientAgent
	9.11.7 Summary

	9.12 Accessing an Agency Domain Service
	9.12.1 Interface IRegion
	9.12.2 Interface IRegionRegistration
	9.12.3 Local Access
	9.12.4 Remote Access
	9.12.5 Listening to Region Registries
	9.12.6 Example: RegionClientAgent
	9.12.7 Summary

	9.13 Searching Grasshopper Components
	9.14 Migrating Servers and Clients
	9.15 Migration Scenario
	9.15.1 Example: MigratingServerAgent
	9.15.2 Example: MigratingClientAgent
	9.15.3 Running the Scenario
	9.15.4 Summary

	9.16 Interacting with External Applications
	9.17 External Communication Scenario
	9.17.1 Example: ExternalApplication
	9.17.2 Example: ExternalAccessAgent
	9.17.3 Running the Scenario
	9.17.4 Summary

	10 The Persistence Service
	10.1 Example: SleepyAgent
	10.2 Summary

	11 Special Places
	11.1 Example Scenario for Special Places
	11.1.1 Example: PlaceService
	11.1.2 Example: PlaceAccessAgent
	11.1.3 Running the Scenario

	12 The Security Service
	12.1 External Security
	12.2 Internal Security
	12.3 Example: SecretAgent

	13 Grasshopper and CORBA
	13.1 CORBA Enhanced Grasshopper Agents
	13.1.1 Example: CORBA Enhanced Agents

	A Acronyms
	B Glossary
	C Index

