Model-based development of
deterministic, portable
real-time software components

Prof. Dr. Wolfgang Pree
Univ. Salzburg




Overview

Timing Definition Language (TDL) in a nut shell

TDL execution

TDL extensions

Transparent distribution of TDL components
TDL development process

TDL tools

TDL advantages

© 2009, W. Pree Modeling with TDL




TDL In a nut shell




What is TDL?

e A high-level textual notation for defining the timing behavior of
a real-time application.

@—b set of tasks 1 »@

set of set of
sSensors actuators

e TDL covers all aspects that are required to model safety-
critical software as found, for example, in cars, airplanes,
Unmanned Aerial Vehicles (UAVs), automation systems

I seamless integration of time-triggered (synchronous) and
event-triggered (asynchronous) activities

e TDL’s specification is public; could form the basis of an open
standard

© 2009, W. Pree Modeling with TDL




TDL is conceptually based on Giotto

Giotto project: 2000 — 2003, University of California, Berkeley

TDL = Giotto concepts

+ Syntax

+ Component Architecture
+ Tool Chain

+ Extensions

© 2009, W. Pree Modeling with TDL




TDL tools

TDL:Compiler
TDL:VisualCreator
TDL:VisualDistributor
TDL:VisualAnalyzer

requires Java 1.5 or later

optional integration with MATLAB/Simulink from
The MathWorks

TDL:Machine (alias E-Machine)
I platform-specific, typically in C

© 2009, W. Pree Modeling with TDL




TDL tool chain

functionality
code

L,
TDL:Compiler ' II > | TDL:Machine*

* Simulink, OSEK, dSpace, ARM, AES, INtime, RTLinux, ...

© 2009, W. Pree Modeling with TDL




TDL tool chain

functionality
code

L,
_: TDL:Machine*

Platform

platform II

specific

* Simulink, OSEK, dSpace, ARM, AES, INtime, RTLinux, ...

© 2009, W. Pree

Modeling with TDL



TDL tool chain

TDL:VisualCreator ﬂ
o oee e : code

| : L,
.| TDL:Compiler || —— II—> TDL:Machine

-
\ AST

Platform —> olatform |I ]
! specific

© 2009, W. Pree Modeling with TDL




TDL tool chain

TDL:VisualCreator ﬂ

functionality
__________________ code

: : _I L,
—" TDL:Compiler :—' I — " | TDL:Machine

platform II Platform platform II
specific plugin* specific
1701101

© 2009, W. Pree Modeling with TDL




TDL tool chain

TDL:Machine

TDL:Machine TDL:Machine

© 2009, W. Pree Modeling with TDL




TDL programming model: multi-rate, multi-mode systems ()

/ mode 1

y 4 task 1 [10 ms]

v task 2 [20 ms]

4 mode 2

N task 1 [5 ms]

™ task 3 [1 ms]
o

© 2009, W. Pree Modeling with TDL




TDL programming model: multi-rate, multi-mode systems (ll)

LET’-semanticg

/ mode 1

y 4 task 1 [10 ms]

v task 2 [20 ms]

4 mode 2

N task 1 [5 ms]

™ task 3 [1 ms]
o

© 2009, W. Pree Modeling with TDL




Logical Execution Time (LET) abstraction

release ] ] ] terminate
Logical Execution Time (LET)

T >

v

Logical <

task invocation

start suspend resume stop stop
(ET) (WCET)

ET <= WCET <= LET
results are internally available at ‘stop (ET)’
results are externally visible at ‘terminate’

spare time between ‘stop’ and ‘terminate’

© 2009, W. Pree Modeling with TDL




LET advantages

observable (logical) timing is identical on all
platforms

allows for simulation
allows for composition
allows for distribution

© 2009, W. Pree Modeling with TDL




Periodic execution in TDL modes

Mode Start . Mode End
Mode Period
D

<
Logical
task t invocation 1 task t invocation 2

Every mode has a fixed period.

A task t has a frequency f within a mode.

The mode period is filled with ftask invocations.
The LET of a task invocation is modePeriod / 1.

© 2009, W. Pree Modeling with TDL




TDL module: modes, sensors and actuators form a unit

-~

8y
2

\_

4 mode 1

\

al

task 1 [10 ms]

N

e

task 2 [20 ms]

/

v/

N
-

/" mode 2

A task 1 [5 ms]

task 3 [1 ms]

/

K@@

© 2009, W. Pree

Modeling with TDL




Motivation for TDL modules

ECU1 ECU2

Program1 Program2

ECU3

Program3

e.g. modern cars have up to 80 electronic control units (ECUs =
nodes)

ECU consolidation is a topic

run multiple programs on one ECU
leads to TDL modules

© 2009, W. Pree Modeling with TDL




TDL modules

ProgramX is called a module

modules may be independent

modules may also refer to each other
modules can be used for multiple purposes

© 2009, W. Pree Modeling with TDL




Example: Receiver imports from Sender module

/ mode 1 \ / mode 1

task 2 [10 ms
task 1 [10 ms] pE— <‘ | ]

> task 3 [5 ms]
task 2 [20 ms] <
P
mode 2 @ mode 2

task 1 [5 ms] @ :ﬁ task 3 [10 ms]
task 3 [1 ms] %mode 3

task 3 [5 ms] task 4 [1 ms]
module Sender 5
U

odule Receiver

© 2009, W. Pree Modeling with TDL




Example: Receiver imports from Sender module

/ mode 1 mode 1

task 1 [10 ms]

task 2 [10 ms]

task 1 [5 ms]

task 3 [5 ms]
task 2 [20 ms]

4 mode 2

\ﬁ task 3 [10 ms]
.

mode 2

task 1 [5 ms]

task 3 [1 ms] mode 3
task 3 [5 ms] task 4 [1 ms]
odule Sender

.
\ / Kmodule Receiver

public

© 2009, W. Pree Modeling with TDL




Example: Receiver imports from Sender module

/ mode 1

task 1 [10 ms]

s2)

task 1 [5 ms]

task3 [1 ms] [

© 2009, W. Pree

\ o

- 4

sk 2[10 ms]

tas
AQ

\

H task 3 [10 ms]
.

W mode 3

ﬁ task 3 [5 ms]

task 4 [1 ms]

\.

odule Receiver

Modeling with TDL




TDL syntax by example

module Sender {

sensor bHoolean sl uses getSl;

actuator 11t al uses setAl;
(s1) [ inc 5ms] {a1)

public task inc {
output 1t o 10;
uses inclImpl (

o) ;

[period=bms] {

start mode main
= bms

task
[freg=1]

actuator
[freg=1] al

mode
[freg=1] if exitMain(sl)

// LET = 5ms / 1

inc () ;
:= inc.o; // update every 5ms

then freeze;

[period=1000ms] {}

mode freeze

© 2009, W. Pree Modeling with TDL




Module import

module Receiver {
import Sender;

task clientTask {
input ‘nt il;

}

mode main [period=10ms] {
task [freg=1l] clientTask(Sender.inc.o); // LET = 10ms / 1 = 10ms

20 ms

(1) { inc 5ms] [c¥(ar,

clientTask [10ms] @

© 2009, W. Pree Modeling with TDL




LET-behavior (independent of component deployment)

<

communicaﬁon of inc’s
output to clientTask

- clientTask clientTask

© 2009, W. Pree Modeling with TDL




TDL execution




TDL run-time environment

based on a virtual machine, called TDL:Machine

executes virtual instruction set, called E-code
(embedded code)

E-code is executed at logical time instants
synchronized logical time for all components

E-code generated by TDL compiler from TDL
source

covers one mode period
contains one E-code block per logical time instant

© 2009, W. Pree Modeling with TDL




one TDL:Machine per node

TDL:Machine

© 2009, W. Pree Modeling with TDL




one TDL:Machine per node

TDL:Machine

TDL:Machine TDL:Machine

© 2009, W. Pree Modeling with TDL




TDL extensions




TDL slot selection

Mode Start M E
Mode Period ode End

< >
 slot1 slot2 slot3 slot4 slot5 slot6 .

Logical

© 2009, W. Pree Modeling with TDL




TDL slot selection

Mode Start . Mode End
Mode Period

< >
. {slot1 slot2 slot3 slot4 slotS slot6 |
Logical

task invoc. 1 task invoc. 2

o f=6
e task invocation 1 covers slots 1 — 2
e task invocation 2 covers slots4 — 5

© 2009, W. Pree Modeling with TDL




TDL slot selection allows the specification of ...

e an arbitrary repetition pattern
e the LET more explicitly

® gaps

e task invocation sequences

e optional task invocations

Modeling with TDL

© 2009, W. Pree




Physical layer / E-code blocks

Mode Start Mode End
Mode Period

- tq

 slot1 slot2 slot3 slot4 slot5 slot6 ,

task invoc. 1 task invoc. 2

Logical <

Physical

~ E-code E-code E-code
block block block

e E-Code block follows fixed pattern:
1. task terminations
2. actuator updates
3. mode switches
4. task releases

© 2009, W. Pree Modeling with TDL




E-code compression

E-code blocks may be identical
compression feature would be welcome
new instruction:

REPEAT <targetPC>, <N>

jumps N times to targetPC, then to PC + 1.

uses a counter per module
counter is reset upon mode switch

© 2009, W. Pree Modeling with TDL




Adding asynchronous activities

Mode Start . Mode End
Mode Period

R >
 slot1 slot2 slot3 slot4 slotS slot6 |

Logical < T T
task invoc. 1 task invoc. 2

Physical <

= E-code E-code E-code
block block block

Priority levels
e black: highest priority (E-code)

© 2009, W. Pree Modeling with TDL




Adding asynchronous activities

Mode Start . Mode End
Mode Period

- K >
L slot1 slot2 slot3 slot4 slot5 slot6 .

Logical < . .
task invoc. 1 task invoc. 2

Physical < I I

" E-code E-code E-code
block block block

Priority levels
e black: highest priority (E-code)
e red: lower priority (synchronous tasks)

© 2009, W. Pree Modeling with TDL




Adding asynchronous activities

Mode Start . Mode End
Mode Period
D

 slot1 slot2 slot3 slot4 slot5 slot6 .

—

Logical < . .
task invoc. 1 task invoc. 2

Physical <

" E-code E-code E-code
block block block

Priority levels

e black: highest priority (E-code)

e red: lower priority (synchronous tasks)

e blue: lowest priority (asynchronous activities)

© 2009, W. Pree Modeling with TDL




Asynchronous activities rationale

event-driven background tasks

may be long running

not time critical

could be implemented at platform level, but:

I platform-specific

I unsynchronized data-flow to/from E-machine

support added toTDL

Goal: avoid complex synchronization constructs
and the danger of deadlocks and priority inversions

© 2009, W. Pree Modeling with TDL



Kinds of asynchronous activities

e task invocation

similar to synchronous task invocations except
for timing

input ports are read just before physical
execution

output ports are visible just after physical
execution

data flow is synchronized with E-machine
e actuator updates

I similar to synchronous actuator updates except
for timing

I data flow is synchronized with E-machine

© 2009, W. Pree Modeling with TDL




Trigger Events

e hardware and software interrupts
e periodic asynchronous timers
e port updates

Use a registry for later execution of the async

activities.
Parameter passing occurs at execution time.

Registry functions as a priority queue.

© 2009, W. Pree Modeling with TDL




Transparent distribution




TDL module-to-node-assignment (example)

FlexRay bus

© 2009, W. Pree Modeling with TDL




Transparent distribution of TDL components:

Firstly, at runtime a set of TDL components
behaves exactly the same, no matter if all
components are executed on a single node or if
they are distributed across multiple nodes.
The logical timing is always preserved, only the
physical timing, which is not observable from the
outside, may be changed.

Secondly, for the developer of a TDL
component, it does not matter where the
component itself and any imported component
are executed.

© 2009, W. Pree Modeling with TDL 44




sample physical execution times on ECU1/ECU2 N

clientTask clientTask

<

© 2009, W. Pree Modeling with TDL




Constraints for automatic schedule generation

© 2009, W. Pree

communication communication
window window
| 1 |

stop stop
(WCET) (WCET)

clientTask clientTask

Modeling with TDL




Bus schedule generation

communication communication
window window
1 1

FlexRay
bus

clientTask clientTask

© 2009, W. Pree Modeling with TDL




TDL:VisualDistributor maps TDL modules to nodes

& TDL:VisualDistributor
File Edit Help
DEB ~ ~

| “alue
5 [& Buses FENEONEEERE FloxRay cluster
= = FlexRay
= [ Caonnected Naodes
5= node
B9 node?
Sender Modules
= [ Mades
= == nodel
= [ Placed Maodules
B M1
= [ Caonnected Buses
= FlexRay
= ma hode?
= [ Placed Madules
B M2
= [ Connected Buses
== FlexRay
= [ Modules
EA T
F T

© 2009, W. Pree Modeling with TDL




TDL-based

development process




preeTEC tools in the V model

TDL:VisualCreator
in Matlab®/Simulink® + timing

platform 2

© 2009, W. Pree Modeling with TDL




TDL tools:

status quo




Status quo

ready
TDL:VisualCreator (stand-alone or in Matlab®/Simulink®)

TDL:VisualDistributor (extensible via plugins; currently a plugin for
FlexRay is available as product, together with plug-ins for various
cluster nodes such as the MicroAutoBox, and Renesas—AES)
The TDL:VisualDistributor is available as stand-alone tool or

in Matlab®/Simulink® and provides the following features:

Communication Schedule Generator
TDL:CommViewer

automatic generation of all node-, OS- and cluster-specific files
TDL:Compiler
TDL:Machine for Simulink, mabx, AES, ARM, INtime, OSEK
seamless integration of asynchronous events with TDL

multiple slot selection (decoupling of LET and period; eg, for event
modeling)

harnessing existing FlexRay communication schedules (via FIBEX) for
their incremental extension

TDL:VisualAnalyzer (recording and debugging tool)
work in progress

‘intelligent’ FlexRay parameter configuration editor

TDL:Machine for further platforms (ARM, etc.)

© 2009, W. Pree Modeling with TDL 52




TDL advantages




The TDL way:

develop once

deploy on any
platform

single
FIexRay -based node

communication

© 2009, W. Pree Modeling with TDL




State-of-the-art:

© 2009, W. Pree Modeling with TDL




TDL advantages

e transparent distribution: developers do not have
to consider the target platform (processor, OS,
communication bus, etc.), which could be a single
node or a distributed system

e time and value determinism: same inputs imply

corresponding same outputs
I significantly improved reliability
I simulation = behavior on execution platform

© 2009, W. Pree Modeling with TDL



developers have to deal with 3 dimensions

functionality

© 2009, W. Pree Modeling with TDL




developers have to deal with 3 dimensions

| timing

functionality

© 2009, W. Pree Modeling with TDL




developers have to deal with 3 dimensions

| timing

functionality

platform

© 2009, W. Pree Modeling with TDL




TDL reduces this to 2 dimensions

| timing

functionality

platform

© 2009, W. Pree Modeling with TDL




TDL reduces this to 2 dimensions

—

| timing

functionality

platform

© 2009, W. Pree Modeling with TDL




TDL allows your developers to focus on the functionality

func{ionality

platform

© 2009, W. Pree Modeling with TDL




TDL allows your developers to focus on the functionality

3D — 1,5D

‘ timing

funciionality

platform

© 2009, W. Pree Modeling with TDL




TDL leads to enormous gains in efficiency and quality

eg, FlexRay development reduced by a factor of 20
1 person year => 2 person weeks

deterministic system:

simulation and executable on platform always
exhibit equivalent (observable) behavior

time and value determinism guaranteed

flexibility to change topology, even platform
automatic code generators take care of the details

© 2009, W. Pree Modeling with TDL 64




Thank you for your attention!

© 2009, W. Pree Modeling with TDL




