

R.H. Reussner et al. (Eds.): Architecting Systems, LNCS 3938, pp. 71 – 83, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Bus Scheduling for TDL Components

Emilia Farcas, Wolfgang Pree, and Josef Templ

Department of Computer Science, University of Salzburg, Austria
firstname.lastname@cs.uni-salzburg.at

Abstract. This paper describes a solution for bus scheduling of distributed
multi-mode TDL (Timing Definition Language) components. The TDL compo-
nent model is based on the concept of Logical Execution Time (LET), which
abstracts from physical execution time and thereby from both the execution
platform and the communication topology. The TDL component model allows
the decomposition of hard real-time applications into modules (= components)
that are executed in parallel. A TDL module runs in one particular mode at a
time and may switch to another mode independently from other modules. This
is in contrast with global modes as introduced by other available hard real-time
systems and introduces new challenges for bus scheduling.

1 Introduction

Traditionally, the development of software for embedded systems is highly platform
specific. However, with more powerful processors available, there is a shift of
functionality from hardware to software and the requirements are becoming more
ambitious. A luxury car, for example, comprises about 80 electronic control units
interconnected by multiple buses and driven by more than a million lines of code. In
order to cope with the increased complexity of the resulting software, a more platform
independent “high-level” programming style becomes mandatory. In case of real-time
software, this applies not only to functional aspects but also to the temporal behavior
of the software. Dealing with time, however, is not covered appropriately by any of
the existing component models for high-level languages.

A particularly promising approach towards a high-level component model for real
time systems has been laid out in the Giotto project [5][8][9][10] at the University of
California, Berkeley, by introduction of Logical Execution Time (LET), which abst-
racts from the physical execution time on a particular platform and thereby abstracts
from both the underlying execution platform and the communication topology. Thus, it
becomes possible to change the underlying platform and even to distribute components
between different nodes without affecting the overall system behavior.

 This paper refers to a component model, named TDL (Timing Definition
Language) [15], which has been developed in the course of the MoDECS1 project at
the University of Salzburg, as a successor of Giotto. It shares with Giotto the basic
idea of LET but introduces additional high-level concepts for structuring large real
time systems.

1 The MoDECS project (www.MoDECS.cc) is supported by the FIT-IT Embedded Systems

grant 807144 (www.fit-it.at).

72 E. Farcas, W. Pree, and J. Templ

In the following, we shall start with an explanation of LET and proceed with an
overview of the TDL component model. Then, we focus on the distribution of TDL
components and describe the problems related to independent mode switches. The
description of our approach to automatic bus schedule generation for these
requirements is the core contribution of the paper.

2 Logical Execution Time (LET)

LET means that the observable temporal behavior of a task is independent from its
physical execution [8]. It is only assumed that physical task execution is fast enough
to fit somewhere within the logical start and end points. Fig. 1 shows the relation bet-
ween logical and physical task execution.

timetask invocation

Logical Execution Time (LET)

Logical

Physical

start stop (worst case)suspend resume

release terminate

Fig. 1. Logical Execution Time

The inputs of a task are read at the release event and the newly calculated outputs
are available at the terminate event. Between these, the outputs have the value of the
previous execution.

LET introduces a delay for observable outputs, which might be considered a
disadvantage. On the other hand, however, LET provides the cornerstone to deter-
ministic behavior, platform abstraction, and well-defined interaction semantics bet-
ween parallel activities [11]. It is always defined which value is in use at which time
instant and there are no race conditions or priority inversions involved. LET also
provides the foundation for what we call transparent distribution [3] (see Section 4).

3 TDL Component Model

Based on the concept of LET, Giotto introduces the notion of a mode as a set of
periodically executed activities. The activities are task invocations (according to LET
semantics), actuator updates, and mode switches. All activities can have their own
rate of execution and all activities can be executed conditionally. Actuator updates
and mode switches are considered to be much faster than task invocations, thus they
are executed in logical zero time. The set of all modes reachable from a distinguished
start mode constitutes the Giotto program.

Our successor of Giotto, named TDL (Timing Definition Language), extends these
concepts by the notion of the module, which is a named Giotto program that may
import other modules and may export some of its own program entities to other client
modules. Every module may provide its own distinguished start mode. Thus, all

 Bus Scheduling for TDL Components 73

modules execute in parallel or in other words, a TDL application can be seen as the
parallel composition of a set of TDL modules. It is important to note that LET is
always preserved, that is, adding a new module will never affect the observable
temporal behavior of other modules. It is the responsibility of internal scheduling
mechanisms to guarantee conformance to LET, given that the worst-case execution
times (WCET) and the execution rates are known for all tasks.

Parallel tasks within a mode may depend on each other, that is, the output of one
task may be used as the input of another task. All tasks are logically executed in sync
and the dataflow semantics is defined by LET.

Modules support an export/import mechanism similar to modern general purpose
programming languages such as Java or C#. A service provider module may export a
task’s outputs, which in turn may be imported by a client module and used as input
for the client’s computations. All modules are logically executed in sync and again
the dataflow semantics is defined by LET. Modules are a top-level structuring concept
that serves multiple purposes:

1. a module provides a name space and an export/import mechanism and thereby
supports decomposition of large systems,

2. modules provide parallel composition of real time applications,
3. modules are the unit of mode switching, that is, every module executes in its own

mode and may switch to a different mode independently from other modules,
4. modules serve as units of loading, that is, a runtime system may support dynamic

loading and unloading of modules, and
5. modules are the natural choice as unit of distribution, because dataflow within a

module (cohesion) will most probably be much larger than dataflow across module
boundaries (adhesion).

The fact that modules are the unit of mode switching implies that an application
consisting of multiple TDL modules is not in a single global mode. This is in contrast to
state-of-the-art systems, which support only global mode switches. Furthermore, the
possibility to distribute TDL modules across different computation nodes leads us to the
notion of transparent distribution as explained in more detail in Section 4 and in [3].

Example TDL Modules
The following TDL source code shows two modules M1 and M2. M1 exports three
named constants and two tasks, and M2 imports M1 and may therefore access the
exported entities. Module M1 defines two modes of operation, f11 and f12, where f11
is the start mode. Both modes invoke two tasks inc and dec and check the mode
switch condition once per mode period, which in both cases is 10ms. The difference
between the two modes is that in f12 the task dec will be invoked twice as fast as in
f11. Module M2 defines a single mode, which uses the outputs of tasks inc and dec in
order to calculate the sum and update an actuator. Depending on the mode of M1, the
output will be a constant value or it will change over time. As a developer specifies
only the timing behavior in TDL, the functionality of the tasks has to be implemented
in another programming language. The functions invoked by the tasks, the drivers for
reading sensors and updating actuators, and the guards for conditional execution can
be implemented in any imperative programming language such as C. The external
functionality code is indicated by the keywords uses and if.

74 E. Farcas, W. Pree, and J. Templ

module M1 {

 public const

 c1 = 50; c2 = 200; refPeriod = 10ms;

 sensor

 int s uses getS;

 public task inc { // wcet=1ms

 output int o := c1;

 uses incImpl(o); // inc. by step 10

 }

 public task dec { // wcet=1ms

 output int o := c2;

 uses decImpl(o); // dec. by step 10

 }

 start mode f11 [period=refPeriod] {

 task

 [freq=1] inc(); // LET of task inc is 10/1 = 10ms

 [freq=1] dec();

 mode

 [freq=1] if switch2m2(s, inc.o) then f12;

 }

 mode f12 [period=refPeriod] {

 task

 [freq=1] inc();

 [freq=2] dec(); // LET of task dec is 10/2 = 5ms

 mode

 [freq=1] if switch2m1(s, inc.o) then f11;

 }

}

module M2 {

 import M1;

 actuator

 int a := M1.c2 uses setA;

 public task sum { // wcet=1ms

 input int i1; int i2;

 output int o := M1.c2;

 uses sumImpl(i1, i2, o);

 }

 start mode main [period=M1.refPeriod] {

 task

 [freq=1] sum(M1.inc.o, M1.dec.o);

 actuator

 [freq=1] a := sum.o;

 }

}

Fig. 2 shows the outputs of module M1’s inc and dec tasks, and module M2’s sum
task. Module M1 is in mode f11 at the beginning, therefore the sum task is producing
a constant output. After pushing the sensor button, a mode switch occurs and task sum
produces the corresponding output pattern. The delay between the output of the sum
task and the output of the inc and dec tasks is due to the LET semantics.

 Bus Scheduling for TDL Components 75

Fig. 2. Functional and temporal behavior of modules M1 (mode f11 and then f22) and M2

4 Transparent Distribution

The term transparent distribution in the context of hard real-time applications is
defined with respect to two points of view. Firstly, at run-time a TDL application
behaves exactly the same, no matter if all modules (that is, components) are executed
on a single node or if they are distributed across multiple nodes. The logical timing is
always preserved, only the physical timing, which is not observable from the outside,
may be changed. Secondly, for the developer of a TDL module, it does not matter
where the module itself and any imported modules are executed. The TDL tool chain
and run-time system frees the developer from the burden of explicitly specifying the
communication requirements of modules. The mapping of modules to computation
nodes is defined separately in a platform configuration file, which also contains the
physical properties of the communication infrastructure (e.g., bandwidth, protocol
overhead and payload size). It should be noted that in both aspects transparency
applies not only to the functional but also to the temporal behavior of an application.

In order to illustrate the importance of LET for transparent distribution, we
consider an example of two modules M1 and M2, located on two different nodes. For
the sake of simplicity, we assume that each module has a single mode of operation,
which invokes a single task. task1 runs within module M1 and task2 runs within
module M2 using as input the output of task1. In other words, module M2 imports
module M1, and task2 has as input the output port of task1. For this example, we
further assume that task2 runs twice as often as task1, that is, the LET of task1 is
twice the LET of task2.

Fig. 3 shows an example for the communication required between the two tasks. In
order to implement this exchange of information, we assume a communication layer
on both nodes that we call TDL-Comm [3]. Its purpose is to send and receive
messages at appropriate times so that the LET constraint of task1 is met. This means
that the output value of task1 has to arrive at node2 before LET1 ends.

76 E. Farcas, W. Pree, and J. Templ

M1

comm1

comm2

time
LET1

bus

LET2

node1

node2
M2

Fig. 3. Sample communication between two tasks

5 Bus Schedule Generation

This section presents the basic concepts, terminology and the algorithm which
generates the bus schedule for the TDL component model. The bus schedule is gen-
erated at compile time. We do not describe how the TDL tasks are scheduled on the
particular node where a TDL module is executed.

5.1 Preliminaries for Bus Scheduling

We assume a network infrastructure based on broadcast semantics, that is, a frame
sent by one node can be received at the same time by all other nodes. Furthermore, we
assume that packets sent by different nodes cannot be combined into a single packet
but are sent as individual network frames according to some protocol. This rules out
special support for systems such as EtherCAT, where a frame can be shared by
multiple nodes.

The access to the shared communication medium is collision free via a TDMA
(Time Division Multiple Access, [12]) approach. In order to support this, we rely on a
mechanism for clock synchronization over the network. Furthermore, we adhere to
the Producer/Consumer model. This means that the nodes that generate information—
the producers—trigger the sending of information over the network. The nodes that
need the information—the consumers—do not send any requests to the producers as it
is the case in the Request/Response model.

5.2 Mode Switch Instants Per Module

TDL restricts mode switches such that task invocations are never interrupted by a
mode switch. Thus, mode switches are said to be harmonic, that is, a mode switch
must not occur during the LET of every task invocation of the currently active mode.
Therefore, the period of a mode switch must be a multiple of the LCM (least common
multiple) of the period of tasks invoked in this mode. This check is done during
compilation. Furthermore, the mode period is always a multiple of the periods of task
invocations and mode switches.

 Bus Scheduling for TDL Components 77

For a given module M, we define mspGCDM as the GCD (greatest common divi-
sor) of mode periods and mode switch periods in all modes in M. We know that
within the time span [N*mspGCDM .. (N+1)*mspGCDM] there will not be a mode
switch within module M. In other words, we can express the mode switch instants as
an integer multiple of mspGCDM.

5.3 Bus Period

As we generate a static schedule, the size of the schedule needs to be finite. Thus, the
schedule is repeated periodically. We call the time span covered by the schedule the
bus period.

As each mode in every module may have its specific communication requirements,
an obvious candidate for the bus period is the longest time span without a mode
switch in any module. Thus we calculate the bus period as GCD of the mspGCDM of
each module M which communicates on the bus.

Each mode period consists of an integer multiple of bus periods and we introduce
the term phase in order to distinguish these mutually exclusive parts of a mode.

5.4 Messages

We define the term message as the collection of all values of the task output ports
produced by a task invocation. Each task invocation produces one message. Note that
if a task is invoked N times per mode period, N messages are produced.

As an optimization, task output ports that are not used by any client are ignored.
Furthermore, tasks that are not public or that have no clients produce no messages.

A message has a unique tag. The reason for that is explained below. The tag
defines the node, module, mode, task invocation, and the phase of the mode in which
the message has been produced.

The size of a message is measured in bytes as the sum of the size of the contained
values and the size of the tag.

Each message has individual timing constraints. The release constraint is the
earliest time instant message sending can be started. The deadline constraint of the
message is the latest time instant when the message sending must be finished.

A simple approach is to set the release constraint to the release time of the task
invocation that produces that message plus its worst case execution time (wcet). The
deadline constraint results from the end of the LET of the producer task invocation.
The release and deadline of a message are relative to the phase where the task
invocation ends.

5.5 Frames Per Module

In order to use the communication medium efficiently, we map the messages of a
phase to one or more reserved communication windows within the bus period such
that these communication windows can be used for all phases of a module. A reserved
communication window corresponds to a frame, which is the unit of information to be
sent on the bus. The exact point in time when the frame will be scheduled within this
communication window is computed later, see Sect.5.7

78 E. Farcas, W. Pree, and J. Templ

The schedule generator determines the frames and binds each message to exactly
one frame. At run-time, the phase of a module determines which subset of the
messages bound to a frame is actually sent. As the content of a frame varies at run-
time, we need a means to identify messages. For that purpose we have introduced the
message tag as described above.

The release (r) constraint of a frame is the maximum of the release constraints of
the bound messages. The deadline (d) constraint of a frame is the minimum of the
deadline constraints of the bound messages. The schedule generator guarantees that
the frame size and constraints are sufficient for the communication requirements of all
phases.

To exemplify this, we consider a module with a mode of execution that has three
phases, and we assume that it produces a message of 4 bytes in phase0, a message of
3 bytes in phase1, and two messages of 1 byte each in phase2. Depending on their
size and timing constraints, all messages may be bound to the same frame in the
schedule, as seen in Fig. 4. The left and right bounds of the message and frame boxes
represent the release and deadline constraints.

time

mode period

phase 0 phase 1 phase 2

4
messages
(size in bytes)3

bus period

4

1

1

frames
(size in bytes)

Fig. 4. Sample binding of several messages to one frame

The following pseudo code shows how messages are extracted and bound to
frames. We assume that the bus period is globally available.

createFrames(Module M) returns Set {
 let frames be an empty set
 for each mode m of module M {
 for each phase p of m {
 let msgs be an empty set
 for each task invocation instance t that ends in p {
 add new Message(M, m, t, p) to msgs
 }
 bindMsgs(msgs, frames)
 }
 }
 return frames
}

 Bus Scheduling for TDL Components 79

The following pseudo code refines bindMsgs, which associates a message with an
existing frame if possible. Otherwise a new frame is created and the message is bound
to the new frame. The method createFrame creates a frame, binds the message to that
frame, sets the size of the frame to the size of the message, and adds the frame to the
set frames. It also checks if the size does not exceed the maximum allowed on the
network and if the frame transmission time fits in the bus period.

The decision of binding a message to a frame depends on the result of metric
computation and on how many bytes we still have available from the size of the
frame. We define for each frame the instance variable available, which is reset at the
beginning of each phase to the size of the frame. The method bind binds a message to
a frame and reduces the available bytes of the frame by the message size. The concept
of computing metrics is explained below.

bindMsgs(Set msgs, Set frames) {
 reset the available bytes of all frames to the size of each frame
 for each msg in msgs {
 if (frames is empty) {
 createFrame(msg, frames)
 } else {
 for each frame in frames {
 computeMetric(msg, frame)
 }
 select the frame selFrame with the highest metric
 if (selFrame.metric > threshold) {
 bind(msg, selFrame)
 } else {
 createFrame(msg, frames)
 }
 }
 }
}

5.6 Heuristics

The method computeMetric calculates a real number between 0 and 1 and stores that
number in the instance variable metric of a frame. For each message, we choose the
frame that has the highest value for the metric, and if that value is higher than a
threshold (e.g, equal to 0.5), then we bind the message to the frame. The allocation of
messages to existing frames introduces a tradeoff between saving bandwidth and
tightening the timing constraints. Hence, the topic is subject to further optimizations
and heuristics.

The metric measures the degree of overlapping between the message and frame
windows. We define the window, for a message or a frame, as the time interval
between the release and deadline. If we allocate the message to this frame, then the
new timing constraints for the frame will be the window of the overlapping section.
Therefore, we want this to be as close as possible to the message and to the existing
frame, otherwise the timing constrains would be too restrictive and we reduce the
chance to find a feasible schedule. The overlapping and the metric as an average
percentage are defined by the following formulas:

80 E. Farcas, W. Pree, and J. Templ

).,.().,.(rmsgrframeMaxdmsgdframeMingoverlappin −= (1)

2
.... rmsgdmsg

goverlappin

rframedframe

goverlappin

metric
−

+
−=

(2)

5.7 Bus Schedule

For each module in the system, we have identified the required messages and mapped
them to frames, but the communication windows of different frames could overlap.
Therefore we collect the frames required by all modules and apply on this global set a
variation of the Reversed EDF scheduling algorithm, that is, the Latest Release Time
(LRT) [13].

This decides when each frame must be sent on the network, depending on the
release, deadline and worst case transmission time of each frame. Furthermore, the
bus scheduler has additional constraints that result from the physical properties of the
communication infrastructure. For example, it includes gaps in the schedule, because
it has to align the sending time according to the inter frame gaps and the clock
resolution on the computing nodes. The bus scheduler also generates extra frames, for
example for time synchronization. Furthermore, it merges adjacent frames in the
sorted list of frames if they are sent by the same node. This leads to the remapping of
the corresponding messages to the merged frame.

6 Related Work

The state-of-the-art methods and tools for the development of distributed systems
support at most global mode switches. By our knowledge, there is no other available
system that allows real-time components to switch modes independently. Further-
more, the LET abstraction is the only model that leads to predictable real-time
applications in both value and time determinism [11], thus we will emphasize the
distribution approach in Giotto. Then we will present an example of static off-line
scheduling, the TTP/C protocol. Another scheduling approach, especially in the
automotive industry (DaVinci [18], dSPACE[2]) is to use a real-time kernel with
dynamic scheduling (e.g. OSEK[14]) and a communication system based on static
priorities (e.g., CAN[1]), therefore the system cannot be predicted and it has to be
simulated as whole.

The Giotto language [8][9][10] focuses on task distribution, therefore it provides
support only for global modes, and only one program runs in the system. [6] presents
a methodology for distributed real-time code generation, thus multiple suppliers can
independently compile different parts of a Giotto program to run on multiple CPUs. A
system integrator assigns each task a particular host and supplier, by annotating the
Giotto source code. Each supplier receives a part of the Giotto program, and a timing
interface specifying the time slots that can be used for the task and communication
scheduling. Given these, each supplier produces code, and then the integrator checks
the interface compliance and the time safety, that is, if the code meets the Giotto

 Bus Scheduling for TDL Components 81

timing requirements (e.g., release and deadlines) on a given platform. The schedule is
generated off-line in form of virtual machine code, that is, S code [7]. The timing
interface provides the exclusive time windows for scheduling, but not exactly when to
perform the actions within the windows, so the supplier still has some flexibility.
However, these timing interfaces are currently generated manually. Furthermore, the
approach [6] is described by means of a single mode Giotto program. So it is unclear
if a distributed multi-mode Giotto system has ever been implemented, though that
would still stick to the global mode switch approach.

The time-triggered protocol (TTP) [12] is a communication protocol for fault-
tolerant distributed hard real-time systems. It provides time-triggered communication,
distributed clock synchronization and a membership service. The communication on
the bus is done with static, periodic TDMA rounds. In TTP/C [17] the schedule is
implemented as a message description list (MEDL), specifying exactly when a node
has to send a certain message and when it has to receive messages from other nodes.
A TTP cluster cycle consists of multiple TDMA rounds and the messages sent in a
TDMA round can differ throughout the cluster cycle. A task descriptor list describes
the cyclic scheduling of application tasks, thus at run-time the scheduler is a simple
dispatcher. The TTTech [16] tool chain consists of two main tools for application
development. The TTPplan tool generates the bus schedule (cluster level design). The
TTPbuild tool generates the task schedule (node level design). The developer must
specify in TTPplan every message that is sent from any node, and then in TTPbuild
every periodic task and the messages it consumes. This is in contrast to our approach
where the required messages are automatically identified from the TDL code.
Furthermore, the TTP/C protocol supports global mode switches. The length of the
cluster cycle can be changed from cluster mode to cluster mode and the messages
transferred in the rounds of each node can be changed as well. However, although the
protocol is designed for mode switches per subsystem, the current limitation of the
TTTech tools is that they only support a single global mode of execution.

Regarding off-line scheduling and flexibility in real-time systems, [4] describes
algorithms to support also aperiodic messages and to switch modes at run-time. When
the condition for a mode change is enabled, the mode change request is commun-
icated within a message on the network. All nodes receive the request at the same
time, and perform the mode switch at the same time (that is, there is a consistent view
of the mode switch requests). The duration of the mode switch results from the delay
in the current schedule until it gets to a slot where the switch is feasible, and the
duration of a transition schedule. This mode switch delay can be computed off-line
and tested to be lower than some deadline set at design time.

7 Conclusions

The LET abstraction invented in the realm of the Giotto project paved the way for
transparent distribution in real-time systems. We think this novel approach will lead
to significantly more robust embedded software and will reduce the costs of
integration testing. The TDL component architecture implies that modes may switch
independently in each component, which is a radical innovation in real-time systems.
We presented a scheduling algorithm for message communication, to support these

82 E. Farcas, W. Pree, and J. Templ

independent mode switches, while maintaining transparent distribution. Future
research and implementation efforts are required to show the scalability of transparent
distribution and the scheduling algorithm. Another set of challenges comprises
optimizations, improved heuristics and metrics for generating the communication
schedules, considering the feedback from the time safety check for task execution,
and strategies for avoiding the re-generation of schedules when components are added
or modified.

Acknowledgements

We thank the MoDECS project team at the University of Salzburg for providing
valuable input during informal discussions and group meetings. This research was
supported in part by the FIT-IT Embedded Systems grant 807144 provided by the
Austrian government through its Bundesminsterium für Verkehr, Innovation und
Technologie.

References

1. Bosch, 1991, CAN Specification, Version 2. Robert Bosch GmbH,
 http://www.can.bosch.com/docu/can2spec.pdf

2. dSPACE GmbH: http://www.dspace.de
3. E. Farcas, C. Farcas, W. Pree, J. Templ. Transparent Distribution of Real-Time

Components Based on Logical Execution Time, Proc. of ACM SIGPLAN/SIGBED Conf-
erence on Languages, Compilers, and Tools for Embedded Systems (LCTES), ACM Press,
2005, pages 31-39

4. G. Fohler, Flexibility in Statically Scheduled Real-Time Systems, PhD Thesis, Technisch-
Naturwissenschaftliche Fakultaet, Technische Universitaet Wien, Austria, April 1994

5. Giotto Project, http://www-cad.eecs.berkeley.edu/~fresco/giotto/
6. T.A. Henzinger, C.M. Kirsch, and S. Matic, Composable Code Generation for Distributed

Giotto, Proc. of ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES), ACM Press, 2005, pages 21-30

7. T.A. Henzinger, C.M. Kirsch, and S. Matic. Schedule carrying code, Proc. of the Third
International Conference on Embedded Software (EMSOFT), LNCS, Springer-Verlag,
2003

8. Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch. Giotto: A time-
triggered language for embedded programming. Proceedings of the First International
Workshop on Embedded Software (EMSOFT), Lecture Notes in Computer Science 2211,
Springer-Verlag, 2001, pp. 166-184.

9. Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch. Embedded control
systems development with Giotto. Proceedings of the International Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES), ACM Press, 2001, pp.
64-72.

10. Thomas A. Henzinger, Christoph M. Kirsch, Marco A.A. Sanvido, and Wolfgang Pree.
From control models to real-time code using Giotto. IEEE Control Systems Magazine
23(1):50-64, 2003.

11. C.M. Kirsch, 2002, Principles of Real-Time Programming. In Proceedings of EMSOFT
2002,Grenoble LNCS, 2491.

12. H. Kopetz, 1997, Real-time Systems: Design Principles for Distributed Embedded Appli-
cations. Kluwer, 1997

 Bus Scheduling for TDL Components 83

13. Jane W. S. Liu. Real-Time Systems. Prentice-Hall, 2000
14. OSEK Group, 2001, OSEK/VDX Time-triggered Operating System Specification, Version

1.0, http://www.osek-vdx.org/mirror/ttos10.pdf
15. J. Templ, 2004, TDL Specification and Report. Technical Report C059, Department of

Computer Science, University of Salzburg,
http://www.cs.uni-salzburg.at/pubs/reports/T001.pdf

16. TTTech - Time-Triggered Technology http://www.tttech.com
17. TTTech. Time-Triggered Protocol TTP/C High-Level Specification Document. Edition

1.0.0, July 2002.
18. M. Wernicke: New Design Methodology from Vector simplifies the Development of

Distributed Systems, Vector Informatik Press Release, June 2003,
 http://www.vector-informatik.com/pdf/press/PND_DaVinci_PressRelease_200306_EN.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

