
Prof. Dr. Wolfgang Pree
Department of Computer Science

cs.uni-salzburg.at

© Copyright Wolfgang Pree, All Rights Reserved

A Strategic Comparison of
Component Standards

© 2004, W. Pree 2

Contents

 What is a component?

 COM :: Java :: Corba

 Visions

© 2004, W. Pree 3

What is a component?

© 2004, W. Pree 4

Remember: What is missing in OO?

interoperability

visual/interactive configuration

© 2004, W. Pree 5

What is a component?

 Not yet clearly defined

 Is everything a component?

 macros, mixins, functions, procedures, modules,
classes, etc.

 Conventional, heavy-weight components:

 operating systems
 database systems

© 2004, W. Pree 6

Our definition of the term (software) component

 A piece of software with a
programming interface

© 2004, W. Pree 7

Wiring standards (I)

Interoperability problem:

=> wiring standards

Java

C++

ST

C

© 2004, W. Pree 8

Wiring standards (II)

Product-driven definition

Microsoft’s Component Object Model (COM)
 evolutionary / incrementally
 originally targeted at the desktop

=> had to be extended for Internet/Intranet
and Enterprise
 Computing

 carries some legacy
 de facto standardization through the market

dominance of Microsoft

© 2004, W. Pree 9

Wiring standards (III)

Consortium standardization (OMG)

CORBA
 slow progress (compared to COM and

SunSoft’s JavaBeans)

JavaBeans
 based on 100% pure Java
 standards for integrating other components

are under development(EJB, Æ CORBA

© 2004, W. Pree 10

CORBA model of distributed applications

main-Prg.
Proxy

A

Proxy
B

IR
Proxy

(D)SOM, Distributed COM
RMI
OS

IR Disp.

A B
C ...

Impl. Rep.

ORB Core, IBM DSOM ObjMgr
RMI
OS

Dyn. Inv. Int.
(B’s
Interface)
MOfA(p1)

MOfB(p2)

Client ServerNetz

© 2004, W. Pree 11

Characteristics of components

 Information Hiding

 interface described in IDL

 implementation in any
language (Java, ST, C++, C, ...)

 components as binary units (machine-independent byte code is
also OK)

 components can be made persistent

© 2004, W. Pree 12

Component = Class ?

Usually, a component (large-grained component) comprises a
couple of classes (fine-grained components):

client components

© 2004, W. Pree 13

Beyond Wiring

 meta-level informationen

 components can ask others about offered features
 dynamic loading and linking

 semantic aspects

CORBA: wiring
JavaBeans: meta-level (reflection), semantics;

for pure Java wiring becomes irrelevant
COM: all three aspects

© 2004, W. Pree 14

Characteristics of component
standards

© 2004, W. Pree 15

Component Object Model (I)

COM concepts:

 interfaces and components (= COM classes) have a
unique (128-Bit) ID

 each COM-Objekt can be asked, which features are
supported:

interface IUnknown; method QueryInterface

© 2004, W. Pree 16

Component Object Model (II)

A component can have any number of interfaces:

Extension by adding interfaces; existing interfaces
remain untouched.

Int1

Int2

Function1 ptr

FunctionN ptr
. . .

Int2 Functions

Function1

FunctionN
. . .

© 2004, W. Pree 17

JavaBeans

 Properties (→ Setter/Getter methods) are
defined interactively in a Beans environment:

 Events form the communication mechanism:

a

Listener

Source Listener

Listener

© 2004, W. Pree 18

Commonalities and differences

© 2004, W. Pree 19

Commonalities

 OO (Information Hiding, late Binding, Subtyping)
 Compound Documents (original meaning of OLE, idea of OpenDoc)
 component transfer mechanism

 eg JAR files, COM Structured Storage
 coupling based on events
 meta-information
 persistence

© 2004, W. Pree 20

Differences

 memory management
 binary standards
 development environments
 versioning
 application domains
 supported platforms and languages

© 2004, W. Pree 21

Memory management

 COM: tedious reference counting; should be
automated in COM+

 Java: garbage collection; distributed GC not
compatible to Java-CORBA integration

 CORBA: no general solution

© 2004, W. Pree 22

Binary standards

 core aspect of COM

 in Java: byte code; partially through Java Native
Interface (JNI)

 CORBA provides no binary standard (compatibility
based on language bindings)

© 2004, W. Pree 23

Development environments

 COM: solid environments

 Java/JavaBeans: have to grow up

 CORBA: quite unsatisfying

© 2004, W. Pree 24

Versioning

 COM: solved via freezing of interfaces

 Java: based on binary compatibility; tedious rules

 CORBA: not directly supported; unsatisfying version
numbers

© 2004, W. Pree 25

Applications

 COM: focus on the desktop
 Java: focus on the Web
 CORBA: focus on server/Enterprise Computing

 DCOM and EJB aim at server/Enterprise Computing
 ActiveX-components for Windows-Web-Clients

© 2004, W. Pree 26

Languages and platforms (I)

 COM: Due to the binary standard, almost any
language can be supported efficiently on any
platform (DCOM):

Visual Basic, C, C++, C#, Java, Smalltalk, Object
Pascal, Lightning Oberon, Object Cobol, ML, etc.

 Java: binary standard based on Java byte code
+ platform independent (VM per platform)
– too much biased towards Java
not well suited for Ada95, REXX, Oberon;
impossible for C++

© 2004, W. Pree 27

Languages and platforms (II)

 CORBA: ORB developers have to provide
language bindings for particular languages

Thus, only a few languages are supported: C++,
(Smalltalk), Java

© 2004, W. Pree 28

Visions

© 2004, W. Pree 29

Filling the gap

Mega components (SAP, DB systems, operating
systems)

only a few medium-sized components exist
so far

very small components
(GUI components, etc.)

© 2004, W. Pree 30

Mechanistic view

Currently software components assembly requires
exact matching of interfaces:

© 2004, W. Pree 31

Adaptive architectures

Alternative: components configure
themselves automatically through testing &
fitting.

Sources of inspiration:
 Sun’s Jini, Microsoft‘s .NET
 agent technology
 ontologies

?

