Software Technologies, Mobile Code

(Sebastian)

Mobile Code

Sebastian Fischmeister
fischmeister@softwareresearch.net
University of Salzburg

2

e Originates from a combination of two terms:
“Applet” and “Agent”
= Applet known from Java Applets

= Agent

e Do not mix up these two:
= Applets belong to code-on-demand paradigm
= code is mobile
= stack is static
- data is static

= Aglets belong to the mobile-agent paradigm...

© 2004 Sebastian Fischmeister

Universitdt
Salzburg

Fischmeister@SoftwareResearch.net

SS 2004

Software Technologies, Mobile Code

(Sebastian)

3

e Aglets are implemented in Java
= easy to implement MA systems
= dynamic class loading
= multi-threaded programming
= serialization
= reflection
« platform independence

= in 1996 Java was ,,the” thing

© 2004 Sebastian Fischmeister ‘M

e IBM Aglets Workbench

= Tahiti as management application

= Tahiti is an application program that runs as an
agent server. You can run multiple servers (Tahiti)
on a single computer by assigning them different
port numbers. Tahiti provides a user interface for
monitoring, creating, dispatching, and disposing of
agents and for setting the agent access privileges for
the agent server. (raniti user's guide)

= Aglet API
= example Aglets
e Resources
= http://aglets.sourceforge.net/
= http://www.trl.ibm.com/aglets/

© 2004 Sebastian Fischmeister

Fischmeister@ SoftwareResearch.net

SS 2004

Software Technologies, Mobile Code

5

e Four Basic Elements

Aglet: eq. to mobile agent
Proxy: eq. to stub in client/server
Context: eq. to places

Identifier

e Aglet
= the mobile agent
= reactive (responds to messages)

= proactive (runs within own thread of
execution)

= autonomous (can move on its own volition)
e Proxy

= protects the agent from direct access

= forwards messages to a remote Aglet

© 2004 Sebastian Fischmeister ‘M Saizburg

6

e Context
= equivalent to a place in the OMG MASIF
= one Tahiti basically runs one context

e ldentifier
= unique identifier for each aglet

e Missing (compared to Grasshopper):
= region
= region registry

© 2004 Sebastian Fischmeister ‘M Saizburg

(Sebastian)

Fischmeister@ SoftwareResearch.net

SS 2004

Software Technologies, Mobile Code

e Proxy represents the agent
e Protects the agent from direct access (attacks)
e Allows location transparent access

Aglet < >

Proxy

Aglet
Proxy

[AgletContext

7 © 2004 Sebastian Fischmeister

e Six basic operations
= creation
= cloning
= dispatching
= retraction
= activation and Deactivation
= disposal

8 © 2004 Sebastian Fischmeister

e Tahiti and Aglets can perform six basic
operations on another Aglet.

OEEAB

(Sebastian)
Fischmeister@ SoftwareResearch.net

SS 2004

Software Technologies, Mobile Code

(Sebastian)

9

e Creation

= initializes a new aglet
= creates a new thread
= assigns an identifier
e Cloning
= produce an identical copy of an Aglet
= assigns a different identifier (unique)
e Dispatching
= Aglet is transported between two Tahiti
contexts
= usually between different locations

© 2004 Sebastian Fischmeister ‘M Saizburg

10

e Retraction
= calls back an Aglet
= moves the Aglet from foreign context to the

local context
e Deactivation and Activation
= stops and resumes an Aglet
= deactivate must occur before activate
= useful before restarting Tahiti

= differences to Grasshopper
= no wake-up events

© 2004 Sebastian Fischmeister ‘M Saizburg

Fischmeister@ SoftwareResearch.net

SS 2004

Software Technologies, Mobile Code

11

e Disposal
= stops execution of an Aglet

= frees all used resources (e.g., thread group) -
- garbage collection

= removes an Aglet from its current context

© 2004 Sebastian Fischmeister

12

Context A Context B Di/srigse
Clone \Dispatcw/
%Iet D C Aglet
i) Retract_ |

Create Deactivate Activate
Class Disk
File Storage
© 2004 Sebastian Fischmeister ‘m sl

(Sebastian)

Fischmeister@ SoftwareResearch.net

SS 2004

Software Technologies, Mobile Code

(Sebastian)

13

e Aglet programming model
= uses Java for implementing the Aglets

= uses observer pattern
= callback model
e Available listeners
= clone listener
= mobility listener
= persistence listener

© 2004 Sebastian Fischmeister

14

e Listener specifics
= similar to Java events
= methods are invoked after the event occurs
= methods and events have similar names
= allow customized behavior (e.g., vetos)

Fischmeister@ SoftwareResearch.net

SS 2004

Software Technologies, Mobile Code

(Sebastian)

15

e Clone listener
= listens for cloning events
= actions can be customized to occur before or

after cloning
= onCloning()
= afterCloning()

© 2004 Sebastian Fischmeister

16

e Mobility listener
= listens for mobility events
= can customize actions before and after moving

actions
= onDispatch()

= onReverting()
= onArrival()

© 2004 Sebastian Fischmeister

Fischmeister@ SoftwareResearch.net

SS 2004

Software Technologies, Mobile Code

(Sebastian)

e Persistence listener

= listens for persistence events

= actions can be customized to occur when an
Aglet is about to be deactivated or has been

activated
= onDeactivating()
= onActivation()

17 ©2004 Sebastian Fischmeister ‘m St

o Aglet API

= simple and flexible

= represents lightweight pragmatic approach to
mobile agents (compare it to the Grasshopper
API)

= not as lightweight as other approaches
e Java classes
= Aglet
= Message
Futurereply
Agletid
Agletproxy

Fischmeister@ SoftwareResearch.net

SS 2004

Software Technologies, Mobile Code

(Sebastian)

e Java interfaces
= AgletProxy
= AgletContext

e Aglet class
= contains all methods needed to perform the

basic aglet operations
= moving, messaging, ...
= contains all the elements of the aglet

= Aglet id

OEEAB

19 © 2004 Sebastian Fischmeister

e Aglet creation
= create a customized aglet
= extend the class com.ibm.aglet.Aglet

import com.ibm.aglet.*;
public class MyFirstAglet extends Aglet{

//Put aglet’s methods here
T

e Similar to Grasshopper:
= specific methods for specific actions
= to not use the standard OO approaches !!

(e.g., new operator)
OESAB

20 © 2004 Sebastian Fischmeister

Fischmeister@ SoftwareResearch.net

SS 2004

10

Software Technologies, Mobile Code

21

Dispatch operation
= dispatches an aglet to a remote context
= uses URLs (Grasshopper uses separate class)

dispatch(new URL(atp://remote.host.com/context™));

Dispose operation
= removes the aglet from the current context

dispose();

See the API for similar ones
We will try more in the lab...

© 2004 Sebastian Fischmeister

22

e Message class

= communication is performed by exchanging
dedicated objects (message objects)

= AgletProxy class is responsible for actually
sending and receiving messages

e Message creation
= define the field ‘Type’

= second field of is optional (can contain
additional information)

© 2004 Sebastian Fischmeister ‘M

(Sebastian)

Fischmeister@ SoftwareResearch.net

SS 2004

11

Software Technologies, Mobile Code

(Sebastian)

e Code

Message myName = new Message(“my name”, “Lois™);

or
Message yourName = new Message(‘“Steve™);
e The handleMessage method receives all
messages (return true ! -> chain of

responsibility pattern)
public boolean handleMessage(Message msg){
if(msg.sameKind(“hello”)){
doHello(); //respond to “hello” message
return true; //yes 1 handled message

}
else
return false; //not handled message
}
23 © 2004 Sebastian Fischmeister ‘M

e Message objects are sent using the AgletProxy
class methods
= Object sendMessage(Message msg)
= FutureReply sendFutureMessage(Message msg)
= void sendOnewayMessage(Message msg)

e Code example
proxy .sendMessage (myName) ;
String name =
(String)proxy.sendMessage(yourName) ;

e FutureReply Class
= used for asynchronous messaging

= the Aglet can continue execution while waiti
for the reply Y

24 © 2004 Sebastian Fischmeister 'M

Fischmeister@ SoftwareResearch.net

SS 2004

12

Software Technologies, Mobile Code

(Sebastian)

e FutureReply objects are retrieved using the

AgletProxy class method
= sendFutureMessage(msg)

e Code example
= the sender can continue executing periodic
tasks while waiting for a reply

FutureReply future = proxy.sendFutureMessage(msg);
while (Mfuture.isAvailable()){
doPeriodicWork();

}
Object reply = future.getReply();

25 ©2004 Sebastian Fischmeister ‘M St

e AgletID Class
= represents the identifier of the Aglet
= the identifier is unique to each Aglet
= the identifier object hides the implementation
specific representation of the Aglet identity
e Code cxample
= identifier can be retrieved from the Aglet and

its proxy
AgletlID aid = proxy.getAgletiD();

= query the context to retrieve Aglet with
identity aid (aid and Context must be kno

proxy = context.getAgletProxy(aid);

OBEAB =
26 © 2004 Sebastian Fischmeister Salzburg

Fischmeister@ SoftwareResearch.net

SS 2004

13

Software Technologies, Mobile Code

(Sebastian)

e AgletProxy interface
= the handle of the Aglet

= abstraction of the real implementation
(separation of concerns & frameworks)

e Benefits
= used by other Aglets for communication

= provides protection mechanisms (e.g., cannot
directly invoke dispose)

= can provide a remote location for the Aglet
= possibility for standardization

27 © 2004 Sebastian Fischmeister ”

e Retrieval and setting methods of proxies
= Aglet can get its own proxy object

Aglet._getProxy();

= retrieve an enumeration of all proxies within
the current context

AgletContext.getAgletProxies();
= get an Aglet proxy for a given identifier
aid.getAgletProxy(Q);

= place AgletProxy object into context property
(useful Tor sharing resources, provide
services)

AgletContext.setProperty();

28 © 2004 Sebastian Fischmeister ”

Fischmeister@ SoftwareResearch.net

SS 2004

14

Software Technologies, Mobile Code

(Sebastian)

e Aglet Context
= execution environment for Aglets
= equivalent to the place
= hosts the Aglets
= Aglets only exist inside a context

e AgletContext interface
= abstract interface of the Aglet context
= get information about environment
= send messages to environment

e AgletContext interface methods

= Aglet class can gain access to current cont
Context = GetAgletContext();

= Aglet can create new Aglets
text. teAglet(.);
29 © 2004 Sebastian FischE‘l:eoiSQr ex Crea e g € ()’ ‘M

e AgletContext interface methods

= retract (pull) remotely located Aglets into

current context
Context.Retractaglet(remotecontexturl, Agletid);

= retrieve a list of proxies of its fellow Aglets in

the same context
Proxies = Context.Getagletproxies();

30 © 2004 Sebastian Fischmeister 'M

Fischmeister@ SoftwareResearch.net

SS 2004

15

Software Technologies, Mobile Code

31

e Aglet Example: Remote File Update

premise: large multiple remote files that must
be updated by word replacement

one solution: move files to central server,
perform update, and move files back
another solution: an Aglet that updates files
by replacing all occurrences of one specified
word in the files with another specified word
distributes the load of updates to multiple
servers

we’re moving “Code” rather than files

© 2004 Sebastian Fischmeister ‘M Saizburg

32

© 2004 Sebastian Fischmeister ‘M Saizburg

(Sebastian)

Fischmeister@ SoftwareResearch.net

SS 2004

16

Software Technologies, Mobile Code

(Sebastian)

33

Import com.ibm.aglet.*;
import com.ibm.aglet.event.*;
import java.net.*;
import java.io.*;
public class UpdateFile extends Aglet{
URL destination = null;
File dir = null;
String from = null;
String to = null;
public void onCreation(Object args){
destination = (URL)((Object[])args)[0];
dir = (File)((Object[])args)[1]:
from = (String)((Object[])args)[2];
to = (String)((Object[]args)[3];
addMobilityListener(){
new MobilityAdapter(){

© 2004 Sebastian Fischmeister ‘M

34

Public void onArrival(MobilityEvent e){
replace(args.file,args.from,args.to);

dispose(); }

}
}
try{
dispatch(args.destination);
}catch (Exception e){
System.out._printin(“Failed to dispatch.”);
}

3
void replace(File, file, String, from, Sting to){
//0pen “file” and replace “from” with “to’

© 2004 Sebastian Fischmeister ‘M

Fischmeister@ SoftwareResearch.net

SS 2004

17

Software Technologies, Mobile Code SS 2004

[1]: Danny B. Lange and Mitsuru Oshima, “Programming and Deploying
Java Mobile Agents with Aglets”, Addison Wesley Longman, Reading MA,
1998.

[2]: http://www.javaworld.com/javaworld/jw-04-1997/jw-04-agents.html

[3]: http://www.msci.memphis.edu/~franklin/AgentProg.html

[4]: http://www.javaworld.com/javaworld/jw-04-1997/jw-04-hood.html
[5]: http://www.trl.ibm.co.jp/aglets/JAAPI-whitepaper.html

[6]: http://luckyspc.lboro.ac.uk/Docs/Papers/Mesela97.html

[7]: http://www.javaworld.com/javaworld/jw-05-1997/jw-05-hood.html
[8]: http://www.trl.ibm.co.jp/aglets/whitepaper.htm

[9]: http://www.networking.ibm.com/iag/iaghome.html#new

[10]: Kimble Cheron, Professor Steven A. Demurjian, and Mitch Saba course
on Software Agents and Aglets as basis of this slides

35 © 2004 Sebastian Fischmeister Salzburg

(Sebastian)
Fischmeister@ SoftwareResearch.net 18

