
MapReduce

from the paper
MapReduce: Simplified Data Processing on

Large Clusters (2004)

What it is

• MapReduce is a programming model and an
associated implementation for processing and
generating large data sets.

Users specify

• a map function that processes a key/value pair to
generate a set of intermediate key/value pairs,

• and a reduce function that merges all
intermediate values associated with the same
intermediate key.

map and reduce functions

• map(String key, String value):

• reduce(String key, Iterator values)

• map (k1,v1) → list(k2,v2)

• reduce (k2,list(v2)) → list(v2)

sample problem: word counting

• counting the number of occurences of each
word in a large collection of documents

• map(String key, String value):
 // key: document name (k1=filename)
 // value: document contents (v1)

 for each word w (= k2) in value:
 EmitIntermediate(w, "1" (= v2));

sample problem: word counting

• reduce(String key, String value):
 // key: word (= k2)
 // value: list of v2 = list of "1"

 for each word w (= k2) in value:
 EmitIntermediate(w, "1" (= v2));

sample problem: distributed grep

• grep (pattern matching according to a regular
expression) in a large collection of documents

• map: k1 = filename
 k2 = line that matches pattern
 v2 = filename + linenumber within file

• reduce:
 output of
 k2
 list(v2)

sample: URL access frequency

• counting the number of occurences of each
URL in a large collection of documents which
contain URL lists

• map: k1 = filename
 k2 = URL
 v2 = “1”

• reduce:
 for each k2: size (list(v2))

sample: reverse web link graph

• all references to a Web page, given a large
collection of documents which contain
<source-URL, target-URL> pairs

• map: k1 = filename
 k2 = target-URL
 v2 = source-URL

• reduce:
 for each k2: output list(v2)

execution of a map reduce process

execution of a map reduce process

• The MapReduce library in the user program first shards the input files into
M pieces of typically 16 megabytes to 64 megabytes (MB) per piece. It
then starts up many copies of the program on a cluster of machines.

• One of the copies of the program is special: the master. The rest are
workers that are assigned work by the master. There are M map tasks
and R reduce tasks to assign. The master picks idle workers and assigns
each one a map task or a reduce task.

• A worker who is assigned a map task reads the contents of the
corresponding input split. It parses key/value pairs out of the input data
and passes each pair to the user-defined Map function. The intermediate
key/value pairs produced by the Map function are buffered in memory.

• Periodically, the buffered pairs are written to local disk, partitioned into R
regions by the partitioning function. The locations of these buffered pairs
on the local disk are passed back to the master, who is responsible for
forwarding these locations to the reduce workers.

execution of a map reduce process

• When a reduce worker is notified by the master about these locations, it
uses remote procedure calls to read the buffered data from the local
disks of the map workers. When a reduce worker has read all
intermediate data, it sorts it by the intermediate keys so that all
occurrences of the same key are grouped together. If the amount of
intermediate data is too large to fit in memory, an external sort is used.

• The reduce worker iterates over the sorted intermediate data and for each
unique intermediate key encountered, it passes the key and the
corresponding set of intermediate values to the user's Reduce function.
The output of the Reduce function is appended to a final output file for
this reduce partition.

• When all map tasks and reduce tasks have been completed, the master
wakes up the user program. At this point, the MapReduce call in the user
program returns back to the user code.

• After successful completion, the output of the MapReduce execution is
available in the R output files.

master data structures

• For each map task and reduce task:

– the state (idle, in-progress, or completed), and

– the identity of the worker machine (for non-idle
tasks)

• for each completed map task:

– the locations and sizes of the R intermediate file
regions produced by the map task.

fault tolerance (1)

• worker failure:
– timeout check: master pings every worker periodically; if

no response is received from a worker in a certain amount
of time, the master marks the worker as failed.

– When a map task is executed first by worker A and then
later executed by worker B (because A failed), all workers
executing reduce tasks are notified of the reexecution.
Any reduce task that has not already read the data from
worker A will read the data from worker B.

• master failure:
– MapReduce computation aborted if the master fails.

Clients can check for this condition and retry the
MapReduce operation if they desire.

fault tolerance (2)

• “straggling” workers: a machine takes an
unusually long time to complete one of the
map or reduce tasks in the computation.

• general mechanism to alleviate the problem of
stragglers: When a MapReduce operation is
close to completion, the master schedules
backup executions of the remaining in-
progress tasks. The task is marked as
completed whenever either the primary or
the backup execution completes.

fault tolerance (3)

• bad records: sometimes there are bugs in user code
that cause the Map or Reduce functions to crash
deterministically on certain records

• sometimes it is acceptable to ignore a few records, for
example when doing statistical analysis on a large data
set.

• Each worker process installs a signal handler that
catches segmentation violations and bus errors.

• when the master has seen more than one failure on a
particular record, it indicates that the record should be
skipped when it issues the next re-execution of the
corresponding Map or Reduce task

optimizations

• combiner function: in some cases, there is
significant repetition in the intermediate keys
produced by each map task, and the user-
specified Reduce function is commutative and
associative
– thus, the intermediate keys should be processed

locally

– combiner function = reduce function except for
output destination (intermediate file for combiner)

– the Combiner function is executed on each machine
that performs a map task

sample: distributed grep

• The grep program scans through 1010 100-
byte records, searching for a relatively rare
three-character pattern (the pattern occurs in
92,337 records). The input is split into
approximately 64MB pieces (M = 15000), and
the en- tire output is placed in one file (R = 1).

usage statistics 2004-2007

http://www.niallkennedy.com/blog/2008/01/google-mapreduce-stats.html

