Visual and I nteractive Development of Hard Real-Time
Code

Wolfgang Pree and Gerald Stieglbauer

Software Research Group, Department of Computer Science
University of Salzburg, A-5020 Salzburg, Austria

{pree, stieglbauer} @SoftwareResearch.Net

Abstract. The paper first presents the integration options of what we call the
Timing Description Language (TDL) with Mathworks Simulink tools. Based
on the paradigm of fixed logical execution time (FLET) asintroduced by Giotto
[2], TDL enhances Giotto towards a component architecture for real-time con-
trol applications [9]. The challenge is to provide appropriate visua and interac-
tive modeling capabilities so that the developer can come up with the TDL tim-
ing model in the context of Simulink which has established itself as defacto
modeling standard for control applications. The paper illustrates by means of a
simple case study how we envision an adequate integration of both the TDL
and the Simulink modeling approaches.

1 The Power of an Appropriate Software M odel

Traditionally, control theory and hardware-based engineering have addressed the de-
sign of robust control applications using continuous-time signals. The permanent in-
crease of the computing power of microprocessors has been reinforcing the trend to
implement control functionality in software [3]. Software processes however, evolve
in discontinuous time [4]. The distinction between embedded hardware and software
systems lies conceptually in the different treatment of concurrency and the role of time
[6]. Asthe complexity of embedded control applications increases, it is essential to in-
troduce means to master the complexity of the software [5] and to define adequate
methods and tools for building such control systems.

The buzz word model-based devel opment has been coined to express that control
and software engineers should use methods and tools that support application-centric
development instead of a platform-centric approach. The key challenge is to identify
the appropriate modeling abstractions and to provide a set of tools that better supports
the process of modeling control applications. Giotto and its successor TDL illustrate
the key ingredients of a good software model for control applications:

Application-centric abstractions. Traditionally, a control system is designed us-
ing tools for mathematical modeling and simulation, such as MathWorks' Simulink.
Giotto has introduced the separation of the timing behavior from the functionality
code (control laws). Giotto focuses only on the timing behavior. The functionality
code can be programmed in any non-embedded programming language such as C.
Simulink can be used to model the control laws and to generate the corresponding C
code from these models.

The main abstractions introduced by Giotto are the task and mode constructs. A
task periodically computes a function (typically a control law). A mode contains a set
of activities, task invocations, actuator updates and mode switches. A Giotto program
isin one mode at a time. Mode switch conditions are checked periodically to deter-
mine whether to switch from the current mode to another one.

Tasks form the units of computation. They are invoked periodically with a speci-
fied frequency. They deliver results through task output ports connected to actuators
or to other tasks, and they read input values from sensor ports or from output ports of
other tasks. Thus, a TDL model specifies the real-time interaction of a set of compo-
nents with the physical world, as well as the real-time interaction between the compo-
nents.

What makes Giotto a good software model is the fact that the developer does not
have to worry about platform details, for example: will the application be executed on
a single node or on a distributed platform; which scheduling scheme ensures the tim-
ing behavior [4]; which device drivers copy the values from sensors or to actuators.
Thus, the software model emphasizes application-centric transparency (simplicity),
improves reliability and enables reuse, whereas the compiler that generates the code
from the model emphasizes performance.

Determinism. The key property of the TDL semantics is the fixed logical execu-
tion time (FLET) assumption, which means that the execution times associated with
all computation and communication activities are fixed and determined by the model,
not by the platform. In TDL, the logical execution time of atask is always exactly the
period of the task, and the logical execution times of al other activities (mode switch-
ing, data transfer across links, etc.) are always zero. According to [2] the FLET as-
sumption has al concurrent task executions within a TDL mode run logically in paral-
lel. The logical execution time of atask is an abstract notion which is possibly very
different from the actual, physical execution time of the task on a particular CPU,
which may vary from task invocation to task invocation. The power of the FLET as-
sumption stems from the fact that logical, not physical execution times determine
when sensors are read, when actuators are written, and when data travels across links.

As a conseguence of the FLET assumption, a TDL model is environment deter-
mined: for any given behavior of the physical world seen through the sensors, the
model computes a unique trace of actuator values at periodic time instants [2]. In oth-
er words, the only source of nondeterminismin a TDL system is the physical environ-
ment. Furthermore, TDL represents a real-time process model that lifts program com-
position to process composition [10]: processes composed in that model compute, giv-
en a sequence of inputs, the same sequence of outputs (value-determinism) at the same
time (time-determinism) provided the composition preserves the process timing (time-
invariant) and is schedulable (time-safe), and the individual processes are value- and
time-deterministic.

Syntax. The original syntax of both, Giotto and TDL is a textual one. The TDL
language report [8] describes this representation of TDL programs in detail. Though
one might prefer the textual representation of a TDL program, it was a goal from the
beginning to also provide avisual and interactive modeling support for TDL. We aim
at a seamless integration with the Simulink paradigm and tools, in particular its simu-
lation capabilities. The paper first sketches the integration options of TDL and
Simulink that have seemed to be the natural choices but finally turned out to lead to
dead ends. Based on that experience we present in section 3 what we regard as the

most suitable integration. The paper assumes that the reader has a basic knowledge
about Mathworks Matlab/Simulink tools.

2 TDL asPart of Simulink

This section describes what have seemed to be the two straight-forward integration ap-
proaches. We explain, why these integration approaches that we have actually imple-
mented, have lead to a dead end. On the one hand this explains why we regard the
third way, using Simulink as a back-end (section 3), as the most suitable one. On the
other hand this might help to select the appropriate integration with Simulink for other
model -based approaches.

2.1 TDL Tasksas Smulink S-Function Blocks

A Simulink model is composed of blocks and signal lines. Blocks contain either func-
tionality which is used to calculate the output value(s) from the input value(s) of a
block, or they contain further Simulink blocks. These container blocks are called Sub-
system blocks and allow an arbitrary nesting. Subsystem blocks are the only means for
structuring a Simulink model. From a programming language perspective, a Subsys-
tem block corresponds conceptually to a function. Thus, the module construct is com-
pletely missing in Simulink. In other words, the Simulink modeling paradigm is stuck
at function-oriented, top-down design. No module or class constructs which are nowa
days regarded as essential for component-based development, are available for model-
ing.

Signal lines connect output ports of blocks with input ports of other ports and rep-
resent visually the data flow in a Simulink model. The common way of extending the
Simulink functionality is through so-called System-function blocks (S-function
blocks). Their functionality is programmed either in C, Ada, Fortran or Matlab. The
program providing the particular S-function block behavior has to adhere to
Simulink’s callback architecture. This means that several callback functions have to be
implemented in the chosen programming language. The most important callback func-
tions are md10Outputs (...) and mdlUpdate (...). The execution phase of
each Simulink block is an iterative computation of (1) the block outputs (2) block
states and (3) the next time step. The function md1Outputs (. ..) calculates the
output of the block, whilemd1Update (. ..) updatesthe block states.

The basic idea of coming up with a periodic task is to harness the subsystem trig-
gering mechanism. Figure 1 illustrates this Simulink feature. If the triggering S-func-
tion block sends a 1 (true) via the data flow link to the subsystem, the subsystemis ac-
tivated. Thus, the S-function block has to trigger the subsystem which represents a
TDL task according to the desired frequency.

S-fct

/ trigger()

instance of S-fct triggered
subsystem

Fig. 1. A triggered Subsystem block in Simulink.

Managing a FLET-based task communication requires that the result of atask execu-
tion (output values calculated by the Subsystem block) is communicated to another
task after a fixed time period. Thus we need conceptually another S-function block
that delays the communication of the vaues that flow between TDL tasks. To stream-
line the usage we have implemented the communication and triggering behavior de-
scribed above in one S-function block. Figure 2 shows how a ssmple TDL program is
specified with that S-function block. The S-function block has a clock as symbol in-
side. Note that one S-function block instance is used for triggering a subsystem and
another one is used for the output signal line. The two Giotto tasks represented as
Simulink subsystems simply increase their input by one. Taskl (upper Subsystem
block in Figure 1) runstwice as fast as Task2.

=] GiottoTest *

EEIE I EEEE

=1olx|

File Edit Wiew Simulstion Format Tools Help

DEE&E|+B2R 9 BES®| P = [om

S—-=-a

Tasl-freq. 2 .
Trigger) E -
i1 out1
output port of Task-freq. 2p— B | 1 R R
Giotto Task1
|
Tasa-freq. 1 \
Trigger() E
S [TT) STV 0o
output port of Tad@-freq. 1
Giotto Task
..

Fig. 2. A TDL program with two tasks.

Benefits and drawbacks. The presented approach is the recommended choice for ex-
tending Simulink. Nevertheless, we decided to discard this integration option for the
following reasons. The generated code (Rea-Time Workshop) does not allow the pre-
emption of TDL tasks. This limitation is a show stopper: First, the time intervals be-
tween two simulation steps have to be as small as determined by the fastest TDL task.
Second, al task computations have to be done within that interval. Thus, the S-Func-
tion integration option results in inefficient code that might be useless in practice in
most situations. Though the code generation could have been adapted, another reason
led to the decision to not further pursue this approach: The integration strongly de-
pends on the internal execution mechanism of Simulink. Indeed, the execution mecha-
nism has changed between a minor version update of Simulink in the course of imple-
menting the TDL S-function block without any notice in the documentation. As a con-
sequence, C-code from the callback function mdloutput had to be moved to md-
lUpdate. Moreover, some subtle differences between simulation and the real-time
versions of the S-function implementations could tamper the model-based develop-
ment.

2.2 Integration of TDL Tasksand Modesthrough Model Transformation

The basic idea of this kind of integration is to use standard Simulink blocks to model
the FLET behavior of TDL tasks. The Zero-Order-Hold (ZOH) and Unit-Delay (UD)
blocks allow the modeling of this core TDL property. Figure 3 shows the TDL pro-
gram with the same semantics as the one in Figure 2.

—Unit Delay

I[Sample and hold with one sample peric

L~ twoTpLtasks *
Fie Edt Wew Simulaton Format Tocols Help

—Parameters
ODed& sl o pEY&| » = IE Initial conditions
[

Sample time (-1 for inherited):

peint Out1

OK Cancel

TOLTamn Unit Delay1

—Unit Delay

Sample and hold with one samp

4 s el e
o w1 | || Pammeten
z Initial conditions:

Zerg-Order
Hold2

TOLTaoz Unit Delay2 I.I

Sample time (-1 for inherited):
|2

Ready 100% | | [odeds ok] e

Fig. 3. A TDL program with two tasks constrained by ZOH and UD blocks.

From the developer’s point of view the insertion of the ZOH and UD blocks becomes
inconvenient for more complex programs. With several tasks and numerous input and
output lines it is tedious to place the ZOH and UD blocks and to define their parame-
ters so that they correspond to the desired task periods. Above al, this would only suf-
fice for simulation. To benefit from TDL, the compilable textual TDL program would
have to be written by hand after the model simulation leads to satisfying results. This
iswhy we have defined a TDL task block that is used to specify the model. The model
then can be transformed by the S'TDL trandator tool for ssimulation (the ZOH and UD
blocks are inserted automatically by the S'TDL trandator). The S/TDL translator also
generates the TDL textual program from the model. That can be compiled for a specif-
ic execution platform. Below we model a simple throttle control system to illustrate
this approach. This sample application only comprises TDL tasks in one mode. So no
modes and no mode switches have to be modeled.

(=1

Fle Edit Wiew Simulation Format Tools Help

DIEE& dme 0 REL®| llNormaI

Y

pedal_position

throttle_motor

throttle_position

Throttle{plant)

throttle_position
throttie_maotor
pedal_position

¥

TDLProgram

’—Subsystem (mask)

Ready 100% |

Parameters
Enter system period [ms]:
|25

OK Cancel Help Al

Fig. 4. Top level view of the throttle control model.

Developer’s perspective. We use the Simulink editor to define both, the TDL pro-
gram (timing aspects) and the functionality (control laws corresponding to the task
functions) of the throttle controller. On the top level subsystem, we define the TDL
controller and the plant, that is, the model of the throttle, which interacts with the con-
troller during the simulation. To model the plant, we use standard Simulink blocks and

put them into a subsystem block. To define the TDL controller, we use the so-called
TDL program block from alibrary. Figure 4 shows the top level view of the model.

A TDL program block contains TDL task blocks, which are also in the TDL li-
brary. In our case study, only one task is needed for controlling the throttle (see Figure
5). In adialog box the developer defines the task frequency relative to the period of
the TDL program block and itsinitial output values. The initial output values are set
to 0, while we configure the relative task frequency to 1, which means a task execution
period of 25ms (hyper period defined for the TDL program block).

File Edit “iew Simulaton Format Tocols Help

DzEE& 2 2 = hES®|) llNormaI vl

e
thmttggsvl—b throttle_paosition

pedal_position

controller_output 4@

throttle_motor

2
N !

pedal_paositicn controller

Block Parameters: controlk X

(Subsystem (mask)

Ready 100%

Parameters
Enter task frequency:

|5

Enter init value of all output ports:
o

oK | Cancel Help Al

Fig. 5. Definition of a TDL task.

Finally, we model the functionality of the task inside that subsystem block with the
appropriate Simulink blocks (see Figure 6).

Simulation of a TDL program. After modeling the controller in Simulink, the devel-
oper typically simulates it. For that purpose, the STDL tanslator tool trandlates the
model to one which has the ZOH and UD blocks inserted so that the model exhibits
the TDL semantics.

Thetranglation results in a new Simulink model file. The developer loads that mod-
el into Simulink and starts the simulation. The user analyses the simulation results and
decides if modifications have to be done to the original model. In this case, the devel-
oper changes the original model, repeats the trandation step and starts the simulation

again.

Ej etc_simplhified/.../controller/ ProporlioniiConIn)lagg i | O |i|
Fie Edit View Simulation Format Tools Help

D2EHE| iR |92 REL &) llNormaI vI

slpha_srror motar_amps

throttle_paosition throttle_motor

Torque_2_cument

pedal_paosition

Spring_rate

Spring_offset| 0.

Ready [Looes | | lode4 "
Fig. 6. Definition of the functionality (control law) of the TDL task that controls the throttle.

Code generation. Once the model exhibits the desired behavior the code for the tar-
get platform has to be generated. We refrain from describing the details of the code
generation process and refer the interested reader to [7]. The S'TDL transator gener-
ates on the one hand the textual TDL program which is then compiled with the TDL
compiler. On the other hand glue code is generated that allows the linking of the TDL
executable (timing code) with the functionality code, which is the C code generated
from the tasks by means of one of the Simulink_to_C generator tools such as the Real -
Time Workshop (RTW) or TargetLink. We have shown the feasibility of that code
generation process in the realm of the throttle control example for the MPC555 plat-
form, with the OSEK operating system and the RTW.

Hitting the wall—providing TDL modes in addition to TDL tasks. The semantics
of TDL modes implies a significant increase in the complexity of the transformed
model. As TDL mode switches correspond to constrained state transitions in state
flow diagrams, the idea was to use Simulink’s StateFlow editor for specifying a TDL
mode switch. (The TDL mode switches are so far constrained as the mode switch con-
ditions are checked periodically, thus complying with the FLET assumption. Further-
more TDL currently does not support nested modes.) Figures 7 and 8 show a sample
model with two modes. The modes are modeled in the Simulink editor (Figure 7). We
do not explain here the nasty detail that a merge block is required. The chart block
represents a link to another editor, the StateFlow editor that is part of the Simulink
tool suite. Figure 8 shows the modding of the transition between the two modesin the
StateFlow editor. Note that the variables used in the switch conditions, such as Nor-
malMode_outl have to adhere to a naming convention so that the two diagrams are
connected. The number 2 separated by a bar (]) from the condition specifies the rela-
tive frequency how often the switch condition is going to be checked.

=101 %]

File Edit wiew Simulagon Format Tools Help

D& dBp|ozrELE) > llNurmaI -

ﬂ
pedal_pos
znzlni .

¥y ¥

MiodeOuti ModeSwitching
Z 2nsin2
thrtile_past Normallode
throttle_matar
Merge
Mezzin Block Parameters: NormalMc
p{sznsint ModzOutt
=y psensinz Subsystem (mask)
thiottle_pes? Degradediode ’7
Parameters
Enter mode period [ms]:
25
Ready 100% @ I
0K | Cancel Help | Apply

Fig. 7. Modeling a TDL program with modesin Simulink.

Fle Edt Smulation View Took Add Help

=10lx|

¢+ cR& saa(laspr i « BEaHo B

ip [fi|>|e|@|

Fig. 8. Modeling mode switch conditions with the StateFlow editor.

Though the simple example seems to be manageable from a developer’s perspective,
Figure 9 corroborates that this is not the case any longer in a dightly more complex
example: a TDL program with three modes and several input and output signal lines.
Note that this is still the simplified modeling view the developer has. Even the usage
of Multiplexer/Demultiplexer blocks and GoTo blocks does not help to simplify the

model.

Benefits and Drawbacks. If modeling TDL programs without mode switching, the
presented approach is the most straightforward one. A Simulink user can easily ac-

complish that. It leads to better structured Simulink models where the timing and func-

tionality behavior is separated. However, if modes are required, which typically is the

case in practice, the model becomes too cluttered and thus barely understandable. In

addition, the developer hasto obey to severa guidelines and naming conventions. The
Simulink model editor does not provide means to give feedback about modeling rule
violations. Potential violations could only be caught by the STDL translator tool
when the model is processed. All the disadvantages of this approach compared to the
separate TDL editor suite are discussed in section 3.2.

Ejcomplex_reference_modeI_szIGiottoProgram : ﬁ 251 =) il
Fie Edt View Simulation Format Tools Help

DSEE s ERoc REL® P = [Noma =

ModelSwitching

Out1
< inchicde]

:
o P iz
! - In2 -
L pfsensinr 43
ensin2 -
From1 NormallMode

¥ vy

throttle_mator

1o Merge2 ot e -
1 n3 Out2| >
w | _‘s\r' . » ADechode]
- I ensin? Outd » m
Froma I Gatol
Degradedhlode
| merae
htl LED
Merge?
Froma F MergeS
int outt o |
pleersr ouz =
Gaota2
[— Spacialhlcde
Ready [100% | [lodeas Vs

Fig. 9. Three modes already result in complex models that cannot easily be understood.

3 Separate TDL Editor Suitewith Simulink as Back-End

Analogous to the fact that StateFlow is a separate editor focused on state transition di-
agrams and integrated in the Simulink tool suite, a separate TDL editor suite can best
support the developer in modeling the timing behavior of an application. Similar to
StateFlow, the TDL Editor suite is well integrated to Simulink so that it seems to the
user as if he or she would work with the same application. This section describes the
tool chain with the TDL editor suite from the devel oper’s perspective. The enhanced
throttle control case study, that now comprises two modes, illustrates the modeling of
a sample application. A discussion of the advantages of this integration solution
rounds out the paper.

Linking
timing and
functionality
aspects

Timing Functionality

Modeling

TDL Editor wszs fanction models Simulink

Simulation

Simulink
simulation

Platform Execution
Execution :

Fig. 10. An overview about the TDL/Simulink tool chain

3.1 TheTool Chain with the TDL Editor Suite

Figure 10 shows schematically how the tools interact. The TDL editor suite offers the
developer a convenient development environment that is adjusted to the needs of
TDL, without sacrificing the advantages of Simulink for modeling the functionality
(control laws) and for modeling the plant that interacts with the TDL program (con-
troller) during the simulation. The main aspects of the tool chain are separated by ver-
tical dotted lines into the following three areas:

1. Description of the timing aspects of a control system corresponding to a TDL
program.

2. Implementation of the functionality (control laws) of a control system using
Simulink

3. Linking of the timing and the functionality parts of the control system.

In addition, Simulink is also used for modeling the plant by the use of standard
Simulink blocks. The horizontal lines separate the devel opment process into the mod-

eling/simulation phase and the execution phase on a specific platform. In the follow-
ing, we discuss the three modeling and devel opment steps in more detail.

TDL-Based visual and interactive modeling: Separation of timing and function-
ality. The functionality, that is the implementation of the TDL tasks, is modeled in
Simulink with the available Simulink blocks. The functionality, for example, a PID
controller, is then provided as a Simulink subsystem.

The definition of the timing behavior and of the time-triggered mode switchesis ac-
complished with the TDL editor suite. The TDL editor suite is a collection of the fol-
lowing tightly coupled editors:

1. Modetransition editor: This editor is used to specify when to switch between
modes.

2. Mode editor: This editor allows the definition of a mode, that is, which TDL
tasksit contains, how they interact, and how they communicate with sensors
and actuators. The developer specifies which Simulink models are used for
providing the functionality of the tasks.

3. Mode communication editor: The developer defines how values are copied
between modes if a mode switch occurs.

In the following, we illustrate how the different editor types are used to define a TDL
program according to our needs in the throttle control case study:

Defining the control system in Simulink. In the first step, we define a Simulink
model for the TDL program, which defines the interaction between the TDL program,
that is, the controller, and the plant. This step is analogous to the one presented in Sec-
tion 2.2 (seefigure 4). The model consists of two blocks: One models the plant, which
is a subsystem block that contains standard Simulink blocks. This block is connected
to the TDL program block, which is provided by a TDL block library. In contrast to
the model in Section 2.2, this block is not configured by mask variables or inner
blocks provided by the TDL block library. A double-click opens an editor window of
the TDL editor suite, namely the mode transition editor. From the developer’s point
of view, thisis like opening the content of the TDL program block, which is modeled
using a specia editor.

Themodetransition editor. In our example, the throttle control system can be in two
modes, in the normal operation mode and in a failure mode. Figure 11 shows how the
transition between the two modes is modeled. The editor mimics a state diagram edi-
tor and does not allow the nesting of states. The NormalMode is marked as the start
mode. The directed line connecting the Norma M ode with the DegradedM ode denotes
that a mode switch occurs from the NormalMode to the DegradedMode if the mode
switch condition becomestrue. There is no connection between the modes in the other
direction. This means that if the mode DegradedMode is entered, the TDL program
cannot switch back into NormalMode until the program is restarted. The switch condi-
tion [failureChecker.diff = 10] means that a mode switch occurs if the value of the
mode port mp! of mode NormalMode is greater or equal to 10. The mode port mpl
stores the difference of two measurements of the angle of the throttle.

" Mode Transition Editor: ThrottieControl <& --

Eile Edit View Tools Help
(1 ThrottleControl i

D Imparts 9

@ [Constants
& [Types

© Cdsensars : MormalMode

@ pedalPos . T=20ms
@ throttlePos1 :
@ throttlePos2 i
© [Actuators : [failureCheckgr.diff >= 10]
& thrattleMator :
9 [JTasks :
@ [T etcController : Degradedhode
@ [T] failureChecker : m=20ms
@ [T] constanto ;
9 I Modes
@ (] NormalMode
@ (M) DegradedMode

Fig.11. Specification of mode switches.

The mode editor. A double-click on a mode in the mode transition editor opens the
mode editor, which alows the specification of TDL tasks and how they are connected
to each other aswell as to sensors and actuators (see Figure 12). The figure shows that
NormalMode consists of two task blocks. The functionality of both tasks has been
modeled in Simulink. A double click on the task block opens the standard Simulink
editor. In thisway, the TDL editor suite is seamlessly integrated into the Simulink en-
vironment.

The TDL task etcController is the same controller as the one presented in the previous
sections. The task failureChecker calculates the difference between the two measure-
ments of the throttle position. The tasks are connected to the corresponding sensor, ac-
tuator and mode ports.

The DegradedMode contains only atask called constant0. The task has no input pa-
rameters and the output value of this task is constantly set to 0. Therefore, the throttle
will be closed upon activation of this mode.

The mode communication editor. Finally, we have to define how values are copied
from one mode to another during a mode switch. Both mode input and mode output
ports are a subset of the task output ports of the tasks contained in a mode. The mode
communication editor (see figure 13) is opened by a double-click on a connection line
in the mode transition editor. In the case study, the output value of the task etcCon-
troller should go to the output port of task constant0, though this has no effect on the
behavior of the DegradedM ode.

Simulink as back-end. In order to simulate the TDL program specified in the TDL
editor suite, we generate a Simulink modd with the corresponding semantics. This
trandation is initiated via a menu item in the TDL editor suite. After the trandation
the generated model is loaded automatically into the Simulink tool suite for simulation

purposes. In this sense, Simulink serves as back-end of the TDL editor suite. It ex-
tends the TDL editor suite with simulation capabilities. Once the simulation leads to

satisfying results, the TDL program code and the C code for the functionality are gen-
erated.

Mode Editor: ThrottieControlNormallode o83
File Edit Yiew Tools Help
=3 ThrottieControl :
D Imparts
@ [Constants
& [Types
© [sensors
(=g
3 artuatars : Sl pedalPos «
©- 29 Tasks : throttleBe
© I Modes : pedalPos
@ (qiMormalMode. | throttlePos1
& throttleMotor| throttlePos2
&2 pedalPos
& thromlePosl |
@ throttlePos2 |
@ 7] etcController |
@ | failuraChecke |
[NormalMode| -
@ (M) DegradedMode |

K e

etcControlle

throttleMotor Actuators

2@ throttleMotor

s railureCheckert oiff

Fig. 12. The content of NormaMode

Mode Communication Editor: ThrottleControl.NormalMode —> DegradedMode
File Edit View Tools Help

[ThrottleControl | £
D Imports MNormalMode Degradedode

& [Constants |-

@ [Types

©] Sensors

©] Actuatars

©] Tasks

@ [Modes

etcController.throttieMotor @ —————3® constant0 out
failureChecker.diff &

Fig.13. Definition of how values are copied in case of a mode switch.

3.2 Why Isa Separate, but Well Integrated TDL Editor Suite Significantly More
I ntuitive than the TDL-In-Simulink Approach?

In the TDL-in-Simulink approach as described in section 2, we use two editors: the
default Simulink editor and the StateFlow editor. The visual editing of TDL programs
becomes more tedious as the two editors, which are proprietary implementations by
Mathworks, cannot be coupled with each other. As a consequence, changes such as

the renaming of a mode port have to be made manually by the developer in two
places. Another example is the definition of a mode switching condition in the State-
Flow editor. The developer has to look up the port names in the default Simulink edi-
tor, while the TDL editor suite can provide the available names in pop-up menus. In
addition to a tedious model update, potentially inconsistent updates might mislead the
developer when simulating models. In case of the TDL-in-Simulink approach, changes
in one editor are automatically updated in al the others. Thus the development envi-
ronment is more robust against modeling errors.

As updates have to be accomplished manualy if we go for the TDL-in-Simulink
approach, the number of editors has to be kept to a minimum. Thus, we offer two edi-
tors (default Simulink editor and StateFlow editor) and intertwine the data flow be-
tween modes in case of mode switches (mode communication) with the data flow from
the sensors and to the actuators. The dilemma is that this leads to diagrams that are
difficult to understand. The best solution is a further editor together with the automatic
update as provided by the separate TDL editor suite.

The necessity of introducing Merge blocks is one detail that further increases the
complexity of the visual representation of the TDL-in-Simulink approach: two differ-
ent source modes may copy to the same mode port of their common target mode. In
the TDL editor suite, we model mode communication separately for each mode
switch.

During a mode switch, values are copied between mode ports. Only task output
ports can become mode ports. But in Simulink, it is not possible to connect two output
ports. As a consequence, in the TDL-in-Simulink approach we have to connect output
ports of the source mode block with Simulink input ports of the target mode block (by
using the De/Multiplexer and Goto/From blocks; see Figure 9), though the input ports
are semantically output ports. The ‘input ports' are not used inside the mode block.
They are only used for the specification of the modd. This is, of course, extremely
difficult to understand and a nightmare from the human-computer-interaction point of
view. In contrast, in the TDL editor suite we simply connect the mode ports directly in
the separate mode communication editor.

Finaly, the Simulink editor is not TDL-syntax-sensitive so that no feedback can be
provided if some aspects of the edited model are not correct. Only the S'TDL tranda-
tor can detect errors in the model. This reduces the interactivity of the modeling pro-
cess.

4 Conclusion

Overdll, the combination of TDL and Simulink has several benefits. As TDL allows
the time-safe, deterministic distribution of TDL components [9], the developer can
easily come up with control systems that exhibit these properties that state-of-the-art
tools do not support directly. In other words, the TDL component architecture frees
the developer from targeting a specific single-node or distributed platform. He or she
can focus on the application aspects, in particular the control problems. Furthermore,
the resulting model iswell structured into the timing and the functionality behavior.
The integration of TDL and Simulink modeling provides a powerful simulation en-
vironment. In addition, the TDL editor suiteis fully integrated into the Simulink envi-
ronment and is even designed to imitate Simulink’s look and feel as far as possible.

Experienced Simulink developers should grasp the combination with TDL quickly. In
other words, the learning curve for experienced Simulink developers is supposed to be
flat.

5 Acknowledgements

We thank Christoph Kirsch for his active support of the research described in this pa-
per. He provided many useful hints for integrating Giotto and later TDL with Simulink
as well as for the throttle control case study. Sebastian Fischmeister and Guido
Menkhaus helped us to investigate the integration of TDL modes in the transforma-
tion-based approach. Andreas Werner has suggested ideas for the design and imple-
mentation of the TDL editor suite.

This research was supported in part by the FIT-IT Embedded Systems grant
807144 provided by the Austrian government through the ‘Bundesminsterium fir
Verkehr, Innovation und Technologi€'.

References

[1] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Giotto: A Time-
Triggered Language for Embedded Programming. Lecture Notes in Computer Science,
2211:166-184, 2001.

[2] Thomas A. Henzinger, Christoph M. Kirsch, Wolfgang Pree, and Marco A. A. Sanvido.
From Control Modelsto Real-Time Code using Giotto. |EEE Control Systems Magazine, 23
(21):50-64, February 2003.

[3] B. Horowitz, J. Liebman, C. Mg, T. John Koo, A. Sangiovanni-Vincentelli, and S. Sastry.
Platform-Based Embedded Software Design and System Integration for Autonomous
Vehicles. |IEEE Transactions, 91(1):100 — 111, 2003.

[4] Christoph M. Kirsch. Principles of Real-Time Programming. LNCS, 2491, 2002.

[5] Hermann Kopetz and Gunther Bauer. The Time-Triggered Architecture. IEEE Special Issue
on Modeling and Design of Embedded Software, 23(1), 2002.

[6] Edward A. Lee, Stephan Neuendorfer, and Michael J. Wirthlin. Actor-oriented design of
embedded hardware and software systems. Journal of Circuits, Systems, and Computers, 12
(3):231 — 260, 2003.

[7] Gerald Stieglbauer. Model-based Development of Embedded Control Systems with Giotto
and Simulink. Master thesis, University of Salzburg, April 2003.

[8] Josef Templ. TDL Specification and Report. Technical report, Software Research Lab, Uni-
versity of Salzburg, Austria, October 2003.
http://www.SoftwareResearch.net/site/publications/C055. pdf

[9] Wolfgang Pree and Josef Templ. Towards a Component Architecture for Hard Real Time
Control Applications, Automotive Software Workshop, San Diego, CA 10-12 January 2004.

[10] Thomas A. Henzinger, Christoph M. Kirsch, Slobodan Matic: Schedule Carrying Code,
EmSoft03 conference, Philadelphia, PA, October 2003

