Prepared for C. Doppler Laboratory Embedded Software Systems

Concurrent programming for the multi-core era

Philipp Haller
Frank Sommers

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=i

Prepared for C. Doppler Laboratory Embedded Software Systems

Actors in Scala

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=ii

Prepared for C. Doppler Laboratory Embedded Software Systems

Actors in Scala

Philipp Haller, Frank Sommers

artima

ARTIMA PRESS
WALNUT CREEK, CALIFORNIA

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=iii

Prepared for C. Doppler Laboratory Embedded Software Systems

Actors in Scala

Philipp Haller is a post-doctoral researcher at Stanford University, USA, and
EPFL, Switzerland. Frank Sommers is president of Autospaces, Inc.

Artima Press is an imprint of Artima, Inc.
P.O. Box 305, Walnut Creek, California 94597

Copyright © 2010-2011 Philipp Haller and Frank Sommers. All rights reserved.

PrePrint™ Edition first published 2010

First edition published 2011

Build date of this impression December 23, 2011
Produced in the United States of America

No part of this publication may be reproduced, modified, distributed, stored in a
retrieval system, republished, displayed, or performed, for commercial or
noncommercial purposes or for compensation of any kind without prior written
permission from Artima, Inc.

All information and materials in this book are provided “as is” and without
warranty of any kind.

The term “Artima” and the Artima logo are trademarks or registered trademarks of

Artima, Inc. All other company and/or product names may be trademarks or
registered trademarks of their owners.

Cover - Overview - Contents - Discuss - Suggest - Index

v

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=iv

Prepared for C. Doppler Laboratory Embedded Software Systems

to my parents, Gudrun and Rudolf - PH.
to Jungwon - ES.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=v

Prepared for C. Doppler Laboratory Embedded Software Systems

Overview

Contents

List of Figures

List of Listings

Foreword

Acknowledgments

Introduction

1. Concurrency Everywhere

2. Messages All the Way Up

3. Scala’s Language Support for Actors
4. Actor Chat

5. Event-Based Programming

6. Exceptions, Actor Termination, and Shutdown
7. Customizing Actor Execution

8. Remote Actors

9. Distributed and Parallel Computing

10. Akka Actors
11. API Overview
Bibliography
About the Authors
Index

Cover - Overview - Contents - Discuss - Suggest - Index

vii

X1
X1v
XVi

Xvii

23
34
50
63
73
88

102
117
123
141
161
175
177
178

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=vi

Prepared for C. Doppler Laboratory Embedded Software Systems

Contents

Contents

List of Figures

List of Listings

Foreword

Acknowledgments

Introduction

1 Concurrency Everywhere

1.1
1.2
1.3
1.4
1.5
1.6

A shift toward parallel hardware
Actors versus threads
Scalability
A high-level perspective on concurrency
The indeterministic soda machine
Programming the datacenter

2 Messages All the Way Up

2.1
2.2
23
24
2.5
2.6
2.7

Control flow and dataflow
Actors and messages
Actorcreation
Actorevents
Asynchronous communication
You’ve got mail: indeterminacy and the role of the arbiter
Actorlifecycle,

Cover - Overview - Contents - Discuss - Suggest - Index

vii

xi

xiv

Xvi

xvii

23
24
25
26
27
29
31

34
34
38
42
43
46
47
49

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=vii

Prepared for C. Doppler Laboratory Embedded Software Systems

10

Contents

Scala’s Language Support for Actors

3.1 Ascalable language
3.2 Immutable and mutable state
3.3 Methodsandclasses
3.4 Firstclass functions
3.5 Functions as control structures
3.6 Pattern matching and case classes

Actor Chat

4.1 Defining message classes
4.2 Processing messages e .o
4.3 Sending actor messages

Event-Based Programming

5.1 Eventsversusthreads
5.2 Making actors event-based: react
5.3 Event-based futures,

Exceptions, Actor Termination, and Shutdown

6.1 Simple exception handling
6.2 Monitoring actorso

Customizing Actor Execution

7.1 Pluggable schedulers
7.2 Managed blocking

Remote Actors

8.1 Creatingremote actors
8.2 Remote communication
8.3 Aremote start service

Distributed and Parallel Computing

9.1 MapReduce
9.2 Reliable broadcast

AKkka Actors

10.1 Creating Akkaactors
10.2 ActorRefs,
10.3 Inter-actor interaction, interactively

Cover - Overview - Contents - Discuss - Suggest - Index

50
50
52
52
53
55
60

63
64
64
67

73
73
74
83

88
88
91

102
102
111

117
117
119
120

123
123
134

141
141
143
144

viii

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=viii

Prepared for C. Doppler Laboratory Embedded Software Systems

10.4
10.5

Contents

Message handling
Remote actorsin Akka

11 API Overview

11.1
11.2
11.3
11.4
11.5

The actor traits Reactor, ReplyReactor, and Actor . .
Control structures
Futures
Channels
Remote Actors API

Bibliography

About the Authors

Index

Cover - Overview - Contents - Discuss - Suggest - Index

145
151

161
161
167
169
170
172

175

177

178

ix

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=ix

Prepared for C. Doppler Laboratory Embedded Software Systems

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8
2.9

State transitions in a soda machine.
Message passing with indeterministic message ordering.

Components holding shared state require synchronization.
Interaction of data and control flow.
The simplest actor computation: adding x and y together. . .
Actor computation with continuation message passing.

Every message carries a sender reference.
CruiseControl actor receiving currentSpeed message. . .

A more modular approach to cruise control with further decom-
position of responsibilities into actors.

A throttleControl continuation included in a message. . .
Creating and delegating work to child actors.

2.10 B’sarrival event activates C’s arrival event.
2.11 Event causality in an actor system.

4.1
4.2

9.1

An actor chat application.,
Message communication between chat room and users. . . .

Data flow in a basic MAPREDUCE implementation.

29
31

35
37
39
39
40
40

41
41
43
44
45

63
65

Prepared for C. Doppler Laboratory Embedded Software Systems

List of Listings

3.1 Extending HttpServlet from Scala
3.2 Implementation of the txn control structure

4.1 Case classes for Users and messages.
42 Definingact.
4.3 Incoming message patterns.
4.4 Creating and starting an actor with actor
4.5 Representing a user as an actor inside a session
4.6 Using the senderreference
47 Usingthereplymethod.
4.8 Using message timeouts with receiveWithin
4.9 Processing post MessSages e e

5.1 Building a chain of event-based actors.
5.2 Themainmethod.
5.3 Incorrectuseofreact.
54 Correctuseofreact.
5.5 Sequencing react calls using a recursive method.
5.6 A sleep methodthatusesreact.
5.7 Using andThen to continue after react.
5.8 Using loopWhile for iterations with react.
5.9 Image renderer using futures.
5.10 Using react to wait for futures.
5.11 Enabling react in for expressions.
5.12 Implementing the custom ForEach operator.

6.1 Defining an actor-global exception handler.
6.2 Linking dependentactors.

X1

53
57

64
65
66
67
68
69
70
71
72

75
76
79
79
80
81
81
82
83
85
86
86

89
93

Prepared for C. Doppler Laboratory Embedded Software Systems

6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9.9

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10

List of Listings

Receiving a notification because of an unhandled exception.
Monitoring and restarting an actor using 1link and restart.
Using keepAlive to automatically restart a crashed actor. .
Reacting to Exit messages for exception handling.

Incorrect use of ThreadLocal.
Saving and restoring a ThreadLocal.
Executing actors on the Swing event dispatch thread.
Creating daemon-style actors.
Synchronizing the speed of Gear actors.
Blocked actors may lock up the thread pool.
Using managed blocking to prevent thread-pool lock up. . .

Making the chat room actor remotely accessible.
A server actor implementing a remote start service.
An echo actor that you can start remotely.

A function for building an inverted index.
A basic MAPREDUCE implementation.
Applying the reducing function in parallel.

A MAPREDUCE implementation that tolerates mapper faults.

MAPREDUCE with coarse-grained worker tasks.
Best-effort broadcasting.
Using the broadcast implementation in user code.
A reliable broadcastactor.
Sending messages with time stamps.

A simple chain actorin Akka.
A master actor controlling an actor chain.
Using become to implement a simple unbounded buffer. . .

A buffer actor that handles both Put and Get messages.

The MasterServiceobject.
The MasterServiceactor.
The ClusterServiceobject.
The ClusterServiceactor.
A simple actor that you can start remotely.

Using andThen for sequencing.

Cover - Overview - Contents - Discuss - Suggest - Index

96
98
99
100

105
105
107
108
109
112
114

118
121
122

125
128
130
132
135
136
137
139
139

142
145
148
149
150
152
153
155
156
157

168

Xii

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=xii

Prepared for C. Doppler Laboratory Embedded Software Systems

List of Listings

11.2 Scope-based sharing of channels.
11.3 Sharing channels via messages.

Cover - Overview - Contents - Discuss - Suggest - Index

172

Xiii

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=xiii

Prepared for C. Doppler Laboratory Embedded Software Systems

Foreword

I have been fascinated by concurrency and distributed computing for as long
as I can remember. I still remember the joy of solving the classic dining
philosophers problem using my own semaphore library built on top of the
pthreads C library back in university many years ago. A few years later
a new language called Java came along. Java made a lot of things easier
for us developers; it had, for example, automatic memory management and
a rich standard library. It also came with a single unified abstraction over
threads and had concurrency utilities built into the language (for example,
wait, notify, and synchronized), which was later expanded with the rich
java.util.concurrent library. I embraced Java as my primary language
of choice. The problem was that writing concurrent programs still needed too
much low-level plumbing and was still way too hard. The main reason for
this was that Java blindly adopted the C/C++ concurrency paradigm; shared-
state concurrency, e.g., concurrent access to shared mutable state, which in
most cases is not what you need and therefore the wrong default.

Over the years I have done my share of programming with threads and
locks, spending late nights and weekends at the office tracking down concur-
rency bugs. One day I just had enough. I started reading up on alternative
concurrency paradigms, in particular message-passing concurrency as imple-
mented by the language and runtime Erlang, and dataflow concurrency from
an esoteric academic language called Oz. I was amazed by both of these lan-
guages and their approach to concurrency; in particular, Erlang and its actor-
based programming model. Actors raised the abstraction level from threads
and locks and made it so much easier to write, understand, and maintain
my concurrent code. Instead of spending time getting the plumbing right,
I could focus on the workflow—how the messages flowed in the system—
which made my code so much easier to understand and maintain. So I fell in
love with Erlang and its actors. Actors also turned out to be great not only

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=xiv

Prepared for C. Doppler Laboratory Embedded Software Systems

Foreword

for concurrency but also for fault tolerance and distributed computing. I had
finally found a tool that I could use to scale up, utilizing symmetric multipro-
cessor (SMP)/multicore machines, scale out on the cluster, and write highly
available systems. Life was good.

About five years ago I discovered and fell in love with Scala. In Scala,
I found a fascinating language that blended object-oriented and functional
programming with rare elegance, ran on the JVM, was statically typed with
the same performance as Java, and. ..had actors. It couldn’t be better. All
the goodness of Erlang on the JVM. I started using Scala and Scala’s actors
as my main language and tool set for writing scalable, fault-tolerant, and
highly concurrent systems. This eventually led me to create Akka, an actor
runtime that builds upon the Scala foundation by adding even richer tools for
concurrency and distributed computing.

I have a lot to thank Philipp Haller, one of the two authors of this book
and the creator of Scala actors. Without his excellent work I would probably
not have started using Scala and would not have created Akka. I would have
missed out on a lot of fun. I am really glad that Philipp and Frank have taken
the time to write this book. Now we finally have an introductory book that
teaches how to use actors in Scala and that covers both Scala’s actors library
as well as Akka. It is a great first step into the wonderful world of actors.
See reading this book as an investment: it will help you to write correct,
performant, scalable, and available systems in less time, giving more time to
more important things in life.

Jonas Bonér

CTO Typesafe
Uppsala, Sweden
November 1, 2011

Cover - Overview - Contents - Discuss - Suggest - Index

XV

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=xv

Prepared for C. Doppler Laboratory Embedded Software Systems

Acknowledgments

There are many people who have shaped this book in different ways. First
and foremost, we’d like to thank Tom Van Cutsem for contributing large
parts of Chapter 9 ("Distributed and Parallel Computing"); at least half of the
material on MAPREDUCE was contributed by him. In the same chapter, the
solutions for best-effort and reliable broadcast are based on code contributed
by Aleksandar Prokopec.

We are grateful to Kunle Olukotun and Martin Odersky for supporting
Philipp’s work on this book in 2011, while being a post-doctoral research
fellow at Stanford University, USA, and at Ecole Polytechnique Fédérale de
Lausanne (EPFL), Switzerland.

We’d also like to thank Stéphane Micheloud, Samira Tasharofi, Mirco
Dotta, and Vojin Jovanovic, for reviewing earlier versions and preprints of
this book. Their feedback has helped us improve the text in countless places.

Special thanks go to Bill Venners who initially came up with the idea of a
book on Scala actors. Without his expertise in publishing and his continuous
support over many months, this book would not have been possible.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=xvi

Prepared for C. Doppler Laboratory Embedded Software Systems

Introduction

This book is a tutorial for programming with actors in the Scala program-
ming language. Actors provide a high-level programming model for con-
current and distributed systems based on lightweight processes and message
passing. One of the authors of this book, Philipp Haller, is the creator of
Scala’s actors library, and is directly involved in the development of actors
in Scala’s standard library. Our goal is that by reading this book, you can
learn everything you need to build efficient, scalable, and robust concurrent
software for the JVM, productively, using actors. All examples in this book
compile with Scala version 2.9.1 and Akka version 1.2.

Who should read this book

The main target audience of this book is programmers who want to learn how
to program using actors in Scala. If you are interested in building highly con-
current, scalable systems in Scala, then this book introduces you to Scala’s
main offering in this space, actors. This book provides an introduction both
to actors in Scala’s standard library, as well as to Akka’s actors, which en-
able even more powerful facilities for fault-tolerant event-driven middleware
solutions.

In addition, students and programmers who would like to expand their
knowledge of concurrent and distributed programming by learning about a
not-yet-standard concurrency paradigm should find this book interesting. As
a Java programmer, for example, you might be used to programming with
threads, synchronized methods, volatile fields, and so on. Learning about ac-
tors, and the underlying approach to modeling concurrent systems, can help
you think about concurrency differently, thereby broadening your horizons.

Basic programming knowledge in Scala is assumed, as well as some fa-
miliarity with virtual machine environments like the JVM or .NET. The book

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=xvii

Prepared for C. Doppler Laboratory Embedded Software Systems

Introduction

contains a separate chapter which introduces Scala language features that are
essential for programming effectively with actors, so you don’t have to be an
expert (or even intermediate) Scala programmer. In general, we believe this
book is a good companion to "Programming in Scala" (also published by
Artima, Inc.).

How to use this book

Because the main purpose of this book is to serve as a tutorial, the recom-
mended way to read this book is in chapter order, from front to back. We
have tried hard to introduce one topic at a time, and explain new topics only
in terms of topics we’ve already introduced. Thus, if you skip to the back
to get an early peek at something, you may find it explained in terms of
concepts you don’t quite understand. To the extent you read the chapters
in order, we think you’ll find it quite straightforward to gain competency in
Scala actors. After you have read the book once, it should also serve as a
reference for Scala actors.

EBook features

This book is available in both paper and PDF eBook form. The eBook is not
simply an electronic copy of the paper version of the book. While the content
is the same as in the paper version, the eBook has been carefully designed
and optimized for reading on a computer screen.

The first thing to notice is that most references within the eBook are
hyperlinked. If you select a reference to a chapter, or figure, your PDF viewer
should take you immediately to the selected item so that you do not have to
flip around to find it.

Additionally, at the bottom of each page in the eBook are a number of
navigation links. The “Cover,” “Overview,” and “Contents” links take you to
the front matter of the book. The “Index” link takes you to reference parts
of the book. Finally, the “Discuss” link takes you to an online forum where
you discuss questions with other readers, the authors, and the larger Scala
community. If you find a typo, or something you think could be explained
better, please click on the “Suggest” link, which will take you to an online
web application where you can give the authors feedback.

Cover - Overview - Contents - Discuss - Suggest - Index

XViil

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=xviii

Prepared for C. Doppler Laboratory Embedded Software Systems

Introduction

Although the same pages appear in the eBook as the printed book, blank
pages are removed and the remaining pages renumbered. The pages are num-
bered differently so that it is easier for you to determine PDF page numbers
when printing only a portion of the eBook. The pages in the eBook are,
therefore, numbered exactly as your PDF viewer will number them.

Typographic conventions

The first time a term is used, it is italicized. Small code examples, such as
x + 1, are written inline with a mono-spaced font. Larger code examples are
put into mono-spaced quotation blocks like this:

def hello() {
println("Hello, world!"™)

}

When interactive shells are shown, responses from the shell are shown in a
lighter font:

scala> 3 + 4
resO: Int =7

Content overview

* Chapter 1, “Concurrency Everywhere,” gives an overview of actor-
based concurrency as well as the reasoning, and history, behind it.

* Chapter 2, “Messages All the Way Up,” birds-eye view of the actor
programming model refers to features that Scala actors already imple-
ment and when relevant, points out differences between Scala actors
and the more general model.

* Chapter 3, “Scala’s Language Support for Actors,” reviews the Scala
features most relevant to actors for the Java developer who has little or
no experience with Scala.

* Chapter 4, “Actor Chat,” illustrates the key elements of Scala’s actor
DSL with a quintessential messaging application: a chat program.

Cover - Overview - Contents - Discuss - Suggest - Index

XiX

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=xix

Prepared for C. Doppler Laboratory Embedded Software Systems

Introduction

Chapter 5, “Event-Based Programming,” covers event-based actors
which are implemented as event handlers and are more lightweight
than their thread-based cousins. This chapter discusses thread pools
as an execution environment for event-based actors, as well as event-
based futures.

Chapter 6, “Exceptions, Actor Termination, and Shutdown,” covers
how to handle errors in concurrent, actor-based programs - handling
exceptions, monitoring other actors to detect termination, and termi-
nation management of actor-based programs.

Chapter 7, “Customizing Actor Execution,” shows you how to cus-
tomize the runtime system, improve the integration with threads and
thread-local data, simplify testing, and more.

Chapter 8, “Remote Actors,” explains the constructs involved in using
remote actors, revisits the chat example application from Chapter 4.
You will learn how to create remote actors and how to address and
communicate between remote actors.

Chapter 9, “Distributed and Parallel Computing,” illustrates how to ac-
complish some common parallel and distributed computing tasks with
actors focusing on two patterns, MAPREDUCE and reliable broadcast-
ing.

Chapter 10, “Akka,” introduces the essentials of Akka from a user’s
perspective and explains the main differences to Scala actors, from an
operational point of view.

Chapter 11, “API Overview,” provides a detailed API overview of the
scala.actors package in Scala 2.8 and Scala 2.9. The organization
follows groups of types that logically belong together as well as the
trait hierarchy.

Resources

At http://www.scala-lang.org, the main website for Scala, you’ll find
the latest Scala release and links to documentation and community resources.
For a page of links to resources about Scala and Akka actors, visit this book’s

Cover - Overview - Contents - Discuss - Suggest - Index

XX

http://www.scala-lang.org
http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=xx

Prepared for C. Doppler Laboratory Embedded Software Systems

Introduction

website: http://booksites.artima.com/actors_in_scala. To interact
with other readers of this book, check out the Actors in Scala Forum, at:
http://www.artima.com/forums/forum. jsp?forum=287.

Source code

You can download a ZIP file containing the source code of this book, which is
released under the Apache 2.0 open source license, from the book’s website:
http://booksites.artima.com/actors_in_scala.

Errata

Although this book has been heavily reviewed and checked, errors will in-
evitably slip through. For a (hopefully short) list of errata for this book, visit
http://booksites.artima.com/actors_in_scala/errata.

If you find an error, please report it at the above URL, so that we can be sure
to fix it in a future printing or edition of this book.

Cover - Overview - Contents - Discuss - Suggest - Index

XX1

http://booksites.artima.com/actors_in_scala
http://www.artima.com/forums/forum.jsp?forum=287
http://booksites.artima.com/actors_in_scala
http://booksites.artima.com/actors_in_scala/errata
http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=xxi

Prepared for C. Doppler Laboratory Embedded Software Systems

Actors in Scala

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=22

Prepared for C. Doppler Laboratory Embedded Software Systems

Chapter 1

Concurrency Everywhere

The actor model of concurrency was born of a practical need: When Carl
Hewitt and his team at MIT first described actors in the 1970s, computers
were relatively slow.! While developers could already divide up work among
several computers and compute in parallel, Hewitt’s team wanted a model
that would not only simplify building such concurrent systems, but would
also let them reason about concurrent programs in general. Such reasoning,
Hewitt and his team believed, would allow developers to be more certain that
their concurrent programs worked as intended.

Although actor-based concurrency has been an important concept ever
since, it is only now gaining widespread acceptance. That is in part because
until recently no widely used programming language offered first-class sup-
port for actors. An effective actors implementation places a great burden on a
host language, and few mainstream languages were up to the task. Scala rises
to that challenge, and offers full-featured implementations of actor-based
concurrency on the Java virtual machine (JVM). Because Scala code seam-
lessly interoperates with code and libraries written in Java, and other lan-
guages for the JVM, Scala-based actors offer an exciting and practical way
to build scalable and reliable concurrent programs. This book introduces
the two most important actor implementations for Scala: the scala.actors
package of the standard library? and the actors package of the Akka project.’

Like many powerful concepts, the actor model can be understood and

"Hewitt et al., “A Universal Modular ACTOR Formalism for Artificial Intelligence”
[Hew73]

2Haller and Odersky, “Scala Actors: Unifying Thread-based and Event-based Program-
ming” [Hal09]

3See http://akka.io/.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=23

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 1.1 Chapter 1 - Concurrency Everywhere

used on several levels. On one level, actor-based programming provides an
easy way to exchange messages between independently running threads or
processes. On another level, actors make concurrent programming gener-
ally simpler, because actors let developers focus on high-level concurrency
abstractions and shield programmers from intricacies that can easily lead to
errors. On an even broader level, actors are about building reliable programs
in a world where concurrency is the norm, not the exception—a world that
is fast approaching.

This book aims to explain actor-based programming with Scala on all
those levels. Before diving into the details of Scala actors, it helps to take a
step back and place actors in the context of other approaches to concurrent
programming, some of which may already be familiar to you.

1.1 A shift toward parallel hardware

The mainstream computing architectures of the past few decades focused on
executing a single thread of sequential instructions faster. That led to an ap-
plication of Moore’s Law to computing performance: processor performance
per unit cost has doubled roughly every eighteen months for the last twenty
years, and developers counted on that trend to ensure that their increasingly
complex programs performed well.*

Moore’s Law has been remarkably accurate in predicting processor per-
formance, and it is reasonable to expect processor computing capacity to
double every one-and-a-half years for at least another decade. To make that
increase practical, however, chip designers had to implement a major shift
in their design focus in recent years. Instead of trying to improve the clock
cycles dedicated to executing a single thread of instructions, new processor
designs let you execute many concurrent instruction threads on a single chip.
While the clock speed of each computing core on a chip is expected to im-
prove only marginally over the next few years, processors with dozens of
cores are already showing up in commodity servers, and multicore chips are
the norm even in inexpensive desktops and notebooks.

This shift in the design of high-volume, commodity processor architec-
tures, such as the Intel x86, has at least two ramifications for developers.
First, because individual core clock cycles will increase only modestly, we
will need to pay renewed attention to the algorithmic efficiency of sequential

4Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency” [Sut05]

Cover - Overview - Contents - Discuss - Suggest - Index

24

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=24

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 1.2 Chapter 1 - Concurrency Everywhere

code. Second, and more important in the context of actors, we will need to
design programs that take maximum advantage of available processor cores.
In other words, we not only need to write programs that work correctly on
concurrent hardware, but also design programs that opportunistically scale
to all available processing units or cores.

1.2 Actors versus threads

In a concurrent program, many independently executing threads, or sequen-
tial processes, work together to fulfill an application’s requirements. Inves-
tigation into concurrent programming has mostly focused on defining how
concurrently executing sequential processes can communicate such that a
larger process—for example, a program that executed those processes—can
proceed predictably.

The two most common ways of communication among concurrent
threads are synchronization on shared state and message passing. Many fa-
miliar programming constructs, such as semaphores and monitors, are based
on shared-state synchronization. Developers of concurrent programs are fa-
miliar with those structures. For example, Java programmers can find these
structures in the java.util.concurrent package in common Java distribu-
tions.> Among the biggest challenges for anyone using shared-state concur-
rency are avoiding concurrency hazards, such as data races and deadlocks,
and scalability.

Message passing is an alternative way of synchronizing cooperating
threads. There are two important categories of systems based on message
passing. In channel-based systems, messages are sent to channels (or ports)
that processes can share. Several processes can then receive messages from
the same shared channels. Examples of channel-based systems are Message-
Passing Interface (MPI)® and systems based on the Communicating Sequen-
tial Processes (CSP) paradigm,’ such as the Go language.® Systems based
on actors (or agents, or Erlang-style processes®) are in the second category of

5Goetz et al., Java Concurrency in Practice [Goe06]

6Gropp et al., Using MPI: Portable Parallel Programming with the Message—Passing
Interface [Gro99]

7Hoare, “Communicating Sequential Processes” [Hoa78]

8See http://golang.org/.

9 Armstrong et al., Concurrent Programming in Erlang [Arm95]

Cover - Overview - Contents - Discuss - Suggest - Index

25

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=25

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 1.3 Chapter 1 - Concurrency Everywhere

message-passing concurrency. In these systems, messages are sent directly
to actors; you don’t need to create intermediary channels between processes.

An important advantage of message passing over shared-state concur-
rency is that it makes it easier to avoid data races. A data race happens
whenever two processes access the same piece of data concurrently and at
least one of the accesses is mutating (that is, changing the value of) the data.
For example, two Java threads concurrently accessing the same field of the
same instance, such that one of the threads reassigns the field, constitutes a
data race. If processes communicate only by passing messages, and those
messages are immutable, then data races are avoided by design.

Aside from such low-level data races, higher-level data races exist. For
example, a process may depend on receiving two messages in a certain order.
If it is possible that the two messages are sent concurrently to that process,
the program contains a race condition; this means that in some runs the
program enters an invalid state through concurrent modification of shared
state, namely the state of the (shared) receiving process. Leaving data races
aside for a moment, anecdotal evidence suggests that message passing in
practice also reduces the risk of deadlock.

A potential disadvantage of message passing is that the communication
overhead may be high. To communicate, processes have to create and send
messages, and these messages are often buffered in queues before they can
be received to support asynchronous communication.

By contrast, shared-state concurrency enables direct access to shared
memory, as long as it is properly synchronized. To reduce the communica-
tion overhead of message passing, large messages should not be transferred
by copying the message state; instead, only a reference to the message should
be sent. However, this reintroduces the risk for data races when several pro-
cesses have access to the same mutable (message) data. It is an ongoing
research effort to provide static checkers; for instance, the Scala compiler
plug-in for uniqueness types'” that can verify that programs passing mutable
messages by reference do not contain data races.

1.3 Scalability

So far, we have compared actors and threads with respect to synchronization
(message passing versus shared state) as well as (the avoidance of) concur-

19Haller and Odersky, “Capabilities for Uniqueness and Borrowing” [Hal10]

Cover - Overview - Contents - Discuss - Suggest - Index

26

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=26

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 1.4 Chapter 1 - Concurrency Everywhere

rency hazards, such as data races. Another important aspect is scalability,
that is, the "amount of concurrency" that each paradigm supports well.

Some concurrent systems must scale to an enormous number of concur-
rent requests. A good example is the real-time ad exchange platform built by
Tapad, Inc. for advertising on mobile and connected devices. A real-time ad
exchange allows targeting ads to their audience, which is much more effec-
tive than buying fixed sets of ad slots to be displayed at random. Supporting
ads served by a real-time ad exchange auction on web sites, say, is quite in-
volved: whenever a user opens a page with ads on it, the ad exchange has
to obtain information about the current user, it has to forward requests to all
registered bidders, and it has to collect the bidders’ responses, from which
it picks the highest bidder. Finally, the winning bidder’s ad is displayed to
the user. To guarantee high responsiveness, typically each auction must be
carried out in less than 40 milliseconds.

This is where actors come into play. Backed by efficient, event-based ex-
ecution environments, Scala-based actors (this applies to both Akka and the
scala.actors package) are much more lightweight than threads on most
JVMEs, including Oracle’s HotSpot JVM. The reason is that threads are typi-
cally mapped to heavyweight OS processes to be able to utilize all processor
cores available to the JVM. OS processes are heavyweight because their pre-
allocated stacks consume a lot of memory, and context switching between
them is very expensive on modern processor architectures.!! As a result,
a typical commodity cluster node supports only a few thousand concurrent
threads before the JVM runs out of memory. By contrast, the same machine
typically supports millions or even tens of millions of concurrent actors.

This enormous scalability provided by Akka’s lightweight actors en-
abled Tapad to achieve their stringent low-latency requirements, scaling their
production systems to carry out ad exchange auctions billions of times per
month, or tens of thousands of times per second.

1.4 A high-level perspective on concurrency

Let’s take a step back and look at actor-based programming from a higher-
level perspective. To appreciate the difference, and the relationship, between

"John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Ap-
proach [Henl1]

Cover - Overview - Contents - Discuss - Suggest - Index

27

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=27

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 1.4 Chapter 1 - Concurrency Everywhere

more traditional concurrency constructs and actors, it helps to pay a brief
visit to the local railroad yard.

Imagine yourself standing on a bridge overlooking the multitude of indi-
vidual tracks entering the rail yard. You can observe many seemingly inde-
pendent activities taking place, such as trains arriving and leaving, cars being
loaded and unloaded, and so on.

Suppose, then, that your job was to design such a railroad yard. Thinking
in terms of threads, locks, monitors, and so on is similar to the problem of
figuring out how to make sure that trains running on parallel tracks don’t
collide. It is an important requirement; without that, the rail yard would be
a dangerous place. To accomplish that task, you would employ specialized
artifacts, such as semaphores, monitors, and switches.

Actors illuminate the same rail yard from the higher perspective of en-
suring that all the concurrent activities taking place at the rail yard progress
smoothly: All the delivery vehicles find ways to train cars; all the trains can
make their progress through the tracks; and all the activities are properly
coordinated.

You will need both perspectives when designing a rail yard: Thinking
from the relatively low-level perspective of individual tracks ensures that
trains don’t inadvertently cross paths; thinking from the perspective of the
entire facility helps ensure that your design facilitates smooth overall opera-
tion, and that your rail yard can scale, if needed, to accommodate increased
traffic. Simply adding new rail tracks only goes so far: you need some over-
all design principles to ensure that the whole rail yard can grow to handle
increased traffic, and that greater traffic can scale up to the full capacity of
the tracks.

Working on the relatively low-level details of individual tracks (or prob-
lems associated with interleaving threads), on the one hand, and the higher-
level perspective of the entire facility (actors) on the other, require somewhat
different skills and experience. An actor-based system is often implemented
in terms of threads, locks, monitors, and the like, but actors hide those low-
level details and allow you to think of concurrent programs from a higher
vantage point.

Cover - Overview - Contents - Discuss - Suggest - Index

28

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=28

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 1.5 Chapter 1 - Concurrency Everywhere

problem
occurred

problem
occurred

problem|occurred

selection
made

coins
inserted

dispense
drink

expect
selection

drink dispensed

Figure 1.1 - State transitions in a soda machine.

1.5 The indeterministic soda machine

In addition to allowing you to focus on the scalability aspect of concurrent
applications, actors’ higher-level perspective on concurrency is helpful be-
cause it provides a more realistic abstraction for understanding how concur-
rent applications work. Specifically, concurrent programs exhibit two char-
acteristics that, while also present in sequential applications, are especially
pronounced when a program is designed from the ground up to take advan-
tage of concurrency. To see what these are, we need only to stop by the office
soda machine.'?

A soda machine is convenient not only to provide a beverage to quench
our thirst, but also because it’s a good metaphor for a kind of program that
moves from one well-defined state to another. To start out, a soda machine
awaits input from the user, perhaps prompting the user to insert coins. In-
serting those coins causes the soda machine to enter a state where it can now
ask the user to make a selection of the desired drink. As soon as the user
makes that selection, the soda machine dispenses a can and moves back into
its initial state. On occasion, it may also run out of soda cans—that would
place it in an “out of service” state.

At any point in time, a soda machine is aware of only one state. That
state is also global to the machine: each component—the coin input device,

2Hoare, “Communicating Sequential Processes” [Hoa78]

Cover - Overview - Contents - Discuss - Suggest - Index

29

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=29

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 1.5 Chapter 1 - Concurrency Everywhere

the display unit, the selection entry keypad, the can dispenser, and so on—
must consult that global state to determine what action to take next. For
instance, if the machine is in the state where the user has already made his or
her selection, the can dispenser may release a soda can into the output tray.

In addition to always being in a well-defined state, our simple abstraction
suggests two further characteristics of a soda machine: First, that the number
of possible states the machine can enter is finite and, second, that given any
one of those possible states, we can determine in advance what the next state
will be. For instance, if you inserted a sufficient amount of coins, you would
expect the machine to prompt you for the choice of drink. And having made
that choice, you expect the machine to dispense your selected drink.

Of course, you’ve probably experienced occasions when soda machines
did not behave in such a predictable, deterministic way. You may have in-
serted plenty of coins, but instead of the machine prompting you for your
choice, it delivered an unwelcoming “OUT OF ORDER” message. Or you
may not have received any message at all—but also did not receive your
frosty refreshment, no matter how hard you pounded the machine. Real-
world experience teaches us that soda machines, like most physical objects,
are not entirely deterministic. Most of the time they move from one well-
defined state to another in an expected, predetermined fashion; but on occa-
sion they move from one state to another—to an error state, for instance—in
a way that you could not predict in advance.

A more realistic model of a soda machine, therefore, should include the
property of some indeterminism: a model that readily admits a soda ma-
chine’s ability to shift from one state to another in a way that you could not
determine in advance with certainty.

Although we are generally adept at dealing with such indeterminism in
physical objects—as well as when dealing with people—when we encounter
such indeterminism in software, we tend to consider that behavior a bug.
Examining such “bugs” may reveal that they crept into our code because
some aspect of our program was not sufficiently specified.

Naturally, as developers, we desire to create programs that are well-
specified and, therefore, behave as expected—programs that act exactly in
accord with detailed and exhaustive specifications. Indeed, one way to pro-
vide more or less exact specifications for code is by writing tests for it.

Concurrent programs, however, are a bit more like soda machines than
deterministic sequential code. Concurrent programs, unlike sequential ones,
gain many of their benefits because the developer intentionally left some

Cover - Overview - Contents - Discuss - Suggest - Index

30

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=30

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 1.6 Chapter 1 - Concurrency Everywhere

Core 2

Core

Core 3

%

Figure 1.2 - Message passing with indeterministic message ordering.

aspects of a concurrent system unspecified.

The reason for that is easy to understand intuitively when considering
a processor with four cores: Suppose that code running on the first core
sends messages to code running on the three other cores, and then awaits
replies back from each. Upon receiving a reply, the first core performs further
processing on the response message.

In practice, the order in which cores 2, 3, and 4 send back their replies is
determined by the order in which the three cores finish their computations. If
that reply order is left unspecified, then core 1 can start processing a reply as
soon as it receives one; it does not have to wait for the slowest core to finish
its work.

In this example, leaving the reply order from cores 2, 3, and 4 unspecified
helps to best utilize the available computing resources. At the same time,
your program can no longer rely on any specific message ordering. Instead,
your application must function deterministically even though its component
computations, or how those components interact, may not be fully specified.

1.6 Programming the data center

One example of building deterministic systems out of indeterministic com-
ponent computations are data centers constructed of commercial, off-the-

Cover - Overview - Contents - Discuss - Suggest - Index

31

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=31

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 1.6 Chapter 1 - Concurrency Everywhere

shelf (COTS) components. Many well-known web services companies have
proven the economic advantages of using COTS hardware as basic build-
ing blocks for highly reliable data centers. Such an environment becomes
practical when infrastructure software alleviates the need for developers to
concern themselves with the intricacies of how such a data center partitions
work between the various hardware components. Instead, application devel-
opers can focus on higher-level concerns, such as specifying the algorithms
to use when servicing an incoming request.

Example: MapReduce. A good example of an infrastructure that makes
programming COTS clusters easier is MAPREDUCE.!? With MAPREDUCE,
a user provides some data as well as some algorithms to operate on that data,
and submits that as a request to the MAPREDUCE infrastructure software.
The MAPREDUCE software, in turn, distributes the workload required to
compute the specified request across available cluster nodes and returns a
result to the user. (In Chapter 9 you will learn how to build an actor-based
MAPREDUCE data-processing engine.)

An important aspect of MAPREDUCE is that, upon submitting a job, a
user can reasonably expect some result back. For instance, should a node
executing parts of a MAPREDUCE job fail to return results within a speci-
fied time period, the MAPREDUCE software restarts that component job on
another node. Because it guarantees to return a result, MAPREDUCE not
only allows an infrastructure to scale a compute-intensive job to a cluster of
nodes, but more significantly, MAPREDUCE lends reliability guarantees to
the computation. It is that reliability aspect that makes MAPREDUCE suit-
able for COTS-based compute clusters.

While a developer using MAPREDUCE can expect to receive a result
back, exactly when the result will arrive cannot be known prior to submit-
ting the job: the user knows only that a result will be received, but he or she
cannot know, in advance, when that will be. More generally, the system pro-
vides a guarantee that at some point a computation is brought to completion,
but a developer using the system cannot in advance put a time bound on the
length of time a computation would run.

Intuitively, it is easy to understand the reason for that: As the infrastruc-
ture software partitions the computation, it must communicate with other

BDean and Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”
[Dea08]

Cover - Overview - Contents - Discuss - Suggest - Index

32

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=32

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 1.6 Chapter 1 - Concurrency Everywhere

system components—it must send messages and await replies from indi-
vidual cluster nodes, for instance. Such communication can incur various
latencies, and those communication latencies impact the time it takes to re-
turn a result. You can’t tell, in advance of submitting a job, how large those
latencies will be.

Although some MAPREDUCE implementations aim to ensure that a job
returns some (possibly incomplete) results in a specified amount of time, the
actors model of concurrent computation is more general: it acknowledges
that we may not know in advance just how long a concurrent computation
would take. Put another way, you cannot place a time bound in advance
on the length a concurrent computation would run. That’s in contrast to
traditional, sequential algorithms that model computations with well-defined
execution times on a given input.

By acknowledging the property of unbounded computational times, ac-
tors aim to provide a more realistic model of concurrent computing. While
varying communication latencies is easy to grasp in the case of distributed
systems or clusters, it is also not possible in a four-core processor to tell in
advance how long before cores 2, 3, and 4 will send their replies back to core
1. All we can say is that the replies will eventually arrive.

At the same time, unboundedness does not imply infinite times: While
infinity is an intriguing concept, it lends but limited usefulness to realistically
modeling computations. The actor model, indeed, requires that a concurrent
computation terminate in finite time, but it also acknowledges that it may not
be possible to tell, in advance, just how long that time will be.

In the actor model, unboundedness and indeterminism—or, unbounded
indeterminism—are key attributes of concurrent computing. Although these
characteristics are also present in primarily sequential systems, they are per-
vasive in concurrent programs. Acknowledging these attributes of concur-
rency and providing a model that allows a developer to reason about concur-
rent programs in the face of those attributes are the prime goals of actors.

Cover - Overview - Contents - Discuss - Suggest - Index

33

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=33

Prepared for C. Doppler Laboratory Embedded Software Systems

Chapter 2

Messages All the Way Up

Actor-based programming aims to model the complex world of pervasive
concurrency with a handful of simple abstractions. Before diving into Scala’s
actors library, it is helpful to review briefly the most common actor program-
ming constructs. Scala’s actors library implements many of these features.
At the same time, like many Scala APIs, the actors API is constantly evolv-
ing, and future versions will likely provide even more capabilities. In the fol-
lowing birds-eye view of the actor programming model, we refer to features
that Scala actors already implement and, when relevant, point out differences
between Scala actors and the more general model.

2.1 Control flow and data flow

The designers of the actor programming model started out by defining suit-
able abstractions for program control flow in concurrent systems. Informally,
control flow in a program refers to the choice a program makes about what
instructions to execute next. Branching, switch and case statements, as well
as making decisions about what to return from a method invocation are all
examples of control flow. All but the most trivial programs include some
form of control flow.

Developers of sequential programs would not consider control flow a
problematic task: After all, we routinely write if, while, and for expres-
sions without thinking too much about the implications of those basic pro-
gramming constructs. Concurrency, however, can make control flow more
difficult to reason about. That’s because control flow often depends on some
logic, data, or state embedded in the program.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=34

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.1 Chapter 2 - Messages All the Way Up

reads
currentSpeed

el SpeedMonitor

Y

requests throttle adjustment

CruiseControl Engine

Figure 2.1 - Components holding shared state require synchronization.

In small programs, data and the control structures using that data may be
defined close to each other, even in the same object. As a program grows
in size, however, control flow decisions will need to consult bits of data—or
program state—defined in other parts of the program. For example, the fol-
lowing expression requires access to the currentSpeed and desiredSpeed
variables:

if (currentSpeed != desiredSpeed)
changeSpeed(desiredSpeed - currentSpeed)
else
maintainSpeed()

The currentSpeed and desiredSpeed values are defined outside the
if-else control structure, perhaps even outside the method or object con-
taining the control flow expression. Similarly, the code implementing the
changeSpeed and maintainSpeed methods may access, as well as alter,
program state defined elsewhere in the program. Therefore, such methods
require access to program state that other objects expose and share. In the
previous example, for instance, a SpeedMonitor object may have a public
currentSpeed accessor method that any other object in the program can in-
voke, as illustrated in Figure 2.1. The currentSpeed value then becomes
part of the globally visible program state.

Cover - Overview - Contents - Discuss - Suggest - Index

35

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=35

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.1 Chapter 2 - Messages All the Way Up

Globally visible program state is relatively easy to manage as long as
only a single thread is accessing that state at any given point in time. If
many concurrently executing threads need to access globally visible state,
however, a developer must carefully synchronize access to objects holding
that state.!

Synchronized access to shared data is not only difficult to get right, but
can also reduce the amount of concurrency available in a system.” To see
why, consider that there are conceptually two different kinds of changes tak-
ing place as a concurrent program executes: First, various threads of execu-
tion, starting from the beginning of the program, wind their ways through
possible paths based on program control flow. Those threads, in turn, can
alter the values of variables holding the program’s state. You can think of
those state changes as defining the program’s data flow. A developer must
carefully identify every point in the program’s data flow that can be altered
by, and in turn affect, other execution threads, and guard against undesired
side effects.

Data flow and control flow can interact in subtle ways: For example, in
Figure 2.2 data flows from one component to another only if a speed adjust-
ment is needed; otherwise, there is no data flow. While it is not difficult to
understand the single interaction illustrated here, understanding such inter-
actions becomes increasingly difficult as the program size and complexity
increases.

A proven way to guard against unwanted conflicts between data flow and
control flow is to serialize the program’s data flow across concurrent threads
of execution. Using special serialization constructs, such as locks, monitors,
and semaphores, a developer specifies that threads must affect data flow in a
strict order.

Defining such serialization in Java or Scala has become much easier with
the introduction of the java.util.concurrent package. But even with

"'Note that even if global state is not accessed concurrently, care has to be taken to avoid
thread visibility issues. For example, on the JVM updating the field of a shared object may
not be visible to subsequent threads reading the same field. Only the use of synchronizing
operations, such as locking via synchronized methods or accessing volatile fields ensures that
updates "happen before" subsequent reads, and therefore become visible. You can find an
excellent discussion of thread visibility on the JVM in [Goe06].

20ne of the reasons why scalability is hard to achieve using locks (or Java-style synchro-
nization) is the fact that coarse-grained locking increases the amount of code that is executed
sequentially. Moreover, accessing a small number of locks (or, in the extreme case, a single
global lock) from several threads may increase the cost of synchronization significantly.

Cover - Overview - Contents - Discuss - Suggest - Index

36

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=36

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.1 Chapter 2 - Messages All the Way Up

if (currentSpeed != desiredSpeed)

speed
adjustment
3|
L
(data flow)
CruiseControl Engine
else
(no data flow)
CruiseControl Engine

Figure 2.2 - Interaction of data and control flow.

the help of java.util.concurrent, writing concurrent programs is still
difficult and error prone.

Although serializing access to globally visible program state helps define
correct program behavior, it may reduce some of the benefits of concurrent
execution. As we mentioned in the previous chapter, the benefits of concur-
rency come about as a result of having few requirements about the order in
which threads wind their way through a program and access program state.
In effect, synchronization turns parts of a program into sequential code be-
cause only one thread at a time can access the global, or shared, state. Indeed,
if control flow through a program relies on globally visible state, there is no
way around serialized access to that state without risking incorrect behavior.

A key contribution of the actor model is to define control structures in
a way that minimizes reliance on global program state. Instead, all the
state—or knowledge—needed to make control flow decisions are encapsu-
lated within the objects that make those decisions. Such objects, in turn,
direct control flow only—or mostly—based on data locally visible to them.
That principle of locality,—i.e., the notion that control flow decisions are
made based on data locally available to the control flow statements only—
renders data flow and control flow in a program inseparable, reducing the
requirement for synchronization. That, in turn, maximizes the potential for
concurrency.

Although actor-based systems consider global state to be evil, in practice

Cover - Overview - Contents - Discuss - Suggest - Index

37

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=37

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.2 Chapter 2 - Messages All the Way Up

some control structures still need access to globally visible state. Recent
additions to Scala’s actors library make it easier to reason about such shared
state in the context of actors, and we will highlight those features in later
chapters of this book.

2.2 Actors and messages

The main mechanism for unifying control flow and data flow is a special
abstraction, the actor, and the message-based communication that takes place
between actors. An actor is any object that can exchange messages with
other actors. In the actor programming model, actors communicate solely by
passing messages to each other.

In a pure actor system, every object is an actor. For instance, in Erlang,
another language that defines an actor programming model, even atomic ob-
jects, such as Ints and Strings, are actors. Scala’s actors library, by con-
trast, allows you to easily turn any Scala object into an actor, but does not
require that all objects be actors.

Actors have a uniform public interface: An actor can, in general, accept
any kind of message. When an actor receives a message from another actor,
the receiving actor examines, or evaluates, the incoming message. Based
on the contents and type of that message, the receiving actor may find the
message interesting; otherwise, it simply discards the message. When an
actor is interested in an incoming message, it may perform some action in
response to that message. The action depends on the actor’s internal script or
program, as well as the actor’s current state. The ability to perform actions
in response to incoming messages is what makes an object an actor.

An actor’s response to an incoming message can take different forms.
The simplest response is to merely evaluate the message’s content. Perform-
ing addition of integers x and y in an actor-based system, for instance, would
consist of a message containing x and y sent to an actor capable of adding
the integers together. In that case, the arithmetic actor would simply evaluate
the sum of x and y.

Of course, merely adding two numbers together is of little use if the
result is not visible outside the actor performing the evaluation. Thus, a more
useful actor message would contain the address of another actor interested
in receiving the result. This is illustrated in Figure 2.3.

A reference to another actor in a message is the receiving actor’s continu-

Cover - Overview - Contents - Discuss - Suggest - Index

38

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=38

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.2 Chapter 2 - Messages All the Way Up

initial ERRREEEE <:| ————— - arithmetic

actor actor

Figure 2.3 - The simplest actor computation: adding x and y together.

initial . 7 arithmetic

actor , _- actor

continuation
actor (c)

Figure 2.4 - Actor computation with continuation message passing.

ation. Upon evaluating a message according to an internal script, an actor can
send the results of that evaluation to its continuation. Including references
to a continuation in an actor’s message means that the actor programming
model implicitly supports the continuation-passing style (CPS), but general-
ized to concurrent programming.® This is illustrated in Figure 2.4.

The simplest kind of continuation is a reference to the sending actor.
Having access to a message’s sender is so convenient that the Scala actors
library implicitly includes a reference to the sending actor in messages, as
shown in Figure 2.5.

3 Agha, “Concurrent Object-Oriented Programming” [Agh90]

Cover - Overview - Contents - Discuss - Suggest - Index

39

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=39

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.2 Chapter 2 - Messages All the Way Up

Figure 2.5 - Every message carries a sender reference.

currentSpeed

=

SpeedMonitor CruiseControl
actor

Figure 2.6 - CruiseControl actor receiving currentSpeed message.

An actor’s continuation is a key element of control flow in actor-based
programming. Program control flows from one actor to another as continu-
ations are passed between actors. At the same time, the actor message that
sends possible continuations may also include the data required by the actor
to determine control flow. The actor model unifies control flow and data flow
in the sense that data as well as an actor’s continuation can be passed inside
the same message.

That unified view makes it easier to design actor-based programs. When
designing a program with actors, it is helpful to first determine the kinds of
control flow your code requires. Those control decisions would be made by
actors. Thus, you would next define what data those control flow decisions
require, and send that data inside messages to the appropriate actors.

The speed maintenance control structure in the previous example, for
instance, requires a decision about whether to maintain or change the current
speed. That decision needs just the current and desired speed values. The
simplest implementation merely evaluates the values supplied by incoming
messages and takes appropriate action based on those values, as illustrated
in Figure 2.6. Note that the message sender does not have to be an actor.

A more modular approach would define an actor responsible for deciding

Cover - Overview - Contents - Discuss - Suggest - Index

40

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=40

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.2 Chapter 2 - Messages All the Way Up

___D current S [
speed e

SpeedMonitor CruiseControl

actor o
& (2]}
g3
38
=

throtte |—/ (= L ____--- -
T adjustment: -t
Engine ThrottleControl
actor

Figure 2.7 - A more modular approach to cruise control with further decom-
position of responsibilities into actors.

D] currentSpeed |
[throttleControl |

Figure 2.8 - A throttleControl continuation included in a message.

the required speed adjustment, and would then send the result to a continua-
tion, as shown in Figure 2.7.

One advantage of the actor-based approach is that it allows the continua-
tion of CruiseControl—ThrottleControl—to be defined sometime after
CruiseControl is defined—and even after an instance of CruiseControl
is already initialized and loaded into memory: ThrottleControl is sim-
ply an actor with the uniform actor interface to receive messages. Thus all
CruiseControl needs is a reference to the continuation actor, such as that
actor’s address.

The ability to perform such extreme late binding of a continuation allows
developers to incrementally add knowledge—such as control flow—to an
actor-based system. Indeed, actors grew out of the desire to create large
knowledge-based systems in an incremental fashion. A continuation actor

Cover - Overview - Contents - Discuss - Suggest - Index

41

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=41

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.3 Chapter 2 - Messages All the Way Up

included in a message, such as the throttleControl continuation shown in
Figure 2.8, affects control flow and accommodates late binding in an actor
system.

Late binding in actor control flow is also an important tool in lending ro-
bustness to an actor-based system. For instance, an actor may be redundantly
defined, allowing a message sender to send replicated messages.

If actors interacting via messages sounds similar to how objects commu-
nicate in an object-oriented system, that likeness is no mere coincidence. In-
deed, the actor model was developed at the same time the first object-oriented
languages were designed, and was, in turn, influenced by object-oriented
concepts. Alan Kay, an inventor of object-oriented programming, noted that
message passing between objects is more central to object-oriented program-
ming than objects themselves are. In an email on messaging to a Smalltalk
discussion group, Kay wrote:*

The big idea is “messaging” — that is what the kernel of Smalltalk/
Squeak is all about (and it’s something that was never quite com-
pleted in our Xerox PARC phase). The Japanese have a small
word — ma — for “that which is in between” — perhaps the near-
est English equivalent is “interstitial.” The key in making great
and growable systems is much more to design how its modules
communicate rather than what their internal properties and be-
haviors should be. ..

You can view the actor model as a special case of object-oriented pro-
gramming where all communication between objects takes place via mes-
sage passing, and when an object’s internal state changes only in response to
messages.

2.3 Actor creation

An actor can send a message only to its acquaintances—other actors whose
addresses it knows. Continuation passing is one way in which an actor can
learn the addresses of other actors. Another way is for an actor to create other
actors as part of its evaluation of a message. Such newly created actors—
child actors—can have an independent lifetime from that of the creating ac-

4Kay, an email on messaging in Smalltalk/Squeak. [Kay98]

Cover - Overview - Contents - Discuss - Suggest - Index

42

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=42

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.4 Chapter 2 - Messages All the Way Up

. g, ’
- _D® - _—_—_— -- 7 actor 1

T A

~

image RS

processing ‘
actor = -

e _— -

Figure 2.9 - Creating and delegating work to child actors.

tor. Having created new actors, the creating actor can send messages to the
new actors, possibly passing its own address as part of those messages.

An actor’s ability to create other actors makes it easy to implement fork-
join parallelism. For instance, upon receiving a message, an actor may de-
cide to divide up a potentially compute-intensive job and create child actors
for the purpose of processing parts of that larger computation. As illustrated
in Figure 2.9, a creator actor would divvy up work among its child actors,
and wait for the children to complete their work and send their results back
to the parent. Once all the results have been collected, the parent actor can
summarize those results, possibly sending the results to yet another actor, or
continuation. We will provide several examples of fork-join parallelism in
later chapters.

2.4 Actor events

Although we have so far focused on an actor’s ability to send messages to
other actors, all the “action” in an actor takes place at the time a message is
received. Receiving messages and creating other actors are two examples of
events in an actor system.

Events and their relationships illuminate how physical phenomena in-
spired the actor programming model. For instance, when actor B receives a

Cover - Overview - Contents - Discuss - Suggest - Index

43

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=43

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.4 Chapter 2 - Messages All the Way Up

actor A actor B actor C
A’s activation B’s arrival B’s activation C’s arrival
event event event event

Figure 2.10 - B’s arrival event activates C’s arrival event.

message from actor A, B can send a message to C as a result, defining an
order of arrival events. In this example, which is illustrated in Figure 2.10,
the message sent to B caused, or activated, C’s arrival event.

In their seminal paper on the “Laws for Communicating Parallel Pro-
cesses,” Carl Hewitt and Henry Baker noted that:

Activation is the actor notion of causality... A crude analogy
from physics may make activation more clear. A photon (mes-
sage) is received by an atom (target), which puts it into an ex-
cited state. After a while, the atom gives off one or more photons
and returns to its ground state. These emitted photons may be
received by other atoms, and these secondary events are said to
be activated by the first event.

In addition to arrival events and actor creation events, an actor-based sys-
tem also includes some “initial event” that gets the ball rolling, so to speak.
Causality extends to all three types of events: The initial event must precede
all other events and may include a set of initial actors. Those actors can pro-
cess activation events from each other in any order. Finally, and obviously,
an actor’s creation event must always precede activation events targeting that
actor.

Figure 2.11 shows that arrival and activation events nicely line up in a
time-ordered sequence, one event always occurring before the other. Indeed,
we can describe an actor-based computation as a linear ordering of combined
arrival and activation events: A computation starts with some event, which

SHewitt and Baker, “Laws for Communicating Parallel Processes” [HB77]

Cover - Overview - Contents - Discuss - Suggest - Index

44

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=44

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.4 Chapter 2 - Messages All the Way Up

e G-~
O, e .
P

(D>

. ®mg-.. .. - "ehild
pré)r::q:sgs?ng send, then die actor 1
actor @

| | | | | | 5

| | | | | | £
arrival creation activation arrival activation arrival
event event event event event event

Figure 2.11 - Event causality in an actor system.

is then followed by a finite number of other events, and is finally terminated
by the computation’s last event. The order of events is strict in the sense that
an event can only be influenced by other events that preceded it.

When we say one event occurs before—or after—another event, we in-
tuitively refer to some notion of time. In a sequential computation, when the
entire program state is shared globally, the sequence of events that makes up
the computation refers to the global time: time shared by all objects partic-
ipating in the computation. An actor-based system, by contrast, splits the
global program state into many local states held by each actor. Those ac-
tors interact merely by passing messages, and have no reference to a shared
notion of time. Instead, arrival orderings of events in an actor-based system
refer to the time local to an actor—there is no requirement to have a notion
of global time.

Viewing computations as a partial order of actor events occurring in local
time to an actor turns out to be a powerful abstraction. The designers of the
actor programming model demonstrated that you can implement any control
structure as a sequence of actor events. Because actor-based programming is
designed with concurrency assumed, it is theoretically possible to implement
any sequential program in a concurrent manner with actor messaging.

Cover - Overview - Contents - Discuss - Suggest - Index

45

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=45

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.5 Chapter 2 - Messages All the Way Up

2.5 Asynchronous communication

The reason actors ignore message sending as an event, and emphasize mes-
sage arrival instead, is that message transmission between actors may incur
some delay. For instance, actor A may send a message to B, and include C as
a continuation. Although A activates C’s message, there may be some delay
between A sending the message and C receiving a message. The delay may
be due to some processing time incurred at B as well as to communication
latency. Considering message delay as an integral part of a computation is
another way actor communication differs from simple object invocation in
object-oriented programming.

Practical actor-based systems deal with message delay by offering the
ability to asynchronously pass messages between actors. Once an actor dis-
patches a message to another actor, the sending actor can resume its work
immediately. The sending actor does not need to wait for a reply. Indeed,
some actor messages will never produce a reply. When replies are expected,
those will also be sent asynchronously. As Carl Hewitt noted, actors com-
municate via messages following the principle of “send it and forget it.”

You might already be familiar with the concept of asynchronous message
passing from modern web programming models, such as AJAX.® AJAX is
based on asynchronous messages exchanged between a web browser and a
remote server. AJAX has proven practical in web applications because an
unknown amount of latency may be incurred both in the network communi-
cation as well as in the server processing an incoming message. A web client
can simply send a message to the server, register a listener for future replies
from the server, and immediately return control to the user interface, keeping
the application responsive to user interaction.

Similarly, asynchronous messages in actor communication means that
the actor model works equally well across networks as it does in a single ad-
dress space. Indeed, the Scala actors library defines both “local as well as
“remote” actors. Switching between local and remote actors is surprisingly
simple, because asynchronous messaging works well in either case. In ad-
dition to asynchronous messaging primitives, the Scala actors API provides
for synchronous message sending as well.

The “send it and forget it” principle assumes that all messages sent are
eventually received by the target actor. Although in many systems the no-

5 AJAX was originally coined as an acronym for Asynchronous JavaScript and XML.

Cover - Overview - Contents - Discuss - Suggest - Index

46

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=46

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.6 Chapter 2 - Messages All the Way Up

tion of “lost” messages is real—for instance, the server hosting a target ac-
tor may crash resulting in the target never receiving the message—the ac-
tor model assumes that infrastructure components ensure reliable message
transmission. In other words, the actor model assumes a finite—although
initially unknown or unbounded—amount of time between message sending
and message transmission.

How to achieve reliable message transmission is no more a part of the
actor-based programming model than, say, the problem of high availability
for database management systems is a part of relational algebra and SQL
programming. The actor programming model nevertheless makes the im-
plementation of highly reliable and available systems much easier: reliabil-
ity is often achieved through redundancy and replication, and actors’ natural
propensity to work well in distributed, concurrent systems serves those needs
well. We will provide examples and best practices for achieving reliable ac-
tor communication throughout this book.

2.6 You’ve got mail: indeterminacy and the role of the
arbiter

Although the actor model doesn’t prescribe a mechanism for reliable mes-
sage delivery, it acknowledges that many messages may be sent to a single
actor in quick succession. Rapidly arriving messages could result in a sort
of denial-of-service for the actor, rendering the actor incapable of process-
ing the incoming message flow. To alleviate that problem, the actor model
requires that a special object be provided by each actor for the purpose of
receiving messages and holding those messages until the actor is able to pro-
cess them. Such an arbiter is often called a mailbox, since it provides a
function similar to, say, an email account: messages can arrive in the mail-
box at any time and will be held there until the recipient is ready to process
them.

Email clients give you complete freedom in choosing the order in which
you read new messages. In a similar way, an actor’s mailbox may provide
the actor with messages in any order. The only requirement is that an actor
process one message at a time from its mailbox. Because you cannot deter-
mine in advance the order in which an actor processes messages—the order
of message delivery is indeterminate—you must ensure that the correctness

Cover - Overview - Contents - Discuss - Suggest - Index

47

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=47

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.6 Chapter 2 - Messages All the Way Up

of an actor-based program does not depend on any specific message order.’

The actor model makes such programming practices easy, however, be-
cause any sort of data can be contained in an actor message, and also because
an actor is able to maintain its own state. Consider, for instance, an actor that
sums up two integers and sends the result to a third actor. In the simplest
implementation, a single actor message would contain the two integers as
well as the continuation where the sum would be sent to.

A different implementation may process integers from separate senders.
That implementation would expect a message with a single integer, in addi-
tion to a name that uniquely identifies the addition calculation. Since addi-
tion is commutative, the order of message transmission does not matter: The
addition actor saves away the initial value received via the first actor mes-
sage. Upon receiving the second integer with a similarly named calculation,
the addition actor performs the arithmetic operation and sends the reply.

Consider, however, a version of the arithmetic actor designed to add a
set of integers. One problematic approach would be to have each integer
message include a lastElement flag indicating whether it is the terminal
element of the series. As soon as the actor receives the last element in the
series, it could send the result to the continuation. But since we cannot guar-
antee the message delivery order, the last element may be received in any
order, resulting in possibly the premature sending of the result.

You can often alleviate reliance on message ordering by refactoring the
actor communication, i.e., reworking the messages’ contents. For instance,
the message described previously could include the number of elements in
the series, instead of the lastElement flag. Throughout this book, we will
include tips and techniques to design actor communication that does not rely
on message order.

Indeterminacy in the actor model results because an actor’s mailbox, or
arbiter, can receive and provide messages to the actor in any order. You can’t
guarantee or even specify the order of message arrival due to the inevitable
latencies in message transmission between actors: while a message is guar-
anteed to eventually arrive, the message’s transmission time is unbounded.

As we mentioned in the previous chapter, a programming model based
on unbounded indeterminism powerfully captures the nature of concurrent

7 In Scala actors, the guarantees of message delivery are a bit stronger than the full
indeterminacy of the pure actor programming model. If an actor sends several messages to
the same receiver, those messages arrive in the receiving actor’s in the order in which they
have been sent.

Cover - Overview - Contents - Discuss - Suggest - Index

48

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=48

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 2.7 Chapter 2 - Messages All the Way Up

computation. In the actor model, concurrency is the norm, while sequential
computation is a special case.

2.7 Actor life cycle

Because of their readiness to process incoming messages, actors can be
imagined as “live objects,” or objects with a life cycle. Unlike the lives
of movie actors, the life of an actor object is rather boring: Once an actor is
created, it typically starts processing incoming messages. Once an actor has
exceeded its useful life, it can be stopped and destroyed, either of its own
accord, or as a result of some “poison pill” message.

Creating and starting an actor are separate, although closely related,
tasks. In Scala, actors are plain old Scala objects, and can therefore be cre-
ated via their constructors. An actor starts processing incoming messages
after it has been started, which is similar to starting a Java thread.

In practice, it is useful for actors to be able to monitor each others’ life-
cycle events. In the fork-join example, for instance, a child actor may decide
to terminate upon sending its response to the parent, in order to free up mem-
ory. At that point, it could send a message to its parent actor indicating its
exit. In Scala Actors, life-cycle monitoring is supported through actor links.
Actor linking is explained in detail in Section 6.2.

Cover - Overview - Contents - Discuss - Suggest - Index

49

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=49

Prepared for C. Doppler Laboratory Embedded Software Systems

Chapter 3

Scala’s Language Support for Actors

The Scala Actors API defines a domain-specific language, hosted inside
Scala, that appears to the programmer as if Scala has language-level sup-
port for actors. Scala has proven to be an especially hospitable environment
for actors, in part, because of several language features that allow you to cre-
ate DSL-like APIs. Scala also defines language features that, in turn, make
it friendly to concurrent programming.

This chapter reviews the Scala features most relevant to actors for the
Java developer who has little or no experience with Scala. If you are already
familiar with Scala features such as passing functions into methods, by-name
parameters, partially applied functions, and pattern matching, you can safely
skip this chapter.

3.1 A scalable language

Systems languages, such as C, C++, and to some extent Java, have long
been the part and parcel of developing complex, large-scale software, of-
ten with critical performance requirements. By contrast, scripting languages
have filled the need of one-off programming tasks and of tying together
components developed in more complex and performant languages, often
performed as a batch job. Because they filled different niches, systems lan-
guages and their associated libraries evolved to become relatively more com-
plex compared to their scripting-language cousins.

Instead of having to choose between a simpler but less-performant script-
ing language, on the one hand, and a speedy but complex systems language,
on the other, Scala designer Martin Odersky envisioned a language that

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=50

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 3.1 Chapter 3 - Scala’s Language Support for Actors

would be suitable for (or scale to) large and complex systems as well as
small scripting tasks.

In almost every development team, some developers are more skilled in
a language while some have more experience with a problem domain. Scala
aims to present complexity at the level most appropriate for a developer. De-
velopers more skilled in the language itself are able to define new, relatively
simple language constructs that address the needs of domain experts who
may have less Scala experience.

Scala’s division-of-labor aspect has been applied to software testing,
data analysis, as well as to the area of concurrency and actor program-
ming. The Actor API developers defined a handful of programming con-
structs that present a simple and straightforward way to work with actors,
without the API user having to understand the intricacies of actor concur-
rency. In essence, the Scala Actor API “grows” the Scala language into a
robust, concurrent programming environment.

Another way in which Scala achieves scalability is via its reliance on
the Java runtime environment. Scala code compiles to Java bytecode. As a
result, Scala is fully binary-compatible with Java, although it is not source-
code compatible. Scala’s developers invested much effort to ensure that the
compiled bytecode is nearly as efficient as if the code were compiled from
Java language sources.

A benefit of Scala being a JVM language is that Scala code can use any
existing Java library. Invoking a Java method from Scala is just like invoking
that method from another Java class. That seamless binary compatibility
also assists the novice Scala developer to ease into Scala one step at a time.
Indeed, a good way to get started with Scala is to implement a piece of new
functionality in Scala in the context of an existing Java project. The current
leading Scala IDEs, such as Eclipse and IntelliJ, support mixed Java and
Scala projects.

Although you don’t need to understand the full implementation details
of the Actor API to start developing concurrent programs in Scala, you will
need to grasp a handful of Scala language features in order to follow the
examples in the next chapters.

Cover - Overview - Contents - Discuss - Suggest - Index

51

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=51

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 3.2 Chapter 3 - Scala’s Language Support for Actors

3.2 Immutable and mutable state

Scala code can look quite familiar to a Java developer, but Scala is typically
more concise than Java. Indeed, many Scala features are designed to make
code cleaner and easier to read, all the way from small syntactic details to
control structures and program organization.

For instance, the Scala compiler attempts to infer variable types, saving
you some finger typing:

val fred = "Fred"
val customerOrder = new CustomerOrder
val count = 10

In the above examples, the compiler will properly infer the type of each
variable. However, you can also explicitly specify a variable’s type:

val count: Int = 10

The vals in the previous examples declare immutable variables, analo-
gous to what Java’s final keyword accomplishes: an immutable variable
cannot be re-assigned after its initial declaration. You will note a preference
for immutable variables and, by extension, immutable object state, in Scala
code. Favoring immutable data structures is another way Scala supports de-
velopment practices that scale from short scripts to large applications, and
from single-threaded programs to highly concurrent ones. Since concurrent
code allows access to object state from possibly many threads, immutable
objects better lend themselves to scaling via concurrency. If you wish, how-
ever, you can declare a mutable variable via the var keyword.

3.3 Methods and classes

Scala methods start with the def keyword, and do not require the return
keyword. Instead, the value of the last expression in the method is returned.
The compiler can also infer the method’s return type:

def addOne(x: Int) = { x + 1 }

Cover - Overview - Contents - Discuss - Suggest - Index

52

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=52

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 3.4 Chapter 3 - Scala’s Language Support for Actors

Methods that consist of a single expression can alternatively leave out the
surrounding braces:

def addOne(x: Int) = x + 1
As in Java, Scala methods are part of a class:

class Calculator {

def addOne(x: Int) = x + 1

Scala inheritance works in conjunction with existing Java code, too. For
instance, you can implement an HttpServlet in Scala by extending it, as
shown in Listing 3.1. As the example illustrates, Scala has no checked ex-
ceptions.

import javax.servlet.http._ // _ means a wildcard
class ScalaServlet extends HttpServlet {

override def init() {
super.init. ()
// Do something

}

override def doGet(req: HttpServletRequest,
res: HttpServletResponse) { // No checked exceptions
// Handle the get() method
}

Listing 3.1 - Extending HttpServlet from Scala

3.4 First-class functions

Scala also supports functions that are not declared to be part of a specific
class. Indeed, functions in Scala are first-class objects: you can do anything

Cover - Overview - Contents - Discuss - Suggest - Index

53

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=53

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 3.4 Chapter 3 - Scala’s Language Support for Actors

with a function that you can do with an object value, such as assign a function
to a variable, pass a function as a parameter to another function, or return a
function from another function.

Because function values are such an important aspect of Scala programs,
the language provides a convenient way to define function values via func-
tion literals. Function literals have no names, and can be used like any other
type of value.

The Scala APIs are rich in methods that consume function values. For
instance, Scala’s List class defines a method, map, that consumes a func-
tion, applies the function to all list elements, and returns a new list of the
resulting values. Using a function literal to define the parameter passed into
map affords a concise way to transform list elements:

val myList = List(1l, 2, 3)
val plusOne = myList.map(x => x + 1)

List(2, 3, 4)

There’s an even handier way to define the above function literal:

val plusTwo = myList.map(_ + 2)

List(3, 4, 5)

The underscore (_) in this function literal stands for the argument being
passed to the function.

By-name parameters

In Java, all method parameters are passed by value, even object references:
the parameter value is evaluated before invoking the method. Scala’s default
behavior also passes parameters by value. However, when passing a func-
tion or a function literal to a method, it is sometimes helpful to delay the
evaluation of the parameter value:

// Pseudocode
myMethod (someBlockOfCodeOrFunction) = {

Cover - Overview - Contents - Discuss - Suggest - Index

54

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=54

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 3.5 Chapter 3 - Scala’s Language Support for Actors

// Do something else first

// Evaluate the parameter and return its value
someBlockOfCodeOrFunction()

Scala supports that behavior with by-name parameters. By-name param-
eters are not evaluated when the method is invoked; instead, you can delay
the parameter’s evaluation to the first time you refer to that parameter by
name inside the method. To pass a parameter by name, prefix the parameter
type with =>, as shown here:

def doItByName(block: => Any) {
println("'Doing something first")
block

Invoking the doItByName method, you would get the following output:

doItByName(println("Hello, there"))

Doing something first
Hello, there

3.5 Functions as control structures

Java developers seldom think about control structures such as for, while, or
if—these are part of the Java language. Scala, by contrast, has a richer set
of control structures, and many of those control structures are implemented
as methods that consume functions as their parameters. The Actor API de-
fines a handful of carefully crafted control structures designed to direct actor
behavior, such as act, receive, or reply.

Scala makes creating new control structures even more natural with a
little syntactic sugar: when a Scala method has only one parameter, you can
surround the method argument with curly braces instead of parentheses. The
following are equivalent uses of the same method:

Cover - Overview - Contents - Discuss - Suggest - Index

55

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=55

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 3.5 Chapter 3 - Scala’s Language Support for Actors

doItByName(println("Hello, there"))

doItByName {
println("Hello, there™)

That syntax can make an API more natural to use. Consider the com-
mon pattern of using a resource, such as a network connection: you first
open or otherwise acquire the resource, use the resource, and finally close
or relinquish the resource. That pattern is sometimes referred to as the loan
pattern, since the resource is effectively "loaned” to the code making use of
the resource.

The following code illustrates the use of the loan pattern in a context that
you might be familiar with, a Java Persistence Architecture (JPA) transac-
tion. JPA requires that you access persistent data inside a JPA transaction. In
an environment where you manage your transaction demarcation, you must
take care to start a transaction, access the persistent data, and then close the
transaction.

A developer familiar with JPA can define a control abstraction, txn, that
encapsulates that desired behavior. Other developers, perhaps less persnick-
ety when it comes to resource allocation, can use this control structure with-
out having to worry about starting and closing transactions.

From a user’s perspective, the control structure looks as follows:

class InventoryManager {
def currentInventory() = {
txn {
entityManager.createQuery(
"select bk from Book bk"
).getResultList()

In this example, txn is a method that takes a block of code, or a function,
as an argument. Because the method has a single argument, the parameter
can be surrounded with curly braces.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=56

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 3.5 Chapter 3 - Scala’s Language Support for Actors

The more JPA-savvy developer implementing txn would open the trans-
action, make entityManager available to the function passed in as the ar-
gument, and close the transaction, handling any errors along the way. The
following is one implementation, using a by-name parameter:

def txn[T](block: => T): T = {
val entityMan = getEntityManager() // Obtain the JPA entity manager
// Code is not shown
EmThreadLocal.set(entityMan) // Set the entity manager in a
// threadlocal variable so that the
// entity manager is available to
// code performed under the transaction
val tx = entityMan.getTransaction()
try {
tx.begin()
val result = block // Execute the code passed into txn
tx.commit ()
res // Return the results, if any
3
finally {
if (entityMan.geTransaction().isActive())
entityMan.getTransaction().rollback()
if (entityMan.isOpen())
entityMan.close()

EmTheadLocal.remove()

Listing 3.2 - Implementation of the txn control structure

The code snippet shown in Listing 3.2 provides an example of Scala’s
type parameters. The txn[T](block: => T): T in the method declaration
roughly says: txn takes a block that, once executed, returns a value having
type T, and then the entire txn method returns this T value. Thus, the txn
method’s return type is T.

The [T] portion of the method declaration declares a type parameter
for T. Type parameters allow the compiler to check the type-safety of your
code: If block passed into the method returns, say, a java.util.List of

Cover - Overview - Contents - Discuss - Suggest - Index

57

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=57

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 3.5 Chapter 3 - Scala’s Language Support for Actors

Book objects, then T will refer to that type, and the compiler ensures txn
also returns a Book list. If you tried to return some other type from txn, the
program would not compile.

As this example illustrates, defining a new control structure is typically
a more complex task than using that control structure from client code: the
client developer, for instance, did not have to worry about starting and com-
mitting a transaction, or even about type parameters. The new control struc-
ture allows the client code to remain concise but still robust. That division
of complexity allows members of a development team to focus on what they
know best.

The Scala Actor API follows that division-of-labor tenet: the Actor API
abstracts away much of the tedium of message sending and handling behind
the facade of several simple control structures. You can compose complex
actor programs by combining those control structures into the exact message
sending and processing behaviors you desire.

Currying

The syntactic sugar of using curly braces instead of parentheses to surround
method parameters—a feature that comes in handy when defining new con-
trol structures—works only for methods that have a single argument; it won’t
work for methods whose parameter lists consist of more than one element.

Scala allows you to transform a method with several parameters to an
equivalent chain of back-to-back methods, each with a single argument. The
following methods produce identical results:

def add(x: Int, y: Int) = x + VY

add(3, 5)

8

def curriedAdd(x: Int)(y: Int) = x + X

add(3)(5)
8

The compiler translates the second method definition into two method
invocations. The first method consumes the initial argument, x, and results

Cover - Overview - Contents - Discuss - Suggest - Index

58

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=58

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 3.5 Chapter 3 - Scala’s Language Support for Actors

in a second function. That second function now consumes y, and returns the
sum of x and y:

def first(x: Int) = { (y: Int) => x + Vv }

val second = first(3)

second(5)

8

Curried functions are useful when you wish to create a control structure

with two or more arguments. Consider, for instance, the case of a control
structure that closes a network socket after the socket is used. Here, you
would want to pass the socket as one argument to the control structure, and
the function that uses the socket, as the other. You can specify this by pre-
senting two lists of arguments to the control structure, each argument list

consisting of just a single element. To make the code easier to read, the
second argument is specified between curly braces:

val socket: Socket

withSocket(socket) {
s => // Read from the socket, socket is available as s
} // Socket is closed

You could implement the withSocket control structure as follows:

def withSocket[T](socket: Socket)(f: Socket => T): T = {

try {
f(socket)

}
finally {
socket.close()

Structural typing

Scala offers another language feature that can make a control structure, such
as withSocket, more general. The Socket class is not alone in having a

Cover - Overview - Contents - Discuss - Suggest - Index

59

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=59

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 3.6 Chapter 3 - Scala’s Language Support for Actors

close() method: files, network connections, database connections, and so
forth must be closed after use, and therefore define a close () method. These
classes do not share a common supertype; having a close method is the
only commonality between these classes. It would be ideal to generalize
withSocket to operate on any class with a close method.

Structural typing allows us to specify a type based not on a shared super-
type, but on a structural commonality, such as having a close() method:

def withResource[A <: {def close(): Unit}, B]
(param: A) (f: A => B): B = {

try {
f(param)

}

finally {
param.close()

}

The withResource method declares a type parameter A, which is “at
least” a type with a close() method that returns a Unit, Scala’s equivalent
of void. The <: symbol indicates an upper type bound: A must be a subtype
of the type referred to on the right of the <: symbol, in this case, a type that
structurally conforms to the code block with the close() method.

Thus, the first value parameter of withResource () must be a subtype of
anything with a close() method—for instance, a Socket—and the second
value parameter is a function that consumes this instance and returns a value
of a different type, B.

3.6 Pattern matching and case classes

One of the core tenets of object-oriented programming is encapsulation:
objects have private state, and access to that private state is controlled by
methods on the object. Encapsulation encourages scalable design in that an
object’s implementation can evolve without impacting client code. While
encapsulation is simple to achieve with pure value-objects, where getter and
setter methods may suffice, more complex objects can contain state for which
there are no readily available accessor methods.

Cover - Overview - Contents - Discuss - Suggest - Index

60

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=60

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 3.6 Chapter 3 - Scala’s Language Support for Actors

Pattern matching, a functional language technique that dates back to the
1970s, helps in those situations. Similar to a switch statement, pattern
matching allows you to match an object’s state against a pattern. That pattern
closely mirrors the code used to create the object.

For instance, consider a ConfirmationMessage, with a paymentStatus
and a shippingStatus field. Pattern matching allows you to use the object’s
state in switch-like manner:

val status =
message match {

case ConfirmationMessage(Paid, Shipped) =>
Status("Order on its way')
case ConfirmationMessage(Paid, Pending) =>

Status("Wrapping the order")

case ConfirmationMessage(Paid, Returned) =>
Status('"That's too bad!")

case ConfirmationMessage(Declined, _) =>
Status("Wrong credit card")

case => Status("Unknown status")

Although ConfirmationMessage(Paid, Shipped) looks like the con-
struction of a ConfirmationMessage instance, it instead denotes a pattern
against which message is matched. Scala’s pattern matching picks apart
the message object and finds out if message is a ConfirmationMessage
type, and if so, whether it’s paymentStatus and shippingStatus values
are Paid and Shipped, respectively.

The first pattern matching message causes the expression on the right
of => to evaluate; subsequent patterns are not matched. If the expression to
the right returns a value, as in this example, the value of that expression is
returned from the match.

As the example illustrates, you can use wildcards in several places: the
underscore in ConfirmationMessage(Declined, _) means that we don’t
care about the shipping status value. And, in the last line of the match block,
a wildcard ensures that an unknown message status is matched.

The actor API uses pattern matching extensively in incoming message
processing. An actor’s message typically carries one or more value ob-
jects. For instance, a ConfirmationMessage includes references to values

Cover - Overview - Contents - Discuss - Suggest - Index

61

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=61

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 3.6 Chapter 3 - Scala’s Language Support for Actors

paymentStatus and shippingStatus. ConfirmationMessage’s purpose,
then, is to bundle those constituent values.

Scala’s case classes provide a convenient way to define classes whose
constructor wraps other data elements that are part of the class:

case class ConfirmationMessage(
paymentStatus: String,
shippingStatus: String

All you need to do is preface the class with case, and list the class’s
constituent objects in the constructors. The Scala compiler adds some syn-
tactic sugar to such classes, such as a proper implementation of equals and
hashCode, and makes it possible for you to use case classes in pattern match-
ing. You would almost always want to define your actor messages as Scala
case classes.

Note that in the current implementation of Scala, match is a language
construct, not a method, even though match appears as a control structure,
similar to the control structures we defined earlier with methods. Indeed,
in earlier versions of Scala, match was implemented as a method, but vari-
ous implementation issues led to it now being defined as a special keyword.
Nevertheless, for all practical purposes, you can think of match as a method
consuming a list of pattern matching cases as its argument.

In the above example, the last pattern matching case, an underscore (_),
is a wildcard that matches anything. But what if you left out that wild-card
pattern? With the above example, the Scala compiler would complain and,
if you ever passed into it a ConfirmationMessage that does not match one
of your cases, match would result in a runtime exception.

Without a wild-card case pattern, the pattern matching cases match only
a subset of possible argument values to match. Since a Scala function is an
object of a specific type (a function type), you can create a function subclass
that defines the function for only a specific range of the function’s argu-
ments. For instance, without the last wild-card pattern, the above definition
of match defines the function for only four argument values (actually, the
wildcard in the third case may match additional values, too). Scala’s pattern
matching is implemented in terms of such partial functions; and you will see
the PartialFunction class as an argument type in the actor APL.

Cover - Overview - Contents - Discuss - Suggest - Index

62

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=62

Prepared for C. Doppler Laboratory Embedded Software Systems

Chapter 4

Actor Chat

The previous chapters illustrate the actor programming model’s focus on
message passing. Not surprisingly, much of Scala’s actors library defines
a rich set of programming constructs for sending and receiving messages.
These constructs appear as an internal domain-specific language (DSL) to
the developer. This chapter illustrates the key elements of Scala’s actor DSL
with a quintessential messaging application: a chat program.

A chat program allows users to communicate with each other by ex-
changing messages about various topics. Each topic is represented by a chat
room. Users interested in following a discussion about a topic can subscribe
to a chat room. Once subscribed, a user may send messages to the chat room
and, in turn, receive messages from other chat room subscribers. The chat
room maintains a session of subscribers. Figure 4.1 provides an overview of
the chat application developed in this chapter.

| User)\ ChatRoom

| User | > session

[User \ ympn []

| User | — /;I
\ private state

Figure 4.1 - An actor chat application.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=63

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 4.1 Chapter 4 - Actor Chat

4.1 Defining message classes

The chat room application’s communication centers around messages: a user
sends a Subscribe message to indicate a desire to send and receive chat
room messages, an Unsubscribe message to remove him or herself from
the chat room’s session, and a UserPost message to forward to the chat
room’s subscribers. When a chat room receives a user’s UserPost message,
it forwards that message’s contents to each of its subscribers inside a Post
message. The chat room also makes sure not to send a message back to the
user posting that message, lest an unfriendly “echo” effect appear.

A typical first step in developing an actor-based program is to define
the message classes that represent the application’s communication pattern.
Scala’s case classes come in handy for defining actor messages. As you’ll see
shortly, case classes are especially useful in the context of pattern matching,
a key technique in actor message processing. Listing 4.1 shows how to define
the message classes for our chat application.

case class User(name: String)

case class Subscribe(user: User)
case class Unsubscribe(user: User)
case class Post(msg: String)

case class UserPost(user: User, post: Post)

Listing 4.1 - Case classes for Users and messages.

4.2 Processing messages

In addition to the messages, a key abstraction in the chat application is the
ChatRoom. ChatRoom’s main responsibilities include keeping a session of
actively logged-in users, receiving messages from users, and transmitting a
user’s message to other interested users, as shown in Figure 4.2.

Chat room subscribers are managed as private state of a ChatRoom. A
ChatRoom modifies that state upon receiving a Subscribe or Unsubscribe
message. This illustrates an important concept of actor-based programming:
some messages sent to an actor alter the actor’s internal state and that, in
turn, affects the actor’s subsequent behavior. For instance, a new Subscribe

Cover - Overview - Contents - Discuss - Suggest - Index

64

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=64

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 4.2 Chapter 4 - Actor Chat

Subscribe =
User user: User 4 ChatRoom
—

name: String e
Unsubscribe session

user: User
—

Y

ChatClient

1 = .
UserPost

user: User
post: Post
-

private state

Y

Figure 4.2 - Message communication between chat room and users.

message causes a ChatRoom to forward subsequent Post messages to the
newly registered user, affecting the application’s message flow.

ChatRoom’s message-handling responsibilities are implemented by ex-
tending the scala.actors.Actor trait. Extending the Actor trait means
that a ChatRoom benefits from the Actor trait’s message handling infrastruc-
ture, such as the mailbox.

All message handling in an actor takes place inside the act method;
Listing 4.2 shows how to define it.

import scala.actors.Actor

class ChatRoom extends Actor {
def act() {
// the actor’s behavior

Listing 4.2 - Defining act.

Message processing inside the act method starts when you invoke start
on the actor:

val chatRoom = new ChatRoom
chatRoom.start()

A key task in actor-message processing is to obtain the next available
message from the actor’s mailbox. Actor’s receive method accomplishes

Cover - Overview - Contents - Discuss - Suggest - Index

65

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=65

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 4.2 Chapter 4 - Actor Chat

that by removing a message from the mailbox and making that message
available to a series of pattern matching cases that you pass as a parame-
ter to receive. The example in Listing 4.3 defines a pattern for each of the
three message types a ChatRoom is expected to receive.

class ChatRoom extends Actor {

def act() {
while (true) {
receive {
case Subscribe(user) => // handle subscriptions
case Unsubscribe(user) => // handle unsubscriptions
case UserPost(user, post) => // handle user posts
}
}

Listing 4.3 - Incoming message patterns.

Each invocation of receive obtains the next available message from the
actor’s mailbox, and passes that message to a list of pattern matching cases.
Patterns are evaluated on a message, starting from the first pattern and mov-
ing down in the list of patterns. If a pattern matches, the matching message
is removed from the mailbox, and subsequent patterns are not evaluated on
the message. If no match is found, the message is left in the mailbox.

In this example, ChatRoom expects either a Subscribe, Unsubscribe,
or UserPost message. Upon receiving any such message, ChatRoom evalu-
ates the expression on the right side of the pattern’s rocket symbol (=>).

The Scala actors library also provides a shorthand for defining and start-
ing an actor in a single step without extending the Actor trait. Listing 4.4
shows how to rewrite the code of Listing 4.3 using the shorthand notation.

Handling subscription messages

Upon receiving a Subscribe message, a ChatRoom must add the user to its
subscribers session. At first, it may seem convenient to keep chat room sub-
scribers in a list of Users. Note, however, that subscribers must be able to re-
ceive messages from the chat room. In our current design, when a UserPost

Cover - Overview - Contents - Discuss - Suggest - Index

66

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=66

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 4.3 Chapter 4 - Actor Chat

val chatRoom =
actor {
while (true) {
receive {
case Subscribe(user) =>
case Unsubscribe(user) =>
case UserPost(user, post) =>

Listing 4.4 - Creating and starting an actor with actor

arrives, ChatRoom iterates through its subscribers session, and sends the mes-
sage’s content to all subscribing users, except to the user that originally sent
the message.

To enable users to accept messages from ChatRoom, you can represent
each user as an actor inside the subscriber session. When ChatRoom receives
a Subscribe message, it creates a new actor representing the user, and asso-
ciates the user with the newly created actor. That actor, in turn, will process
Post messages sent to it from the chat room; this is shown in Listing 4.5.

4.3 Sending actor messages

At this point, ChatRoom is ready to process subscription messages, so let’s
send some messages to it. Scala’s actors library supports both asynchronous
and synchronous message sending.

Asynchronous message sending

You send a message asynchronously to an actor with the bang (!) symbol.
In using ! to denote message sending, Scala follows the tradition of Erlang:

val chatRoom = new ChatRoom
chatRoom ! Subscribe(User("Bob"))

The ! method sends a message to chatRoom and returns immediately; it
doesn’t wait for any confirmation or reply from the target actor. In addition

Cover - Overview - Contents - Discuss - Suggest - Index

67

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=67

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 4.3 Chapter 4 - Actor Chat

var session = Map.empty[User, Actor]

while (true) {
receive {
case Subscribe(user) =>
val sessionUser =
actor {
while (true) {
self.receive {
case Post(msg) => // Send message to sender

}

session = session + (user -> sessionUser)

// handle UserPost message
// handle Unsubscribe message

Listing 4.5 - Representing a user as an actor inside a session

to the message, ! also sends an implicit reference to the sender to the tar-
get actor. That reference is always available inside the target actor via the

sender variable.

Listing 4.6 illustrates how the target actor uses the sender reference to

process a Post message.

Note that there are rwo actors in the above example: ChatRoom and the
actor representing the user inside the chat room, sessionUser. When the
chat room actor receives a Subscribe message, it assigns that message’s
sender to the subscriber variable. The closure passed to the actor method,
in turn, captures that variable and allows the subscriberActor to receive
and process Post messages. Once sessionUser is initialized to the actor

representing the user, it is saved away in the session map.

Synchronous messages

Scala also supports synchronous message sending via the ! ? operator:

Cover - Overview - Contents - Discuss - Suggest - Index

68

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=68

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 4.3 Chapter 4 - Actor Chat

var session = Map.empty[User, Actor]

while (true) {
receive {
case Subscribe(user) =>
val subscriber = sender
val sessionUser =
actor {
while (true) {
self.receive {
case Post(msg) => subscriber ! Post(msg)

}

session = session + (user -> sessionUser)

// handle UserPost message
// handle Unsubscribe message

}

Listing 4.6 - Using the sender reference

val chatRoom = new ChatRoom
chatRoom !? Subscribe(User("Bob"))

Unlike with asynchronous message sending, ! ? blocks the calling thread un-
til the message is sent and a reply received. Listing 4.7 shows how ChatRoom
might return an acknowledgment when handling a subscription message with
the reply method.

The client can capture and process the reply:

chatRoom !? Subscribe(User("Bob")) match {
case response: String => println(response)

}

Cover - Overview - Contents - Discuss - Suggest - Index

69

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=69

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 4.3 Chapter 4 - Actor Chat

var session = Map.empty[User, Actor]

while (true) {
receive {
case Subscribe(user) =>
val subscriber = sender
val sessionUser =
actor {
while (true) {
self.receive {
case Post(msg) => subscriber ! Post(msg)

¥

session = session + (user -> sessionUser)
reply("'Subscribed " + user)

Listing 4.7 - Using the reply method

Futures

In some cases, you want the calling thread to return immediately after send-
ing a message, but you may also need access to the target actor’s reply at a
later time. For instance, you may want to quickly return from sending a sub-
scription message, but also record the chat room’s acknowledgment message
in the future.

Scala actors provide the concept of futures for such a scenario. Fu-
tures messages are sent with the ! ! method, which returns a Future without
blocking the calling thread. The caller may or may not evaluate a future’s
value; if it does, and if the future value is not yet available, the calling thread
will block:

val future = chatRoom !! Subscribe(User("Bob"))

// Do useful work
println(future()) // Wait for the future

Cover - Overview - Contents - Discuss - Suggest - Index

70

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=70

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 4.3 Chapter 4 - Actor Chat

Message timeouts

In the examples so far, receive blocks the actor’s main thread until a match-
ing message is found. In some cases, you may want to wait for suitable
messages only for a certain period of time. The receiveWithin method al-
lows you to specify a message timeout, and to be notified if no message was
received within that time.

You can use the receiveWithin method to automatically unsubscribe a
user if the user hasn’t received a post message within a specified amount of
time. In the following example, TIMEOUT will match if no Post message is
received within three minutes; the user is then unsubscribed from the chat
room, as Listing 4.8 shows.

val sessionUser = actor {
while (true) {
self.receiveWithin (1800 =+ 1000) {
case Post(msg) => subscriber ! Post(msg)
case TIMEOUT =>
room ! Unsubscribe(user)
self.exit()

Listing 4.8 - Using message timeouts with receiveWithin

Processing user posts

All that remains from our chat room to be fully functional is to implement
the processing of a user’s post, as shown in Listing 4.9.

Cover - Overview - Contents - Discuss - Suggest - Index

71

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=71

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 4.3 Chapter 4 - Actor Chat

var session = Map.empty[User, Actor]

def act() {
while (true) {
receive {
case UserPost(user, msg) =>
for (key <- session.keys; if key != user) {
session(key) ! msg
}

// Handle Subscribe message
// Handle Unsubscribe message

}

Listing 4.9 - Processing post messages

Cover - Overview - Contents - Discuss - Suggest - Index

72

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=72

Prepared for C. Doppler Laboratory Embedded Software Systems

Chapter 5

Event-Based Programming

The constructs we introduced in Chapter 4 tie each actor to a JVM thread:
each actor needs its own dedicated Java thread. The thread-per-actor ap-
proach works well if your program requires relatively few actors.

If you anticipate many actors, however, or if the number of actors in
your program varies depending on input, defining one thread per actor incurs
significant overhead. Not only does each JVM thread require memory for
its execution stack, which is usually pre-allocated, each JVM thread may
be mapped to an underlying operating system process. Depending on the
platform, context-switching between those processes may involve switching
between kernel and user modes, an expensive operation.

To allow many actors in a JVM, you can make your actors event-based.
Event-based actors are implemented as event handlers instead of as threads,
and are therefore more lightweight than their thread-based cousins. Since
event-based actors are not tied to Java threads, event-based actors can execute
on a pool of a small number of worker threads. Typically, such a pool should
contain as many worker threads as there are processor cores in the system.
That maximizes parallelism while keeping the overhead of pool threads—
memory consumption and context-switching—to a minimum.

5.1 Events versus threads

Making an actor event-based is not entirely transparent to the programmer,
because event-based programming follows a different paradigm from pro-
gramming with threads. A typical actor spends some time waiting for incom-
ing messages, and a key difference between event-based and thread-based

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=73

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.2 Chapter 5 - Event-Based Programming

actors can be illustrated by an actor’s waiting strategy.

A thread-based actor waits by invoking wait on an object for which
its thread holds the associated lock. That thread resumes whenever another
thread invokes notify (or notifyAll) on the same object.! An event-based
actor, by contrast, registers an event handler with the actor runtime. After
that registration, the actor’s computation usually finishes, and the thread ini-
tially running the computation is free to execute other tasks, or go to sleep if
there is nothing else to do. Later, when an event of interest is fired—when a
message of interest to the actor is received, for instance—the actor runtime
schedules the actor’s event handler for execution on a thread pool, and the ac-
tor’s computation resumes. In that manner, event-based actors are decoupled
from underlying JVM threads.

5.2 Making actors event-based: react

Although event-based actors differ from thread-based actors in their wait-
ing strategies, turning a thread-based actor into an event-based one is often
straightforward. The thread-based actors we have seen so far used receive
to wait for a matching message to arrive in their mailbox. To make an actor
event-based, replace all uses of receive by invoking the react method. As
with receive, react expects a block of message patterns that are associated
with actions to process a matching message.

Although replacing receive with react is a simple code change, there
are important differences in how receive and react can be used in pro-
grams. The following examples explore these differences.

Using react to wait for messages

Listing 5.1 shows the definition of a method that recursively builds a chain
of actors and returns the first actor. Each actor in the chain uses react to
wait for a 'Die message. When it receives such a message, the actor checks
to see if it is last in the chain (in this case, next == null). The last actor in
the chain simply responds with 'Ack to the sender of the 'Die message and
terminates.

'In practice, waiting is slightly more complicated, because threads may be interrupted
during waiting.

Cover - Overview - Contents - Discuss - Suggest - Index

74

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=74

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.2 Chapter 5 - Event-Based Programming

def buildChain(size: Int, next: Actor): Actor = {
val a = actor {
react {
case 'Die =>
val from = sender
if (next != null) {

next ! 'Die
react {
case 'Ack => from ! 'Ack
¥
} else from ! 'Ack
}

}
if (size > 0) buildChain(size - 1, a)
else a

Listing 5.1 - Building a chain of event-based actors.

If the current actor is not the last in the chain, it sends a 'Die message
to the next actor, and waits for an 'Ack message. When the 'Ack arrives, it
notifies the original sender of the 'Die and terminates. Note that we store
the sender of the original 'Die message in the local variable from, so that
we can refer to this actor inside the nested react. Inside the nested react,
sender refers to the next actor in the chain, whereas the current actor should
send its 'Ack to the previous actor in the chain, which is stored in from.

Let’s use the buildChain method by putting it into an object with the
main method shown in Listing 5.2. We store the first command-line argu-
ment in the numActors variable to control the size of the actor chain. Just
for fun, we take the time to see how long it takes to build and terminate a
single chain of size numActors. After building the chain using buildChain,
we immediately send a 'Die message to the first actor in the chain.

What happens is that each actor sends 'Die to the next actor, waiting
for an 'Ack message. When the 'Ack is received, the actor propagates it to
the previous actor and terminates; the first actor is the last one to receive its
"Ack. When the receive operation in the main method starts processing
'Ack, all actors in the chain have terminated.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=75

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.2 Chapter 5 - Event-Based Programming

def main(args: Array[String]) {
val numActors = args(0).tolInt
val start = System.currentTimeMillis
buildChain(numActors, null) ! 'Die
receive {
case 'Ack =>
val end = System.currentTimeMillis
println("Took " + (end - start) + " ms")

Listing 5.2 - The main method.

Note that in the main method we cannot replace receive by react. The
reason is that the main thread (the JVM thread executing the main method)
should not terminate before it receives an 'Ack response. If you would use
react, its message handler would be registered with the actor runtime, and
then the main thread would terminate. When the main thread terminates, all
other threads marked as daemons, including the threads of the actor runtime,
are terminated, too. This means that the entire application would terminate!
To avoid this problem, use react only inside an actor.

How many actors are too many?

Actors that use react for receiving messages are lightweight compared to
normal JVM threads. Let’s find out just how lightweight by creating chains
of actors of ever increasing size until the JVM runs out of memory. More-
over, we can compare that chain with thread-based actors by replacing the
two reacts with receives.

But first, how many event-based actors can we create? And how much
time does it take to create them? On a test system, a chain of 1,000 actors is
built and terminated in about 115 milliseconds, while creating and destroying
a chain of 10,000 actors takes about 540 milliseconds. Building a chain with
500,000 actors takes 6,232 milliseconds, but one with 1 million actors takes
a little longer: about 26 seconds without increasing the default heap size of
the JVM (Java HotSpot Server VM 1.6.0).

Let’s try this now with thread-based actors. Since we are going to create

Cover - Overview - Contents - Discuss - Suggest - Index

76

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=76

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.2 Chapter 5 - Event-Based Programming

lots of threads, we should configure the actor runtime to avoid unreasonable
overheads.

Configuring the actor runtime’s thread pool

Since we intend to use lots of threads with thread-bound actors, it is more
efficient to create those threads in advance. Moreover, we can adjust the
size of the actor runtime’s internal thread pool to optimize actor execution.
Scala’s actor runtime allows its thread pool to resize itself according to the
number of actors blocked in receive (each of those actors needs its own
thread), but that resizing may take a long time since the thread pool is not
optimized to handle massive resizing efficiently.

We can configure the internal thread pool using two JVM properties,
actors.corePoolSize and actors.maxPoolSize. The first property sets
the number of pool threads that are started when the thread pool is initialized.
The latter property specifies an upper bound on the total number of threads
the thread pool will ever use. (The default is 256.)

To minimize the time it takes to resize the thread pool, we set both prop-
erties close to the actual number of threads that our application needs. For
example, when running our chain example with 1,000 thread-based actors,
setting actors.corePoolSize to 1,000 and actors.maxPoolSize to, say,
1,010 keeps the pool resizing overhead low.

With these settings in place, it takes about 12 seconds to create and de-
stroy a chain of 1,000 thread-based actors. A chain of 2,000 threaded actors
takes already more than 97 seconds. With a chain of 3,000 actors, the test
JVM crashes with an java.lang.OutOfMemoryError.

As this simple performance test demonstrates, event-based actors are
much more lightweight than thread-based actors. By running a large number
of event-based actors on a small number of threads, the context-switching
overhead and the resource consumption of thread-bound actors is reduced
dramatically. The following sections explore how to program with event-
based actors effectively.

Using react effectively

As we mentioned previously, with react an actor waits for a message in
an event-based manner. Under the hood, instead of blocking the underlying
worker thread, react’s block of pattern-action pairs is registered as an event

Cover - Overview - Contents - Discuss - Suggest - Index

7

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=77

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.2 Chapter 5 - Event-Based Programming

handler. The actor runtime then invokes that event handler when a matching
message arrives.

The event handler is all that is retained before the actor goes to sleep. In
particular, the call stack, as the current thread maintains it, is discarded when
the actor suspends. This enables the runtime system to release the underlying
worker thread, so that it can be reused to execute other actors.

Exceptions and react

Code surrounding an invocation of react should never catch instances
of java.lang.Throwable. Doing so would interfere with internal
exceptions used for flow control. By contrast, catching instances of
(subtypes of) java.lang.Exception is always safe.

The fact that the current thread’s call stack is discarded when an event-
based actor suspends bears an important consequence on the event-based
actor programming model: a call to react never returns normally. Instead,
react always throws an internal control exception, which the actor runtime
handles. Like any Scala or Java method, react could return normally only
if its full call stack was available when it executed. Since that isn’t the case
with event-based actors, a call to react never returns.

The fact that react never returns means that no code can follow a react
method invocation: Since react doesn’t return, code following react would
never execute. Thus, invoking react must always be the last thing an event-
based actor does before it terminates. For example, in Listing 5.3 the actor
won’t print “finished” since it follows the call to react. This problem is
corrected by moving the expression that prints "finished" into the body of
the react call, as shown in Listing 5.4.

Since an actor’s main job is to handle interesting messages, and since
react defines an event-based message-handling mechanism for actors, you
might think that react will always be the last, and even only, thing an actor
needs to do. However, it is sometimes convenient to perform several react
invocations in succession. In those situations, you could nest react invoca-
tions in sequence, as we saw in Listing 5.1.

Alternatively, you could define a recursive method that calls react sev-
eral times in sequence. For instance, we can extend our simple chain exam-
ple so that an actor waits for a specified number of 'Die messages before it

Cover - Overview - Contents - Discuss - Suggest - Index

78

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=78

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.2 Chapter 5 - Event-Based Programming

actor {
react {
case "hello" =>
println("hi™)
}
println("finished")
}

Listing 5.3 - Incorrect use of react.

actor {
react {
case "hello"” =>
println("hi™)
println("finished")

Listing 5.4 - Correct use of react.

terminates. Listing 5.5 shows how to do this by replacing the body of the
chain actors with a call to the waitFor method. The waitFor method tests
up front whether the current actor should terminate (if n == 0) or continue
waiting for messages. The protocol logic is the same as before. The only
difference is that after each message sends to from, we added a recursive
call to waitFor.

Composing react-based code with combinators

Sometimes it is difficult or impossible to use recursive methods for sequenc-
ing multiple reacts, which is the case when reusing classes and methods
that use react. By their nature, reusable components cannot be changed
after they have been built. In particular, we cannot simply perform invasive
changes, such as when we added iteration through a recursive method in the
example in Listing 5.5. This section illustrates several ways in which we can
reuse react-based code.

For example, suppose our project contains the sleep method shown in
Listing 5.6. It registers the current actor, self, with a timer service (not

Cover - Overview - Contents - Discuss - Suggest - Index

79

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=79

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.2 Chapter 5 - Event-Based Programming

def waitFor(n: Int): Unit = if (n > 0) {
react {
case 'Die =>
val from = sender
if (next != null) {

next ! 'Die
react {

case 'Ack => from ! 'Ack; waitFor(n - 1)
}

} else { from ! "Ack; waitFor(n - 1) }

Listing 5.5 - Sequencing react calls using a recursive method.

Recursive methods and react

You might be concerned that calling a recursive method as Listing 5.5
does could quickly lead to a stack overflow. The good news, however,
is that react plays extremely well with recursive methods: whenever
an invocation of react resumes due to a matching message in the ac-
tor’s mailbox, a task item is created and submitted to the actor runtime’s
internal thread pool for execution. The thread that executes that task
item doesn’t have much else on its call stack, apart from the basic logic
of being a pool worker thread. As a result, every invocation of react
executes on a call stack that is as good as empty. The call stack of a
recursive method like waitFor in Listing 5.5, therefore, doesn’t grow at
all thanks to the react invocations.

shown) to wake it up after the specified delay, which is provided as a pa-
rameter. The timer notifies the registered actor using an 'Awake message.
For efficiency, sleep uses react to wait for the 'Awake so that the sleeping
actor does not require the resources of a JVM thread while it is sleeping.
Using the sleep method shown in Listing 5.6 invariably requires ex-
ecuting something after its react invocation. However, since we want to
reuse the method as is, we cannot simply insert something in the body of
its react. Instead, we need a way to combine the sleep method with the

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=80

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.2 Chapter 5 - Event-Based Programming

def sleep(delay: Long) {
register(timer, delay, self)
react { case 'Awake => /+ OK, continue =%/ }

Listing 5.6 - A sleep method that uses react.

code that should run after the 'Awake message has been received without
changing the implementation of sleep.

That is where the Actor object’s control-flow combinators come into
play. These combinators let you express common communication patterns in
a relatively simple and concise way. The most basic combinator is andThen.
The andThen combinator combines two code blocks to run after each other
even if the first one invokes react.

Listing 5.7 shows how you can use andThen to execute code that runs
after invoking the sleep method. You use andThen as an operator that is
written infix between two blocks of code. The first block of code invokes
sleep as its last action, which, in turn, invokes react.

actor {
val period = 1000
{
// code before going to sleep
sleep(period)
} andThen {
// code after waking up

Listing 5.7 - Using andThen to continue after react.

Note that the period parameter of sleep is declared outside the code
block on which andThen operates. This is possible because the two code
blocks are actually closures that may capture variables in their environment.
The second block of code is run when the react of the first code block (the
one inside sleep) is finished. However, note that the second code block is
really the last thing the actor executes. Using andThen does not change the
fact that react invocations do not return. andThen merely allows you to

Cover - Overview - Contents - Discuss - Suggest - Index

81

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=81

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.2 Chapter 5 - Event-Based Programming

combine two pieces of code in sequence.

Another useful combinator is loopWhile. As its name suggests, it loops
running a provided closure while some condition holds. Thanks to Scala’s
flexible syntax, loopWhile feels almost like a native language primitive.
Listing 5.8 shows a variation of our actor chain example that uses loopWhile
to wait for multiple 'Die messages. Again, we make use of the fact that
the two code block parameters of loopWhile, the condition (n > 0) and
the body, are closures, since both code blocks access the local variable n.
(Each actor instance will wait for 1ives 'Die events before actually giving
up the ghost.) Note that the top-level react in the body of loopWhile is
unchanged from the first example that did not support iteration. You might
as well extract the body to a method—1loopWhile works in either case.

def buildChain(size: Int, next: Actor, lives: Int): Actor = {
val a = actor {
var n = lives
loopWhile (n > 0) {
n-=1
react {
case 'Die =>
val from = sender
if (next != null) {

next ! 'Die
react { case 'Ack => from ! '"Ack }
} else from ! "Ack
}
b

}

if (size > 0) buildChain(size - 1, a, lives)

else a

Listing 5.8 - Using 1oopWhile for iterations with react.

Cover - Overview - Contents - Discuss - Suggest - Index

82

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=82

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.3 Chapter 5 - Event-Based Programming

5.3 Event-based futures

In Chapter 4, we illustrated how to use futures for result-bearing messages.
Some of the methods used to wait for the result of a future rely on the thread-
based receive under the hood. While waiting for the result, those methods
monopolize the underlying worker thread. We can also wait for a future in
an event-based way with react.

For example, suppose we want to render a summary of all images linked
from a web page at a given URL. We can render each image individually
once the image has finished downloading. To increase the application’s
throughput, each image is downloaded by its own actor. Since each down-
loading actor performs a result-bearing task, it is convenient to use futures to
keep track of the expected results. Listing 5.9 shows the code for rendering
images in this way.

def renderImages(url: String) {
val imageInfos = scanForImageInfo(url)
val dataFutures = for (info <- imageInfos) vield {
val loader = actor {
react { case Download(info) =>
reply(info.downloadImage())
}
}
loader !! Download(info)
3
for (i <- 0 until imagelInfos.size) {
dataFutures(i) () match {
case data @ ImageData(_) =>
renderImage(data)

}

println("0K, all images rendered.")

Listing 5.9 - Image renderer using futures.

First, the renderImages method scans the URL, provided as a param-
eter, for image information. For each image, we start a new actor that

Cover - Overview - Contents - Discuss - Suggest - Index

83

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=83

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.3 Chapter 5 - Event-Based Programming

downloads the image and replies with image data. We obtain a future us-
ing the ! ! message send variant. Once all the futures have been collected in
dataFutures, the current actor waits for each future by invoking the future’s
apply method.?

Example: image renderer with react and futures

In the implementation we just described, the underlying thread blocks while
waiting for a future. However, we can also wait for a future in a non-
blocking, event-based way using react. The key for this to work is the
InputChannel associated with each Future instance. We use this channel
to transmit the result of the future to the actor that created the future. Invok-
ing a future’s apply method waits to receive the result on that channel, using
the thread-based receive. However, we can also wait for the results in an
event-based way using react on the future’s InputChannel.

Listing 5.10 shows an implementation that does just that. Since we
need to invoke react several times in sequence, you have to use one of the
control-flow combinators of Section 5.2. In this example, we use loopWhile
to emulate the indexing scheme of the previous version in Listing 5.9. The
main difference is that in this implementation the index variable i is declared
and incremented explicitly, and the generator in the for-expresssion has been
replaced with a termination condition.

You can also build custom control-flow combinators that allow you to
use react inside for-expresssions. In the following section, we explain how
you can do this.

Building custom control-flow operators

Sometimes the existing control-flow combinators that the Actor object pro-
vides are not well-suited for the task at hand. In such cases, building custom
control-flow operators can help. In this section, you will learn how you can
use the control-flow combinators that the Actor object provides to build cus-
tom operators that let you use react (and methods using react) inside for
expressions.

2Scala provides a shorthand syntax for invoking apply methods. To invoke an apply
method, it suffices to add the parameter list directly after the receiver. For example, fut () is
equivalent to fut.apply().

Cover - Overview - Contents - Discuss - Suggest - Index

84

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=84

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.3 Chapter 5 - Event-Based Programming

def renderImages(url: String) {
val imageInfos = scanForImageInfo(url)
val dataFutures = for (info <- imageInfos) vyield {
val loader = actor {
react { case Download(info) =>
reply(info.downloadImage())

}
}
loader !! Download(info)
}
var i = 0
loopWhile (i < imageInfos.size) {
i+=1

dataFutures(i-1).inputChannel.react {
case data @ ImageData(_) => renderImage(data)

}
} andThen { println("OK, all images rendered.") }

Listing 5.10 - Using react to wait for futures.

Listing 5.11 illustrates how to use a custom ForEach operator that al-
lows you to iterate over a list while invoking react for each element in
the list. In this case, we want to iterate over the futures in dataFutures.
We use ForEach to convert the plain dataFutures list into an object that
acts as a generator in for expressions. It generates the same values as the
dataFutures list, namely all of the list’s elements. However, it does so in
a way that allows continuing the iteration even after react is invoked inside
the body of the for expressions.

Listing 5.12 shows the implementation of ForEach. Making ForEach a
case class allows you to omit new when creating new instances. The con-
structor takes a parameter of type Iterable[T]—the collection that gener-
ates the elements for our iteration.

The ForEach class has a single method foreach that takes a parame-
ter of function type T => Unit. Implementing the foreach method enables
instances of the ForEach class to be used as generators in simple for expres-
sions, like the one in Listing 5.11. The variable that is bound to the generated

Cover - Overview - Contents - Discuss - Suggest - Index

85

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=85

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.3 Chapter 5 - Event-Based Programming

def renderImages(url: String) {
val imageInfos = scanForImageInfo(url)
val dataFutures = for (info <- imageInfos) vyield {
val loader = actor {
react { case Download(info) =>
reply(info.downloadImage())
¥
}

loader !! Download(info)

for (ft <- ForEach(dataFutures)) {
ft.inputChannel.react {
case data @ ImageData(_) => renderImage(data)
}

}
} andThen {
println("OK, all images rendered.")

}

Listing 5.11 - Enabling react in for expressions.

case class ForEach[T](iter: Iterable[T]) {
def foreach(fun: T => Unit): Unit = {
val it = iter.elements
loopWhile (it.hasNext) {
fun(it.next)

Listing 5.12 - Implementing the custom ForEach operator.

Cover - Overview - Contents - Discuss - Suggest - Index

86

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=86

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 5.3 Chapter 5 - Event-Based Programming

elements in the for expression corresponds to the parameter of the function
fun. The body of the for expression corresponds to the body of fun.

Inside foreach, we first obtain an iterator, it, from the Iterable. Then,
we iterate over the collection using it and the loopWhile combinator intro-
duced in Section 5.2. In each iteration, we apply the parameter function fun
to the current element of the collection. Since we are using loopWhile, it is
safe to invoke react inside fun.

Cover - Overview - Contents - Discuss - Suggest - Index

87

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=87

Prepared for C. Doppler Laboratory Embedded Software Systems

Chapter 6

Exceptions, Actor Termination, and
Shutdown

In this chapter, we will look at how to handle errors in concurrent, actor-
based programs. Actors provide several additional ways to handle excep-
tions compared to sequential Scala code. In particular, we will show how
an actor can handle exceptions that are thrown but not handled by other ac-
tors. More generally, we will look at ways in which an actor can monitor
other actors to detect whether they terminated normally or abnormally (for
instance, through an unhandled exception). Finally, we introduce several
concepts and techniques that can simplify termination management of actor-
based programs.

6.1 Simple exception handling

An actor terminates automatically when an exception that is not handled
inside the actor’s body is thrown. One possible symptom of such a situation
is that other actors wait indefinitely for messages from the dead actor. Since,
by default, terminating actors do not generate any feedback, it can be quite
time-consuming to find out what happened and why.

The way to guard against actors that silently terminate because of unhan-
dled exceptions is to invoke a global exception handler whenever an excep-
tion propagates out of the actor’s body. You can do this by subclassing Actor
(or its super-trait Reactor, which will be described in Chapter 11) and over-
riding its exceptionHandler member. It is defined as follows (omitting the
method’s modifiers):

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=88

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 6.1 Chapter 6 - Exceptions, Actor Termination, and Shutdown

def exceptionHandler: PartialFunction[Exception, Unit]

As you can see, a parameterless method returns a partial function that you
can apply to instances of java.lang.Exception. Whenever an exception
that would normally cause the actor to terminate is thrown inside an actor’s
body, the runtime system checks whether the actor’s exceptionHandler
matches the given exception. If so, the exceptionHandler partial function
is applied to the exception. After that, the actor terminates normally.

object A extends Actor {
def act() {
react {
case 'hello =>
throw new Exception("Error!™)

}
override def exceptionHandler = {
case e: Exception =>
println(e.getMessage())

Listing 6.1 - Defining an actor-global exception handler.

Listing 6.1 shows how to override the exceptionHandler method so
that it returns a custom partial function. The actor itself handles a single
message consisting of the Symbol 'hello.! Let’s interact with the A actor
using Scala’s interpreter shell:

scala> A.start()
resO: scala.actors.Actor = A$@leadlde
scala> A ! 'hello

Error!

As expected, A’s overridden exceptionHandler method runs, printing the
message string attached to the thrown exception, which is just "Error!".

In Scala, Symbols are similar to strings, except that they are always interned, which
makes equality checks fast. Also, the syntax for creating Symbo1ls is slightly more lightweight
compared to strings.

Cover - Overview - Contents - Discuss - Suggest - Index

89

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=89

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 6.1 Chapter 6 - Exceptions, Actor Termination, and Shutdown

This form of exception handling using exceptionHandler works well
together with control-flow combinators, such as 1oop. You can use the com-
binators to resume the normal execution of an actor after handling an excep-
tion. For example, let’s modify the A actor’s act method in Listing 6.1 as
follows:

def act() {
var lastMsg: Option[Symbol] = None
loopWhile (lastMsg.isEmpty || lastMsg.get != 'stop) {
react {
case 'hello =>
throw new Exception("Error!")
case any: Symbol =>
println("vour message: " + any)
lastMsg = Some(any)

}

The invocation of react is now wrapped inside a loopWhile that tests
whether the last received message is equal to 'stop, in which case the actor
terminates. Now, if the actor receives a "hello message, it throws the excep-
tion, which is handled as before. However, instead of terminating, the actor
simply resumes its execution by continuing with the next loop iteration. This
means that the actor is ready to receive more messages after the exception
has been handled.
Let’s try this out in the interpreter:

scala> A.start()
resO: scala.actors.Actor = A$@1cb048e

scala> A ! 'hello
Error!

scala> A.getState
res2: scala.actors.Actor.State.Value = Suspended

scala> A ! 'hi
your message: 'hi

scala> A ! 'stop
your message: 'stop

Cover - Overview - Contents - Discuss - Suggest - Index

90

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=90

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 6.2 Chapter 6 - Exceptions, Actor Termination, and Shutdown

scala> A.getState
res5: scala.actors.Actor.State.Value = Terminated

Note that after sending 'hello the actor eventually suspends waiting for
the next message. You can use the getState method to query an actor’s
execution state. It returns values of the Actor.State enumeration, which is
defined in the Actor object. The Suspended state indicates that the actor has
invoked react and is now waiting for a matching message. Therefore, we
can continue to interact with the actor by sending it a "hi message. After the
actor receives a 'stop message, its loopWhile loop finishes and the actor
terminates normally. The final state value is Terminated.

6.2 Monitoring actors

There are several scenarios in which you need to monitor the life cycle of a
group of actors. In particular, you can significantly simplify error handling
and fault tolerance in a concurrent system through monitoring. Here are
some examples:

Scenario A. We want to be notified when an actor terminates normally or
abnormally. For instance, we might want to replace an actor that ter-
minated because of an unhandled exception. Or we might want to
rethrow the exception in a different actor that can handle it.

Scenario B. We want to express that an actor depends on some other actor
in the sense that the former cannot function without the latter. For in-
stance, in a typical master-slave architecture the work that a slave does
1s useless if the master has crashed. In this case, it would be desir-
able if all slaves would terminate automatically whenever the master
crashes to avoid needless consumption of resources, such as memory.

Both of the above scenarios require us to monitor an actor’s life cycle. In
particular, they require us to be notified when an actor terminates, normally
or abnormally. The actors package provides special support for managing
such notifications. However, before diving into those monitoring constructs
it is helpful to look at the ways in which actors can terminate.

Cover - Overview - Contents - Discuss - Suggest - Index

91

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=91

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 6.2 Chapter 6 - Exceptions, Actor Termination, and Shutdown

Actor termination

There are three reasons why an actor terminates:

1. The actor finishes executing the body of its act method.
2. The actor invokes exit.

3. An exception propagates out of the actor’s body.

The first reason is a special case of the second one: After executing an
actor’s body, the runtime system invokes exit implicitly on the terminating
actor. The exit method can be invoked with or without passing an argument.

The Actor trait contains the following two method definitions (omitting
the modifiers):

def exit(): Nothing
def exit(reason: AnyRef): Nothing

Both methods have result type Nothing, which means that invocations do
not return normally because an exception is thrown in all cases. In this case,
the particular instance of Throwable should never be caught inside the actor,
since it is used for internal life-cycle control. Invoking exit (with or without
argument) terminates the current actor’s execution. The reason parameter
is supposed to indicate the reason for terminating the actor. Invoking exit
without an argument is equivalent to passing the Symbol 'normal to exit;
it indicates that the actor terminated normally. Examples for arguments that
indicate abnormal termination are:

» Exceptions that the actor cannot handle
* Message objects that the actor cannot process

* Invalid user input

Exceptions that propagate out of an actor’s body lead to that actor’s ab-
normal termination. In the following section, you will learn how actors can
react to the termination of other actors. We will show the difference be-
tween normal and abnormal termination as seen from an outside actor. More
importantly, we will see how to obtain the exit reason of another actor that
terminated abnormally.

Cover - Overview - Contents - Discuss - Suggest - Index

92

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=92

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 6.2 Chapter 6 - Exceptions, Actor Termination, and Shutdown

Linking actors

An actor that wants to receive notifications when another actor terminates
must /ink itself to the other actor. Actors that are linked together implicitly
monitor each other.

For example, Listing 6.2 shows a slave actor, which is supposed to do
work on behalf of a master actor. The work that the slave does is useless
without the master, since the master manages all results produced by the
slave—the slave depends on its master. This means that whenever the master
crashes, its dependent slave should terminate, since otherwise it would only
needlessly consume resources. This is where links come into play. Using
the 1ink method, the slave actor links itself to the master actor to express
the fact that it depends on it. As a result, the slave is notified whenever its
master terminates.

object Master extends Actor {
def act() {
Slave ! 'doWork
react {
case 'done =>
throw new Exception('Master crashed")

¥
object Slave extends Actor {
def act() {
link(Master)
loop {
react {
case 'doWork =>
println("Done™)
reply('done)

Listing 6.2 - Linking dependent actors.

Cover - Overview - Contents - Discuss - Suggest - Index

93

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=93

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 6.2 Chapter 6 - Exceptions, Actor Termination, and Shutdown

By default, termination notifications are not delivered as messages to the
mailbox of the notified actor. Instead, they have the following effect:

* If the terminating actor’s exit reason is 'normal, no action is taken.

* If the terminating actor’s exit reason is different from 'normal, the
notified actor automatically terminates with the same exit reason.

In our master-slave example, this means that the master actor’s termi-
nation, which the unhandled exception causes, results in the slave actor’s
termination; the exit reason of the slave actor is the same as for the mas-
ter actor, namely an instance of UncaughtException. The purpose of class
UncaughtException is to provide information about the context in which
the exception was thrown, such as the actor, the last message that actor pro-
cessed, and the sender of that message. The next section shows how to use
that information effectively.

Let’s use the interpreter shell to interact with the two actors:

scala> Slave.start()
resO: scala.actors.Actor = Slave$@190c99

scala> Slave.getState
resl: scala.actors.Actor.State.Value = Suspended

scala> Master.start()
Done
res2: scala.actors.Actor = Master$@395aaf

scala> Master.getState
res3: scala.actors.Actor.State.Value = Terminated

scala> Slave.getState
res4: scala.actors.Actor.State.Value = Terminated

Right after starting the Slave, its state is Suspended. When the Master
starts, it sends a 'doWork request to its Slave, which prints Done to the
console and replies to the Master with 'done. Once the Master receives
'done, it throws an unhandled exception causing it to terminate abnormally.
Because of the link between Slave and Master, this causes the Slave to
terminate automatically. Therefore, both actors are in state Terminated at
the end.

Cover - Overview - Contents - Discuss - Suggest - Index

94

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=94

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 6.2 Chapter 6 - Exceptions, Actor Termination, and Shutdown

Trapping termination notifications. In some cases, it is useful to receive
termination notifications as messages in a monitoring actor’s mailbox. For
example, a monitoring actor may want to rethrow an exception that isn’t
handled by some linked actor. Or, it may want to react to normal termination,
which is not possible by default.

You can configure actors to receive all termination notifications as nor-
mal messages in their mailbox using the Boolean trapExit flag. In the
following example, actor b links itself to actor a:

val a = actor { ... }

val b = actor {
self.trapExit = true
link(a)

Note that before actor b invokes 1ink it sets its trapExit member to true;
this means that whenever a linked actor terminates (normally or abnormally)
it receives a message of type Exit (see below). Therefore, actor b is going
to be notified whenever actor a terminates (assuming that actor a did not
terminate before b’s invocation of 1ink).

Listing 6.3 makes this more concrete by having actor a throw an excep-
tion. The exception causes a to terminate, resulting in an Exit message to
actor b. Running it produces the following output:

[|

Actor 'a' terminated because of UncaughtException(...)
Exit is a case class with the following parameters:
case class Exit(from: AbstractActor, reason: AnyRef)

The first parameter tells us which actor has terminated. In Listing 6.3, actor b
uses a guard in the message pattern to only react to Exit messages indicating
that actor a has terminated. The second parameter of the Exit case class
indicates the reason why actor from has terminated.

The termination of a linked actor that some unhandled exception caused
results in an Exit message in which reason is equal to an instance of
UncaughtException; it is a case class with the following fields:

* actor: Actor: the actor that threw the uncaught exception

Cover - Overview - Contents - Discuss - Suggest - Index

95

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=95

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 6.2 Chapter 6 - Exceptions, Actor Termination, and Shutdown 96

val a = actor {
react {
case 'start =>
val somethingBadHappened = true
if (somethingBadHappened)
throw new Exception("Error!™)
println("'Nothing bad happened")

}
val b = actor {
self.trapExit = true
link(a)
a ! 'start
react {
case Exit(from, reason) if from == a =>

println("Actor 'a' terminated because of " + reason)

}

Listing 6.3 - Receiving a notification because of an unhandled exception.

* message: Option[Any]: the (optional) message the actor was pro-
cessing; None if the actor did not receive a message

* sender: Option[OutputChannel[Any]]: the (optional) sender of
the most recently processed message

* cause: Throwable: the exception that caused the actor to terminate

Since UncaughtException is a case class, it can be matched against
when receiving an Exit message. For instance, in Listing 6.3 we can ex-
tract the exception that caused actor a to terminate directly from the Exit

message:
react {
case Exit(from, UncaughtException(_, _, _, _, cause))
if from == a =>

ot

println("Actor 'a' terminated because of " + cause)

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=96

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 6.2 Chapter 6 - Exceptions, Actor Termination, and Shutdown

Running Listing 6.3 with the above change results in the following output:

]

Actor 'a' terminated because of java.lang.Exception: Error!

When an actor’s trapExit member is true, the actor is also notified when
a linked actor terminates normally; for instance, when it finishes the ex-
ecution of its body. In this case, the Exit message’s reason field is the
Symbol 'normal. You can try this yourself by changing the local variable
somethingBadHappened to false. The output of running the code should
then look like this:

Nothing bad happened

[|

Actor 'a' terminated because of 'normal

Restarting crashed actors

In some cases, it is useful to restart an actor that has terminated because of an
unhandled exception. By resetting a crashed actor’s state, or at least parts of
it, chances are that the actor can successfully process outstanding messages
in its mailbox. Alternatively, upon restart the outstanding messages could be
retrieved from the crashed actor’s mailbox and forwarded to a healthy actor.

Listing 6.4 shows how to create a keep-alive actor that monitors another
actor, restarting it whenever it crashes. The idea is that the keep-alive ac-
tor first links itself to the monitored actor (the patient), and then invokes
keepAlive. The keepAlive method works as follows: When receiving an
Exit message indicating the abnormal termination of patient (in this case,
reason != 'normal), we re-link self to patient and restart it. Finally,
keepAlive invokes itself recursively to continue monitoring the patient.

You may wonder why we link self to the patient actor before restart-
ing it. After all, keepAlive assumes that this link already exists. The reason
is that self automatically unlinks itself when receiving an Exit message
from patient. We do this to avoid leaking memory through links that are
never removed. Since in most cases terminated actors are not restarted, this
behavior is a good default.

Listing 6.5 shows how to use our keepAlive method to automatically
restart an actor whenever it crashes. Actor crasher is the actor that we want
to monitor and restart. It maintains a counter such that whenever the counter
is even, handling a 'request message results in an exception being thrown.
Since the exception is not handled, it causes the actor to crash. We can also

Cover - Overview - Contents - Discuss - Suggest - Index

97

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=97

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 6.2 Chapter 6 - Exceptions, Actor Termination, and Shutdown

// assumes ‘self‘ linked to ‘patient‘ and ‘self.trapExit == true°
def keepAlive(patient: Actor): Nothing = {
react {
case Exit(from, reason) if from == patient =>
if (reason != 'normal) {
link(patient)

patient.restart()
keepAlive(patient)

Listing 6.4 - Monitoring and restarting an actor using 1ink and restart.

tell the crasher to stop, thereby terminating it normally. The client actor
waits for a 'start message, and then sends several requests to crasher,
some of which cause crashes.

The last actor, the keep-alive actor, links itself to the crasher with
trapExit set to true. It is important that the keep-alive actor links itself
to the crasher before the client starts. Otherwise, the client could cause the
crasher to terminate without sending an Exit message to the keep-alive
actor; since the Exit message would never be received, the crasher actor
would not be restarted. Running the code in Listing 6.5 produces the follow-
ing output:

I'm (re-)born

I try to service a request
I try to service a request
sometimes I crash...

I'm (re-)born

I try to service a request
I try to service a request
sometimes I crash...

I'm (re-)born

I try to service a request
I try to service a request
sometimes I crash...

I'm (re-)born

Cover - Overview - Contents - Discuss - Suggest - Index

98

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=98

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 6.2 Chapter 6 - Exceptions, Actor Termination, and Shutdown

val crasher = actor {
println("I'm (re-)born')
var cnt = 0
loop {
cnt += 1
react {
case 'request =>
println("I try to service a request")
if (ent % 2 == 0) {
println("'sometimes I crash...")
throw new Exception

}
case 'stop =>
exit()
}
}
¥
val client = actor {
react {
case 'start =>
for (_ <- 1 to 6) { crasher ! 'request }
crasher ! 'stop
}
¥
actor {
self.trapExit = true
link(crasher)
client ! 'start
keepAlive(crasher)
¥

Listing 6.5 - Using keepAlive to automatically restart a crashed actor.

Cover - Overview - Contents - Discuss - Suggest - Index

99

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=99

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 6.2 Chapter 6 - Exceptions, Actor Termination, and Shutdown 100

def renderImages(url: String) {
val imageInfos = scanForImageInfo(url)
self.trapExit = true
val dataFutures = for (info <- imageInfos) vyield {
val loader = link {
react { case Download(info) =>
throw new Exception('no connection")
reply(info.downloadImage())

}: Unit
}
loader !! Download(info)
}
var i = 0

loopWhile (i < imageInfos.size) {

i+=1
val Input = dataFutures(i-1).inputChannel
react {
case Input ! (data @ ImageData(_)) =>
renderImage(data)

case Exit(from, UncaughtException(_, Some(Download(info)),
_, _, cause)) =>
println("Couldn't download image "+info+
" because of "+cause)

Listing 6.6 - Reacting to Exit messages for exception handling.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=100

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 6.2 Chapter 6 - Exceptions, Actor Termination, and Shutdown

As you can see, the crasher actor processes six 'request messages. Every
second message results in a crash, causing the keep-alive actor to restart it.
Restarting the crasher re-runs its body, producing a rebirth message.

Exception handling using futures

One advantage of futures over simple asynchronous messages is that they
make it easy to identify to which request they correspond. Basically, each
future represents the asynchronous request that created the future. We can
leverage this property of futures for exception handling. Let’s revisit the
image downloader example of Chapter 5. In the following section, we will
show how you can extend Listing 5.10 to handle exceptions that may be
thrown during image retrieval (for instance, IOExceptions).

Listing 6.6 shows the renderImages method extended with code to han-
dle uncaught exceptions in the downloader actors. The idea is as follows:
First, the actor that renders the images sets its trapExit member to true,
which enables it to receive termination notifications from linked actors. Sec-
ond, the renderer actor links itself to each downloader actor. For this, we use
one of the 1ink methods defined in the Actor object. The variant we use
takes a code block (more precisely, a by-name parameter of type => Unit) as
an argument, creates a new actor to execute that block, and links the caller to
the newly created actor. More importantly, you link and start the new actor
in a single, atomic operation to avoid a subtle race condition. Between start-
ing the new actor and linking to it, the newly created actor could die, which
would resultin a lost Exit message. This is the main reason the Actor object
provides a 1ink method that takes a code block as an argument.

Note that you have to add an explicit type annotation to the react ex-
pression. The reason is that the return type of react is Nothing, which is
compatible with both 1ink methods since Nothing is a subtype of every
other type. By adding the : Unit fype ascription, we force the compiler to
select the 1ink method that takes a code block.

After the renderer actor has sent out all download requests, it loops trying
to receive ImageData objects from each future’s input channel. To handle
uncaught exceptions in the downloader actors, the renderer also reacts to
Exit messages. Whenever an Exit message with an UncaughtException
as its reason is received, we use a nested pattern to extract the message the
terminated actor was processing. This enables us to easily access the corre-
sponding ImageInfo, since it was passed as part of the Download message.

Cover - Overview - Contents - Discuss - Suggest - Index

101

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=101

Prepared for C. Doppler Laboratory Embedded Software Systems

Chapter 7

Customizing Actor Execution

Actors are executed using a runtime system that is backed by an efficient
task execution framework. You have seen that such a runtime system enables
concurrent programs to scale to a large number of fairly lightweight actors.
In this chapter, you will learn how to customize the runtime system, improve
the integration with threads and thread-local data, simplify testing, and more.

In Chapter 5, you saw that event-based actors require only a few worker
threads to execute. However, when actors use blocking operations, the num-
ber of worker threads must often be increased to avoid locking up the thread
pool. Managed blocking provides a way to automatically adjust the thread
pool size depending on the blocking behavior of operations. In this chapter,
you will learn how to use managed blocking to enable safe use of existing
blocking concurrency classes.

7.1 Pluggable schedulers

In some cases, you must customize the way in which actors are executed,
including when:

* Maintaining thread-bound properties such as ThreadLocals
* Interfacing with existing event dispatch threads
* Using daemon-style actors

* Testing with deterministic execution of message sends/receives for re-
producible testing

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=102

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.1 Chapter 7 - Customizing Actor Execution

* Maintaining fine-grained control over resources consumed by the un-
derlying thread pool

The part of the runtime system that executes an actor’s behavior is called
a scheduler. Each actor is associated with a scheduler object that executes the
actor’s actions; that is, its body as well as its reactions to received messages.
By default, a global scheduler executes all actors on a single thread pool.
However, in principle each actor may be executed by its own scheduler.

To customize an actor’s scheduler, you override the scheduler method
inherited from the Reactor trait. The method returns an instance of trait
IScheduler, which is used to execute the actor’s actions. By returning a
custom IScheduler instance, the default execution mechanism can be over-
ridden. In the following sections, we will show you how to do this for each
case listed above.

Maintaining thread-bound properties

When an application is run on the JVM, certain properties are maintained
on a by-thread basis. Examples for such properties include the context class
loader, the access control context, and programmer-defined ThreadLocals.
In applications that use actors instead of threads, these properties are still
useful or maybe even necessary to interoperate with JVM-based libraries
and frameworks.

Using ThreadLocals or other thread-bound properties is done the same
way as threads when using thread-based actors. For event-based actors, the
situation is slightly more complicated since the underlying thread that is exe-
cuting a single event-based actor may change over time. Remember that each
time an actor suspends in a react, the underlying thread is released. When
this actor resumes, it may be executed by a different thread. Thus, without
some additional logic, ThreadLocals could change unexpectedly during an
event-based actor’s execution, which would be confusing. In the next sec-
tion, we show you how to correctly maintain thread-bound properties, such
as ThreadLocals, over the event-based actor’s lifetime.

Example: thread-local variables

Listing 7.1 shows an attempt to use a ThreadLocal to track a name associ-
ated with the current actor. The name is stored in a ThreadLocal [String]
called tname. In Java, ThreadLocals are typically declared as static class

Cover - Overview - Contents - Discuss - Suggest - Index

103

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=103

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.1 Chapter 7 - Customizing Actor Execution

members, since they hold data that is not specific to a class instance but to an
entire thread. In Scala, there are no static class members. Instead, data that
is not specific to a class instance is held in singleton objects. Object mem-
bers are translated to static class members in the JVM bytecode. Therefore,
we declare the thread-local tname as a member of the application’s object,
as opposed to a member of a class or trait. We override the initialValue
method to provide the initial value "john". The joeActor responds to the
first ' YourName request by first setting its name to " joe jr.", and then send-
ing it back in a reply to the sender. Upon the second 'YourName request,
the thread-local name is sent back unchanged as a reply. The other actor sim-
ply sends two requests and prints their responses. We expect the program to
produce the following output:

your name: joe jr.
your name: joe jr.

However, surprisingly, some executions produce the following output:

your name: joe jr.
your name: john

Apparently, in this execution the second 'YourName request returns the ini-
tial value of the ThreadLocal, even though it has been set previously by the
actor to a different value. As already mentioned, the underlying problem is
that parts of an event-based actor are not always executed by the same un-
derlying thread. After resuming the second react, the actor can be executed
by a thread that is different from the thread that executed the reaction to the
first request. In that case, the ThreadLocal containing the initial value has
not been updated yet.

We can avoid the above problem as follows: First, we create a subclass of
the Actor trait that stores a copy of the thread-local variable. The idea is to
restore the actual ThreadLocal using this copy whenever the actor resumes.
Conversely, we save the current value of the ThreadLocal to the actor’s copy
whenever the actor suspends. This way, we make sure that the ThreadLocal
holds the correct value while the actor executes, namely the value associated
with the current actor.

The solution that we just outlined requires us to run custom code upon
an actor’s suspension and resumption. We can achieve this by overriding the
scheduler that is used to execute the actor. However, we only want to override

Cover - Overview - Contents - Discuss - Suggest - Index

104

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=104

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.1

Chapter 7 - Customizing Actor Execution

object ActorWithThreadLocalWrong extends Application {
val tname = new ThreadLocal[String] {
override protected def initialValue() = "john"

}

val joeActor = actor {

}

react { case 'YourName =>

tname set "joe jr."

sender ! tname.get

react { case 'YourName =>
sender ! tname.get

}

actor {

}

println("your name:
println("vyour name:

+ (joeActor !? 'YourName))
+ (joeActor !? 'YourName))

Listing 7.1 - Incorrect use of ThreadLocal

abstract class ActorWithThreadLocal(private var name: String)

extends Actor {

override val scheduler =
def execute(codeBlock:
ActorWithThreadLocal.

tname set name
codeBlock
name = tname.get

new SchedulerAdapter {
=> Unit): Unit
super.scheduler execute {

Listing 7.2 - Saving and restoring a ThreadLocal.

Cover - Overview - Contents - Discuss - Suggest - Index

105

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=105

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.1 Chapter 7 - Customizing Actor Execution

a specific method of the scheduler, namely the method that receives the code
to be executed after an actor resumes and before it suspends. Since this is
the most common use case when overriding an actor’s scheduler, the helper
trait SchedulerAdapter, allows us to override only this required method.

This implementation using SchedulerAdapter is shown in Listing 7.2.
The abstract ActorWithThreadLocal class overrides the scheduler mem-
ber with a new instance of a SchedulerAdapter subclass. This subclass
implements the execute method that receives the code block, which is exe-
cuted after this actor resumes and before it suspends. To insert the required
code, we invoke the execute method of the inherited scheduler, passing a
closure that surrounds the evaluation of the by-name codeBlock argument
with additional code. Before the actor resumes, we restore the thread-local
tname with the value of the actor’s copy in its private name member. Nor-
mally, after running the code block, the actor would suspend. In our extended
closure, we additionally save the current value of tname in the actor’s name
member before we suspend. By making joeActor in Listing 7.1 an instance
of ActorWithThreadLocal, its thread-local state is managed correctly.

Interfacing with event dispatch threads

Some frameworks restrict certain actions to special threads that the frame-
work manages. For example, a special event dispatch thread manages the
event queue of Java’s Swing class library. For thread safety, Swing UI com-
ponents may only be accessed inside event handlers that this dispatch thread
executes. Therefore, an actor that wants to interact with Swing components
must run on the event dispatch thread. This is just one example where you
need to “bind” actors to specific threads that are provided by some frame-
work. Another example is a library that interacts with native code through
JNI, where all accesses must be performed by a single JVM thread.

By overriding an actor’s scheduler, we can ensure that its actions are ex-
ecuted on a specific thread, instead of an arbitrary worker thread of the actor
runtime system. For this, we can again use the SchedulerAdapter trait,
which we showed in the previous section. Listing 7.3 shows the implemen-
tation of an Actor subclass that executes its instances only on the Swing
event dispatch thread. For this, we override the scheduler member with a
new instance of a SchedulerAdapter that executes the actor’s actions by
submitting Runnables to the Swing event dispatch thread. We do this using
the invokeLater method of java.awt.EventQueue.

Cover - Overview - Contents - Discuss - Suggest - Index

106

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=106

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.1 Chapter 7 - Customizing Actor Execution

abstract class SwingActor extends Actor {
override val scheduler = new SchedulerAdapter {
def execute(codeBlock: => Unit): Unit =
java.awt.EventQueue.invokeLater(
new Runnable() {
def run() = codeBlock

Listing 7.3 - Executing actors on the Swing event dispatch thread.

Daemon-style actors

In many cases, we don’t have to care about the termination of an actor-based
program. When all actors have finished their execution, the program termi-
nates. However, when actors are long-running or react to messages inside
an infinite loop, orderly termination of actors and the underlying thread pool
can become challenging.

Some applications use actors that are always ready to accept requests
to process work in the background. To simplify termination in such cases,
it can help to make those actors daemons: the existence of active daemon
actors does not prevent the main program from terminating. This means that
as soon as all non-daemon actors have terminated, the application terminates.

Listing 7.4 shows how to create actors with daemon-style semantics:
simply override the scheduler method to return the DaemonScheduler ob-
ject. DaemonScheduler uses the exact same configuration as the default
Scheduler object, except that the actors that it manages do not prevent the
application from terminating. In Listing 7.4 the d actor is again waiting for
a message after the synchronous send has been served. However, since the
main thread finishes, the DaemonScheduler also terminates, and with it the
d actor.

Deterministic actor execution

By default, the execution of concurrent actors is not deterministic. This
means that two actors that are ready to react to a received message may

Cover - Overview - Contents - Discuss - Suggest - Index

107

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=107

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.1 Chapter 7 - Customizing Actor Execution

import scala.actors.Actor
import scala.actors.scheduler.DaemonScheduler

object DaemonActors {

class MyDaemon extends Actor {
override def scheduler = DaemonScheduler
def act() {
loop {
react { case num: Int => reply(num + 1) }

}

}

def main(args: Array[String]) {
val d = (new MyDaemon).start()
println(d !? 41)

}

Listing 7.4 - Creating daemon-style actors.

be executed in any order, or, depending on the number of available proces-
sor cores, in parallel. Since actors do not share state,! you do not have to
worry about data races even if you don’t know the actual execution order in
advance. In fact, for best performance and scalability we would like to have
as many actors as possible executed in parallel!

However, in some cases it can be helpful to execute actors deterministi-
cally. The main reason is that a deterministic execution enables reproducing
program executions that are not influenced by timing-dependent variations
in thread scheduling, which make multi-threaded programs extremely hard
to test.

For example, consider a concurrent application simulating mechanical
gears and motors. Assume that each gear’s speed is adjusted using a con-
troller. To model the real-world concurrency, we represent each gear and the
controller as an actor. Listing 7.5 shows the implementation of a gear as an
actor. The Gear actor responds to SyncGear messages that cause the gear

lCurrently this is a mere convention; however, efforts exist to have actor isolation
checked using an annotation checker plug-in for the Scala compiler.

Cover - Overview - Contents - Discuss - Suggest - Index

108

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=108

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.1 Chapter 7 - Customizing Actor Execution

case class SyncGear(s: Int)
case class SyncDone(g: Gear)

class Gear(val id: Int, var speed: Int, val controller: Actor)
extends Actor {

def act() {
loop {
react {
case SyncGear(targetSpeed: Int) =>
println("[Gear "+id+
"] synchronize from current speed " + speed +
" to target speed " + targetSpeed)
adjustSpeedTo(targetSpeed)

}

def adjustSpeedTo(targetSpeed: Int) {
if (targetSpeed > speed) {
speed += 1
self ! SyncGear(targetSpeed)

} else if (targetSpeed < speed) {
speed -= 1
self ! SyncGear(targetSpeed)

} else if (targetSpeed == speed) {
println("[Gear " + id + "] has target speed")
controller ! SyncDone(this)
exit()

Listing 7.5 - Synchronizing the speed of Gear actors.

Cover - Overview - Contents - Discuss - Suggest - Index

109

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=109

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.1

to adjust its speed in a step-wise manner. For instance, a gear with current
speed 7 units requires two steps to adjust its speed to 5 units. A SyncGear
message initiates each step. To process each message, the gear decrements
its speed by a fixed amount and sends itself another SyncGear message if it
has not reached its target speed. Otherwise, the gear reports to its controller
that it has reached the target speed using a SyncDone message. Let’s write a
little driver to test the Gear actor:

Chapter 7 - Customizing Actor Execution

object NonDeterministicGears {
def main(args: Array[String]) {
actor {

The above driver creates two gears that, initially, are running at speeds 7
and 1, respectively. Afterward the controller actor instructs the gears to ad-
just their speed to 5 by sending asynchronous SyncGear messages. Finally,
it waits until both gears have synchronized their speeds. Running the driver

val gl = (new Gear(l, 7,
val g2 = (new Gear(2, 1,

gl ! SyncGear(5)
g2 ! SyncGear(5)

react { case SyncDone(_)
react { case SyncDone(_) => }

produces output such as the following:

[Gear
[Gear
[Gear
[Gear
[Gear
[Gear
[Gear
[Gear
[Gear
[Gear

2]
2]
1]
1]
1]
2]
1]
2]
2]
2]

Cover - Overview - Contents - Discuss - Suggest - Index

synchronize from
synchronize from
synchronize from
synchronize from
synchronize from
synchronize from
has target speed
synchronize from
synchronize from
has target speed

current
current
current
current
current
current

current
current

=>

speed
speed
speed
speed
speed
speed

speed
speed

W U1t OO NN R

self)).start()
self)).start()

to
to
to
to
to
to

to
to

target
target
target
target
target
target

target
target

speed
speed
speed
speed
speed
speed

speed
speed

vl o1 U1 U1 U1 N

(V2|

110

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=110

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.2 Chapter 7 - Customizing Actor Execution

As you can see, the speed-adjusting steps of the different gears are inter-
leaved, since the gear actors are running concurrently. A subsequent program
run may produce an entirely different interleaving of the steps. However, this
means that you could not use the above driver for a unit test that compares
the actual output to some expected output.

Using the SingleThreadedScheduler class (which resides in package
scala.actors.scheduler), you can make the execution of concurrent ac-
tors deterministic. As its name suggests, this scheduler runs the behavior of
all actors on a single thread. Since that thread’s execution is deterministic,
the entire actor system executes deterministically. In particular, any side ef-
fects that actors might have as part of their reaction to messages, such as I/O,
is done in the same order in all program runs.

Usually, running actors on a single thread means that the reaction of an
actor receiving a message is immediately executed on the same thread that
has been executing that message’s sender. Since it is a valid pattern to have
an actor sending messages to itself in a loop, sometimes the scheduler must
delay the processing of a message to avoid a stack overflow. For such situ-
ations, the scheduler maintains a queue of reactions that are executed when
there is nothing else left to do. However, some reactions may remain in
the scheduler’s queue just before the application should terminate. There-
fore, to make sure that the scheduler processes all tasks, you have to invoke
shutdown explicitly.

7.2 Managed blocking

The actor runtime system uses a thread pool, which is initialized to use a rel-
atively small number of worker threads. By default, the number of workers
used is twice the number of processor cores available to the JVM. In many
cases, this configuration allows executing actors with a maximum degree
of parallelism while consuming only a few system resources for the thread
pool. In particular, actor programs that use only event-based operations, such
as react, can always be executed using a fixed number of worker threads.
However, in some cases, actors use a mix of event-based code and thread-
based code. For instance, some methods like receive are implemented us-
ing thread-blocking operations. Moreover, actor-based code may have to in-
teroperate with code using the Java’s java.util.concurrent concurrency
utilities. In both cases, operations that may block the underlying thread have

Cover - Overview - Contents - Discuss - Suggest - Index

111

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=111

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.2 Chapter 7 - Customizing Actor Execution

import scala.actors.Actor._
import java.util.concurrent.CountDownLatch

object PoolLockup {

def main(args: Array[String]) {
val numCores = Runtime.getRuntime().availableProcessors()

println(“available cores: " + numCores)

val latch = new CountDownLatch(1)

for (i <- 1 to (numCores * 2)) actor {
latch.await()
println("actor

}

actor { latch.countDown() }

n

+ i + " done")

Listing 7.6 - Blocked actors may lock up the thread pool.

to be used with care, so as to avoid locking up the entire thread pool.

For example, Listing 7.6 shows what happens if too many actors are
blocked simultaneously. To simplify the demonstration, we use an instance
of the CountDownLatch class in the java.util.concurrent package. Note
that even though the actual code example may not be very useful in and of
itself, there are probably places in your actor-based program where the Java
concurrency utility classes come in handy. Therefore, the following discus-
sion should be useful to anyone who wants to reuse blocking concurrency
code in his or her actor code.

Basically, we use a CountDownLatch to notify a bunch of actors once
the “main actor” reaches a certain point. To do this, we initialize the latch to
one, and tell our actors to wait until the latch becomes zero. Once the main
actor sets the latch to zero, the other actors can continue and print a message
before terminating. Now, the problem is that if too many actors wait for the
latch to become zero, all worker threads in the underlying thread pool may
be blocked, so that there is no thread left to execute the main actor. As a
result, the blocked actors wait indefinitely, the thread pool is locked up, and
the program fails to terminate. Note that in the example we took care to

Cover - Overview - Contents - Discuss - Suggest - Index

112

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=112

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.2 Chapter 7 - Customizing Actor Execution

start twice as many blocking actors as there are processor cores available to
the JVM. This corresponds exactly to the number of pool threads created by
default. Therefore, starting fewer blocking actors will not cause problems,
since there will be a pool thread left to execute the main actor, which releases
the blocked actors.

There are several ways to prevent the thread pool from locking up our
actor-based program:

* Configuring the thread pool to create more worker threads on start up

» Using managed blocking to dynamically resize the thread pool before
invoking a blocking operation

The first alternative can be implemented either by using the JVM proper-
ties actors.corePoolSize and actors.maxPoolSize (see Chapter 5), or
by using a customized scheduler (see Section 7.1). However, pre-configuring
the thread pool size can be fragile if the number of blocking actors is hard
to predict. Moreover, overprovisioning of thread pool resources is likely to
negatively impact your application’s performance.

The second alternative is a much more efficient way of dealing with
blocking operations, since the thread pool grows only on demand, and (usu-
ally) only for a short period of time. It also avoids the problem of having
to predict the maximum number of actors that may be blocked simultane-
ously. The basic idea of managed blocking is to invoke blocking operations
indirectly through an interface that allows the thread pool to resize itself be-
fore blocking. Additionally, the interface allows the pool to query a wrapped
blocking operation to check whether it no longer needs to block. This enables
shrinking the pool back to the size it had before growing to accommodate the
blocking operation.

Listing 7.7 shows how you can use the ManagedBlocker interface to
avoid locking up the thread pool. Managed blocking requires the use of
methods that are not accessible when defining actors inline using actor {
... }. Therefore, you have to create your blocking actors by subclassing
the Actor trait. Note that inside the body of act we replaced the invoca-
tion of latch.await() with a call to managedBlock, a method declared
in the IScheduler trait. It is invoked on the scheduler instance that is
used to execute the current actor (this). managedBlock takes an instance
of ManagedBlocker as an argument. You use the ManagedBlocker trait to

Cover - Overview - Contents - Discuss - Suggest - Index

113

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=113

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.2

Chapter 7 - Customizing Actor Execution

import
import
import
import

object

scala.actors.Actor
scala.actors.Actor._
scala.concurrent.ManagedBlocker
java.util.concurrent.CountDownLatch

ManagedBlocking {

class BlockingActor(i: Int, latch: CountDownLatch)
extends Actor {
val blocker = new ManagedBlocker {
def block() = { latch.await(); true }
def isReleasable = { latch.getCount == 0 }

}
def act() {
scheduler .managedBlock(blocker)
println("actor " + i + " done")
}
¥

def main(args: Array[String]) {
val numCores = Runtime.getRuntime().availableProcessors()
println(“available cores: " + numCores)

val latch = new CountDownLatch(1)
for (1 <- 1 to (numCores = 2))
(new BlockingActor(i, latch)).start()

actor { latch.countDown() }

Listing 7.7 - Using managed blocking to prevent thread-pool lock up.

Cover - Overview - Contents - Discuss - Suggest - Index

114

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=114

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.2 Chapter 7 - Customizing Actor Execution

wrap blocking operations in a way that allows the underlying thread pool
to choose when and how to invoke that operation. The trait contains the
following two methods:

e def block(): Boolean

e def isReleasable: Boolean

The two methods are supposed to be implemented in the following way:
The block method invokes a method that possibly blocks the current thread.
The underlying thread pool makes sure to invoke block only in a context
where blocking is safe; for instance, if there are no idle worker threads left,
it first creates an additional thread that can process submitted tasks in the
case all other workers are blocked. The Boolean result indicates whether the
current thread might still have to block even after the invocation of block has
returned. In most cases, it is sufficient to just return true, which indicates
that no additional blocking is necessary. The isReleasable method, like
block, indicates whether additional blocking is necessary. Unlike block, it
should not invoke possibly blocking operations itself. Moreover, it can (and
should) return true even if a previous invocation of block returned false,
but blocking is no longer necessary.

The implementations of block and isReleasable in Listing 7.7 are
straightforward. The block method simply invokes latch.await and re-
turns true after that; clearly, once await has returned no additional blocking
is necessary. In our implementation of isReleasable, we use the getCount
method of CountDownLatch to determine whether the call to await has al-
ready unblocked the thread or not. Running the program extended with man-
aged blocking in this way shows that the pool no longer locks up.

Managed blocking and receive

The receive method allows actors to receive messages in a thread-based
way. This means that you can use receive just like any other possibly block-
ing operation. This is unlike the react method, which is more lightweight,
but also more restricted. (Chapter 5 showed how to do event-based program-
ming using react.) Since receive uses standard JVM monitors under the
hood, it has the same potential problems as any other blocking code when in-
voked from within actors. However, since all variants of receive are imple-
mented in objects and types in the scala.actors package, it uses managed

Cover - Overview - Contents - Discuss - Suggest - Index

115

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=115

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 7.2 Chapter 7 - Customizing Actor Execution

blocking internally to avoid thread pool lock-ups. Consequently, there is no
need to wrap invocations of receive in ManagedBlockers in user code.

Cover - Overview - Contents - Discuss - Suggest - Index

116

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=116

Prepared for C. Doppler Laboratory Embedded Software Systems

Chapter 8

Remote Actors

Scala actors can communicate with each other not only within the same JVM
address space, but also across virtual machines, and even across network
nodes. To explain the constructs involved in using remote actors, in this
chapter we will revisit the chat example application of Chapter 4. You will
learn how to create remote actors, and how to address and communicate
between remote actors.

The chat application of Chapter 4 creates an actor that is responsible for
managing a chat room. Clients send various types of messages to the chat
room actor, such as Subscribe and Unsubscribe messages. By making the
chat room actor remotely accessible, the chat service can be used across a
network.

8.1 Creating remote actors

Listing 8.1 shows how to turn the chat room actor into a remote actor. First,
the actor runtime system needs to be informed that the actor wants to en-
gage in remote communication with other actors. You do this by invoking
the alive method of the RemoteActor object. It requires specifying a port
number that is used to listen for incoming Transmission Control Protocol
(TCP) connections. Actors running on different machines in the network use
this port number to obtain a remote reference to the chat room actor.

The port number is not enough to uniquely identify the actor, however;
several remote actors may be accessible via the same port. Therefore, remote
actors must be registered under a name that is unique for a given port number
by using the register method of RemoteActor:

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=117

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 8.1 Chapter 8 - Remote Actors

import scala.actors.Actor
import Actor._
import scala.actors.remote.RemoteActor.{alive, register}

class ChatRoom extends Actor {

def act() {
alive(9000)
register('chatroom, self)
loop {
receive {
case Subscribe(user) => // handle subscriptions
case Unsubscribe(user) => // handle unsubscriptions
case UserPost(user, post) => // handle user posts
}
}

Listing 8.1 - Making the chat room actor remotely accessible.

def register(name: Symbol, a: Actor): Unit

The method expects two arguments: The first argument is the name under
which the actor should be registered. The second argument is the actor that
should be registered; in the example in Listing 8.1, it is simply self. Subse-
quently, you can obtain a remote reference to the chat room actor using the
port number, the IP address of the machine on which the actor is running,
and the name under which it is registered on that machine.

Note that you can change the name under which an actor is registered by
repeatedly invoking register, passing different symbols. However, at any
point in time an actor is registered under a single name only. The most recent
invocation of register “wins.”

Messages for remote communication

To communicate with the chat room, messages must be serialized and sent
over the network. Therefore, the message classes need to be serializable.
Fortunately, the message classes defined in Listing 4.1 are all case classes,
which are serializable by default.

Cover - Overview - Contents - Discuss - Suggest - Index

118

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=118

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 8.2 Chapter 8 - Remote Actors

8.2 Remote communication

The chat room actor can now receive messages from actors running on dif-
ferent nodes on the network. Howeyver, its clients first have to obtain a remote
reference to it. You can obtain such a reference using the select method of
the RemoteActor object:

def select(node: Node, sym: Symbol): AbstractActor

The first argument is a Node instance that specifies the IP address and port
number of the target node. The second argument is the target actor’s name.
Invoking select returns an object of type AbstractActor. You can think
of AbstractActor as a trait that contains all the functionality of Actor ex-
cept for methods that are not supported by remote actors, such as start,
restart, and getState.

Node is a case class defined as follows:

case class Node(address: String, port: Int)

For example, let’s select the chat room actor running on the local node on
port 9000:

val chatRoom = select(Node("127.0.0.1", 9000), 'chatroom)

You can then use the AbstractActor reference that select returns to com-
municate with the chat room using the usual message send operations:

chatRoom ! Subscribe(User("Alice"))
chatRoom !? Subscribe(User("Bob"))
val future = chatRoom !! Subscribe(User("'Charly"))

Just like with local actors, in all the above cases the remote actor implicitly
receives a reference to the sending actor. As before, the remote actor can
access the reference via the sender method of the Actor object. This means
that the chat room actor’s code to process incoming messages does not have
to change.

Selecting an actor using a name that has no actor registered on the target
node will not cause the select invocation to fail (by throwing an exception,
say). Instead, the AbstractActor reference returned by select is lazy (or
delayed) in the sense that no attempt to communicate with the remote node

Cover - Overview - Contents - Discuss - Suggest - Index

119

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=119

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 8.3 Chapter 8 - Remote Actors

is made at that point. The select method merely creates a proxy object that
forwards all messages it receives to the remote actor. Sending a message to a
remote actor (or rather, its proxy) will result in a lost message if the symbol
passed to select is not registered with an existing actor on the target node.

Linking to remote actors An actor can link itself to a remote actor just like
a local actor. It does not matter whether the receiver of a 1ink invocation
is local or remote. Reacting to the termination of linked remote actors is
unchanged compared to the non-remote case, as discussed in Chapter 6.

8.3 A remote start service

In a distributed application, it is often useful to have a parent actor manage
several child actors that run on different nodes on the network. Moreover,
the number of child actors usually is not fixed when the application (or the
parent actor) starts; instead, the parent actor must be able to start child actors
dynamically (depending on input data, the state of the application, and so
forth). This design typically requires a service that allows you to start actors
remotely. Using such a remote start service, a parent actor can start new child
actors on nodes different from its own node. In this section, we will explain
how to implement such a remote start service.

We can model our remote start service as a remote actor that responds to
the following two types of messages:

case class Start(clazz: Class[_ <: Actor])
case object Stop

An instance of the Start case class should instruct the remote start ser-
vice to create and start an actor of the type specified by the clazz argu-
ment. Instances of type Class[_ <: Actor] are runtime representations of
classes that extend the Actor trait. In general, we can use an object of type
Class[A] to create instances of class A.! This means that we can use the
argument of a Start message to create Actor instances, which we can then
start on the remote node. The Stop case object is a message instructing the
remote start service to terminate itself.

1Java’s reflection framework adds the constraint that the instantiated class type must
define a no-argument constructor.

Cover - Overview - Contents - Discuss - Suggest - Index

120

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=120

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 8.3 Chapter 8 - Remote Actors

class Server extends Actor {
var numStarted = 0
def act() {
alive(19000)
register('server, this)
println("remote start server running...'")
loop {
react {
case Start(clazz) =>
val a: Actor = clazz.newInstance()
a.start()
numStarted += 1
reply()
case Stop =>
println('remote start server started " +
numStarted + remote actors")

exit()

Listing 8.2 - A server actor implementing a remote start service.

Listing 8.2 shows a Server actor that implements a basic remote start
service. Inside the act method we use alive and register to make the
actor remotely accessible on port 19000 under the name 'server. After that
the actor loops, reacting to the above Start and Stop messages. When the
next message matches the Start(clazz) pattern, we create a new instance
of the Actor subclass that clazz represents by invoking newInstance. The
object returned by newInstance has type Actor since the type parameter in
the clazz type is constrained to be an Actor subtype. After starting the new
actor, the remote start actor replies to the sender of the Start message; this
is because Start messages are supposed to be sent synchronously, which
ensures that the new actor has been started when the synchronous message
send completes.

Listing 8.3 shows an EchoActor class that is suitable for remote starting.

Cover - Overview - Contents - Discuss - Suggest - Index

121

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=121

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 8.3 Chapter 8 - Remote Actors

class EchoActor extends Actor {

def act() {
alive(19000)
register('echo, this)
react {
case any => reply("echo: " + any)
}
b

Listing 8.3 - An echo actor that you can start remotely.

To be able to interact with new EchoActor instances remotely, we use the
alive and register methods as in previous examples. Note that calling
alive twice on the same node with the same port number argument has no
effect. This is important, since the alive invocation of a new EchoActor
instance will be called while running on the same node as the Server actor.
Let’s use our remote start service to start a new EchoActor:

val server = select(Node("localhost", 19000), 'server)
server !? Start(classOf[EchoActor])

val echo = select(Node("localhost", 19000), 'echo)
val resp = echo !? "hello"

println("remote start client received " + resp)

First, we obtain the server remote reference to the remote start service using
select. To start a new instance of EchoActor on the node that runs the
remote start service, we send a Start(classOf[EchoActor]) message to
the server. Then we can reference the remotely started actor using select
with the name that the EchoActor used to register itself on the remote node.
The echo reference is a normal remote actor reference; as expected, running
the above code results in the following message printed to the console:

remote start client received echo: hello

Cover - Overview - Contents - Discuss - Suggest - Index

122

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=122

Prepared for C. Doppler Laboratory Embedded Software Systems

Chapter 9

Distributed and Parallel Computing

The Scala Actors API puts a powerful, yet simple, parallel computing frame-
work built on top of the JVM at your disposal. This chapter illustrates how to
accomplish some common parallel and distributed computing tasks with ac-
tors. In particular, we focus on two patterns that are useful in many applica-
tions: MAPREDUCE and reliable broadcasting. MAPREDUCE is a paradigm
for parallel and distributed programming that has been established as a de
facto standard to accomplish a wide variety of tasks, such as hypertext docu-
ment processing, machine learning, and data mining. Reliable broadcasting,
on the other hand, is often necessary in distributed applications where ma-
chines in a cluster can fail due to hardware outages or communication delays.

9.1 MapReduce

MAPREDUCE is a parallel computing framework originally developed at
Google to simplify programming large-scale distributed computations while
providing fault tolerance and excellent scalability.' MAPREDUCE simplifies
parallel programming, since the programmer does not have to manage paral-
lelism explicitly. Instead, the MAPREDUCE framework takes care of creating
parallel tasks, synchronizing them, and distributing the workload. Moreover,
a MAPREDUCE implementation also typically provides fault tolerance. This
means that you can successfully complete a MAPREDUCE computation even
if some machines in the cluster fail to compute or communicate their results.

'Dean and Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”
[Dea08]

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=123

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.1 Chapter 9 - Distributed and Parallel Computing

MapReduce history Why was MAPREDUCE invented at Google? Jeffrey
Dean and Sanjay Ghemawat, the Google engineers that invented MAPRE-
DUCE, recount that the abstraction emerged after they had written hundreds
of special-purpose computations to process large amounts of raw data, such
as crawled web pages, web server logs, efc. While the computations per-
formed on the data were simple, the input data was so large that the compu-
tation had to be performed in parallel if it was to finish within a reasonable
amount of time.

Google’s data centers do not consist of expensive supercomputers. In-
stead, they are populated with large clusters of inexpensive commodity hard-
ware; typically, Linux desktop machines connected via an ethernet network.
Computations thus needed to be parallelized for a distributed environment in
which network bandwidth is scarce and machine failures are common.

As aresult, the simplicity of the computations was lost in the complexity
of recurring issues, such as how to distribute the data, how to parallelize the
computation across machines, how to deal with load imbalance, machine
failures, and so on. Inspired by the map and reduce higher-order func-
tions from functional programming, Dean and Ghemawat identified a way
to separate the computation-specific parts into higher-order functions. The
programmer supplies just these functions, and the MAPREDUCE framework
calls them on an appropriate machine with part of the input data, hiding most
of the complexity of the parallel and distributed computing environment.
MAPREDUCE truly is a success story based on the principles of higher-order
functional programming.

Let’s look at a concrete example that is amenable to parallel processing.
Consider the task of building an inverted index for a collection of text files.
You can use an inverted index to quickly look up the files in which a given
word occurs. To create such an index, you must “invert” the mapping from
files to their contents (hence, the name “inverted index”). Our strategy for
building it is as follows: For each file f, we will create a list that contains
pairs, (word, f), where word is a word occurring in f. This means that each
of these lists contains pairs that all have the same second component—the
file in which the word occurs. In the next step, we will go through all of the
lists, and fill a Map that maps words to lists of files in which they occur; the
file lists should not contain duplicates. The reason why we first create lists
of word/file pairs (instead of directly building the Map) is that this allows us
to parallelize the task; each file can be processed in parallel to create the
intermediate lists.

Cover - Overview - Contents - Discuss - Suggest - Index

124

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=124

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.1 Chapter 9 - Distributed and Parallel Computing

def invertedIndex(input: List[(File, List[String])]) = {
val master = self
val workers = for ((file, words) <- input) vyield
actor {
val wordsAndFiles = for (word <- words) yield (word, file)
master ! Intermediate(wordsAndFiles)

}

var intermediates = List[(String, File)]()
for (_ <- 1 to input.length)
receive {
case Intermediate(list) => intermediates :::= list

}

var dict = Map[String, List[File]]() withDefault (k => List())
for ((word, file) <- intermediates)
dict += (word -> (file :: dict(word)))
var result = Map[String, List[File]]()
for ((word, files) <- dict)
result += (word -> files.distinct)

result

Listing 9.1 - A function for building an inverted index.

Listing 9.1 shows a parallel implementation using actors. For each file
in the input list, we create a worker actor. A worker generates the list of
word/file pairs, and sends them in an Intermediate message back to the
master actor (master is the actor invoking the invertedIndex method).
The Intermediate class is defined as follows:

case class Intermediate(list: List[(String, File)])

The master actor concatenates all the intermediate results it receives that
yield a list of type List[(String, File)]. The word/file pairs in this list
are inserted into a Map, so that each word maps to a list of files in which
it occurs. Finally, we remove duplicates from these file lists, yielding the
result map that represents our inverted index (the inferred result type of
the invertedIndex method is Map[String, List[File]]).

Cover - Overview - Contents - Discuss - Suggest - Index

125

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=125

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.1 Chapter 9 - Distributed and Parallel Computing

The parallel construction of our inverted index follows a certain pattern
that, as it turns out, is useful for many applications. Let’s walk through that
pattern step-by-step. In the first step, a function—Iet’s call it the mapping
function—is applied to each pair in the input list in order to produce another
list of pairs.

In the example, we generate for each input pair of type (File,
List[String]) a list of pairs of type (String, File)—each pair asso-
ciates a word with the file in which it occurs. We can encapsulate just this
computation in the following function:

def mapIndex(file: File, words: List[String]) =
for (word <- words) yield (word, file)

(The inferred result type of mapIndexis List[(String, File)]). You can
apply the mapping function (mapIndex or some other function) in parallel
by creating a worker actor for each input pair:

val workers = for ((key, value) <- input) vield
actor {
master ! Intermediate(mapping(key, value))

}

Note that we changed the code to call the generic mapping function to pro-
duce the list of intermediate pairs. Moreover, we renamed the components of
an input pair, replacing (file, words) with (key, value). The reason is
that besides factoring out the mapping function, this “mapping stage” can be
generalized further to operate on arbitrary inputs of type List[(K, V)]. The
type of the intermediate output pairs can be generic, too. Instead of always
producing a List[(String, File)], a mapping function may produce a
List[(K2, V2)]. Taken together, the generic mapping function has type
(K, V) => List[(K2, V2)].

The next step is to collect the intermediate results sent to the master
actor in Intermediate messages:

var intermediates = List[(K2, V2)]1()
for (_ <- 1 to input.length)
receive {
case Intermediate(list) => intermediates :::= list

Cover - Overview - Contents - Discuss - Suggest - Index

126

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=126

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.1 Chapter 9 - Distributed and Parallel Computing

After we apply the mapping function to each input pair (a file paired with its
contents), we group the intermediate output pairs by their first component,
inserting them into a Map:

var dict = Map[K2, List[V2]]() withDefault (k => List())
for ((key, value) <- intermediates)
dict += (key -> (value :: dict(key)))

Subsequently, the intermediate results that have been grouped by their key
are further processed using a function—Ilet’s call it the reducing function—
to yield the final result.

In the example, the list of files corresponding to each word is reduced by
removing duplicates. Again, it is easy to define a function that encapsulates
just this reduction step:

def reduceIndex(key: String, files: List[File]) =
files.distinct

The reducing function is applied to each entry in the dict map of interme-
diate results, yielding the result map:

var result = Map[K2, List[V2]]1()
for ((key, value) <- dict)
result += (key -> reducing(key, value))

According to its use in the above reduction step, the reducing function has
type (K2, List[V2]) => List[V2].

Listing 9.2 shows a generic function, called mapReduce, that implements
the parallel programming pattern that we just described. As its name sug-
gests, it is a basic (in-memory) MAPREDUCE implementation.

Note that we have moved the declaration of the Intermediate case class
into the method body. The reason is that this allows us to recover more
type information when pattern matching on Intermediate messages. Let’s
see what happens if Intermediate is defined outside the mapReduceBasic
method, like this:

case class Intermediate[K2, V2](list: List[(K2, V2)])

Now, when pattern matching against an Intermediate instance, an instan-
tiation of the type parameters has to be found. When matching against

Cover - Overview - Contents - Discuss - Suggest - Index

127

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=127

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.1 Chapter 9 - Distributed and Parallel Computing

def mapReduceBasic[K, V, K2, V2](
input: List[(K, V)],
mapping: (K, V) => List[(K2, V2)],
reducing: (K2, List[V2]) => List[V2]
): Map[K2, List[V2]] = {
case class Intermediate(list: List[(K2, V2)])

val master = self
val workers = for ((key, value) <- input) vyield
actor {
master ! Intermediate(mapping(key, value))

}

var intermediates = List[(K2, V2)]1()
for (_ <- 1 to input.length)
receive {
case Intermediate(list) => intermediates :::= list

}

var dict = Map[K2, List[V2]]() withDefault (k => List())
for ((key, value) <- intermediates)
dict += (key -> (value :: dict(key)))

var result = Map[K2, List[V2]](Q)
for ((key, value) <- dict)

result += (key -> reducing(key, value))
result

Listing 9.2 - A basic MAPREDUCE implementation.

Cover - Overview - Contents - Discuss - Suggest - Index

128

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=128

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.1 Chapter 9 - Distributed and Parallel Computing

Intermediate messages received inside mapReduceBasic, K2 and V2 are
both instantiated to Any. As a result, we get the following type error:

: error: type mismatch;

found : List[(Any, Any)]
required: List[(K2, V2)]
case Intermediate(list) => intermediates :::= list

one error found

By moving the definition of the Intermediate class into the method body,
the type of its 1ist argument is List[(K2, V2)], where K2 and V2 are
no longer generic, but fixed to the type arguments of the enclosing method.
Then, in the pattern match, 1ist has type List[(K2, V2)], which makes it
compatible with the type of the intermediates list.

Parallel reductions We can improve the basic MAPREDUCE implemen-
tation shown above by parallelizing the reduction stage in addition to the
mapping stage. Listing 9.3 shows how to modify our previous implemen-
tation to apply the reducing function in parallel. Similar to the mapping
stage, we create an actor for each key in the dict map. The actor applies
the reducing function to the key and the values with which the key is as-
sociated in dict. The result is sent to the master actor in a message of
type Reduced. The master collects these messages like the Intermediate
messages before; this time yielding the final result map.

Now that we have parallelized the reduction stage, we’ll summarize the
basic execution model of MAPREDUCE:

* The MAPREDUCE computation is supervised by a single actor, called
the master.

* Input data is represented as a list of “records,” represented here as
pairs of type (K, V). The master partitions the input data across a set
of “mapper” workers.

» Each mapper worker is a separate actor that applies the mapping func-
tion to a different part of the input data in parallel. For each input pair
(k, v), a mapper generates a new list of pairs, which may be of a
different type (K2, V2).

Cover - Overview - Contents - Discuss - Suggest - Index

129

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=129

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.1 Chapter 9 - Distributed and Parallel Computing 130

def mapReduce[K, V, K2, V2](
input: List[(K, V)],
mapping: (K, V) => List[(K2, V2)],
reducing: (K2, List[V2]) => List[V2]
): Map[K2, List[V2]] = {
case class Intermediate(list: List[(K2, V2)])
case class Reduced(key: K2, values: List[V2])

/] ...
val reducers = for ((key, values) <- dict) vyield
actor {
master ! Reduced(key, reducing(key, values))
}

var result = Map[K2, List[V2]]()
for (_ <- 1 to dict.size)
receive {
case Reduced(key, values) =>
result += (key -> values)

}

result

Listing 9.3 - Applying the reducing function in parallel.

* The master collects the intermediate results of the mapping stage and
then sorts this data according to the intermediate key type K2.

* For each such key, the master asks a “reducer” worker to reduce the
list of values of type V2. Again, each reducer is a separate actor that
can perform this step in parallel. Reducers may return a List[V2],
but it is not uncommon for this list to contain a single, reduced value.

* The master collects the reduced V2 values and simply combines them
in a result Map.

Figure 9.1 illustrates the flow of data between master, mapper, and re-
ducer actors for the inverted index example.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=130

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.1 Chapter 9 - Distributed and Parallel Computing

assign work collect reduced
to mappers collect and sort assign work values

* according to K2 to reducers ¢

input Mapper intermediate output

] vi= K2= | V2= K= | V2=
= P [(w1,f1)] R r)[f1,f2
Ki=File | | istFile] String | List[File] educer)12 string | ListiFie]

1 [wi] wi | [wi | .2
f2 [wi,w2] T(w1,12); w2 2,3
w Reducer o [f2,13]

w2 | [f2.13,63]
3 | waw2l (2.2)]

[(w2,f3),
(w23)]

map stage reduce stage

Figure 9.1 - Data flow in a basic MAPREDUCE implementation.

Fault-tolerance Our basic implementation of MAPREDUCE is not fault-
tolerant; that is, it cannot tolerate the failures of either the master actor or
any of the mapper or reducer worker actors. If a worker crashes, the master
will block waiting for a reply indefinitely.

In our example implementation, since we are assuming a shared-memory
environment, chances are that a system failure will bring all of the actors to
a halt. However, in a distributed MAPREDUCE implementation, the master
and workers execute on different machines. In such an environment, partial
failure, for example, a single machine failure, can be common. Therefore,
let us extend our sample implementation to at least tolerate worker failures.

We will use the mechanisms described in Section 6.2 to implement fault
tolerance: The master actor will link itself to all of the workers it spawns,
and is configured to trap exits (using self.trapExit = true). This causes
the worker actors to send a special Exit message to the master when they
terminate, allowing the master to identify crashed workers.

Listing 9.4 extends the basic MAPREDUCE implementation shown in
Listing 9.2 with this fault-tolerance mechanism. Notice that the mapper ac-
tors are spawned using link instead of actor such that they are automati-
cally linked to the master actor.

For each spawned worker, the master also keeps track of what key-value
pair it assigned to that worker. When a worker terminates with an abnormal
reason, the master looks up what pair it assigned to the terminated worker
and spawns a new worker to process the same input. When a worker termi-
nates with a 'normal reason, the master decrements a count identifying the

Cover - Overview - Contents - Discuss - Suggest - Index

131

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=131

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.1

Chapter 9 - Distributed and Parallel Computing

def mapreduce[K, V, K2, V2](

input: List[(K, V)],
mapping: (K, V) => List[(K2, V2)],
reducing: (K2, List[V2]) => List[V2]

: Map[K2, List[V2]] = {

case class Intermediate(list: List[(K2, V2)])
case class Reduced(key: K2, values: List[V2])

val master = self
self.trapExit = true
var assignedMappers = Map[Actor, (K, V)IQ)

def spawnMapper(key: K, value: V) = {
val mapper = link {
master ! Intermediate(mapping(key, value))
}
assignedMappers += (mapper -> (key, value))
mapper

}

for ((key, value) <- input)
spawnMapper (key, value)

var intermediates = List[(K2, V2)]()

var nleft = input.length

while (nleft > 0)
receive {

case Intermediate(list) => intermediates ::

case Exit(from, 'normal) => nleft -= 1
case Exit(from, reason) =>

// retrieve assigned work

val (key, value) = assignedMappers(from)

;= list

// spawn new worker to re-execute the work

spawnMapper (key, value)

}
/] ...

Listing 9.4 - A MAPREDUCE implementation that tolerates mapper faults.

Cover - Overview - Contents - Discuss - Suggest - Index

132

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=132

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.1 Chapter 9 - Distributed and Parallel Computing

number of outstanding jobs. When that number becomes zero, the master
knows that all workers (either the original or restarted ones) have finished.

Our technique of simply re-executing a failed mapping is sound as long
as the mapping function is really a function; that is, if it has no side effects.
Otherwise, failures may affect the outcome of a MAPREDUCE computation.
As Scala provides the right building blocks to program in a functional style,
restricting yourself to a purely functional subset to implement the mapping
and reducing functions is usually not a problem.

Another point worth mentioning is that this simple re-execution strategy
does not cope with deterministic errors. Say, for example, that there is a
bug in the mapping function that only manifests itself for particular values
of type K. The bug may cause an exception, terminating the worker. In this
case, simply starting a new worker to process the same input will cause the
exception again, leading to endless re-execution and no progress for the mas-
ter. Actual MAPREDUCE implementations deal with such cases by skipping
over such “bad” input data, giving up after a few retries. This makes sense,
since MAPREDUCE is typically used for workloads where the loss of a little
input data can still lead to a useful answer (for example, indexing, search,
data mining, and so on).

Note that even in this extended implementation, the master is still a single
point of failure: If it crashes, the entire MAPREDUCE computation is brought
to a halt. If the chance of a master failure is small and the MAPREDUCE
computation is not too large, it may not be worth dealing with this case.
Otherwise, you have to either replicate the master, or periodically checkpoint
the state of the master to persistent storage, but these techniques are beyond
what we can address in this chapter.

Coarse-grained worker tasks In our previous MAPREDUCE implementa-
tions, a new mapper actor is spawned for each input key K and a new reducer
actor is spawned for each intermediate key K2. When the input data is large
(for example, when indexing thousands of files, each containing thousands
of words), this simple strategy may introduce too much overhead. To reduce
this overhead, we can make the tasks assigned to the mapper and reducer
workers more coarse-grained by having each of them process multiple key-
value pairs.

Listing 9.5 builds on the MAPREDUCE implementation from Listing 9.3
and adds support for coarse-grained tasks. The coarse-grained implementa-

Cover - Overview - Contents - Discuss - Suggest - Index

133

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=133

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.2 Chapter 9 - Distributed and Parallel Computing

tion takes two extra arguments: numMappers, the number of parallel mapper
workers to spawn; and numReducers, the number of parallel reducer workers
to spawn.

The magic of this implementation is hidden inside a useful function from
the Scala Seq API: grouped. Calling grouped(n) on a sequence returns a
new sequence, which returns elements from the original sequence that are
grouped in groups of size n. To create more coarse-grained tasks, we split
the input and the intermediate data into groups of an appropriate size, and
then spawn a worker actor per group. Each such worker processes all key-
value pairs in its assigned group.

To ensure that we spawn only numMappers mappers, it suffices to group
the input data into groups of size input.length / numMappers. For ex-
ample, if numMappers is 10 and we need to process 5000 files, then each
mapper will need to process 500 pairs. Similarly, we partition the dic-
tionary dict containing the sorted intermediate data into groups of size
dict.size / numReducers. If the size of the data is not exactly divisi-
ble by the required number of workers, the last group returned by grouped
will contain fewer elements, so the last worker will get assigned less work.

Our simple strategy of dividing work equally among the workers is fine
as long as the amount of processing to be done is approximately the same
for all keys. Actual MAPREDUCE implementations will often employ more
elaborate data distribution techniques to balance the load between the work-
ers at runtime if the work is not evenly distributed.

9.2 Reliable broadcast

When building a distributed application, it is often necessary that more than
two actors operate in a coordinated manner. For example, you may want to
ensure that all or none of your remote actors carry out some action while
providing a way to handle the error case. If a set of remote actors should
save their internal state to a database, for instance, then typically you want
all or none of them to do it so that there is always a consistent view persisted
to the database.

Basic broadcasting

You can instruct a number of actors to carry out some action by broadcasting
a message to these actors. Listing 9.6 shows a simple broadcast implementa-

Cover - Overview - Contents - Discuss - Suggest - Index

134

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=134

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.2 Chapter 9 - Distributed and Parallel Computing

def coarseMapReduce[K, V, K2, V2](
input: List[(K, V)],
mapping: (K, V) => List[(K2, V2)],
reducing: (K2, List[V2]) => List[V2],
numMappers: Int, numReducers: Int): Map[K2, List[V2]] = {
case class Intermediate(list: List[(K2, V2)])
case class Reduced(key: K2, values: List[V2])

val master = self
for (group <- input.grouped(input.length / numMappers))
actor {
for ((key, value) <- group)
master ! Intermediate(mapping(key, value))

}

var intermediates = ...

var dict = Map[K2, List[V2]]() withDefault (k => List())
for ((key, value) <- intermediates)
dict += (key -> (value :: dict(key)))
for (group <- dict.grouped(dict.size / numReducers))
actor {
for ((key, values) <- group)
master ! Reduced(key, reducing(key, values))

}

var result = Map[K2, List[V2]]()
for (_ <- 1 to dict.size)
receive {
case Reduced(key, values) =>
result += (key -> values)

}

result

Listing 9.5 - MAPREDUCE with coarse-grained worker tasks.

Cover - Overview - Contents - Discuss - Suggest - Index

135

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=135

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.2 Chapter 9 - Distributed and Parallel Computing 136

abstract class BroadcastActor extends Actor {
// can be set by external actor, therefore @volatile
@volatile var isBroken = false
private var canRun = true
private var counter = OL

protected def broadcast(m: BSend) = if (!isBroken) {
for (a <- m.recipients) a ! BDeliver(m.data)

} else if (canRun) {
canRun = false // simulate it being broken
for (a <- m.recipients.take(2)) a ! BDeliver(m.data)
println("error at " + this)

}

// to be overridden in subtraits
protected def reaction: PartialFunction[Any, Unit] = {
case BCast(msg, recipients) =>
counter += 1
broadcast(BSend(msg, recipients, counter))
case 'stop =>
exit()
}

def act = loopWhile (canRun) { react(reaction) }

Listing 9.6 - Best-effort broadcasting.

tion. First, we define a BroadcastActor that implements act in a way that
allows the actor to react to messages of type BCast and the special 'stop
message, which causes the actor to terminate. The BCast case class is de-
fined as follows:

case class BCast(data: Any, recipients: Set[Actor])

A BCast message tells the actor to send some data to a set of actors spec-
ified in the message. Note how the message handlers are defined using the
reaction member, which is a partial function that is passed to react in-
side the act method. This has the advantage that subclasses can override
reaction to handle additional message patterns while inheriting some of

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=136

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.2 Chapter 9 - Distributed and Parallel Computing

the message handling logic from the super-trait. The broadcast method
implements the actual message sending. broadcast is invoked passing a
BSend message that contains the data, the set of recipients, and a time stamp
(initially, we will not use the time stamp, though):

case class BSend(data: Any, recipients: Set[Actor],
timestamp: Long)

To make things more interesting, we allow an actor to be “broken,” which
is expressed using the volatile isBroken field (the field is volatile to safely
allow changing its value from a different actor). A broken broadcast actor
fails to send the message to all of the recipients. The actual data is wrapped
in a message of type BDeliver, which is defined as follows:

case class BDeliver(data: Any)

A BDeliver message indicates to the recipient that the data was delivered
using a broadcast.

class MyActor extends BroadcastActor {
override def reaction = super.reaction orElse {
case BDeliver(data) =>
println(''Received broadcast message: " +
data + " at " + this)

Listing 9.7 - Using the broadcast implementation in user code.

To use the broadcast implementation in actual user code, we extend the
BroadcastActor and override its reaction member, as shown in List-
ing 9.7. The message handling logic of BroadcastActor must be enabled
alongside the new handler for BDeliver messages. To do this, we com-
bine super.reaction with the new handler using orElse. As a result,
MyActor instances respond to Broadcast and 'stop messages, as defined
in BroadcastActor, in addition to BDeliver messages.

Let’s try out this basic broadcast implementation:

val al = new MyActor; al.start()
val a2 = new MyActor; a2.start()

Cover - Overview - Contents - Discuss - Suggest - Index

137

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=137

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.2 Chapter 9 - Distributed and Parallel Computing

val a3 new MyActor; a3.start()
val a4 = new MyActor; a4.start()
al ! Broadcast("Hello!", Set(al, a2, a3, a4))

As expected, running the above code will produce output like the following:

Received broadcast message: Hello! at MyActor@3c3c9217
Received broadcast message: Hello! at MyActor@l5af33d6
Received broadcast message: Hello! at MyActor@54520eb
Received broadcast message: Hello! at MyActor@2c9b42e6

However, let’s try and set actor al’s isBroken field to true and initiate
another broadcast:

al.isBroken = true
al ! Broadcast('"Hello again!", Set(al, a2, a3, a4))

Then, the output will look differently:

error at MyActor@l5af33d6
Received broadcast message: Hello again! at MyActor@2c9b42e6

In the above run, only one other actor besides al itself received the “Hello
again!” message, because al failed before sending out more messages. In
an actual distributed application, the reason could be a machine failure or a
network link that is down. To guarantee that all or no recipients receive the
broadcast message, it is necessary to implement a reliable broadcast.

Reliable broadcasting

To make the message broadcasting reliable, we will extend our code to im-
plement an algorithm known as eager reliable broadcast. The idea of this
algorithm is that every recipient of a broadcast message should forward that
message to every other recipient. Since the forwarding should be done re-
gardless of any failure, broadcasting is eager.

We’ll extend BroadcastActor as shown in Listing 9.8. An RbActor
keeps track of the BSend messages that it has received using the delivered
set. When it receives a BSend, the actor checks whether it has already pro-
cessed that message by testing the condition delivered.contains(m) is
true (since after processing a BSend message, it is added to the delivered
set). If the actor receives a fresh BSend message, it’ll invoke broadcast to

Cover - Overview - Contents - Discuss - Suggest - Index

138

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=138

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.2 Chapter 9 - Distributed and Parallel Computing

class RbActor extends BroadcastActor {
var delivered = Set[BSend]()
override def reaction = super.reaction orElse {
case m @ BSend(data, _, _) =>
if (!delivered.contains(m)) {
delivered += m
broadcast(m)
this ! BDeliver(data)

Listing 9.8 - A reliable broadcast actor.

protected def broadcast(m: BSend) = if (!isBroken) {
for (a <- m.recipients) a ! m

} else if (canRun) {
canRun = false // simulate it being broken
for (a <- m.recipients.take(2)) a ! m
println("error at " + this)

}

Listing 9.9 - Sending messages with time stamps.

send it to all recipient actors. Moreover, it’ll send itself a BDeliver message,
indicating that it received the data via a reliable broadcast.

It is crucial here that each BSend message contains a time stamp. The
time stamp is set in the BroadcastActor. The time stamp lets us identify
to which broadcast a particular BSend message belongs. The messages for-
warded by each RbActor do not change that time stamp. This way, each
actor knows when it has already received a broadcast message, in which
case it does not forward it further. However, for the RbActor to work prop-
erly we need to slightly change the implementation of the BroadcastActor.
Basically, it is no longer sufficient to send a BDeliver message inside the
broadcast method. The reason is that the RbActor needs to receive BSend
messages, since only those contain time stamps. Therefore, we have to
change the broadcast method accordingly; this is shown in Listing 9.9.

Cover - Overview - Contents - Discuss - Suggest - Index

139

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=139

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 9.2 Chapter 9 - Distributed and Parallel Computing

As you can see, the BroadcastActor now simply sends the BSend mes-
sages to the recipients (a ! m), instead of sending a BDeliver message that
only contains the data (a ! BDeliver(m.data)).

Having made these changes, let’s re-run our client code. Before we can
do that, however, we first have to change MyActor to extend RbActor instead
of BroadcastActor:

class MyActor extends RbActor {
override def reaction = super.reaction orElse {
case BDeliver(data) =>
println(“Received broadcast message:
data + " at " + this)

+

}

Running our short test code from above (setting al.isBroken to true)
should now produce output like the following:

error at MyActor@28e70e30

Received broadcast message: Hello again! at MyActor@5954864a
Received broadcast message: Hello again! at MyActor@3c3c9217
Received broadcast message: Hello again! at MyActor@l1ff82982

As you can see, even though actor al failed after sending the broadcast mes-
sage to itself and actor a2, actors a3 and a4 also received the message. The
reason is that a2 sent the BSend message it received from al to all of its
recipients, which includes a3 and a4. In fact, we can prove mathematically
that the strategy of eager reliable broadcast will deliver a message to all or
no recipients, provided the network communication between actors is based
on a reliable transport protocol, such as TCP, which Scala’s remote actors
use by default.

Cover - Overview - Contents - Discuss - Suggest - Index

140

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=140

Prepared for C. Doppler Laboratory Embedded Software Systems

Chapter 10

Akka Actors

Akka is a new actor-based framework for Scala that aims to provide a com-
prehensive tool set for robust cloud computing. Its main inspirations are
Erlang and Scala actors. However, compared to Scala actors it makes differ-
ent design decisions in several places, based upon its main target application,
middleware for clusters, and the cloud. This chapter introduces the essentials
of Akka from a user’s perspective. It also explains the main differences to
Scala actors, from an operational point of view.

All code in this chapter is based on Akka 1.2 using the akka-actor and
akka-remote modules. You can obtain the Akka 1.2 release either from the
Akka project website at http://akka.io/, or as part of the Typesafe Stack
at http://typesafe.com/stack.

10.1 Creating Akka actors

Creating an actor in Akka involves three steps:

1. To implement the actor’s behavior, Akka’s Actor trait must be sub-
classed. This step is analogous to the way Scala actors are created.

2. To be able to refer to the newly created actor, you must obtain an
ActorRef that points to the actor. An ActorRef is a handle that you
use to communicate with an actor as well as to control an actor’s life
cycle. We will have much more to say about ActorRefs in the follow-
ing sections.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=141

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.1 Chapter 10 - Akka Actors

3. You must start the actor by invoking the start method on the new
ActorRef. In Akka, most of the actor API is accessed through
ActorRefs, in particular, starting and stopping actors.

As an example, let’s re-implement the actor chain of Chapter 5 (see List-
ing 5.1 on page 75) using Akka. We start by subclassing Akka’s Actor trait
to define the behavior of actors in the chain. This is shown in Listing 10.1.

import akka.actor.{Actor, ActorRef, Channel}
import Actor._

class ChainActor(next: Option[ActorRef]) extends Actor {
var from: Channel[Any] = _

def receive = {
case 'Die =>
from = self.channel
if (next.isEmpty) {
from ! 'Ack
self.stop()
} else
next.get ! 'Die
case 'Ack =>
self.stop()
from ! '"Ack

Listing 10.1 - A simple chain actor in Akka.

Compared to Listing 5.1 you’ll notice several differences:

1. The next actor is referred to using an ActorRef (more precisely, an
Option[ActorRef]). In Akka, it is only safe to refer to an actor di-
rectly; i.e., without using an ActorRef inside the definition of a class
or trait that extends the Actor trait. We will talk more about this in
Section 10.2, where we show what happens if you try to interact with
an actor without going through an ActorRef.

2. An Akka actor uses a global message handler to process incoming
messages. Instead of invoking react for each incoming message, you

Cover - Overview - Contents - Discuss - Suggest - Index

142

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=142

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.2 Chapter 10 - Akka Actors

implement the receive member, which defines globally how incom-
ing messages should be processed. The receive method returns a
partial function that is applied to each incoming message.

. As mentioned before, a large part of the Akka actor API is only ac-

cessible through ActorRefs. In the example, the sender of the mes-
sage that is currently being processed is obtained using the channel
member of self; it should come as no surprise that self has type
ActorRef.

For creating an actor chain, we can use the following recursive function:

def buildChain(size: Int, next: Option[ActorRef]): ActorRef = {

}

val a = actorOf(new ChainActor(next))
a.start()

if (size > 1) buildChain(size - 1, Some(a))
else a

The function builds a chain starting from the last actor. As mentioned before,
to interact with a newly created actor we need to obtain an ActorRef that
points to it. You accomplish this by using the actorOf method (imported
from the Actor object). It takes the new actor instance as an argument and
returns a new ActorRef.

Scaladoc and ActorRef

When browsing the Scaladoc page for ActorRef, you will notice that it
does not contain most of the methods that you would normally invoke
on an ActorRef. For example, it does not list methods, !, forward, or
reply. The reason is that Akka provides both a Scala API and a Java
API. When using the Scala API, an ActorRef is implicitly converted to
a ScalaActorRef. The ScalaActorRef trait, in turn, defines all of the
methods of the Scala API.

10.2 ActorRefs

Note that the new actor has to be instantiated inside the invocation of
actorOf. This ensures that there is an ActorRef created to interact with the

Cover - Overview - Contents - Discuss - Suggest - Index

143

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=143

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.3 Chapter 10 - Akka Actors

actor. As a result, the following code is erroneous:

val chainActor = new ChainActor(next) // Error!
val ref = actorOf(chainActor)

Running this code produces an initialization exception at runtime:

akka.actor.ActorInitializationException: ActorRef for instance
of actor [examples.akka.ChainActor] is not in scope.
You can not create an instance of an actor explicitly
using 'new MyActor'.
You have to use one of the factory methods in the 'Actor'
object to create a new actor.
Either use:
'val actor = Actor.actorOf[MyActor]', or
'val actor = Actor.actorOf(new MyActor(..))'

Runtime exceptions, such as the one above, help avoid some basic errors
using actors and ActorRefs. However, they cannot completely prevent direct
references to actors from being leaked. For example, the following code will
not throw an exception, although it should clearly be illegal:

var leaked: ChainActor = null
val ref = actorOf({leaked = new ChainActor(next); leaked})

Thus, while the Actor object’s factory methods perform some basic safety
checks, you still need to be careful to access actors using only ActorRefs.

10.3 Inter-actor interaction, interactively

To complete the actor chain example, we’ll define a master actor that builds
and controls an actor chain. With these definitions, shown in Listing 10.2,
we’ll use the interpreter shell to create an actor chain:

scala> import akka.actor.Actor._
import akka.actor.Actor._

scala> val master = actorOf(new MasterActor(5))

AKKA_HOME is defined as [.../akka-actors-1.1.2], loading con
fig from [.../akka-actors-1.1.2/config/akka.conf].

master: akka.actor.ActorRef = Actor[MasterActor:0291...a5d2]

Cover - Overview - Contents - Discuss - Suggest - Index

144

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=144

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.4 Chapter 10 - Akka Actors

class MasterActor(n: Int) extends Actor {
val first = buildChain(n, None)
def buildChain(size: Int, next: Option[ActorRef]): ActorRef =

def receive = {
case 'Start =>
first ! 'Die
case 'Ack =>
println("OK, all actors died")
self.stop()

Listing 10.2 - A master actor controlling an actor chain.

scala> master.start()
res0: akka.actor.ActorRef = Actor[MasterActor:0291d...4a5d2]

scala> master ! 'Start
OK, all actors died

As you can see, it is possible to interact with actors outside the body of
an actor class, from regular Scala code. However, there is a subtle but impor-
tant difference when sending messages from outside an actor: accessing the
sender inside the receiving actor (using self.channel) will return a channel
that throws an exception whenever you try to send a reply to it. In contrast,
in Scala actors a message’s sender is always defined. In the case where a
message is sent from outside an actor, an actor proxy is created that provides
a message queue to the sending thread. As a result, it is always possible to
receive replies on the sending thread in Scala actors.

10.4 Message handling

As you saw in the previous section, an Akka actor processes messages using
a global message handler. Typically, this message handler is defined once
and does not change over the lifetime of its actor. However, in some cases
an actor handles different messages depending on its current state.

Cover - Overview - Contents - Discuss - Suggest - Index

145

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=145

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.4 Chapter 10 - Akka Actors

For example, consider a data processing framework where a master ac-
tor controls the processing steps. Before processing starts, the master actor
receives the data to be processed (alternatively, it could receive information
on how to obtain the data from disk or the network). Data processing should
stop when a user-specified termination condition is satisfied. Thus, the mas-
ter actor’s message handler should look as follows:

def receive = {
case InitData(item) =>
// add item to data set
case StartProcessing(condition) =>
// process data set until ‘condition‘ is true

}

An InitData(item) message adds item to the data set that the master actor
manages. A data item could be a vertex in a large graph (for example, the
graph containing all pages of the Wikipedia; in this graph, vertices corre-
spond to articles, whereas edges are used to express links between pages). It
could also be an image or a large matrix. A StartProcessing(condition)
message instructs the master to start with the actual processing; it stops when
the condition predicate is satisfied.

To do the actual processing in parallel, we can create a set of worker
actors that each process a part of the data set. After each worker completes
one “iteration,” it informs the master actor using a WorkerDone message.
The master actor can then test whether the termination condition is satis-
fied. If not, it instructs the workers to perform another iteration. Note that
this messaging protocol requires the master actor to respond additionally to
WorkerDone messages. However, it can handle these messages only after
data processing has started. Therefore, the master actor has to change its
message handler after receiving a StartProcessing message. We can do
this using the become control structure; become takes as an argument the new
message handler, which should be used to process all subsequent messages.
We can use it to express the master actor’s messaging protocol as follows:

def receive = {
case InitData(item) =>
// add item to data set
case StartProcessing(condition) =>
// process data set until ‘condition‘ is true

Cover - Overview - Contents - Discuss - Suggest - Index

146

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=146

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.4 Chapter 10 - Akka Actors

// instruct workers to process their part of
// the data set
for (worker <- workers) {

worker ! Process(part)

}

become {
case WorkerDone =>
// the worker that sent this message is done

}

After handling WorkerDone messages using the message handler, which is
activated using become, the master actor must check whether the termination
condition is satisfied. In this case, it should change its behavior to the state
where more data can be added to the data set and processing can be restarted
by sending a StartProcessing message. To do this, we can use become,
passing the message handler returned by receive:

become {
case WorkerDone =>
// the worker that sent this message is done

if (condition())
become(receive)

Unhandled messages

The become control structure enables message handling to depend on the
actor’s state. You can use state-dependent message handling to implement
stateful abstractions, such as the unbounded buffer shown in Listing 10.3.

Here, we use become to limit the set of handled message types depend-
ing on the state of the actor’s mailbox. For example, the actor handles a
Get message only after it has received a corresponding Put message. (Put
messages are asynchronous, whereas Get messages are synchronous.)

Let’s interact with this buffer using the consumer defined in Listing 10.4.
Being familiar with the behavior of react, you might be surprised to find

Cover - Overview - Contents - Discuss - Suggest - Index

147

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=147

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.4 Chapter 10 - Akka Actors

case class Put(elem: Int)
case object Get
case object Stop
class SimpleBuffer extends Actor {
def receive = {
case Put(data) =>
become {
case Get =>
self.reply(data)
become(receive)
}
case Stop =>
self.stop()

¥

Listing 10.3 - Using become to implement a simple unbounded buffer.

that this simple buffer does not work! Running the code of Listing 10.4
produces an UnhandledMessageException:

Some(5)

[ERROR] [7/8/11 12:41 PM] [akka:event-driven:dispatcher:global-1]
[LocalActorRef] Put(3) akka.actor.UnhandledMessageException: Actor
Actor[examples.akka.SimpleBuffer:40...d2] does not handle [Put(3)]

[ERROR] [7/8/11 12:41 PM] [akka:event-driven:dispatcher:global-4]
[LocalActorRef] Get akka.actor.UnhandledMessageException: Actor
Actor[examples.akka.SimpleBuffer:40...d2] does not handle [Get]

[ERROR] [7/8/11 12:41 PM] [akka:event-driven:dispatcher:global-2]
[LocalActorRef] Start akka.actor.UnhandledMessageException: Actor
Actor[examples.akka.SimpleBuffer:40...d2] does not handle [Get]

As you can see, the first synchronous send of the consumer’s Get mes-
sage is successful, resulting in the consumer printing Some (5). Note that at
this point the buffer actor’s mailbox already contains the Put (3) message
that was sent even before the consumer started. As a result, after processing
the Get message, we use the currently active message handler to also pro-
cess the Put(3) message. This causes an UnhandledMessageException

Cover - Overview - Contents - Discuss - Suggest - Index

148

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=148

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.4 Chapter 10 - Akka Actors

class Consumer(buf: ActorRef) extends Actor {
def receive = {
case Start =>
// blocks actor until response is received
println(buf ? Get)
printin(buf ? Get)
buf ! Stop
self.stop()

¥
object SimpleBuffer {
def main(args: Array[String]) {

val buffer = actorOf(new SimpleBuffer)
buffer.start()
buffer ! Put(5)
buffer ! Put(3)
val consumer = actorOf(new Consumer(buffer))
consumer.start()
consumer ! Start

Listing 10.4 - A consumer interacting with the buffer.

to be thrown, since the partial function passed to become does not define a
pattern-matching case for Put messages.

In summary, Akka requires message handlers to handle all message types
that are possibly sent to the actor.! This means that it is impossible to let an
actor’s mailbox grow out of bounds, queueing messages that the actor will
never handle. (This message reception semantics is a key difference between
Akka’s actors and Erlang/Scala actors.) On the other hand, it also means that
implementing stateful actors requires slightly more work.

To make our buffer example work, we always have to handle both Put
and Get messages, as shown in Listing 10.5. For handling Put messages
when no corresponding Get message has been received, we use a queue

"More precisely, the isDefinedAt method of PartialFunction instances used as mes-
sage handlers must return true for all messages the actor could receive.

Cover - Overview - Contents - Discuss - Suggest - Index

149

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=149

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.4 Chapter 10 - Akka Actors

class FlatBuffer extends Actor {
var elems = Queue[Int]()
var consumers = Queue[Channel[Any]]()
def receive = {
case Put(data) =>
if (consumers.isEmpty) {
elems = elems enqueue data
} else {
val (from, rest) = consumers.dequeue
consumers = rest
from ! data
¥
case Get =>
if (elems.isEmpty) {
consumers = consumers enqueue self.channel
} else {
val (data, rest) = elems.dequeue
elems = rest
self.channel ! data
}
case Stop =>
self.stop()

}

Listing 10.5 - A buffer actor that handles both Put and Get messages.

(elems), which queues incoming data items. Consumers (actors that have
sent a Get message) that are waiting to receive a data item are queued in
another queue (consumers). Whenever an actor sends a Get message that
cannot be handled, the actor is added to the consumers queue (more pre-
cisely, a channel pointing to the sending actor.) Otherwise, the buffer actor
responds with a data item that is removed from the elems queue. Simi-
larly, when consumers are waiting for a response, the buffer actor handles
Put messages by removing the next consumer from the consumers queue,

responding with the newly received data item.

Cover - Overview - Contents - Discuss - Suggest - Index

150

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=150

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.5 Chapter 10 - Akka Actors

10.5 Remote actors in Akka

Like the scala.actors package, Akka supports remote actors—actors that
communicate over the network. In fact, Akka’s remote actors may well
be the main reason you are interested in Akka in the first place. They are
feature-rich, powered by an efficient implementation based on Netty (for
non-blocking network I/O), and support low-overhead message serialization,
for example, using Google protocol buffers.?

To introduce Akka’s remote actors step-by-step, we’ll guide you through
the creation of a remote “start” service similar to what you saw in Sec-
tion 8.3. However, the following example is self-contained, so you don’t
have to read Section 8.3 if you haven’t already done so.

Managing a cluster using actors

We will build a small cluster management service that allows a master node
to start actors on other nodes in a cluster. Moreover, the cluster service
should provide services to the remotely started actors, such as a list of refer-
ences to cluster services on the neighboring nodes, graceful shutdown, etc.

The cluster service is centered around a master service actor that re-
motely communicates with a set of cluster service actors. The master actor
manages all cluster service actors, broadcasts configuration information to
them, and so forth. Each cluster service actor, in turn, manages the remote
actors that are running on its local node. For example, to start a new remote
actor on a particular node, the master actor sends a control message to the
cluster service actor running on the target node; that cluster service actor then
takes care of starting a new actor locally, and making it remotely accessible
to the master actor.

To make things more concrete, let’s look at some code. We’ll begin
with the master service, shown in Listing 10.6, which first starts when boot-
ing up the cluster service. The master service starts Akka’s remote sup-
port by invoking remote.start (remote is a member of the Actor ob-
ject), passing the host name and port of the master node. Then, we create
a new MasterService actor (we’ll discuss its implementation later), using
actorOf[MasterService] (we also start the actor right away), and register
it on the remote server of the current node, using remote.register. By reg-

2Google protocol buffers provide a language- and platform-neutral way to serialize data.
See http://code.google.com/apis/protocolbuffers/.

Cover - Overview - Contents - Discuss - Suggest - Index

151

http://code.google.com/apis/protocolbuffers/
http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=151

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.5 Chapter 10 - Akka Actors

import akka.actor.{Actor, ActorRef}
import Actor._
import java.util.concurrent.CountDownLatch

object MasterService {
val doneInit = new CountDownLatch(1)
private var _master: ActorRef = _

def master: ActorRef = _master

def main(args: Array[String]) {
val hostname = args(0)
val port = args(l).toInt
val numNodes = args(2).tolnt

remote.start(hostname, port)

_master = actorOf[MasterService].start()
remote.register(_master)

_master ? ClusterSize(numNodes)
donelInit.await()

Listing 10.6 - The MasterService object.

istering an actor in this way, we can obtain an ActorRef to that actor on any
node running Akka’s remote support. (We’ll use this functionality later for
communicating with the master actor from actors running on remote nodes.)
After that, we initialize the MasterService actor with the number of clus-
ter nodes to be registered by sending it a message of type ClusterSize.
Note that message sends that use the ? operator are synchronous—they do
not return until the current actor has received a response. Finally, we use a
CountDownLatch to wait until the MasterService completes the initializa-
tion, which is the case when all cluster service actors have registered.
Listing 10.7 shows the code for MasterService actor. The master ser-
vice waits for ClusterService actors to register using Announce messages.
Each message contains the host name and port number of the registering
cluster service. Upon receiving an Announce message, we obtain a remote
ActorRef, assigned to nodeRef, to the registering cluster service using one

Cover - Overview - Contents - Discuss - Suggest - Index

152

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=152

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.5 Chapter 10 - Akka Actors

of the actorFor methods of the remote object. We can use the returned
ActorRef like any other (local) ActorRef. Next, we add to the nodeRefs
map a mapping from the address (hostname and port) of the newly registered
node to the nodeRef

class MasterService extends Actor {

var numNodes = 0
var nodeRefs: Map[(String, Int), ActorRef] = Map()

def receive = {
case ClusterSize(numNodes) =>

this.numNodes = numNodes

println("'[Master] waiting for " + numNodes +
" nodes to register")

self.reply()

case Announce(newHost, newPort) =>

println("[Master] new host +

":" + newPort)

val nodeRef = remote.actorFor(
classOf[ClusterService].getCanonicalName,
newHost,
newPort)

newHost +

nodeRefs += ((newHost, newPort) -> nodeRef)

if (nodeRefs.size == numNodes) {
println("[Master] all nodes have registered")
nodeRefs.values foreach { service =>
service ? Nodes(nodeRefs.keys.toList)

}

MasterService.doneInit.countDown()

Listing 10.7 - The MasterService actor.

Cover - Overview - Contents - Discuss - Suggest - Index

153

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=153

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.5 Chapter 10 - Akka Actors

Finally, after the MasterService has received Announce messages from
all cluster service actors (in which case, nodeRefs.size == numNodes), it
broadcasts the network addresses of all nodes to the cluster service actors,
and signals the end of its initialization by counting down the doneInit latch.
This will unblock the main thread that has been executing the body of the
MasterService object until the invocation of doneInit.await(), shown
in Listing 10.6.

Listing 10.8 shows the ClusterService object. A cluster service in-
stance starts similarly in a way to the master service: the main method of the
ClusterService class’s companion object sets up Akka’s remote support
and starts a ClusterService actor, passing it all the information needed to
contact the master service.

Shutting down. The ClusterService actor’s main thread handles termi-
nation using a CountDownLatch, which has an initial value of 1. When the
ClusterService actor (which handles the actual communication with the
master) determines that it should exit, it counts down the terminate latch.
As a response to this, the main thread invokes registry.shutdownAll ()
to stop all actors that have been started on the local node, including the
ClusterService actor.® Finally, it shuts down the remote service using
remote.shutdown(). After that, the main thread of the cluster service node
itself exits.

Listing 10.9 shows the ClusterService actor. It responds to several
messages, but most interesting is what happens when a StartActorAt mes-
sage is received. The MasterService uses this message to start an ac-
tor on a remote cluster service. This message contains an object of type
Class[_ <: Actor], clazz, which is used to create a new Actor instance
using actorOf. After registering the new actor on the remote service, the
ClusterService actor sends it a message with the network addresses of all
cluster nodes (remember that the master service broadcasts these addresses).
Finally, it replies to the StartActorAt message to signal that the new actor
is ready to receive remote messages.

To start an actor remotely via the StartActorAt message, we also need
some functionality in the MasterService actor. One approach is to send
StartActorAt messages to the master, in addition to the ClusterService,

3 Akka registers all actors in a global actor registry, which you can access through the
Actor object’s registry member.

Cover - Overview - Contents - Discuss - Suggest - Index

154

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=154

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.5 Chapter 10 - Akka Actors

object ClusterService {
val terminate = new CountDownLatch(1l)

def run(masterHostname: String,
masterPort: Int,
hostname: String,
port: Int) {
remote.start(hostname, port)

val service = actorOf[ClusterService].start()
remote.register(service)

service ! Announce(masterHostname, masterPort)

terminate.await()
registry.shutdownAll() // also stops service actor
remote.shutdown()

¥

def main(args: Array[String]) {
val masterHostname = args(0)
val masterPort = args(1l).toInt
val hostname = args(2)
val port = args(3).tolnt
run(masterHostname, masterPort, hostname, port)

Listing 10.8 - The ClusterService object.

to instruct the master actor to forward a corresponding message to the target
ClusterService. You could do this by adding a pattern-matching case to
the MasterService actor’s message handler:

case startMsg @ StartActorAt(host, port, clazz) =>
nodeRefs((host, port)) ? startMsg
val startedActor = remote.actorFor(
clazz.getCanonicalName,
host,
port)
self.reply(startedActor)

Cover - Overview - Contents - Discuss - Suggest - Index

155

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=155

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.5 Chapter 10 - Akka Actors 156

class ClusterService extends Actor {
var allAddresses: List[(String, Int)] = List()
var master: ActorRef = null

def receive = {
case Announce(hostname, port) =>
master = remote.actorFor(
classOf[MasterService].getCanonicalName,
hostname,
port)
val localhost = remote.address.getHostName()
val localport = remote.address.getPort()
master ! Announce(localhost, localport)
case Nodes(addresses) =>
println("[ClusterService] received node addresses: " +
addresses)
allAddresses = addresses
self.reply()

case StartActorAt(_, _, clazz) =>
println("[ClusterService] starting instance of
val newActor = actorOf(clazz).start()
remote.register(newActor)
newActor ? Nodes(allAddresses)

1

+ clazz)

self.reply()

case StopServiceAt(_, _) =>
println("[ClusterService] shutting down...")
ClusterService.terminate.countDown()

Listing 10.9 - The ClusterService actor.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=156

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.5 Chapter 10 - Akka Actors

The first thing that might look unfamiliar to you in the previous code
is the use of the at symbol (@) to prefix the pattern with a chosen identi-
fier (here, startMsg). It works by storing a reference to the message ob-
ject that matches the pattern in the startMsg variable. We can then use
this variable on the right-hand side of the => symbol. This simplifies for-
warding the same message unchanged to another actor; in our case, the
ClusterService actor returned by nodeRefs((host, port)). After for-
warding the StartActorAt message, we use remote.actorFor to obtain
an ActorRef to the newly started actor, and send it back as the response.

class EchoActor extends Actor {
var neighbors: List[ActorRef] = List()
var allAddresses: List[(String, Int)] = List()
var sum = 0O

def receive = {
case Nodes(addresses) =>
allAddresses = addresses
neighbors = addresses map { case (hostname, port) =>
remote.actorFor(classOf[ClusterService].getCanonicalName,

hostname,
port)

}

self.reply()

case any: String =>
println("[EchoActor] received " + any)
// try converting to an Int
sum += any.tolnt

1]

println("[EchoActor] current sum: + sum)

Listing 10.10 - A simple actor that you can start remotely.

Let’s test this code. Suppose you’d like to remotely start an instance of
the EchoActor class shown in Listing 10.10. This actor responds to two
kinds of messages. The first kind of message, with type Nodes, is a message
that the cluster service sends right after a new EchoActor instance has been

Cover - Overview - Contents - Discuss - Suggest - Index

157

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=157

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.5 Chapter 10 - Akka Actors

started. As a second kind of message, the actor responds to strings that it
converts to integers, which are added to an internal sum.

Starting an EchoActor remotely is pretty simple, given the functionality
of the master service:

// initialize MasterService
MasterService.main(Array('localhost™, "9000", "1"))
// remotely start EchoActor
val response =
MasterService.master ? StartActorAt("localhost",
9001,
classOf[EchoActor])
val echoActor = response.get.asInstanceOf[ActorRef]
echoActor ! "17"

Note that before running the above code you have to start a master service on
"localhost:9000" and a cluster service on "localhost:9001". You can
terminate the entire “application” as follows:

MasterService.master ? StopServiceAt("localhost", 9001)
MasterService.shutdown()

In this code, the MasterService instructs a cluster service to shut down by
sending it a StopServiceAt message. Upon receiving such a message, the
cluster service counts down the terminate latch of its companion object,
which causes all actors and the main thread of the cluster service to termi-
nate, as shown in Listing 10.9.

Fault tolerance. So far, our cluster service is pretty bad at handling faults.
For example, let’s see what happens if we send an invalid message, such as
"hello", to an EchoActor that is started remotely. In this case, the message
processing code in EchoActor throws an exception because "hello" cannot
be converted to an integer. This unhandled exception leads to output similar
to the following:

[ERROR] [8/5/11 3:29 PM] [akka:event-driven:dispatcher:global-5]
[LocalActorRef] hello
java.lang.NumberFormatException: For input string: "hello"
at java.lang.NumberFormatException.forInputString(NumberFor

Cover - Overview - Contents - Discuss - Suggest - Index

158

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=158

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.5 Chapter 10 - Akka Actors

matException.java:48)
at java.lang.Integer.parselnt(Integer.java:449)
at java.lang.Integer.parseIlnt(Integer.java:499)

Moreover, message processing in the EchoActor instance stops. There-
fore, your client code can no longer interact with this actor, and may wait for
responses indefinitely as a result.

To recover from such unhandled exceptions, Akka provides a powerful
mechanism for actor supervision. Basically, some actors can play the role
of supervisors that are notified whenever a supervised actor crashes. Ad-
ditionally, supervisors may define fault-handling strategies for recovery by
restarting crashed actors.

You can use actor supervision to recover from crashed remote actors by
promoting the ClusterService actor to be a supervisor. You can do this in
two steps. First, the cluster service actor must link itself to each remote actor
that it starts:

val newActor = actorOf(clazz)

// start newActor and link to ClusterService
self.startLink(newActor)
remote.register(newActor)

By linking itself to newActor, the cluster service will be notified when
newActor crashes.

Second, the cluster service has to define a fault-handling strategy. You
can do this by setting the actor’s faultHandler field, for example, in the
constructor:

self.faultHandler =
OneForOneStrategy(List(classOf[NumberFormatException],
classOf[RuntimeException]), 5, 5000)

Akka supports different fault handlers that define different strategies for
restarting crashed actors. The simplest strategy restarts the crashed actor
(and leaves all other supervised actors alone). The most important parameter
of a fault handler is the list of exception types that it handles. In our exam-
ple, handling NumberFormatException allows you to recover from the case
where the EchoActor tries to convert an invalid, non-numeric string to an
integer. The other parameters determine the number of restarts that should

Cover - Overview - Contents - Discuss - Suggest - Index

159

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=159

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 10.5 Chapter 10 - Akka Actors 160

be attempted, and a timeout within which a restart must be successful (here,
5000 milliseconds).

After setting up the supervisor, you also have to configure the supervised
actors—in our case, EchoActor—by defining a life cycle:

self.lifeCycle = Permanent

The Permanent life cycle configures the supervised actor so that it is always
restarted after crashing; the Temporary life cycle configures the supervised
actor so that instead of being restarted after crashing, its supervisor termi-
nates it. Moreover, you can clean up the state of the supervised actor by
overriding callback methods that are invoked during the termination process.
With this fault-handling mechanism in place, you can recover from the
unhandled NumberFormatException caused by a "hello" message:

// initialize MasterService

MasterService.main(Array('localhost™, "9000", "1"))

// remotely start EchoActor

val response =

MasterService.master ? StartActorAt("localhost",

9001,
classOf[EchoActor])

val echoActor = response.get.asInstanceOf[ActorRef]

// this will lead to an exception in echoActor

echoActor ! "hello"

// try again; echoActor is restarted automatically

echoActor ! "17"

After its crash, the EchoActor resumes message processing, enabling it to
handle the 17 message.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=160

Prepared for C. Doppler Laboratory Embedded Software Systems

Chapter 11

API Overview

This chapter provides a detailed API overview of the scala.actors pack-
age in Scala 2.8 and Scala 2.9. The organization follows groups of types
that logically belong together as well as the trait hierarchy. We focus on
the runtime behavior of the various methods that these traits define, thereby
complementing the existing Scaladoc-based API documentation.

11.1 The actor traits Reactor, ReplyReactor, and
Actor

You can create actors based on several traits that form a simple hierarchy:
Actor <: ReplyReactor <: Reactor (read “<:” as extends). There are
two main reasons to prefer using a simpler trait (i.e., a trait further up in the

hierarchy) instead of a subtrait:

Types For example, the Reactor trait has a type parameter that restricts the
type of messages that the trait’s instances can receive.

Scalability A Reactor (or ReplyReactor) maintains fewer instance vari-
ables than a ReplyReactor (or Actor, respectively). This means that
an application scales to a larger number of Reactors than Actors, say.

Efficiency The communication primitives that a trait provides are more ef-
ficient than those that its supertrait (if any) provides. For example,
message sends and reacts are faster between Reactors than Actors.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=161

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 11.1 Chapter 11 - API Overview

The Reactor trait

Reactor is the super-trait of all actor traits. It has a type parameter, Msg,
which indicates the type of messages the actor can receive. Extending the
Reactor trait allows you to define actors with basic capabilities to send and
receive messages.

The behavior of a Reactor is defined by implementing its act method.
The act method is executed once the Reactor starts by invoking start,
which also returns the Reactor. The start method is idempotent, which
means that invoking it on an actor that has already been started has no effect.

Invoking the Reactor’s (!) method sends a message to the receiver.
Sending a message using ! is asynchronous, which means that the sending
actor does not wait until the message is received; its execution continues
immediately. For example, a ! msg sends msg to a. All actors have a
mailbox, which buffers incoming messages until they are processed.

The Reactor trait also defines a forward method. This method is inher-
ited from OutputChannel. It has the same effect as the ! method. Subtraits
of Reactor, in particular the ReplyReactor trait, override this method to
enable implicit reply destinations. This will be described in the next section
of this chapter.

A Reactor receives messages using the react method.! react expects
an argument of type PartialFunction[Msg, Unit], which defines how
messages of type Msg are handled once they arrive in the actor’s mailbox. In
the following example, the current actor waits to receive the string "Hello",
and then prints a greeting:

react {
case "Hello" =>
println("Hi there")
}

The react method never returns. Therefore, any code that should run after a
message has been received must be contained inside the partial function that
is passed to react. For example, two messages can be received in sequence
by nesting two invocations of react:

By default, this method does not show up in the ScalaDoc API documentation, because
its visibility is protected[actors]. This can be changed by selecting visibility “All” on the
ScalaDoc page.

Cover - Overview - Contents - Discuss - Suggest - Index

162

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=162

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 11.1 Chapter 11 - API Overview

react {
case Get(from) =>
react {
case Put(x) => from ! x

}

The Reactor trait also provides control structures, which simplify program-
ming with react. These control structures will be described in Section 11.2.

Termination and execution states

A Reactor’s execution terminates when the body of its act method has run
to completion. A Reactor can also terminate itself explicitly using the exit
method. The return type of exit is Nothing, because exit always throws
an exception. This exception is only used internally, and should never be
caught by user code.

You can restart a terminated Reactor by invoking its restart method.
Invoking restart on a Reactor that has not terminated yet will produce
an I1legalStateException. Restarting a terminated actor causes its act
method to rerun.

Reactor defines a method getState, which returns the actor’s current
execution state as a member of the Actor.State enumeration. An actor
that has not been started yet is in state Actor.State.New. An actor that
can run without waiting for a message is in state Actor.State.Runnable.
An actor that is suspended, i.e., waiting for a message, is in execution state
Actor.State.Suspended. An actor that is terminated is in execution state
Actor.State.Terminated.

Exception handling

The exceptionHandler member allows you to define an exception handler
that is enabled throughout a Reactor’s lifetime:

def exceptionHandler: PartialFunction[Exception, Unit]

You use the partial function returned from exceptionHandler to handle
exceptions that are not otherwise handled: whenever an exception propagates

Cover - Overview - Contents - Discuss - Suggest - Index

163

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=163

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 11.1 Chapter 11 - API Overview

from the body of a Reactor’s act method, the partial function is applied to
that exception, allowing the actor to run clean-up code before it terminates.>

Handling exceptions using exceptionHandler works well together with
the control structures for programming with react, which will be covered
in Section 11.2. Whenever an exception has been handled using the partial
function returned by exceptionHandler, execution continues with the cur-
rent continuation closure. For example, imagine an exception is thrown by
this code:

loop {
react {
case Msg(data) =>
if (cond) // process data
else throw new Exception('cannot process data')

Assuming that the Reactor overrides exceptionHandler, after the excep-
tion thrown inside the body of react is handled, execution will continue
with the next loop iteration.

The ReplyReactor trait

The ReplyReactor trait extends Reactor[Any] and adds or overrides the
following methods:

The ! method (overridden) obtains a reference to the current actor, i.e., the
sender; together with the actual message, the sender reference is trans-
ferred to the receiving actor’s mailbox. The receiver has access to the
message’s sender via the sender method.

The forward method (overridden) obtains a reference to the sender of the
message that is currently being processed. Together with the actual
message, this reference is transferred as the current message’s sender.
As a consequence, forward enables the forwarding of messages on
behalf of actors different from the current actor.

2Note that the visibility of exceptionHandler is protected.

Cover - Overview - Contents - Discuss - Suggest - Index

164

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=164

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 11.1 Chapter 11 - API Overview 165

The sender method (added) returns the sender of the message currently
being processed. Given that a message may have been forwarded,
sender may not return the actor that actually sent the message.

The reply method (added) sends a message back to the most recently han-
dled message’s sender. reply is also used to reply to a synchronous
message send (via ! ?) or a message send with a future (via !!).

The !? methods (added) provide synchronous message sends. Invoking !?
causes the sending actor to wait until a response is received, which is
then returned. There are two overloaded variants. In addition, the two-
parameter variant takes a timeout argument (in milliseconds), and its
return type is Option[Any] instead of Any. If the sender does not re-
ceive a response within the specified timeout period, ! ? returns None;
otherwise, it returns the response wrapped in Some.

The !! methods (added) are similar to the synchronous message sends pro-
vided by !? in that they allow transferring a response from the re-
ceiver. However, instead of blocking the sending actor until a response
is received, they return Future instances. You can use a Future
to retrieve the response of the receiver once it is available; you can
also use it to find out whether the response is already available with-
out blocking the sender. There are two overloaded variants of the
'l method. The two-parameter variant takes an argument of type
PartialFunction[Any, A]. This partial function is used for post-
processing the receiver’s response. Essentially, !! returns a future
that applies the partial function to the response once it is received.
The result of the future is the result of this post-processing step.

The reactWithin method (added) allows you to receive messages within
a given period of time. Compared to react, it takes an additional
parameter, msec, which indicates the time period in milliseconds until
the special TIMEOUT pattern matches (TIMEOUT is a case object in the
scala.actors package).. Here’s an example:

reactWithin(2000) {
case Answer(text) => // process text
case TIMEOUT => println('no answer within 2 seconds')

}

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=165

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 11.1 Chapter 11 - API Overview

The reactWithin method also allows non-blocking access to the mailbox.
When specifying a time period of O milliseconds, the mailbox is first scanned
to find a matching message. If there is no matching message after the first
scan, the TIMEOUT pattern matches. One use case for 0 timeouts is to enable
receiving certain messages with a higher priority than others:

reactWithin(0) {
case HighPriorityMsg => // ...
case TIMEOUT =>
react {
case LowPriorityMsg => // ...
}
}

In this example, the actor first processes the next HighPriorityMsg, even
if there is a LowPriorityMsg that arrived earlier in its mailbox. The actor
only processes a LowPriorityMsg first if there is no HighPriorityMsg in
its mailbox.

The ReplyReactor trait adds the Actor.State.TimedSuspended exe-
cution state. An actor that is suspended, waiting to receive a message using
reactWithin, is in state Actor.State.TimedSuspended.

The Actor trait

The Actor trait extends ReplyReactor and adds the following members:

The receive method (added) behaves like react except that it may return
a result. This is reflected in its type signature, which is polymorphic
in its result type:

def receive[R](f: PartialFunction[Any, R]): R

However, using receive makes the actor more heavyweight, since
receive blocks the underlying thread while the actor is suspended
waiting for a message. The blocked thread is unavailable to execute
other actors until the invocation of receive returns.

The 1ink and unlink methods (added) allow an actor to link and unlink
itself to and from another actor, respectively. You can use linking
for monitoring and reacting to the termination of another actor. In

Cover - Overview - Contents - Discuss - Suggest - Index

166

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=166

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 11.2 Chapter 11 - API Overview

particular, linking affects the behavior of invoking exit, as explained
in the Actor trait’s API documentation.

The trapExit member (added) allows an actor to react to the termina-
tion of linked actors independently of the exit reason (that is, it does
not matter whether the exit reason is 'normal or not). If an actor’s
trapExit member is set to true, this actor will never terminate be-
cause of linked actors. Instead, whenever one of its linked actors ter-
minates it will receive a message of type Exit. The Exit case class
has two members: from refers to the actor that terminated; reason
refers to the exit reason.

Termination and execution states

When terminating the execution of an Actor instance, the exit reason can be
set explicitly by invoking the following variant of exit:

def exit(reason: AnyRef): Nothing

An actor that terminates with an exit reason different from 'normal (the
symbol) propagates its exit reason to all actors linked to it. If an actor termi-
nates because of an uncaught exception, its exit reason is an instance of the
UncaughtException case class.

The Actor trait adds two new execution states. An actor waiting to re-
ceive a message using receive is in state Actor.State.Blocked. An actor
waiting to receive a message using receiveWithin—i.e., waiting with a
timeout—is in state Actor.State.TimedBlocked.

11.2 Control structures

The Reactor trait defines control structures that simplify programming with
the non-returning react operation. Normally, an invocation of react does
not return. If the actor should execute code subsequently, you can either pass
the actor’s continuation code explicitly to react, or use one of the control
structures, described in this section, which hide these continuations.

The most basic control structure is andThen. It allows you to register a
closure that is executed once the actor has finished executing everything else.
For example, the actor shown in Listing 11.1 prints a greeting after it has
processed the "hello" message. Even though the invocation of react does

Cover - Overview - Contents - Discuss - Suggest - Index

167

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=167

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 11.2 Chapter 11 - API Overview
actor {
{
react {
case "hello" => // processing "hello"
}: Unit
} andThen {
println("hi there")
b
}

Listing 11.1 - Using andThen for sequencing.

not return, you can use andThen to register the code that prints the greeting
as the actor’s continuation.

Note that there is a type ascription, “: Unit,” that follows the react
invocation. This essentially allows you to treat the result of react as having
type Unit, which is legal since the result of any expression can always be
converted to Unit. This is necessary since andThen cannot be a member of
type Nothing, which is the result type of react. Treating the result type of
react as Unit enables the application of an implicit conversion that makes
the andThen member available.

The API provides a few more control structures:

loop { ...} Loops indefinitely, executing the code in braces each iteration.
Invoking react inside the loop body causes the actor to react to a
message as usual. Subsequently, execution continues with the next
iteration of the same loop.

loopWhile (c) { ...} Executes the code in braces while the condition c
returns true. Invoking react in the loop body has the same effect as
in the case of loop.

continue Continues with the execution of the current continuation closure.
Invoking continue inside the body of a Lloop or 1loopWhile will cause
the actor to finish the current iteration and continue with the next iter-
ation. If the current continuation has been registered using andThen,
execution will continue with the closure passed as the second argu-
ment to andThen.

Cover - Overview - Contents - Discuss - Suggest - Index

168

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=168

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 11.3 Chapter 11 - API Overview

You can use the control structures anywhere in the body of a Reactor’s
act method and in the bodies of methods transitively called by act. For
actors created using the actor { ...} shorthand, the control structures can
be imported from the Actor object.

11.3 Futures

The ReplyReactor and Actor traits support result-bearing message send
operations (the !! methods) that immediately return a future. A future, an
instance of the Future trait, is a handle you can use to retrieve the response
to a send-with-future message.

The sender of a send-with-future message can wait for the future’s re-
sponse by applying the future. For example, using val fut = a !! msg to
send a message allows the sender to wait for the result of the future as fol-
lows: val res = fut(). In addition, a Future can be queried using the
isSet method to find out whether its result is available without blocking.

A send-with-future message is not the only way to obtain a future. You
can create futures from computations using the future method. In the fol-
lowing example, we start the computation body to run concurrently, return-
ing a future for its result:

val fut = future { body }

// ...
fut() // wait for future

What makes futures special in the context of actors is the possibility to
retrieve their result using the standard actor-based receive operations, such
as receive. Moreover, you can use the event-based operations react and
reactWithin. This enables an actor to wait for the result of a future without
blocking its underlying thread.

The actor-based receive operations are made available through the fu-
ture’s inputChannel. For a future of type Future[T], its input channel
type is InputChannel[T]; for example:

val fut = a !! msg

// ...

fut.inputChannel.react {
case Response => // ...

Cover - Overview - Contents - Discuss - Suggest - Index

169

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=169

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 11.4 Chapter 11 - API Overview

11.4 Channels

You can use channels to simplify the handling of messages that have different
types but are sent to the same actor. The hierarchy of channels is divided into
OutputChannels and InputChannels.

OutputChannels can be sent messages. An OutputChannel, out, sup-
ports the following operations:

out ! msg Asynchronously sends msg to out. A reference to the sending
actor is transferred, as in the case where msg is sent directly to an
actor.

out forward msg Asynchronously forwards msg to out. The sending actor
is determined, as in the case where msg is forwarded directly to an
actor.

out.receiver Returns the unique actor that is receiving messages sent to
the out channel.

out.send(msg, from) Asynchronously sends msg to out supplying from
as the sender of the message.

The OutputChannel trait has a type parameter that specifies the type of
messages that can be sent to the channel using !, forward, and send. The
type parameter is contravariant.

Actors can receive messages from InputChannels. Like its sibling,
OutputChannel, the InputChannel trait has a type parameter that speci-
fies the type of messages that can be received from the channel, but this type
parameter is covariant. An InputChannel[Msg] (named in) supports the
following operations:

in.receive { case Patl =>...; casePat2 =>...; ...} Receives a mes-
sage from in. Invoking receive on an input channel has the same
semantics as the standard receive operation for actors. The only
difference is that the partial function passed as an argument has type
PartialFunction[Msg, R], where R is the return type of receive.

Cover - Overview - Contents - Discuss - Suggest - Index

170

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=170

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 11.4 Chapter 11 - API Overview

in.receiveWithin { case Patl =>...; casePat2=>...; ...} Same as
receive, but with a timeout.

in.react { case Patl =>...; case Pat2 =>...; ...} Receives, using an
event-based react operation, a message from in. Like react for ac-
tors, the return type is Nothing, indicating that invocations of this
method never return. Like the receive operation on InputChannel,
the partial function passed as an argument has a more specific type:
PartialFunction[Msg, Unit].

in.reactWithin { case Patl =>...; casePat2 =>...; ...} Same as
react, but with a timeout.

Creating and sharing channels

Channels are created using the concrete Channel class. It extends both
InputChannel and OutputChannel. A channel can be shared either by
making the channel visible in the scopes of multiple actors, or by sending it
in a message.

actor {
var out: OutputChannel[String] = null
val child = actor {
react {
case "go" => out ! "hello"

}
val channel = new Channel[String]
out = channel
child ! "go"
channel.receive {
case msg => println(msg.length)

}

Listing 11.2 - Scope-based sharing of channels.

The example in Listing 11.2 demonstrates scope-based sharing. Running this
example prints the string "5" to the console. Note that the child actor has

Cover - Overview - Contents - Discuss - Suggest - Index

171

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=171

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 11.5 Chapter 11 - API Overview

only access to out, which is an OutputChannel[String]. The channel
reference, which can also be used to receive messages, is hidden. However,
care must be taken to ensure the output channel is initialized to a concrete
channel before the child sends messages to it. This is done using the "go"
message. When receiving from channel using channel.receive, we can
make use of the fact that msg is of type String; therefore, it provides a
length member.

case class ReplyTo(out: OutputChannel[String])

val child = actor {

react {
case ReplyTo(out) => out ! "hello"
}
}
actor {
val channel = new Channel[String]
child ! ReplyTo(channel)
channel.receive {
case msg => println(msg.length)
}
3

Listing 11.3 - Sharing channels via messages.

An alternative way to share channels is by sending them in messages, as
the example in Listing 11.3 demonstrates. The ReplyTo case class is a mes-
sage type we use to distribute a reference to an OutputChannel[String].
When the child actor receives a ReplyTo message, it sends a string to its
output channel. The second actor receives a message on that channel, as it
did in the previous example shown in Listing 11.2.

11.5 Remote Actors API

This section describes Scala’s remote actors API. Its main interface is the
RemoteActor object in package scala.actors.remote. This object pro-
vides methods to create and connect to remote actor instances. In the code

Cover - Overview - Contents - Discuss - Suggest - Index

172

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=172

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 11.5 Chapter 11 - API Overview

snippets below, we assume that all members of RemoteActor have been im-
ported; the full list of imports that we use is as follows:

import scala.actors._

import scala.actors.Actor._

import scala.actors.remote._

import scala.actors.remote.RemoteActor._

Starting remote actors

A remote actor is uniquely identified by a Symbol. This symbol is unique
to the JVM instance on which the remote actor is executed. A remote actor
identified with name 'myActor can be created as follows:

class MyActor extends Actor {
def act() {
alive(9000)
register('myActor, self)

// ...

Note that a name can only be registered with a single (alive) actor at a
time. For example, to register an actor A as 'myActor, and then register
another actor B as 'myActor, you would first have to wait until A termi-
nated. This requirement applies across all ports on a single JVM, so simply
registering B on a different port as A is not sufficient.

Connecting to remote actors

Connecting to a remote actor is just as simple. To obtain a remote reference
to a remote actor running on machine myMachine on port 8000 with name
'anActor, use select in the following manner:

val myRemoteActor = select(Node("myMachine", 8000), 'anActor)

The actor returned from select has type AbstractActor, which pro-
vides essentially the same interface as a regular actor, and thus supports the
usual message send operations:

Cover - Overview - Contents - Discuss - Suggest - Index

173

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=173

Prepared for C. Doppler Laboratory Embedded Software Systems

Section 11.5 Chapter 11 - API Overview

myRemoteActor ! "Hello!"
receive {

case response => println("Response: + response)

}
myRemoteActor !? "What is the meaning of life?" match {
case 42 => println("Success")
case oops => println("Failed: " + oops)
}
val future = myRemoteActor !! "What is the last digit of PI?"

Note that the select method is lazy; it does not actually initiate any net-
work connections. It simply creates a new AbstractActor instance, which
is ready to initiate a new network connection when needed (for instance,
when !! is invoked).

Cover - Overview - Contents - Discuss - Suggest - Index

174

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=174

Prepared for C. Doppler Laboratory Embedded Software Systems

Bibliography

[Agh90]

[Arm95]

[Dea08]

[Goe06]

[Gro99]

[Hal09]

[Hal10]

[HB77]

Agha, Gul. “Concurrent Object-Oriented Programming.” Commu-
nications of the ACM, 33(9):125-141, September 1990.

Armstrong, J. L., M. C. Williams, C. Wikstrom, and S. R. Virding.
Concurrent Programming in Erlang. Prentice Hall, second edition,
1995.

Dean, Jeffrey and Sanjay Ghemawat. “MapReduce: simplified
data processing on large clusters.” CACM, 51(1):107-113, 2008.

Goetz, Brian, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David
Holmes, and Doug Lea. Java Concurrency in Practice. Addison
Wesley, 2006. ISBN 978-0321349606.

Gropp, William, Ewing Lusk, and Anthony Skjellum. Using MPI:
Portable Parallel Programming with the Message—Passing Inter-
face. The MIT Press, Cambridge, MA, second edition, 1999.

Haller, Philipp and Martin Odersky. “Scala Actors: Unifying
Thread-based and Event-based Programming.” Theor. Comput.
Sci, 410(2-3):202-220, 2009.

Haller, Philipp and Martin Odersky. “Capabilities for Uniqueness
and Borrowing.” In Proceedings of the 24th European Conference
on Object-Oriented Programming (ECOOP’10), pages 354-378.
Springer, June 2010. ISBN 978-3-642-14106-5.

Henry Baker, Carl Hewitt. “Laws for Communicating Parallel Pro-
cesses.” Technical report, MIT Artificial Intelligence Laboratory,
http://hdl.handle.net/1721.1/41962, 1977.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=175

Prepared for C. Doppler Laboratory Embedded Software Systems

[Henl1]

[Hew73]

[Hew77]

[Hoa78]

[Kay98]

[Sut05]

Bibliography

Hennessy, John L. and David A. Patterson. Computer Architec-
ture: A Quantitative Approach, 5th Edition. Morgan Kaufmann,
2011. ISBN 978-0123838728.

Hewitt, Carl, Peter Bishop, and Richard Steiger. “A Universal
Modular ACTOR Formalism for Artificial Intelligence.” In Pro-
ceedings of the Third International Joint Conference on Artificial
Intelligence (IJCAI’73), pages 235-245. 1973.

Hewitt, Carl E. “Viewing Control Structures as Patterns of Passing
Messages.” Journal of Artificial Intelligence, 8(3):323-364, 1977.

Hoare, C. A. R. “Communicating Sequential Processes.”
Comm.ACM, 21(8):666-677, 1978.

Kay, Alan. an email on messaging in Smalltalk/Squeak,
1998. The email is published on the web at
http://lists.squeakfoundation.org/pipermail/squeak-dev/1998-
October/017019.html.

Sutter, Herb. “The Free Lunch Is Over: A Fundamental Turn To-
ward Concurrency.” Dr. Dobb’s Journal, March 2005.

Cover - Overview - Contents - Discuss - Suggest - Index

176

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=176

Prepared for C. Doppler Laboratory Embedded Software Systems

About the Authors

Philipp Haller

Philipp Haller is a post-doctoral researcher at Stanford University, USA, and
at EPFL, Switzerland. He holds a Dipl.-Inform. degree from Karlsruhe Insti-
tute of Technology, Germany, and a Ph.D. in Computer Science from EPFL,
Switzerland. As a member of the Scala team at EPFL he has been work-
ing on programming abstractions for concurrency, as well as type systems
to check their safety. Philipp created Scala Actors, a library for efficient,
high-level concurrent programming.

Frank Sommers

Frank Sommers is president of Autospaces, Inc., a company specializing in
automotive finance software. After almost 15 years of working with Java,
Frank started programming in Scala a few years ago, and became an instant
fan of the language. Frank is an active writer in the area of information
technology and computing. His main interests are parallel and distributed
computing, data management, programming languages, cluster and cloud
computing, open-source software, and online user communities.

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=177

Prepared for C. Doppler Laboratory Embedded Software Systems

Index

Page numbers followed by an n refer

to footnotes.

Symbols
! (asynchronous message send)
defined by ScalaActorRef
trait, 143
in Akka actors, 143
on trait Actor, 67—-68
on trait Reactor, 162
(!) (asynchronous message send)
in Erlang actors, 67
'l (futures message send)
on trait Actor, 70, 165, 169
on trait ReplyReactor, 165
1? (synchronous message send)
on trait Actor, 68—-69
on trait ReplyReactor, 165
? (synchronous message send)
in Akka actors, 152

A
activation events, 44
Actor trait
in Akka, 141
in Scala, 161, 169
actor-based programming
defining message classes, 64
messages altering
internal state, 64
subsequent behavior, 64
with Scala, 24

178

actorOf method, in Akka

on object Actor, 143

ActorRef trait, in Akka

implicitly converted to
ScalaActorRef trait, 141

actors

Akka vs. Scala, 149

and event dispatch threads, 106

and Swing, 106

and thread-bound properties,

103-106

child, 43

concepts, 43—45

creating vs. starting, 49

daemon-style, 107

definition of, 38

designing with, 40

distributed, see actors, remote

DSL, 63

event-based versus

thread-based, 73-74

events, concept of, 43-45

late binding of, 4142

life cycle of, 49

local vs. remote, 46

model, 23, 43-45

remote, 117-120, 151, 172-174
Akka, 151-160
connecting to, 173
creating, 173
linking, 120
starting, 173

Prepared for C. Doppler Laboratory Embedded Software Systems

Index

starting vs. creating, 49
states, see states, actor
theory of, 4345
versus threads, 25-28

actors.corePoolSize, 77
actors.maxPoolSize, 77
AJAX, 46

Akka, 141-160

! (asynchronous message send)
defined by ScalaActorRef
trait, 143
? (synchronous message send)
in Akka actors, 152
accessing actors, 144
Actor trait, 141
actorOf method
on object Actor, 143
ActorRef trait, 141-144, 152
implicitly converted to
ScalaActorRef trait, 143
actors
Akka vs. Scala, 149
become method
on trait Actor, 146, 147, 149
creating actors, 141-145
fault tolerance, 158—160
forward method
on trait ScalaActorRef, 143
message handling, 145-150
unhandled messages,
147-150
UnhandledMessageException,
148
monitoring actors, 159
parallel processing example,
146-147
receive method
on trait Akka Actor, 143
remote actors, 151-160
reply method
on trait ScalaActorRef, 143

shutting down actors, 142, 154,
158
start method
on trait Actor, 142
starting actors, 142, 151, 158
supervision, of actors, 159
andThen method
on trait Reactor, 167
arbiter, 47
concept of, 48
arrival events, 44
asynchronous message sends (!)
defined by ScalaActorRef
trait, 143
in Akka actors, 143
in Erlang actors, 67
on trait Actor, 67-68
on trait Reactor, 162
asynchronous messaging, 46

B

Baker, Henry, 44
become method, in Akka

on trait Actor, 146, 147, 149
Blocked,actor state, 167
broadcast, reliable, 134—140
by-name parameters, 101

Scala, basic concepts of, 55, 57

C
“Capabilities for Uniqueness and
Borrowing” (Haller and
Odersky), 26n
case statement, see pattern matching
chaining methods
Scala, basic concepts of, 58
channels, 170-172
creating, 171
InputChannel trait, 170
OutputChannel trait, 170
sharing, 171-172
chat application, 64
ChatRoom, 64

Cover - Overview - Contents - Discuss - Suggest - Index

179

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=179

Prepared for C. Doppler Laboratory Embedded Software Systems

checked exceptions
Scala, basic concepts of, 53
child actors, 43
closures, 81, 82, 106
combining control structures
Scala, basic concepts of, 58
“Communicating Sequential
Processes” (Hoare), 25n,
29n
Computer Architecture: A
Quantitative Approach
(Hennessy and Patterson),
27n
“Concurrent Object-Oriented
Programming” (Agha),
39n
Concurrent Programming in Erlang
(Armstrong, ef al.), 25n
continuation-passing style (CPS), 39
continuations, 39-42
continue method
on trait Reactor, 168
control-flow
concept of, 34-38
continue method on trait
Reactor, 168
loop method on trait Reactor,
168
loopWhile method on trait
Reactor, 168
of react-based actors, 81
andThen method on object
Actor, 81
building custom operators, 84
loopWhile method on object
Actor, 82
creating
remote actors, 173
creating actors
in Akka, 141-145
vs. starting, 49
creating control structures, Scala,

basic concepts of, 55

currying
Scala, basic concepts of, 58-59

D
daemon-style actors, 107
data-flow, concept of, 34-38
Dean, Jeffrey, 124
defining control structures, Scala,
basic concepts of, 58
denial-of-service, 47
determinism, and actor model, 33
deterministic actor execution,
107-115
differences between Scala and Akka
actors
message reception semantics,
149
sending messages from outside
actors, 145
division-of-labor tenet
Scala, basic concepts of, 58
domain specific language (DSL), 63
downloading
source code for book examples,
xxi

E
Erlang language, xiv
errata, viewing and reporting, xxi
error handling, 91
event dispatch threads, 106
events
activation, 44
actor model, 44
arrival, 44
example code, for book
downloading, xxi
license of, xxi
exception handling, 88-91
futures, 101
Exit class, 95, 167
exit method

Cover - Overview - Contents - Discuss - Suggest - Index

180

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=180

Prepared for C. Doppler Laboratory Embedded Software Systems

on trait Reactor, 163

F
fault tolerance, 91, 123, 131
in Akka, 158-160
fork-join parallelism, 43
forward method
in Akka, on trait
ScalaActorRef, 143
on trait Reactor, 162
on trait ReplyReactor, 164
“The Free lunch Is Over: A
Fundamental Turn Toward
Concurrency, The”
(Sutter), 24n
functions
first-class objects, Scala, basic
concepts of, 54
literals, Scala, basic concepts
of, 54
future method
on trait Future, 169
futures, 169-170
concept of, 70
construct of, 169
event-based, 83-87
exception handling, 101
isSet method
on trait Future, 169
send-with-future message, 169
futures message sends (!!)
on trait Actor, 70, 165, 169
on trait ReplyReactor, 165

G
getState method
on trait Reactor, 163
Ghemawat, Sanjay, 124
Google protocol buffers, 151
graceful shutdown
actors, in Akka, 142

H
Hewitt, Carl, 23, 44

I
incoming message processing
pattern matching, 62
indeterminism, unbounded, 33, 48
index, inverted, 124
inferring
method return types, Scala,
basic concepts of, 52
variable types, Scala, basic
concepts of, 52
isSet method
on trait Future, 169

J
Java Concurrency in Practice (Goetz
etal),25n
Java Native Interface (JNI), 106

K
Kay, Alan, 42n, 42

L
late binding, of actors, 41-42
“Laws for Communicating Parallel
Processes” (Hewitt and
Baker), 44n
life cycle of actors, 49
1link method
on trait Actor, 167
linking actors, 93-97, 166
remote, 120

M
mailbox, 47
concept of, 48
managed blocking, 111-116
MapReduce, 32-33
“MapReduce: Simplified Data
Processing on Large
Clusters” (Dean and
Ghemawat), 32n, 123n
message delays, 46
message handling

Cover - Overview - Contents - Discuss - Suggest - Index

181

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=181

Prepared for C. Doppler Laboratory Embedded Software Systems

in Akka, 145-150
unhandled messages, in Akka,
147-150
UnhandledMessageException
in Akka, 148
message processing, 63—71
behaviors, Scala, basic concepts
of, 58
defining act method, 65
invoking start, 65
obtaining next available
message, 65
monitoring actors, 49, 91-101, 166
in Akka, 159
Moore’s Law
applied to computing
performance, 24

(0]
Oz language, xiv

P

parallel hardware, 24
pattern matching

incoming message processing,

62

Scala, basic concepts of, 61-62
“poison pill”, 49
principles of

locality, 37

“send it and forget it”, 46
pthreads library, xiv

R
race conditions
avoided by design, 26
react and receive
differences, 74-87
react method, 162-164
on trait Future, 169
Reactor trait, 161-164
andThen control flow, 167
continue control flow, 168

Index

control flow, 169
loop control flow, 168
loopWhile control flow, 168
reactWithin method
on trait Future, 169
on trait ReplyReactor, 165
receive method
in Akka on trait Akka Actor,
143
on trait Actor, 166
receiveWithin method
on trait Actor, 71
recursion
with react method, 78
register method
on class RemoteActor, 117
reliable broadcast, 134—-140
remote actors, 117-120, 172—-174
Akka, 151-160
connecting to, 173
creating, 173
linking, 120
local vs remote, 46
starting, 173
reply method
in Akka, on trait
ScalaActorRef, 143
on trait ReplyReactor, 165
ReplyReactor trait, 161, 164-166,
169
restart method
on trait Reactor, 163

S
“Scala Actors: Unifying
Thread-based and
Event-based
Programming” (Haller and
Odersky), 23n
Scala, basic concepts of
by-name parameters, 55, 57
chaining methods, 58
checked exceptions, 53

Cover - Overview - Contents - Discuss - Suggest - Index

182

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=182

Prepared for C. Doppler Laboratory Embedded Software Systems

combining control structures,
58
creating control structures, 55
currying, 58-59
defining control structures, 58
division-of-labor tenet, 58
favoring immutable data
structures, 52
first-class functions, 54
function literals, 54
functions as control structures,
55-58
generalizing control flow, 60
inferring method return types,
52
inferring variable types, 52
message sending and
processing behaviors, 58
pattern matching, 61-62
scaling via concurrency, 52
structural typing, 60
ScalaActorRef trait
in Akka, implicitly converted
to, 141
SchedulerAdapter trait, 106
schedulers
customizing, 102-111
select method
on classRemoteActor, 119
“send it and forget it”, 46
send-with-future message, 169
sender method
on trait ReplyReactor, 165
Shirley Temple, see child actors
shutting down actors
in Akka, 142, 154, 158
SingleThreadedScheduler, 111
Smalltalk, 42n
Squeak, 42n
starting actors
in Akka, 142, 151, 158
vs. creating, 49

Index

starting remote actors, 173
states, actor
Blocked, 167
New, 163
Runnable, 163
Suspended, 91, 163
Terminated, 91, 163
TimedBlocked, 167
structural typing
Scala, basic concepts of, 60
supervision, of actors
in Akka, 159
Swing, using actors with, 106
switch statement, see pattern
matching
synchronous message sends
1?
on trait Actor, 68—69
on trait ReplyReactor, 165
?
in Akka actors, 152

T
terminating actors, 45, 49, 74-76,
78,79, 92

automatically, 88

exit reason, 94

propagating exit reason, 167

trapping, 95-101
thread-bound properties, 103—-106
thread-per-actor approach, 73
time, local vs. global, 45

TimedBlocked, actor state, 167

TimedSuspended state

on trait ReplyReactor, 166
tips and techniques

react plays extremely well

with recursive methods, 79

a name can only be registered
with a single (alive) actor

at a time. This requirement

applies across all ports on
a single JVM, 173

Cover - Overview - Contents - Discuss - Suggest - Index

183

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=183

Prepared for C. Doppler Laboratory Embedded Software Systems

Akka requires message handlers
to handle all message types
that are possibly sent to the
actor, 149

Code surrounding an invocation
of react should never
catch instances of
java.lang.Throwable,
78

In Akka, most of the actor API
is accessed through
ActorRefs, 142

in some cases, actors can use a
mix of event-based code
and thread-based code, 111

Invoking react must always be
the last thing an
event-based actor does
before it terminates, 78

Once an actor has exceeded its
useful life, it can be
stopped and destroyed,
either of its own accord, or
as a result of some “poison
pill”, 49

operations that may block the
underlying thread have to
be used with care, so as to
avoid locking up the entire
thread pool, 112

some messages sent to an actor
can alter the actor’s
internal state, 64

You would almost always want
to define your actor
messages as Scala case
classes, 62

trapExit member
in trait Actor, 167

U
unbounded indeterminism, 33, 48

Index

unhandled messages, in Akka,
147-150

UnhandledMessageException, in
Akka, 148

“Universal Modular ACTOR
Formalism for Artificial
Intelligence, A” (Hewitt et
al.), 23n

unlink method

on trait Actor, 167

Using MPI: Portable Parallel
Programming with the
Message—Passing
Interface (Gropp et al.),
25n

Cover - Overview - Contents - Discuss - Suggest - Index

184

http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=184

Prepared for C. Doppler Laboratory Embedded Software Systems

escalate

Stairway to Scala Workshop

Jrom Escalate Software
www.escalatesoft.com

If you’ve decided to use Scala, and want to speed up the time it takes
to get proficient and productive, then Escalate Software’s Stairway to Scala
Workshop is for you. The course, which is divided into applied and advanced
parts, is designed to save you time in your transition to Scala.

Stairway to Scala Applied, a three-day course of Scala fundamentals,
will take you step-by-step through the most important aspects of the Scala
language and API, as well as the important ideas behind them. At each step,
you’ll gain a deeper understanding of Scala’s design and how Scala can help
you accomplish a wide range of practical programming tasks, from writing
small scripts to building large systems. After taking this course you’ll be
able to code in Scala with confidence, and enjoy the productivity boost the
Scala promises to those who master it.

If you feel you have reached a level of proficiency in Scala but want to
take your Scala programming to the next level, then Stairway to Scala Ad-
vanced is for you. This two-day course will take you through many advanced
topics, including actors, and at each step you will gain a deeper understand-
ing of Scala’s advanced features and how you can apply them in the real
world. If you already use Scala regularly, this course will make you more
productive and able to tackle tougher challenges.

For information on Escalate Software’s next
public Scala workshops, visit:

http://www.escalatesoft.com/training

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.escalatesoft.com/training
http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=185

Prepared for C. Doppler Laboratory Embedded Software Systems

Dive deeper into Scala
with this book from Artima Press:

A comprehensive step-by-step guide

Programming in

Scala

Second Edition

o

Updated for Scala 2.

Martin Odersky
. Lex Spoon
artima Bill Venners

Programming in Scala is the definitive book on Scala, the language that
brings actors to the Java Platform. Coauthored by the designer of the Scala
language, this authoritative book will help you to master, one step at a time,
the Scala language and the ideas behind it.

Programming in Scala, Second Edition: A comprehensive, step-
by-step guide

by Martin Odersky, Lex Spoon, and Bill Venners

ISBN: 978-0-9815316-4-9

$54.95 paper book / $29.95 PDF eBook

Order your copy now at:

http://www.artima.com/shop/programming_in_scala_2ed

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/shop/programming_in_scala_2ed
http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=186

Prepared for C. Doppler Laboratory Embedded Software Systems

Other titles from Artima Press

Hiring software professionals is difficult,
. but few books exist on this specific topic. Agile

.g;lle Hiring presents a fresh approach that is tested by

H]I‘]_ng fire: developed by the author in over twenty years
= of experience hiring software professionals at both
small companies and large. Drawing on principles
from the “agile” software movement, this
book offers a different way to think about hiring.
This book provides principles and techniques that
will help you hire the best software professionals.

artima Sean Landis

Agile Hiring: Transform how you hire software professionals
by Sean Landis

ISBN: 978-0-9815316-3-2

$29.95 paper book / $20.00 PDF eBook

Order it now at: http://www.artima.com/shop/agile_hiring

Flex 4 Fun is the authoritative guide to graphics
and animation in Flex 4: the fun stuff! The

book is filled with insightful tips on user interface
programming and includes nearly seventy
example programs written expressly for the

book. Written by Chet Haase, an engineer on the
Flex SDK team at Adobe during the development
of Flex 4 and coauthor of Filthy Rich Clients, this
book will teach you the graphical and animation
side of Flex 4 that enable better user experiences.

artima Chet Haase

Flex 4 Fun: Graphics and animation for better user interfaces
by Chet Haase

ISBN: 978-0-9815316-2-5

$36.95 paper book / $23.00 PDF eBook

Order it now at: http://www.artima.com/shop/flex_4_fun

Cover - Overview - Contents - Discuss - Suggest - Index

http://www.artima.com/shop/agile_hiring
http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=287
http://www.artima.com/backtalk/talkback?b=actors_in_scala&v=4&n=187

	Contents
	List of Figures
	List of Listings
	Foreword
	Acknowledgments
	Introduction
	Concurrency Everywhere
	A shift toward parallel hardware
	Actors versus threads
	Scalability
	A high-level perspective on concurrency
	The indeterministic soda machine
	Programming the data center

	Messages All the Way Up
	Control flow and data flow
	Actors and messages
	Actor creation
	Actor events
	Asynchronous communication
	You've got mail: indeterminacy and the role of the arbiter
	Actor life cycle

	Scala's Language Support for Actors
	A scalable language
	Immutable and mutable state
	Methods and classes
	First-class functions
	Functions as control structures
	Pattern matching and case classes

	Actor Chat
	Defining message classes
	Processing messages
	Sending actor messages

	Event-Based Programming
	Events versus threads
	Making actors event-based: react
	Event-based futures

	Exceptions, Actor Termination, and Shutdown
	Simple exception handling
	Monitoring actors

	Customizing Actor Execution
	Pluggable schedulers
	Managed blocking

	Remote Actors
	Creating remote actors
	Remote communication
	A remote start service

	Distributed and Parallel Computing
	MapReduce
	Reliable broadcast

	Akka Actors
	Creating Akka actors
	ActorRefs
	Inter-actor interaction, interactively
	Message handling
	Remote actors in Akka

	API Overview
	The actor traits Reactor, ReplyReactor, and Actor
	Control structures
	Futures
	Channels
	Remote Actors API

	Bibliography
	About the Authors
	Index

