
Mobile Code Paradigms

Sebastian Fischmeister
Fischmeister@SoftwareResearch.net

Dist. Systems 2002
2

Key Aspect & Elements

• Mobile code is about „do you move the 
data or do you move the code“.

• Elements
– Data (stored result sets) 
– Code (commands)
– Program stack (current status of the program) 



Dist. Systems 2002
3

Client/Server

Dist. Systems 2002
4

Client/Server Discussion

• Examples: WWW, RPC, Webservices, CORBA, EJBs
• Elements

– data mobile
– code static
– program stack static

• Advantages
– easy to implement
– widespread
– millions of implementations

• Disadvantages
– there‘s no „one size fits all“



Dist. Systems 2002
5

Code on Demand

Dist. Systems 2002
6

Code on Demand Discussion

• The idea behind code-on-demand was the thin client or network
computer (created by Larry Allison)

• Examples: Java Applets 
• Elements

– data static
– code mobile
– program stack static

• Advantages
– centralized codebase
– simple software update mechanisms
– dynamic binding lean software (load help dialog only if activated)

• Disadvantages
– interoperable code
– network as single point of failure
– long delay for start up



Dist. Systems 2002
7

Remote Evaluation

Dist. Systems 2002
8

Remote Evaluation

• A prominent example is SQL (to a certain extent).
• Elements

– data static
– code mobile
– program stack static

• Advantages
– sometimes better to move the code and not the data (search 

video database, Postscript)
• Disadvantages

– difficult to debug
– security problems



Dist. Systems 2002
9

Mobile Agents

Dist. Systems 2002
10

Mobile Agent Example

Server
Client AAA

A Server

Server

A A ServerServer
A



Dist. Systems 2002
11

Mobile Agents Discussion

• Elements
– data semi-mobile (necessary data is mobile;

semantic compression)
– code mobile
– program stack mobile

Dist. Systems 2002
12

What is a Mobile Agent?

• Program that can migrate from system to 
system within a network environment
– Performs some processing at each host

• Agent decides when and where to move next
• How does it move?

– Save state
– Transport saved state to next system
– Resume execution of saved state



Dist. Systems 2002
13

Seven Good Reasons for
Mobile Agents

• Danny Lange’s Seven Good Reasons For Mobile Agents
– They reduce network load
– They overcome network latency
– They encapsulate protocols
– They execute asynchronously and autonomously
– They adapt dynamically
– They are naturally heterogeneous
– They are robust and fault-tolerant

There is still no killer app for mobile agents!

Dist. Systems 2002
14

One more...

• Wait for events to occur and react!
– compex dynamic queries no more polling
– enables proactive applications



Dist. Systems 2002
15

Mobile Agent Disadvantages

• Complex to setup
• More complex than client/server
• Everything can also be done with

client/server
• Security problems

Dist. Systems 2002
16

Mobile Agent Security
Problems (I)

• Masquerading
– Agent poses as another agent to gain access to services or data at a 

host
– Host assumes false identity in order to lure agents

• Denial of Service
– Agents may attempt to consume or corrupt a hosts resources to 

preclude other agents from accessing the host’s services
– Hosts can ignore an agent’s request for services or access to 

resources
• Unauthorized Access

– Agents can obtain access to sensitive data by exploiting security 
weaknesses

– Agent interferes with another agent to gain access to data



Dist. Systems 2002
17

Mobile Agents Security
Problems (II)

• Eavesdropping
– With agents that are interpreted, the host can inspect their 

internal algorithms and data, such as the maximum price the 
agent’s owner is willing to pay for item X

• Alteration
– Hosts can change an agent’s internal data or results from 

previous processing to influence the agent
• Repudiation

– After agreeing to some contract, an agent can subsequently 
deny that any agreement ever existed or modify the 
conditions of the contract

Dist. Systems 2002
18

Mobile Agent Terms (I)

• From the OMG MASIF specification
• Agent

– An agent is a computer program that acts autonomously on behalf of 
a person or organization. Currently, most agents are programmed in 
an interpreted language (for example, Tcl and Java) for portability. 
Each agent has its own thread of execution so tasks can be 
performed on its own initiative.

• Stationary Agent
– A stationary agent executes only on the system where it begins 

execution. If the agent needs information that is not on that system, or 
needs to interact with an agent on a different system, the agent
typically uses a communications transport mechanism such as Remote 
Procedure Calling (RPC). The communication needs of stationary 
agents are met by current distributed object systems such as CORBA, 
DCOM, and RMI.



Dist. Systems 2002
19

Mobile Agent Terms (II)

• Mobile Agent
– A mobile agent is not bound to the system where it begins execution. It has the 

unique ability to transport itself from one system in a network to another. This 
submission is primarily concerned with mobile agents. The ability to travel 
permits a mobile agent to move to a destination agent system that contains an 
object with which the agent wants to interact. Moreover, the agent may utilize 
the object services of the destination agent system.

• Agent State
– When an agent travels, its state and code are transported with it. In this 

context, the agent state can be either it’s execution state, or the agent attribute 
values that determine what to do when execution is resumed at the destination
agent system. The agent attribute values include the agent system state 
associated with the agent (e.g. time to live).

• Agent Execution State
– An agent’s execution state is its runtime state, including program counter and 

frame stacks.

Dist. Systems 2002
20

Mobile Agent Terms (III)

• Agent Location
– The location of an agent is the address of a place. A place resides 

within an agent system. Therefore, an agent location should contain 
the name of the agent system where the agent resides and a place
name. Note that if the location does not contain a place name, the 
destination agent system chooses a default place.

• Agent System
– An agent system is a platform that can create, interpret, execute, 

transfer and terminate agents. Like an agent, an agent system is 
associated with an authority that identifies the person or organization 
for whom the agent system acts. For example, an agent system with 
authority Bob implements Bob's security policies in protecting Bob's 
resources. An agent system is uniquely identified by its name and 
address. A host can contain one or more agent systems.



Dist. Systems 2002
21

Mobile Agent System

Dist. Systems 2002
22

Mobile Agent 
Standardization

• Object Management Group (OMG) Agents Working 
Group
– Recommends standards for agent technology
– Mobile Agent System Interoperability Facilities (MASIF) –

draft specification
– www.omg.org

• FIPA - Foundation For Intelligent Physical Agents
– Non-profit organization which promotes the development of 

specifications of generic agent technologies that maximize 
interoperability within and across agent-based applications

– FIPA 98 - seven part specification
– www.fipa.org

• New bottom up approaches



Dist. Systems 2002
23

Mobile Agent by Example

public class BoomerangAgent extends
de.ikv.grasshopper.agent.MobileAgent {

// A little data state.
int state;

public void live() {
String location;

switch(state) {

// code the states here

}
log("Terminating my life.");

}
}

Dist. Systems 2002
24

BoomerangAgent (State 0)

case 0:
log("Waiting for new location...");
location = JOptionPane.showInputDialog(null,

"Where shall I go?");
if (location != null) {

state = 1;
log("Trying to move...");
try {

// Go away!
move(new GrasshopperAddress(location));

}
catch (Exception e) {

log("Migration failed: ", e);
}
// The next statement is only reached 
// if the migration failed!!!
state = 0;

}
break;



Dist. Systems 2002
25

BoomerangAgent (State 1)

case 1:
log("Arrived at destination!");
JOptionPane.showMessageDialog(null, "Let me go home!");
state = 0;
log("Trying to move...");
try {

// Come home!
move(getInfo().getHome());

}
catch (Exception e) {

log("Return trip failed: ", e);
}
// The next statement is only reached 
//if the migration failed!!!
break;

Dist. Systems 2002
26

References

• Grasshopper
– http://www.ikv.de
– http://www.grasshopper.de

• Aglets
– http://aglets.sourceforge.net


