
http://chess.eecs.berkeley.edu/

Request/Status

Response/Trigger

February 12, 2009 Center for Hybrid and Embedded Software Systems

Objectives
• Fast simulation of software models mapped to

platform models
• Achieve Software-In-the-Loop testing of closed-

loop control systems, capturing the influences
of execution times and preemptive scheduling

• Provide a validation environment for obtaining
high-level models of legacy code

APES-LESS: Access Point Event Simulator
for Legacy Embedded Software Systems

Stefan Resmerita
Patricia Derler

Approach
The proposed simulation
framework is based on:
• The ability to catch all APEs

during an execution
Instrument the source code:
insert a callback to the
simulation engine at every
access point
Generate an APE in the callback

• The ability to stop/resume the execution of a task at any access point
Execute each application task in a dedicated thread

• The ability to determine the (platform-specific) execution time of the
portion of code between any two consecutive access points of the
same task.

Leverage existing methods for estimation of execution times, e.g. WCET,
BCET, statistically computed ET, measured ET
The execution time is passed as a parameter of the callback and becomes
the APE’s timestamp

• Considering an APE as a request for CPU time
Each APE is sent to the task scheduler, which generates an answer to it
when the requested time is consumed. This is called an Access Granted
Event (AGE)
Each application thread is paused in its callback, after issuing an APE,
and is resumed upon receiving the corresponding AGE

Scope
• Automotive applications with legacy C code

executed on an OSEK operating system
• Multitasking, with fixed-priority preemptive

scheduling
• Intertask communication by means of shared

memory

Plant Model

Actuator modelsSensor
Models

Simulation of original application code

Simulation of modified application code

+

–

DynamicsController.c
void dC_step() {

…
write(angle);
…

}

…

0023456 12

0023457 0

0023459 6

0023460 23

0023461 0

0023463 0

…

Memory

write(angle) read(angle)

dC
mC

dC
mC

time

time

Simulation on host

Real-time execution on the ECU

MotorController.c

void mC_step() {
…
accessPointCallback(12);
tmp_angle = angle;
…
accessPointCallback(42);
WaitEvent(eventMask);
…

}1.
tri

gg
er

5.
AG

E

2. start

3. callback

4. A
PE

a. sy
stem

 call

b. change task state, reschedule

Thread cCodeThread;

void fire() {
notify();

}

void accessPointCallback(time) {
requestExecTime();
sleep();

}

5. resume

CTask.java

MotorController.c
void mC_step() {

…
read(angle);
…

}

• The instrumented C code is augmented with wrappers to
Direct each callback to the right task actor
Route the system calls to the OSEK actors

Using a software plant model regarded as a C task with
zero execution time
Using a Ptolemy II plant model

write(angle)read(angle)

preemption

User Input

Further Work
• Obtain finer granularity than source lines
• Develop tools for automatic instrumentation of legacy code

and automatic generation of the Ptolemy simulation model
• Adapt/use various methods of execution time estimation

Error

Access Point Event (APE)
• An access point is a line of source

code with an I/O access or a
system call

• In a run of the software, an access
point event occurs whenever the
code of an access point starts
executing

Access Point Event (APE)
• An access point is a line of source

code with an I/O access or a
system call

• In a run of the software, an access
point event occurs whenever the
code of an access point starts
executing

Sponsors:

activate(T1) activate(T2) AGET2
AGET1

APET1
(δ1) APET2

(δ2) terminate(T2) APET1
(δ1’)

T1

T2

t1 t2 t2 + δ2 t1 + δ1 + δ2

Example: Active Rear Steering

Implementation
• Discrete Event simulation in

Ptolemy II
• OS services are provided by an OSEK implementation in Ptolemy
• Each C task has a corresponding actor in Ptolemy II

• All the C
application
code is
compiled for
the host
platform into
one library

• Closed-loop
simulation
models in
Ptolemy II can
be achieved by:

