Bigtable

from the paper

BigTable: A Distributed Storage System for
Structured Data (2006)

What it is (1)

* Bigtable is a distributed storage system for
managing structured data that is designed to
scale to a very large size: petabytes of data
across thousands of commodity servers.

* NO relational database system

* INSTEAD: Excel-like table abstraction (rows
+columns) with additional time dimension

What it is (2)

e A Bigtable is a sparse, distributed, persistent
multi- dimensional sorted map. The map is
indexed by a row key, column key, and a
timestamp:

(row:string, column:string, time:int64) - string

* string <=> each value in the map is an
uninterpreted array of bytes.

Webtable as example

"com.cnn.www" —

"contents:" "anchor:cnnsi.com" "anchor:my.look.ca"
| I . ' -
I ‘ I ; ¢ ; ; ; .
I . A — B (U - . A i
' "whtmis."| S | |
- |_~___‘,.;~,_l___l-v -"-'-1 : 2 "CNN" - t9 "CNN.Com" < t8

"<html>..." ¢

Rows

arbitrary strings

— currently up to 64KB in size,

— although 10-100 bytes is a typical size

Bigtable maintains data in lexicographic order by row
key.

a row range defines a subset of the table called tablet
reads of short row ranges are efficient and typically

require communication with only a small number of
machines

For example, in Webtable, pages in the same domain
are grouped together for that purpose

Columns

* Column keys are grouped into sets called
column families

— form the basic unit of access control

— must be created before data can be stored under
any column key in that family

— A column key is named using the following syntax:
family:qualifier.

— Column family names must be printable, but
qgualifiers may be arbitrary strings.

 Example in Webtable: column family ‘anchor’

Time stamps

multiple versions of the same data within a
cell are indexed by timestamps

can be automatically assigned by Bigtable (->
real time)

or can be explicitly assigned

Bigtable offers garbage collection based on
time stamps
— eg, keep versions of past 8 days

Sample usage of Bigtable API (1)

// Open the table
Table *T = OpenOrDie("/bigtable/web/

webtable");

// Write a new anchor and delete an old
anchor RowMutation rl(T, "com.cnn.www");
rl.Set("anchor:www.c-span.org", "CNN");
rl.Delete("anchor:www.abc.com");

Operation op;
Apply(&op, &rl);

Sample usage of Bigtable API (2)

Scanner scanner(T);

ScanStream *stream;

stream = scanner.FetchColumnFamily("anchor");
stream->SetReturnAllVersions();

scanner .Lookup("com.cnn.www") ;

for (; !stream->Done(); stream->Next()) {

printf("%s %s %$11ld %$s\n", scanner.RowName(),
stream->ColumnName(),
stream->MicroTimestamp(),
stream->Value());

Bigtable building blocks (1)

(massively) distributed Google File System
(GFS)

cluster management system

SSTable: persistent immutable map from keys
(arbitrary byte strings) to values (arbitrary
byte strings)

— consists of a sequence of blocks (each 64 KB)

distributed lock service, called Chubby

Bigtable building blocks (2)

* Chubby provides a namespace that consists of
directories and small files. Each directory or file can be
used as a lock, and reads and writes to a file are
atomic.

* Bigtable uses Chubby ...
— to ensure that there is at most one active master at any
time
— to store the bootstrap location of Bigtable data
— to discover tablet servers and finalize tablet server death

— to store Bigtable schema information (the column family
information for each table); and

— to store access control lists.

* |f Chubby becomes unavailable for an extended period
of time, Bigtable becomes unavailable.

Bigtable implementation (1)

* three major components:
— a library that is linked into every client,
— one master server, and
— many tablet servers

* master: is responsible for
— assigning tablets to tablet servers,

— detecting the addition and expiration of tablet
Servers,

— balancing tablet-server load, and
— garbage collection of files in GFS.

— handling of schema changes such as table and column
family creations

Bigtable implementation (2)

e tablet server:

— manages a set of tablets (typically we have
somewhere between ten to a thousand tablets per
tablet server)

— handles read and write requests to the tablets that it
has loaded, and also

— splits tablets that have grown too large

e clients:

— communicate directly with tablet servers for reads
and writes

— most clients never communicate with the master; as a
result, the master is lightly loaded in practice

