
Providing Location

Abstract

Information in a Ubiquitous Computing Environment

Mike Spreitzer and Marvin Theimer

Xerox Palo Alto

To take full advantage of the promise of ubiquitous com-

puting requires the use of location information, yet peo-

ple should have control over who may know their where-

abouts. We present an architecture that achieves these

goals for an interesting set of applications. Personal in-

formation is managed by User Agents, and a partially

decentralized Location Query Service is used to facili-

tate location-based operations. This architecture gives

users primary control over their location information, at

the cost of making more expensive certain queries, such

as those wherein location and identity closely interact.

We also discuss various extensions to our architecture

that offer users additional trade-offs between privacy

and efficiency. Finally, we report some measurements

of the unextended system in operation, focusing on how

well the system is actually able to track people. Our sys-

tem uses two kinds of location information, which turn

out to provide partial and complementary coverage.

1 Introduction

Mobile and ubiquitous computing requires and can ex-

ploit a variety of kinds of location information[9, 7, 4].

Just providing a person with access to their normal com-

puting services on a continual basis requires that their

location be known to a certain extent. In addition, if

information is available about who and what is in the

vicinity of a person, then that person’s computing en-

vironment and applications can behave in a context-

sensitive manner. Applications can reflect a user’s cur-

rent circumstances and and can respond to changes that

might occur in the user’s environment.

While desiring to exploit location information, we
consider unrestricted access to a person’s location data

*This research was supported in part by the Advanced Re-

sesrch Projects Agency under contract DABT63-91-C-0027.

Permission to copy without fee all or part of this material IS
granted provided that the copies are not made or distributed for

d!rect commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice IS g)ven

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

SIGOPS ‘93/12 /93/N. C., USA
0 1993 ACM o-8g791-632-8/93 /0012 . ..$ 5050

Research Center

to be an unacceptable invasion of privacy[5]. One way

to address this fundamental tension between location-

based functionality and privacy is to try to give each

user control over their location information and over

who may gain access to it. Unfortunately, guarantee-

ing that no one can gain unauthorized access to one’s

location information is, in general, very difficult and ex-

pensive.

Another important issue is the accuracy and temporal

resolution of location information. The sensing facilities

we have available to us are not perfect and hence it is

important to determine how well they work in practice.

Temporal resolution comes into play because it implic-

itly defines how small a movement the sensing facilities

are able to distinguish, and hence how quickly they are

likely to detect a change in someone’s location. Pro-

viding useful location information to applications thus

faces both the problems of limits of the location sens-

ing technologies used as well as protection of users from

abuse of those technologies.

A topic not covered in this paper is the spatial resolu-

tion provided by a system and the implications that has

for the kinds of applications that can be implemented.

We did not explore this topic because the only spa-

tial resolution provided by our sensing technologies is

“room-level” resolution. This enables applications such

as migrating display windows from one’s office to a con-

ference room, but does not easily support finer-grained

applications, such as “flicking” a window from one’s

portable notebook computer to that of a neighbor sit-

ting in the next chair.

In order to understand the issues of providing loca-

tion information to a system we have chosen a suite

of location-based applications to focus on and have de-
signed and built a location infrastructure in support of

them. The applications we have built or prototype

include the following:

Visitor guidance : Guide a person to a designated
location.

Migrating windows : Migrate a user’s windows to a

designated location.

Note distribution : Send a message to all persons at

a given location or set of locations.

270

Ubiquitous Message Delivery (UMD) : A mes-

sage submitted for delivery is delivered at the soon-

est “acceptable)’ time via the most “appropriate”

terminal near the recipient. Acceptable delivery

time depends on the context of the recipient. For

example, the recipient’s profile may specify that

messages below a certain priority level should not

be delivered when the recipient is in a meeting with

other people. Similarly, the most appropriate ter-
minal to use will depend on which devices are avail-

able at the recipient’s current location.

Me&la Call : A user can request to be connected to

one or more other users—wherever they currently

are—by the “best” means available. Choices in-

clude video, audio, and teletype “talk” connections.

As with UMD, users may specify policy constraints

that control which kinds of connections may be es-

tablished under various circumstances.

Scoreboard : This application is an information-

oriented “screen saver”. When a display is not be-

ing used for anything else, it displays information

of general interest, but tailored to the interests of

the people nearby.

Responsive environment : A “smart building” can

optimize its energy usage by exploiting knowledge

about which rooms are occupied. It can also control

the environmental settings of each room according

to the preferences of the people in them[3].

FindNearest : Find the nearest resource or per-

son matching a given specification, such as “color

printer” or “Unix wizard”.

Locations : Display the current locations of various

persons, printers, copiers, etc. A common variant is

to show the locations of all nearby persons, printers,

etc. (see Figure 1).

Of these applications UMD and the Locations program

are deployed and in use in our lab; for the other appli-

cations we have initial prototypes running.

In the remainder of this paper we describe the loca-

tion architecture we have designed and built, the design

rat ion ales behind it, various extensions one could add to

offer users additional privacy/efficiency trade-offs, and

the current status of our implementation. We also re-

port some measurements of the system in operation, fo-

cusing on how well the system is actually able to track

people. We conclude with a discussion of the insights

we have gained from our work.

2 Architecture

2.1 Key Issues

The design of a location infrastructure must concern it-

self with a variety of fundamental issues. In order to

motivate the design of our architecture we start by pre-

senting the key issues that we wanted to address. Exam-

ples of how applications use our architecture and more
detailed design considerations are presented in later sec-

tions, after the description of the architecture itself.

Perhaps the most important assumption we make is

that our system will span more than one administra-

tive domain. This being the case, we cannot trust all

parts of the system with equal measure. In particular,

designs that require one to indiscriminately trust the

services and servers of foreign administrative domains

seem unacceptable to us. The main consequence is that

we cannot simply keep everyone’s location information

in a federation of centralized databases, which would

otherwise be the simplest means of providing a location

infrastructure.

A second consequence of multiple administrative do-

mains is that we must assume the possibility of sophis-
ticated attempts at traffic analysis occurring in some

or all parts of a system. As a result, “perfect” privacy

guarantees are, in general, very hard (and expensive) to

provide.

An important observation for our design is that most

peoples’ privacy and functionality requirements differ

according to the context they are in. Many situations

in which functionality is most desired are also situa-

tions in which strict privacy guarantees are not so im-

portant or where greater trust of system components is

warranted. For example, coworkers in a company with

benevolent management might be perfectly willing to

have their whereabouts known to each other while at

work, but might insist on exercising far greater control

over who may know their movements when off the job.

Furthermore, if the building they work in is physically

secure, they may also be willing to accept a more cen-

tralized implementation of the location infrastructure in

exchange for greater functionality or efficiency.

Our canonical example of an untrusted, or partially

trusted, environment is a shopping mall. It would be

undesirable to allow just anyone (such as junk mail

senders) to have access to all one’s movements within

the mall, yet one might wish to be visible to, or reach-

able by, a select set of friends and family.

An important consideration to keep in mind is that in

many circumstances having one’s privacy compromised

(e.g. while at the mall) is an inconvenience rather than

a real problem. Hence, providing guaranteed privacy
all the time at a high price—say, in the form of too lit-

tle functionality andjor too high a performance cost—

will not reflect users’ true needs. On the other hand,

271

Computer Science Laboratory

td__._r &
7r_l -m

1w’

,..

I

T
m’,t%T5STii 2301

UiliD

:!
.,, ,

n’” 2354

37, ,.

,. .,.,

\
i, (Won, m 2332

@< e, , f! 234B

JD ..6

0

n

,te. a, COuoll

a

3*.1*

‘aam06

c1Con .Fwwe m 23il

m !3!ii!!1
—

Tue Aug 1713:35:191993

of the Locations program: displays the location of all nearby people willing to beFigure 1: Output of one variant

publicly visible.

there are clearly circumstances of location information while the gray arrows show the

path of a ubiquitous message delivery. Not shown are

various application-specific servers and our Name-and-

Maintenance Service, which uses familiar techniques to

enable lookup of servers by name and keep programs up

and running.

There is one User Agent for each user. Access con-

trol for personal information is implemented primarily

by a user’s agent. That is, each User Agent collects and

controls all the personal information pertaining to its

user and applications can only get personal information

from a user’s agent—and only if that agent consents. In

fact, a user’s agent can lie about the user’s personal in-

formation, because consumers of that information have

no other authoritative way of determining that infor-

mation. A user’s agent is under the control of the user:

he determines “the policies implemented by his agent,

chooses which implementation of the agent to run (or

when very strong pri-

vacy guarantees are a requirement. The conclusion we

draw from these examples is that we need an architec-

ture that provides user-controllable trade-offs between

privacy guarantees and both functionality and efficiency.

Much of our design focuses on how to selectively regain

the efficiency achievable by centralized designs when

users are willing to risk trusting various system com-

ponents to some degree.

2.2 Description

Figure 2 illustrates the architecture we have designed in

response to the issues just discussed. The circles show

programs, which run on a network of computers and

communicate via RPC, Some of the computers are con-

nected by a wired network; some may be portables that

communicate tirelessly. The black arrows show the flow

272

.,...’.’.’’.’.’-:..,...,.,:,,....,.,+ ..,:,

‘“’’:;E\\/k2in..1

..

...
‘,...

i.,
~...

...
j:..
.......................................,,:,,.:::.. ..::..

Figure 2: Basic system architecture, with an instance of UMD message delivery illustrated by the gray

writes his own), and runs it on one or more computers

he trusts.

A User Agent consists of several modules, some of

which perform system infrastructure functions, and

some of which are responsible for implementing the

agent’s responsibilities for specific applications. User

Agents are the locus of control for customizing applica-

tions with respect to their environment. That is, knowl-

edge about the user’s environment and context and his

preferences with respect to various circumstances are

maintained in the User Agent and propagated from

there to the user’s various applications. Thus, the User

Agent serves as a general policy coordinator for both the

user’s privacy concerns as well as his context-sensitive

customization concerns.

Each User Agent collects location information from a

variety of sources, examples of which might include:

1. infra-red-based active badges[8, 7],

2. wireless nano-cell communications activity[9],

3. global positioning system informational],

4. device input activity from various computers[6],

arrows.

5. motion sensors and cameras[3], and

6. explicitly specified information obtained directly

from human beings,

Our existing system employs 1, 4, and 6. The badges

in our system emit a unique id every 15 seconds and a

Badge Server in each region passes data obtained from

polling its badge sensors to interested parties. Each

User Agent registers for information about the badge

id representing its user; the correspondence between a

badge id and a user’s identity is known only by the user’s

agent.

In a similar fashion, the Unix Location Server polls

the rusers daemons on our Unix workstations and

passes data on each user to his User Agent. Users may

also inform their User Agent of their current location

explicitly by running the AtLocation program. Each

User Agent synthesizes the (possibly inconsistent) loca-

tion hints it receives from the various sources into one

opinion.

A User Agent is a well-known service that external

clients can ask for a variety of information about the

user it represents, such as the user’s current Iocat ion.

The User Agent will either honor or reject any request

273

depending on the policy its user has specified. Subject

to the user’s policy, the agent also makes its user find-

able by location using the facilities described later.

Some applications work by simply interacting with

User Agents. For example, submitting a message for

ubiquitous delivery consists of simply giving the mes-

sage to the User Agents for the recipients; each agent

then takes care of getting the message to its user. Other

applications, like Scoreboard, Responsive Environment,

and FindNearest, are primarily concerned with a given

location, and must perform some kind of a query to find

the agents for the people at or near that location. Some-

times User Agents themselves need to perform location-

based queries—for example, to find nearby terminals

through which to present a message for ubiquitous de-

livery.

One of the key problems addressed by our architec-

ture is how to keep disclosure of the association between

a person’s identity and that person’s location under the

control of that person while supporting our applica-

tions with reasonable efficiency. Our architecture pro-

vides control through the User Agent: (1) an applica-

tion starting from a person’s identity can only discover

that person’s location by asking the person’s agent, and

(2) an application starting from a location must use the

Location Query Service (see below) to discover the iden-

tities of the people at that location, and the Location

Query Service is designed to give User Agents control

over the circumstances of the release of that informa-

tion.

The Location Query Service (LQS) provides a way of

executing location queries that offers different trade-offs

between efficiency and privacy. It is built around the

idea of queries over located objects. A located object is

represent ed by a t uple consist ing of a location, an RPC

handle, and an association-list describing the object’s

type and other information that the object chooses to

make available.1 Examples of located objects include

users (represented by User Agents) and terminals (rep-

resented by Terminal Agents). A query is a predicate

over a location and an association-list; the result of a

query is the set of tuples that satisfy the predicate.

A key feature of the LQS is that located objects can

be anonymous. That is, a tuple’s association-list may

reveal only its type and its RPC handle may employ

techniques such as indirection through trustworthy in-

termediaries to hide the true identity of the real server

behind the handle. A client getting a query response

listing a tuple with an anonymous RPC handle and no

identity in the association-list would have to use the

RPC handle to ask the object for its identity.2 That ob-

ject (e.g., a User Agent) can respond truthfully, falsely,

10bject type is used indicate which RPC interface to use with
the RPC handle.

2III a similar way, a client can hide its identity by issuing its
queries from an anonymous RPC handle.

or not at all, depending on its policy (which might, for

example, require authenticating the caller).

Note that a located object could register several tu-

ples for itself, in order to make traffic analysis more

difficult.

The LQS is organized by regions, with a centralized

server, called the LocationBroker, running in each re-

gion. Public objects whose identities and locations are

not meant to be kept secret—such as printers and office

display terminals—register a full description of them-

selves in the LocationBroker covering the region they in-

habit. A private object—such as a User Agent—who is

willing to reveal that someone (without revealing who)

is at their current location, registers itself in the appro-

priate LocationBroker in an anonymous fashion.

Each region’s LocationBroker also supports standing

queries: a client can submit a query and a callback RPC

handle, with the LocationBroker notifying the client of

the change whenever the answer to the query changes.

This is used, for example, by the Locations program

to monitor a given area.

A final efficiency trade-off that LocationBrokers can

be provide is to implement access control on behalf of

an object. This amounts to selectively returning a tu-

ple, or portions of its association list, in the results of a

query according to a policy specified by the object when

it registers itself. An object using a region’s Location-

Broker thus has the choice of (1) registering minimal

information (location, type, and anonymous RPC han-

dle) with the LocationBroker and implementing access

control entirely on its o~n, (2) using (and thus trusting)

the access control functionality of the region’s Location-

Broker, or (3) any combination of the previous two.3

Note that for regions where most User Agents are will-

ing to entrust their access controls to the region’s Lo-

cationBroker, that region’s LQS has essentially become

a centralized design, with all the efficiency benefits and

privacy risks that implies.

The last piece of our architecture concerns 1/0 de-

vices. There is one Terminal Agent for each “terminal”,

or cluster of 1/0 devices that operate together (for ex-

ample, a workstation’s keyboard, mouse, screen, and

sound card comprise one terminal). As with the User

Agent, the Terminal Agent consists of several modules,

some infrastructure and some application-specific. The

agent provides access through a device-independent in-

terface, and manages the multiple demands on the ter-

minal.

Because terminals have owners, and are dedicated (in

some cases) to specified uses, there are also policy deci-

sions to be made by Terminal Agents. Agents for non-

mobile terminals register in the LocationBroker, so that

3Since our interest is in exploring what happens when servers
are not trusted, we have not implemented access controls in our
LocationBroker.

274

they can be found by location. A mobile terminal may

be dedicated to a particular user and might communi-

cate directly with that user’s agent instead.

2.3 Application Examples

To illustrate how applications make use of our system,

we describe how two representative applications are im-

plemented: UMD and the Locations program. Someone

wishing to send a message for ubiquitous delivery to a

user can invoke the SendMsg program to submit a mes-

sage to the user’s User Agent. The User Agent keeps

track of which (personal) portable computing devices its

user is currently using as well as what “public” termi-

nals and people are near the user’s current location. The

latter is achieved by registering for callbacks with the

LQS for the user’s current location. When a message

is submitted to the User Agent for delivery, it checks

to see if the user’s current situation allows delivery of

the message (for example, the user’s policy profile may

specify that only priority messages should be delivered

when the user is in the presence of other people) and if

a suitable terminal is currently available. If so, it sends

the message to the terminal’s Terminal Agent; otherwise

it waits until the user’s circumstances and/or location

change and then tries again.

More than one terminal may be available—for ex-

ample, if the intended recipient is in their office, they

might have access to both their workstation and a

portable paging device, if they are carrying one. In

this case the User Agent picks the most appropriate

one, where appropriateness depends on terminal char-

acteristics as well as whether the message to deliver is

marked private—and hence shouldn’t be delivered to

terminals whose display might be publicly visible (as

is the case with workstations). Terminal characteris-

tics are exported in the association-list that a Terminal

Agent includes when it registers with the LocationBro-

ker (or User Agent if it is dedicated to a particular user).

In a system with many users, the Locations program

needs to be told which users to display information for.

One way is to provide an explicit list of user names. In

this case the Locations program contacts those users’

agents and requests to be kept appraised of any changes

in their users’ locations (assuming they consent).

Another way to limit things is to have the Locations

program show all users within a specified physical area.

Consider what happens when the area fits entirely

within an LQS region. The program issues a callback

registration to the region’s LocationBroker, asking to be

notified of any changes in the area due to User Agents.

All User Agents currently registered in the area with the

LocationBroker will have their registrations returned in

the LocationBroker’s initial response to the callback reg-

istration. Any User Agents whose users enter the LQS

region at some future point in time and register them-

selves in the area with the LocationBroker will have

their registrations returned to the Locations program

via callback notifications. Similarly, whenever a User

Agent leaves the area or changes location within it, a

callback will be made to notify the Locations program.

An area that intersects multiple LQS regions can be

handled by performing the above operations in each re-

gion.

3 Design Considerations

3.1 Design Principles

As discussed in the previous section, perfect privacy

guarantees are difficult to provide. Consequently we

have designed a system that allows users to trade off

increasing levels of privacy risks for increasing levels of

location-based functionality and efficiency. The follow-

ing three implementation principles guided our work:

●

●

●

Structure the system so that users have both the

ability and the choice to not be visible to the vari-

ous sensor networks and servers in the system.

Avoid requiring personal information to be placed

in servers (which may be in untrusted administra-

tive domains).

Use encryption and anonymous handles to limit the

kind of information being revealed.

Ideally, sensing systems such as active badges and

activity-monitoring OS services would establish se-

cret and authenticated communications channels with

their users’ agents. Unfortunately the technologies we

currently use (Olivetti active badges and the SunOS

rus ers daemons) do not allow us to achieve this goal.

Our active badges are simple fixed-signal, infra-red bea-

cons whose emissions must be gathered by a centralized

polling server. Querying rusers daemons suffers from

the same problem and, even worse, from the fact that

Unix makes this information available indiscriminately.

Use of these facilities is acceptable in a friendly envi-

ronment, but would not be if we extended our system to

a larger, more heterogeneous setting. Only the ability

to remain silent—for example, by not wearing one’s ac-

tive badge—can ensure that corrupted servers and traf-

fic analyzers will not be able to determine the identities

of persons entering their domains.

An interesting unsolved problem is the question of

knowing which sensor systems are actually present at

a given location. For example, most people in our lab

were originally unaware that the rusers daemon runs

on their workst at ion by default. Similarly, most people

do not think about the fact that many of their monetary

transactions implicitly reveal their current locations to

275

the merchants and banking agencies that are party to

each transaction.

The potential for inadvertently revealing one’s iden-

tity and location can be reduced by employing

anonymity. Examples include the use of multiple,

anonymous login ids and facilities such as anony-

mous electronic cash[2]. Similarly, applications such as

Scoreboard only need profile information; they do not

need explicit identity information. In our design we rely

on anonymity to bridge the gap between wanting to keep

location information hidden in a decentralized collection

of User Agents and needing to provide some means of

performing location queries. User Agents can also use

anonymous handles to exercise control over which callers

can discover any given piece of information (by choosing

how to answer based on the caller’s identity).

Queriers, which may themselves be User Agents, can

also use anonymity. If both the querier and the re-

sponder are initially anonymous and unwilling to reveal

themselves without further identification from the other

then some additional mechanism is needed to negotiate

what to do. We have not explored this topic yet.

3.2 Tradeoffs

Anonymity is not always sufficient to preserve privacy.

Simply keeping track of how many people are at each

location over time can reveal some strong hints about

who has been where. The use of multiple, changing

anonymous handles and background noise can obscure

this information, but there is a long chain of measures

and countermeasures that can be taken. One could even

be concerned with detection of minute analog differences

between individual devices.

A user must keep in mind is that there are actually

several different ways that the privacy of his location

can be compromised:

●

●

o

●

e

●

Application-level operations (such as giving a mes-

sage to a Terminal Agent for delivery) with untrust-

worthy parties can reveal location information.

Location information directly published through

the LQS is available to any querier.

A LocationBroker might not faithfully implement

the access cent rols it offers.

The intermediaries used to implement anonymity

might be corrupt, or not competent enough to foil

the attacker.

Traffic analysis of LQS queries or results might re-

veal the identity of otherwise anonymous queriers

of, or objects in, the LQS.

The various location sensing systems that gather

location information might deliberately give it to

other parties.

●

●

The communications between the location sensing

systems and the User Agent might not be secret

and authenticated.

The communications between the person’s portable

computers and his processes running at fixed loca-

tions (e.g., a User Agent) might not be secret and

authenticated.

Our architecture gives users choices to limit which of

the above potential exposures apply. Different poten-

tial exposures involve trusting different system services

to different degrees. We must allow users to opt out

at whatever level their trust is exceeded. Thus, (1) a

User Agent might register a single anonymous tuple in

the LocationBroker; (2) a User Agent might register

multiple anonymous tuples in the LocationBroker; (3) a

User Agent might not register in the LocationBroker at

all; and (4) a user might disable transmissions from his

portable devices (i.e., receive only—or turn them off if

he’s concerned about noise emissions) and refrain from

identifying himself to fixed devices. Thus it is important

for the system—including applications—to be tolerant

of missing or inaccurate information. Uncertainty of lo-

cation information (and other personal information) is

now fundamentally a part of the system at every level.

It would not make sense (in a real system) for a user

to give up a lot of efficiency or functionality protect-

ing against one potential exposure while not protecting

against another that applies in the same situation. For

example, in a completely untrusted administrative do-

main, one has to assume that any of the domain’s ser-

vices (LocationBroker, Terminal Agents, location sens-

ing units) could be corrupted. The unfortunate con-

sequence of all this is that the users of a system must

stay aware of who controls which aspects of the system

they are currently using and must act in an accordingly

consist ent fashion.

Our architecture is not dependent on the exact na-

ture of the location sensing technologies, nor the com-

munications media, employed. For example, while the

experimental system we’ve built to explore our design

extends an inconsistent level of trust—it uses anony-

mous registrations in the LocationBroker, even though

our active badges and Unix workstations reveal location

information indiscriminantly—we were willing to accept

this because known techniques could be used to provide

more secure location sensing facilities.

As one possible replacement, consider using portables

that have a GPS receiver and a cellular telephone. The

portable could get GPS-resolution information to the

User Agent, while exposing only cell-resolution location

information to only the phone companies involved (if the

user assumes nobody is going to use analog techniques

to locate his transmitter more precisely), As another

possible replacement, consider put ting location beacons

276

in each room, and having an active badge that relays

a received location to its User Agent by sending an en-

crypted message through a chain of intermediaries. In

this case the User Agent gets room-resolution location

information, trusting the intermediaries to hide the link

between location and identity, and revealing that some-

one is in the room to anyone that can see such an agent-

bound message and discover its room of origin.

A User Agent trades privacy against functionality

when choosing how much information to reveal to which

other parties. A completely mistrustful User Agent can-

not be found by FindNearest or Note Distribution, can-

not customize a Scoreboard or a Responsive Environ-

ment, and cannot ubiquitously deliver a message or par-

ticipate in a Media Call.

In addition to allowing trade-offs between privacy and

functionality, our system allows users to make trade-offs

between privacy and efficiency. The LQS offers a User

Agent three choices in this regard. The first choice is

how much information to include in the association list

describing the agent. When all the information needed

by an information-seeking application is found in the

association list, the application need not contact the

agent to complete its job; including this information

thus increases efficiency, at the privacy cost of perhaps

indiscriminately revealing that information.

The second choice offered by the LQS is between reg-

istering one or several tuples for a located object. Use

of several tuples will cause the User Agent to appear

in more query results and hence have to answer more

follow-up questions from potentially interested clients.

The third choice offered by the LQS pertains to the

use of access controls within the LocationBroker. If

most User Agents participating in the LQS of a region

are willing to completely trust the region’s Location-

Broker then certain kinds of queries can be made much

more efficient. In particular, queries where the set of

User Agents that will appear in the result cannot be

well approximated on the basis of location alone will

benefit from this optimization. For example, consider

querying for the k users in some set of locations whose

names are alphabetically nearest one given name (such

as might appear in the middle of a scrolling list). Before

the final k can be chosen, all agents registered anony-

mously at those locations must be queried individually

for their names.

3.3 Alternatives

An interesting addition to our architecture to consider

is the use of multicast. One could imagine having a mul-

ticast group instead of a LocationBroker for each LQS

region and having clients of the LQS multicast their

location queries to all members of a region’s multicast

group. Interested parties, such as the User Agents of all

users currently in a region, would anonymously listen

to the region’s multicast group to hear location queries.

They would answer a query if they matched it and if

their current privacy policy allowed it.

The advantage of using multicast is that it only re-

veals the association between an RPC handle and the

region, and that only to the multicast routing infras-

tructure. In contrast, using the LocationBroker reveals

the association between an RPC handle and a specific

location. The disadvantage of multicast is increased

computation and communication: location queries go

to, and must be processed by, all listening objects in

the ~egion instead of just the LocationBroker, and the

cost of multicasting to User Agents located somewhere

on the Internet may be substantially more than the cost

of communicating just with the LocationBroker. Note

also that we require reliable multicast for the design j ust

described.

One way to address the inefficiency problems of mul-

ticast is to offer it as an option, in addition to the option

of using a LocationBroker. Thus, each LQS region could

maintain both a multicast group and a LocationBroker,

with the LocationBroker listening to its region’s mul-

ticast group and processing all location queries against

the objects that are registered in it. User Agents would

thus have a choice between listening to a region’s mul-

ticast group for greater privacy or registering with a

region’s LocationBroker for greater efficiency.

Unfortunately, if multicast is unavailable then clients

have no choice but to register with the LocationBroker

(if they wish to be findable) and accept the increased

risk that implies. Not e also that a User Agent wishing

to listen to a region’s multicast group must be able to

register in the multicast group from whatever address it

(or the last intermediary of its anonymous indirection

chain) has. Such functionality is not yet widely available

in the Internet.

There are other, radically different, architectures one

could design to protect one’s privacy, but these do not

support all the applications we are interested in. For ex-

ample, if all we cared about were visitor guidance then a

simple scheme whereby each location contains a broad-

cast location beacon that could be received by nearby

portable devices would suffice. Such a scheme would

provide strong privacy guarantees as long as no portable

device tried to communicate with the rest of the world.

Another alternative design could be constructed around

“proximity-based” communications and sensing facili-

ties. These could be used to enable communications

and presence detection among objects at a particular

location without requiring more wide-ranging commu-

nications that would be easier to monitor by exter-

nal parties. Such facilities, combined with portable

computer devices, could be used to implement things

like Scoreboard, in-room note distribution, and in-room

window migration. However, finding out about things

LIl

beyond one’s immediate proximity—as is needed by the

FindNearest and Locations applications would not be

possible.

4 Status and Experience

Our location infrastructure is built and currently de-

ployed within part of our lab with 12 User Agents, 21

Terminal Agents, and one LocationBroker running. The

act ive badge system includes about 120 infra-red sensors

that are deployed in about 70 offices, 10 common areas

and lab rooms, and the corridors interconnect ing them,4

This represents about 10% of the entire floor plan of our

building. Thus, the people participating in our system

are still outside the system a considerable amount of

time; both during the work day and outside of it.

As mentioned in the introduction, the two applica-

tions currently in use in our system are the Locations

program and UMD. The more popular one is the

Locations program, which people tend to keep running

all the time in a background window on their worksta-

tions. Its primary use seems to be as a quick “hint”

reference source to know if someone is currently in or

where they might currently be. When run with the

-map option, the program also provides a convenient

map of the lab instead of just an alphabetically sorted

list of (name, location) pairs. However, the map output

option also takes up more screen space, making it less

popular as a permanent background facility.

The UMD application manages to successfully deliver

about 63% of all submitted messages to their intended

recipients within one minute and about 7370 within five

minutes.5 Unfortunately, these statistics are not very

informative because they are dominated by the fact that

our users are not always near a display terminal and are

frequently outside the range of our system altogether.

As a consequence, messages may require a considerable

time before being delivered, even when the basic loca-

tion tracking system is functioning perfectly.

Our experience with UMD verified our expectation that

recipient context is very important. Originally, we

silently popped up a window when a message was deliv-

ered to someone. However, because our terminals run

screen savers when they aren’t in active use, many of-

fered messages didn’t get noticed. Unfortunately, when

we added an audio beep to announce message deliv-

ery, we found that message delivery was perceived as

being intrusive if the recipient was with other people.

This was especially the case if an unimportant message

was delivered to the electronic whiteboard of one of our

conference rooms during a meeting. Although UMD pro-

4Our infrastructure is a follow-on to an earlier and simpler,
but more widely deployed one.

5Successful delivery means that the recipient explicitly ac-
knowledged receipt of the message.

vides mechanism for implementing context-sensitivity,

it is still unclear what policies are desirable to effect

ubiquitous message delivery in both an effective and a

socially desirable manner.

In the remainder of this section we describe the data

we have gathered concerning how well our system is able

to track people.

4.1 Active Badge ‘hacking System

Our badge system consists of strings of infra-red sensors,

mounted in the ceilings of rooms and corridors, that

are periodically polled by programs running on work-

stations. Offices and corridors typically have one sensor

installed in them, while common areas and lab rooms

have between two and four sensors installed. Our instal-

lation includes three separate strings of sensors; each

attached to a different workstation. Each of the three

poller programs feeds its raw data into the Badge Server,

which then forwards the appropriate parts to each User

Agent that has registered with it.

Our badges emit a fixed-id signal every 15 seconds and

it takes roughly 2 to 3 seconds for each poller program

to interrogate all the sensors on the sensor string it is

responsible for; this implies that the minimum temporal

resolution of our system is about 15 to 18 seconds. In or-

der to get a handle on how reliably the infra-red sensors

manage to detect badge emissions, we have structured

the data presented in this section around the notion of

a “sighting interval”, which is the time between subse-

quent sightings of the same badge (or a person’s input

activity in the case of the rus ers data presented later

on). If badge emissions are reliably detected by the sen-

sor system then the average sighting interval for a per-

son, while they are in the area covered by the sensors,

should be around 15 to 20 seconds. Longer sighting in-

tervals will occur when a badge’s emissions are missed

by the sensor system.

Because people are frequently not within the area

that the badge sensor system covers, we have applied

two heuristics in this paper to account for absences. To

approximate the working day, we only consider badge

sighting intervals between the first sighting of a day and

the last sighting, with days considered to end at 2AM.

While this heuristic does the wrong thing for people

who work at 2AM, none of our subjects fall into that

category. We have also tried to filter out periods when

someone leaves the badge sensor area to go to another

part of the building or to leave the building during the

“work day”. This is done by excluding from considera-

tion intervals longer than an upper bound; we consider

several different values for this upper bound because

other effects (such as obstructing a badge’s emissions)

can also produce long intervals.

Figure 3 shows cumulative time graphs of badge sight-

ing intervals by interval length, with various upper

278

100

90

80

.g 70

%

@ 60

50

40

Intervals <10 Ulin

Intel-vials<30 Ulin

Intervsls <1 hr

Intervals <2 llrs

Illtervsls <4 hrs

Au intervals

100

90
Au interv’u”

80 -

70 ‘

60 -
/ N

50 -

40 - J

m I I 1 I I I I m ~
.“

o 103 200 300 400 500 600 3:001 0.01 0.1
sea hrs

Figure 3: Cumulative graphs of badge sighting intervals by interval length, with various upper

length considered.

bounds on interval length considered. The curve for all

intervals (within a “working day”) is shown extended

out to 10 hours in the side plot. Each point on a curve

represents the total amount of time spent in intervals

shorter in length than that point’s x axis time value as

a fraction of the time spent in all intervals considered

for the curve. Note that over the region shown by the

main figure, the curves are actually just scaled versions

of each other because the sum of the interval values

used for any x axis point is the same for each curve.

The purpose of showing multiple curves is to give the

reader some idea of how the (same) data looks as we

apply ever-more-aggressive versions of our heuristic for

filtering out intervals during which a person is outside

the system.

When all intervals during the “working day” are in-

cluded then short sighting intervals account for a dis-

tressingly small percentage of the time. Accounting for

likely absences improves the numbers but still leaves sig-

nificant periods of time during which a user is sighted

only after a lengthy interval.

When the badge sighting data is broken down by per-

son, considerable variation is seen between people. For

example, the percentage of time spent in intervals less

than 20 seconds long varied from 9% to 63?10 for the “all

intervals” cases. When intervals greater than 1 hour are

thrown out then the time spent in intervals of less than

20 seconds varied from 12% to 78V0. These variations

1 10

bounds on interval

seem to be due to a variety of factors, such as time spent

outside the badge system area during the day, whether

or not a person wears their badge all the time, and how

“visible” their badge is to sensors. The latter issue is

problematic for several reasons:

●

●

●

Both natural light and some of our ceiling lighting

interfere with the sensitivity of our IR sensors.

Many people prefer wearing their badge on their

belt rather than pinned to their chest. Unfortu-

nately a belt-worn badge is frequently obscured by

a person’s arms or other objects; especially when

they are seated.

Our offices typically have only one sensor in them,

yet people tend to face different directions when

performing different activities. A common exam-

ple is working at a computer versus talking with a

colleague.

One of the questions we had with using an infra-

red-based badge system was how often multiple sensors

would see a badge at the same time, This can occur

in large rooms containing multiple sensors, at corridor

intersections, and for glass-walled offices that happen

to have a corridor sensor outside them. Our system has

multiple-location sightings about 0.270 of the time; with

the bulk of them occurring in our meeting rooms and

279

l~FFTJTn’”ds<’O-
Y

80 A ~ Intends <30 LlliIl
/

A-

i+!fEEH
o 100 200 300 400 500 6CM

Figure 4: Cumulative graphs of computer input sighting intervals by

interval length considered.

lab rooms containing multiple sensors. Note that mul-

tiple sightings are not a problem for our architecture

since uncertainty is part of the system in any case.

4.2 Computer Input Tracking System

The basic design of the Unix Location Service is the

same as that of the Badge Server: the Unix Location

Server polls the rus ers daemon on each workstation in

our lab once every 60 seconds to find out when the most

recent input activity occurred and which user login id

it occurred for. The results are then forwarded to the

appropriate User Agents. Figure 4 describes the data

we have gathered for this service.

The rusers data displays similar characteristics to

that of the badge system. That is, the time spent in

intervals of small size represents only a small fraction

of the total time spent in all sighting intervals, with

the fraction significantly improving as larger intervals

are excluded from the data, The breakdown by per-

son again yields significant differences due to different

people’s work patterns.

4.3 Overlap Between Tracking Systems

One of the most interesting things we observed about

our two tracking systems is that they tend to comple-

ment rather than overlap each other. Table 1 lists how

100

80

60

20
0.01 0.1 1 10

hrs

interval length, with various upper bounds on

often only a person’s badge was seen, only a person’s

computer input activity was seen, both were seen, and

neither were seen, as a fraction of the total time that the

person is in the system. A person is considered to be “in

the system” when they are not absent from the badge

data and not absent from the input activity data. As

before, we define a person to be absent from sensor data

during intervals longer than various bounds. We define

the notion of a person being “seen” during a sighting

interval as meaning that the length of the interval is

less than some cut-off value. The table gives overlap

statistics for several different absence bounds and “seen

interval” cut-off values, the smallest cut-off value being

set at a value slightly larger than the minimum sighting

interval of either tracking system. The important thing

to note is that the fraction of time during which both

badge and input activity are seen is quite small, both

in absolute terms and relative to the fractions of time

during which only one or the other was seen.

We attribute this phenomenon to primarily two

things: (1) people working at home will be seen by their

computer input act ivit, y and not by the badge syst em,

and (2) people who wear their badge on their belt and

are typing at their workstation will tend to obscure their

badge’s emissions while having clearly visible computer

input activity.

280

Seen interval cut-off size: 75 sec. 150 sec. 5 min. 10 min.

All working-day intervals:

Only badge seen: 19% 20% 21% 21%

Only input activity seen: 17% 20% 21% 23%

Both seen: 7% 9% 10% 13%

Neither seen: 57% 51% 48% 43%

Only intervals less than 1 hr. considered:

Only badge seen: 26% 26% 28% 29%

Only input activity seen: 23% 28% 29% 32%

Both seen: 9% 12% 14% 17%

Neither seen: 42% 34% 29% 22%

Only intervals less than 10 min. considered:

Only badge seen: 32% 33% 35% 36%

Only input activity seen: 31% 36% 38% 43%

Both seen: 11% 15% 17% 21%

Neither seen: 26% 16% 10% o%

Table 1: Table of badge and computer input activity sighting overlap statist its.

4.4 Tracking Moving Persons

People sitting within their ofIice provide a different

sighting profile to the active badge system than do peo-

ple who are moving around. To get a handle on how well

our active badge system could track moving persons—

such as visitors—we performed several “walk-about” ex-

periments to see how well the badge system could follow

us.

As mentioned earlier, the basic badge sighting inter-

val is 15 seconds; which is enough time to walk past

about a half dozen offices and perhaps a corridor or

two in our lab. We found that a person who randomly

walked about our corridors was seen, on average, every

22 seconds, with a standard deviation of 17 seconds. VVe

also tried the same experiment with the badge emission

period changed to 10 seconds and obtained an average

sighting interval of 17 seconds, with a standard devia-

tion of 13 seconds.

Note that 17 seconds is still enough time to add no-

ticeable inaccuracy to an application such as Visitor

Guidance. Decreasing the badge emission interval to 5

seconds would presumably give us an average interval

length somewhere between 5 and 10 seconds; but would

cut the battery lifetime of our badges from its current

value of about 3 months to about 1 month.

We did not have much trouble with people be-

ing sighted in offices while walking past, even though

roughly half, on average, of the front wall of each office

in our lab is open to IR. Only about 11~0 of the sightings

from hall-walking experiments were in offices. While we

recognize that the exact placement of a badge sensor

within a room can greatly affect this result, we mention

it because our sensors were placed in a fashion to op-

timize office coverage, without much concern about the

hall “cross-talk”.

We infer from this that message delivery “chase” ef-

fects while people move about should probably not dis-

turb the denizens of every office a person walks by.

Anecdotal evidence has corroborated this — only one

person has reported seeing an attempt at ubiquitous

message delivery in his office for someone not present.

5 Conclusions

We have designed and built an infrastructure for provid-

ing location information and various applications that

use that information. The architecture we advocate is

a user-centric one in which the personal information for

each user—including location information—is managed

and controlled by that user’s User Agent. A Location

Query Service consisting of a LocationBroker per region

is provided to facilitate queries by location.

The principle assumptions behind our design were

two-fold:

● The design should scale to use in multiple admin-

ist rat ive domains.

. We did not rule out the existence of untrustworthy

servers and sophisticated traffic analysis attacks in

some domains.

The consequences of these assumptions were that we

could not use strictly centralized designs that rely on

trusted location databases and we had to accept the fact

that strict privacy guarantees are in general difficult and

expensive to provide.

The hybrid decentralized architecture we designed

gives each user a range of privacy options that they

may dynamical y choose from. At one extreme is the

281

ability to simply “opt out” of the system, exchanging

any participation in (and benefit from) the system for

a fairly strong guarantee of privacy. At the other ex-

treme is the ability to convert any trusted region into

an efficient centralized design by simply having every-

one register themselves in that region’s LocationBroker

with the appropriate access control specifications. In

between, are two levels of anonymity that users can

choose to assume, depending on the trust they place

in a region’s servers and the level of risk aversion they

wish to employ.

The price we paid for the decentralized nature of our

architecture is increased communications and process-

ing overhead. The worst case occurs for applications like

the FindNearest and Locations programs, which can-

not narrow the set of people they are interested in un-

til afteT they have received query responses from many

potential candidates. We believe that in practice the

additional overhead will rarely be a problem: applica-

tions that are continually interested in changing loca-

tion information can use the callback facilities to obtain

increment al updates and “one-shot” applications, like

FindNeare st, are typically not run so frequently as to

overwhelm the syst em’s resources. Our personal expe-

rience, to date, has borne this out.

Two important qualitative implications of our archi-

tecture are the following:

●

●

Uncertainty is a fundamental aspect of our system

that is visible at the applications level.

Only certain kinds of location sensing technology

can be deployed if users are to be able to hide from

the system at will.

Uncertainty has strong implications for a variety of

our applications. For context-sensitive applications,

such as UMD and Media Call, it means that they must

always assume the possibility that invisible people are

at any given location unless explicitly told otherwise.

For applications such as FindNearest and Locations,

uncertainty means that they must be viewed as “hint”

services. Despite this, we have still found location infor-

mation to be quite useful; with the Locations program

being the most popular application in our running sys-

tem.

Our requirement that users be able to completely

hide from the system has strong implications for which

sensing technologies may be deployed. Users can hide

from our active badge system by simply taking off their

badge. If cameras were deployed throughout our lab

then it would be almost impossible to allow some peo-

ple to hide from the system while still being able to

track others. In general, any technology that can track

some unremovable, unhidable aspect of people must be

avoided if we wish to allow people to remain hidden

from the system.

Our quantitative experience with providing location

information has primarily covered the efficacy of the lo-

cation sensing systems we deployed. We found that both

our infra-red-based badge system and our rusers com-

puter input monitoring service gave only partial cov-

erage, even when time spent outside the system was

taken into account. While we suspect that substantially

greater numbers of badge sensors—probably several per

office-could significantly improve our badge tracking

performance, this would also substantially increase the

cost of deployment of the system.

Interestingly, our two sensing systems tended to com-

plement each other rather than being redundant; thus

we obtained a real benefit from employing more than

one tracking system. An informative extension to our

system would be the introduction of radio-based nano-

cells [l O], which would suffer from a different set of prob-

lems than infra-red. It is unclear whether it would be

more economical to improve tracking performance by

beefing up one of our sensing systems or by trying to de-

ploy additional different ones. We are currently deploy-

ing portable notebook computers using nano-cell radio

communication, personal communication devices using

more advanced infra-red communicant ion, and additional

public display devices. These should improve both the

coverage and variety of our location information, as well

as giving us a greater number of devices through which

our applications can interact.

In addition to the question of what accuracy of lo-

cation information is attainable, there are a variety of

open issues that remain to be addressed by future work.

Perhaps most important of these is the question of how

accurate location information needs to be, given the fun-

damental uncertainty introduced by peoples’ desire for

privacy. Our current coverage is sufficient to enable use-

ful, though imperfect, versions of all our applications to

be implemented. Until we have further actual usage ex-

perience with our system it will be difficult to tell how

much users actually value various levels of privacy ver-

sus functionality and how important either accuracy or

efficiency considerations will turn out to be.

We are also curious to see what kinds of privacy poli-

cies users actually deploy. Our architecture is designed

to provide users with a great deal of flexibility and con-

t rol, but it is not at all clear how much users will actu-

ally take advantage of all the options offered them. We

suspect that in the long run most users will settle into a

small number of usage “modes” t b at reflect common sit-

uations, such as maximum trust and functionalist y (e.g.

being at home), a fair amount of trust and lots of func-

tionalist y (e.g. most of the time at work), less trust and

less functionality (e.g. being at a shopping mall), and

no trust with no functionality (e.g. when privately ne-

gotiating with someone).

A related policy question to examine is that of how

282

many intrusions users are willing to tolerate in order to

improve application performance. For example, appli-

cations such as UMD and Media Call can initiate a pre-

liminary dialogue with a user to verify the social context

the user is in. Similarly, an application such as note dis-

tribution can employ external feedback mechanisms to

verify its successful execution. Active participation by

users allows an application to overcome inaccurate and

incomplete location information by having users modify

their behavior. The result is a system that may provide

greater privacy safeguards, but is also more intrusive

and less automated than it might be.

In addition to these policy issues there are at least

two other infrastructure questions that deserve mention

for future work. We listed the addition of multicast

to our system as an interesting extension to consider.

However, whereas the properties of local-area multicast

are fairly well understood, it is unclear what the behav-

ior and scaling properties of reliable Internet multicast

are. Consequently, it is unclear what would happen if

a large-scale deployment of a multicast-based location

infrastructure ever happened.

The second infrastructure problem we mention is that

of how two anonymous parties can agree to conditionally

reveal information to each other. Although special cases

of this problem are easy to solve and may represent the

common usage case, it is unclear if there is a general

solution that will be satisfactory in all cases.

References

[1]

[2]

[3]

[4]

[5]

[6]

N. Ackroyd and R. Lorimer. Global Navigation: A

GPS User’s Guide. Lloyd’s of London Press, 1990.

D. Chaum. Security without identification: trans-

action systems to make big brother obsolete.

CA CM, 28(10):1030-1044, October 1985.

S. Elrod, G. Hall, R. Costanza, M. Dixon, and

J. desRivieres. The responsive environment: Using

ubiquitous computing for office comfort and energy

management. Technical Report CSL-93-5, Xerox

Palo Alto Research Center, 1993.

B.N. Schilit, M.M. Theimer, and B.B. Welch.

Customizing mobile application. In Proceed-

ings USENIX Symposium on Mobile & Location-

Independent Computing, pages 129-138. USENIX

Association, August 1993.

M. Spreitzer and M.M. Theimer. Scalable, se-

cure, mobile computing with location information.

CACM, 36(7):27, July 1993.

ruser manual entry of the SUNOS UNIX manual.

[7]

[8]

[9]

[10]

R. Want and A. Hopper. Active badges and per-

sonal interactive computing objects. Transactions

on C’onsumer Eiect?’onzcs, 38(1), February 1992.

R. Want, A. Hopper, V. Falcao, and J. Gibbons.

The active badge location system. Transactions on

Info?’mation Systems, 10(1), January 1992.

M. Weiser. The computer for the twenty-first cen-

tury. Scientific American, pages 94–104, Septem-

ber 1992.

M. Weiser. Some computer science problems in

ubiquitous computing. CA CM, 36(7):74-83, July

1993.

283

