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Abstract. This paper describes a solution for bus scheduling of distributed 
multi-mode TDL (Timing Definition Language) components. The TDL compo-
nent model is based on the concept of Logical Execution Time (LET), which 
abstracts from physical execution time and thereby from both the execution 
platform and the communication topology. The TDL component model allows 
the decomposition of hard real-time applications into modules (= components) 
that are executed in parallel. A TDL module runs in one particular mode at a 
time and may switch to another mode independently from other modules. This 
is in contrast with global modes as introduced by other available hard real-time 
systems and introduces new challenges for bus scheduling. 

1   Introduction 

Traditionally, the development of software for embedded systems is highly platform 
specific. However, with more powerful processors available, there is a shift of 
functionality from hardware to software and the requirements are becoming more 
ambitious. A luxury car, for example, comprises about 80 electronic control units 
interconnected by multiple buses and driven by more than a million lines of code. In 
order to cope with the increased complexity of the resulting software, a more platform 
independent “high-level” programming style becomes mandatory. In case of real-time 
software, this applies not only to functional aspects but also to the temporal behavior 
of the software. Dealing with time, however, is not covered appropriately by any of 
the existing component models for high-level languages. 

A particularly promising approach towards a high-level component model for real 
time systems has been laid out in the Giotto project [5][8][9][10] at the University of 
California, Berkeley, by introduction of  Logical Execution Time (LET), which abst-
racts from the physical execution time on a particular platform and thereby abstracts 
from both the underlying execution platform and the communication topology. Thus, it 
becomes possible to change the underlying platform and even to distribute components 
between different nodes without affecting the overall system behavior. 

 This paper refers to a component model, named TDL (Timing Definition 
Language) [15], which has been developed in the course of the MoDECS1 project at 
the University of Salzburg, as a successor of Giotto. It shares with Giotto the basic 
idea of LET but introduces additional high-level concepts for structuring large real 
time systems.  
                                                           
1  The MoDECS project (www.MoDECS.cc) is supported by the FIT-IT Embedded Systems 

grant 807144 (www.fit-it.at). 
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In the following, we shall start with an explanation of LET and proceed with an 
overview of the TDL component model. Then, we focus on the distribution of TDL 
components and describe the problems related to independent mode switches. The 
description of our approach to automatic bus schedule generation for these 
requirements is the core contribution of the paper. 

2   Logical Execution Time (LET) 

LET means that the observable temporal behavior of a task is independent from its 
physical execution [8]. It is only assumed that physical task execution is fast enough 
to fit somewhere within the logical start and end points. Fig. 1 shows the relation bet-
ween logical and physical task execution. 

timetask invocation

Logical Execution Time (LET)

Logical

Physical

start stop (worst case)suspend resume

release terminate

 

Fig. 1. Logical Execution Time 

The inputs of a task are read at the release event and the newly calculated outputs 
are available at the terminate event. Between these, the outputs have the value of the 
previous execution.  

LET introduces a delay for observable outputs, which might be considered a 
disadvantage. On the other hand, however, LET provides the cornerstone to deter-
ministic behavior, platform abstraction, and well-defined interaction semantics bet-
ween parallel activities [11]. It is always defined which value is in use at which time 
instant and there are no race conditions or priority inversions involved. LET also 
provides the foundation for what we call transparent distribution [3] (see Section 4). 

3   TDL Component Model 

Based on the concept of LET, Giotto introduces the notion of a mode as a set of 
periodically executed activities. The activities are task invocations (according to LET 
semantics), actuator updates, and mode switches. All activities can have their own 
rate of execution and all activities can be executed conditionally. Actuator updates 
and mode switches are considered to be much faster than task invocations, thus they 
are executed in logical zero time. The set of all modes reachable from a distinguished 
start mode constitutes the Giotto program. 

Our successor of Giotto, named TDL (Timing Definition Language), extends these 
concepts by the notion of the module, which is a named Giotto program that may 
import other modules and may export some of its own program entities to other client 
modules. Every module may provide its own distinguished start mode. Thus, all 
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modules execute in parallel or in other words, a TDL application can be seen as the 
parallel composition of a set of TDL modules. It is important to note that LET is 
always preserved, that is, adding a new module will never affect the observable 
temporal behavior of other modules. It is the responsibility of internal scheduling 
mechanisms to guarantee conformance to LET, given that the worst-case execution 
times (WCET) and the execution rates are known for all tasks. 

Parallel tasks within a mode may depend on each other, that is, the output of one 
task may be used as the input of another task.  All tasks are logically executed in sync 
and the dataflow semantics is defined by LET. 

Modules support an export/import mechanism similar to modern general purpose 
programming languages such as Java or C#. A service provider module may export a 
task’s outputs, which in turn may be imported by a client module and used as input 
for the client’s computations. All modules are logically executed in sync and again 
the dataflow semantics is defined by LET. Modules are a top-level structuring concept 
that serves multiple purposes:  

1. a module provides a name space and an export/import mechanism and thereby 
supports decomposition of large systems,  

2. modules provide parallel composition of real time applications,  
3. modules are the unit of mode switching, that is, every module executes in its own 

mode and may switch to a different mode independently from other modules, 
4. modules serve as units of loading, that is, a runtime system may support dynamic 

loading and unloading of modules, and  
5. modules are the natural choice as unit of distribution, because dataflow within a 

module (cohesion) will most probably be much larger than dataflow across module 
boundaries (adhesion).  

The fact that modules are the unit of mode switching implies that an application 
consisting of multiple TDL modules is not in a single global mode. This is in contrast to 
state-of-the-art systems, which support only global mode switches. Furthermore, the 
possibility to distribute TDL modules across different computation nodes leads us to the 
notion of transparent distribution as explained in more detail in Section 4 and in [3].  

Example TDL Modules 
The following TDL source code shows two modules M1 and M2. M1 exports three 
named constants and two tasks, and M2 imports M1 and may therefore access the 
exported entities. Module M1 defines two modes of operation, f11 and f12, where f11 
is the start mode. Both modes invoke two tasks inc and dec and check the mode 
switch condition once per mode period, which in both cases is 10ms. The difference 
between the two modes is that in f12 the task dec will be invoked twice as fast as in 
f11. Module M2 defines a single mode, which uses the outputs of tasks inc and dec in 
order to calculate the sum and update an actuator. Depending on the mode of M1, the 
output will be a constant value or it will change over time. As a developer specifies 
only the timing behavior in TDL, the functionality of the tasks has to be implemented 
in another programming language. The functions invoked by the tasks, the drivers for 
reading sensors and updating actuators, and the guards for conditional execution can 
be implemented in any imperative programming language such as C. The external 
functionality code is indicated by the keywords uses and if. 
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module M1 { 

 

  public const 

    c1 = 50; c2 = 200; refPeriod = 10ms; 

 

  sensor 

    int s uses getS; 

 

  public task inc {    // wcet=1ms 

    output int o := c1; 

    uses incImpl(o);   // inc. by step 10 

  } 

 

  public task dec {    // wcet=1ms 

    output int o := c2; 

    uses decImpl(o);   // dec. by step 10 

  } 

 

  start mode f11 [period=refPeriod] { 

    task 

      [freq=1] inc();  // LET of task inc is 10/1 = 10ms 

      [freq=1] dec(); 

    mode 

      [freq=1] if switch2m2(s, inc.o) then f12; 

  } 

 

  mode f12 [period=refPeriod] { 

    task 

      [freq=1] inc(); 

      [freq=2] dec();   // LET of task dec is 10/2 = 5ms

    mode 

      [freq=1] if switch2m1(s, inc.o) then f11; 

  } 

} 

module M2 { 

 

  import M1; 

 

  actuator 

    int a := M1.c2 uses setA; 

 

  public task sum {  // wcet=1ms 

    input int i1; int i2; 

    output int o := M1.c2; 

    uses sumImpl(i1, i2, o); 

  } 

 

  start mode main [period=M1.refPeriod] { 

    task 

      [freq=1] sum(M1.inc.o, M1.dec.o); 

    actuator 

      [freq=1] a := sum.o; 

  } 

} 

 

Fig. 2 shows the outputs of module M1’s inc and dec tasks, and module M2’s sum 
task. Module M1 is in mode f11 at the beginning, therefore the sum task is producing 
a constant output. After pushing the sensor button, a mode switch occurs and task sum 
produces the corresponding output pattern. The delay between the output of the sum 
task and the output of the inc and dec tasks is due to the LET semantics. 
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Fig. 2. Functional and temporal behavior of modules M1 (mode f11 and then f22) and M2  

4   Transparent Distribution  

The term transparent distribution in the context of hard real-time applications is 
defined with respect to two points of view. Firstly, at run-time a TDL application 
behaves exactly the same, no matter if all modules (that is, components) are executed 
on a single node or if they are distributed across multiple nodes. The logical timing is 
always preserved, only the physical timing, which is not observable from the outside, 
may be changed. Secondly, for the developer of a TDL module, it does not matter 
where the module itself and any imported modules are executed. The TDL tool chain 
and run-time system frees the developer from the burden of explicitly specifying the 
communication requirements of modules. The mapping of modules to computation 
nodes is defined separately in a platform configuration file, which also contains the 
physical properties of the communication infrastructure (e.g., bandwidth, protocol 
overhead and payload size). It should be noted that in both aspects transparency 
applies not only to the functional but also to the temporal behavior of an application. 

In order to illustrate the importance of LET for transparent distribution, we 
consider an example of two modules M1 and M2, located on two different nodes. For 
the sake of simplicity, we assume that each module has a single mode of operation, 
which invokes a single task. task1 runs within module M1 and task2 runs within 
module M2 using as input the output of task1. In other words, module M2 imports 
module M1, and task2 has as input the output port of task1. For this example, we 
further assume that task2 runs twice as often as task1, that is, the LET of task1 is 
twice the LET of task2.  

Fig. 3 shows an example for the communication required between the two tasks. In 
order to implement this exchange of information, we assume a communication layer 
on both nodes that we call TDL-Comm [3]. Its purpose is to send and receive 
messages at appropriate times so that the LET constraint of task1 is met. This means 
that the output value of task1 has to arrive at node2 before LET1 ends. 
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Fig. 3. Sample communication between two tasks 

5   Bus Schedule Generation 

This section presents the basic concepts, terminology and the algorithm which 
generates the bus schedule for the TDL component model. The bus schedule is gen-
erated at compile time. We do not describe how the TDL tasks are scheduled on the 
particular node where a TDL module is executed. 

5.1   Preliminaries for Bus Scheduling 

We assume a network infrastructure based on broadcast semantics, that is, a frame 
sent by one node can be received at the same time by all other nodes. Furthermore, we 
assume that packets sent by different nodes cannot be combined into a single packet 
but are sent as individual network frames according to some protocol. This rules out 
special support for systems such as EtherCAT, where a frame can be shared by 
multiple nodes. 

The access to the shared communication medium is collision free via a TDMA 
(Time Division Multiple Access, [12]) approach. In order to support this, we rely on a 
mechanism for clock synchronization over the network. Furthermore, we adhere to 
the Producer/Consumer model. This means that the nodes that generate information—
the producers—trigger the sending of information over the network. The nodes that 
need the information—the consumers—do not send any requests to the producers as it 
is the case in the Request/Response model. 

5.2   Mode Switch Instants Per Module 

TDL restricts mode switches such that task invocations are never interrupted by a 
mode switch. Thus, mode switches are said to be harmonic, that is, a mode switch 
must not occur during the LET of every task invocation of the currently active mode. 
Therefore, the period of a mode switch must be a multiple of the LCM (least common 
multiple) of the period of tasks invoked in this mode. This check is done during 
compilation. Furthermore, the mode period is always a multiple of the periods of task 
invocations and mode switches. 
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For a given module M, we define mspGCDM as the GCD (greatest common divi-
sor) of mode periods and mode switch periods in all modes in M. We know that 
within the time span [N*mspGCDM  .. (N+1)*mspGCDM] there will not be a mode 
switch within module M. In other words, we can express the mode switch instants as 
an integer multiple of mspGCDM.  

5.3   Bus Period 

As we generate a static schedule, the size of the schedule needs to be finite. Thus, the 
schedule is repeated periodically. We call the time span covered by the schedule the 
bus period. 

As each mode in every module may have its specific communication requirements, 
an obvious candidate for the bus period is the longest time span without a mode 
switch in any module. Thus we calculate the bus period as GCD of the mspGCDM of 
each module M which communicates on the bus.  

Each mode period consists of an integer multiple of bus periods and we introduce 
the term phase in order to distinguish these mutually exclusive parts of a mode. 

5.4   Messages 

We define the term message as the collection of all values of the task output ports 
produced by a task invocation. Each task invocation produces one message. Note that 
if a task is invoked N times per mode period, N messages are produced.  

As an optimization, task output ports that are not used by any client are ignored. 
Furthermore, tasks that are not public or that have no clients produce no messages. 

A message has a unique tag. The reason for that is explained below. The tag 
defines the node, module, mode, task invocation, and the phase of the mode in which 
the message has been produced.  

The size of a message is measured in bytes as the sum of the size of the contained 
values and the size of the tag. 

Each message has individual timing constraints. The release constraint is the 
earliest time instant message sending can be started. The deadline constraint of the 
message is the latest time instant when the message sending must be finished.  

A simple approach is to set the release constraint to the release time of the task 
invocation that produces that message plus its worst case execution time (wcet). The 
deadline constraint results from the end of the LET of the producer task invocation. 
The release and deadline of a message are relative to the phase where the task 
invocation ends. 

5.5   Frames Per Module 

In order to use the communication medium efficiently, we map the messages of a 
phase to one or more reserved communication windows within the bus period such 
that these communication windows can be used for all phases of a module. A reserved 
communication window corresponds to a frame, which is the unit of information to be 
sent on the bus. The exact point in time when the frame will be scheduled within this 
communication window is computed later, see Sect.5.7 
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The schedule generator determines the frames and binds each message to exactly 
one frame. At run-time, the phase of a module determines which subset of the 
messages bound to a frame is actually sent. As the content of a frame varies at run-
time, we need a means to identify messages. For that purpose we have introduced the 
message tag as described above. 

The release (r) constraint of a frame is the maximum of the release constraints of 
the bound messages. The deadline (d) constraint of a frame is the minimum of the 
deadline constraints of the bound messages. The schedule generator guarantees that 
the frame size and constraints are sufficient for the communication requirements of all 
phases. 

To exemplify this, we consider a module with a mode of execution that has three 
phases, and we assume that it produces a message of 4 bytes in phase0, a message of 
3 bytes in phase1, and two messages of 1 byte each in phase2. Depending on their 
size and timing constraints, all messages may be bound to the same frame in the 
schedule, as seen in Fig. 4. The left and right bounds of the message and frame boxes 
represent the release and deadline constraints. 

time

mode period

phase 0 phase 1 phase 2

4
messages
(size in bytes)3

bus period

4

1

1

frames
(size in bytes)

 

Fig. 4. Sample binding of several messages to one frame 

The following pseudo code shows how messages are extracted and bound to 
frames. We assume that the bus period is globally available. 

createFrames(Module M) returns Set { 
 let frames be an empty  set 
 for each mode m of module M { 
    for each phase p of m { 
       let msgs be an empty set 
       for each task invocation instance t that ends in p { 
         add new Message(M, m, t, p) to msgs 
       } 
       bindMsgs(msgs, frames) 
    } 
 } 
 return frames 
} 
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The following pseudo code refines bindMsgs, which associates a message with an 
existing frame if possible. Otherwise a new frame is created and the message is bound 
to the new frame. The method createFrame creates a frame, binds the message to that 
frame, sets the size of the frame to the size of the message, and adds the frame to the 
set frames. It also checks if the size does not exceed the maximum allowed on the 
network and if the frame transmission time fits in the bus period. 

The decision of binding a message to a frame depends on the result of metric 
computation and on how many bytes we still have available from the size of the 
frame. We define for each frame the instance variable available, which is reset at the 
beginning of each phase to the size of the frame. The method bind binds a message to 
a frame and reduces the available bytes of the frame by the message size. The concept 
of computing metrics is explained below. 

bindMsgs(Set msgs, Set frames) { 
  reset the available bytes of all frames to the size of each frame 
 for each msg in msgs { 
  if (frames is empty) { 
   createFrame(msg, frames) 
  } else { 
   for each frame in frames { 
    computeMetric(msg, frame) 
    } 
   select the frame selFrame with the highest metric 
   if (selFrame.metric > threshold) { 
    bind(msg, selFrame)  
   } else { 
    createFrame(msg, frames) 
    } 
   } 
 } 
} 

5.6   Heuristics 

The method computeMetric calculates a real number between 0 and 1 and stores that 
number in the instance variable metric of a frame. For each message, we choose the 
frame that has the highest value for the metric, and if that value is higher than a 
threshold (e.g, equal to 0.5), then we bind the message to the frame. The allocation of 
messages to existing frames introduces a tradeoff between saving bandwidth and 
tightening the timing constraints. Hence, the topic is subject to further optimizations 
and heuristics. 

The metric measures the degree of overlapping between the message and frame 
windows. We define the window, for a message or a frame, as the time interval 
between the release and deadline. If we allocate the message to this frame, then the 
new timing constraints for the frame will be the window of the overlapping section. 
Therefore, we want this to be as close as possible to the message and to the existing 
frame, otherwise the timing constrains would be too restrictive and we reduce the 
chance to find a feasible schedule. The overlapping and the metric as an average 
percentage are defined by the following formulas: 
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5.7   Bus Schedule 

For each module in the system, we have identified the required messages and mapped 
them to frames, but the communication windows of different frames could overlap. 
Therefore we collect the frames required by all modules and apply on this global set a 
variation of the Reversed EDF scheduling algorithm, that is, the Latest Release Time 
(LRT) [13].  

This decides when each frame must be sent on the network, depending on the 
release, deadline and worst case transmission time of each frame. Furthermore, the 
bus scheduler has additional constraints that result from the physical properties of the 
communication infrastructure. For example, it includes gaps in the schedule, because 
it has to align the sending time according to the inter frame gaps and the clock 
resolution on the computing nodes. The bus scheduler also generates extra frames, for 
example for time synchronization. Furthermore, it merges adjacent frames in the 
sorted list of frames if they are sent by the same node. This leads to the remapping of 
the corresponding messages to the merged frame. 

6   Related Work 

The state-of-the-art methods and tools for the development of distributed systems 
support at most global mode switches. By our knowledge, there is no other available 
system that allows real-time components to switch modes independently. Further-
more, the LET abstraction is the only model that leads to predictable real-time 
applications in both value and time determinism [11], thus we will emphasize the 
distribution approach in Giotto. Then we will present an example of static off-line 
scheduling, the TTP/C protocol. Another scheduling approach, especially in the 
automotive industry (DaVinci [18], dSPACE[2]) is to use a real-time kernel with 
dynamic scheduling (e.g. OSEK[14]) and a communication system based on static 
priorities (e.g., CAN[1]), therefore the system cannot be predicted and it has to be 
simulated as whole. 

The Giotto language [8][9][10] focuses on task distribution, therefore it provides 
support only for global modes, and only one program runs in the system. [6] presents 
a methodology for distributed real-time code generation, thus multiple suppliers can 
independently compile different parts of a Giotto program to run on multiple CPUs. A 
system integrator assigns each task a particular host and supplier, by annotating the 
Giotto source code. Each supplier receives a part of the Giotto program, and a timing 
interface specifying the time slots that can be used for the task and communication 
scheduling. Given these, each supplier produces code, and then the integrator checks 
the interface compliance and the time safety, that is, if the code meets the Giotto 



 Bus Scheduling for TDL Components 81 

 

timing requirements (e.g., release and deadlines) on a given platform. The schedule is 
generated off-line in form of virtual machine code, that is, S code [7]. The timing 
interface provides the exclusive time windows for scheduling, but not exactly when to 
perform the actions within the windows, so the supplier still has some flexibility. 
However, these timing interfaces are currently generated manually. Furthermore, the 
approach [6] is described by means of a single mode Giotto program. So it is unclear 
if a distributed multi-mode Giotto system has ever been implemented, though that 
would still stick to the global mode switch approach. 

The time-triggered protocol (TTP) [12] is a communication protocol for fault-
tolerant distributed hard real-time systems. It provides time-triggered communication, 
distributed clock synchronization and a membership service. The communication on 
the bus is done with static, periodic TDMA rounds. In TTP/C [17] the schedule is 
implemented as a message description list (MEDL), specifying exactly when a node 
has to send a certain message and when it has to receive messages from other nodes. 
A TTP cluster cycle consists of multiple TDMA rounds and the messages sent in a 
TDMA round can differ throughout the cluster cycle. A task descriptor list describes 
the cyclic scheduling of application tasks, thus at run-time the scheduler is a simple 
dispatcher. The TTTech [16] tool chain consists of two main tools for application 
development. The TTPplan tool generates the bus schedule (cluster level design). The 
TTPbuild tool generates the task schedule (node level design). The developer must 
specify in TTPplan every message that is sent from any node, and then in TTPbuild 
every periodic task and the messages it consumes. This is in contrast to our approach 
where the required messages are automatically identified from the TDL code. 
Furthermore, the TTP/C protocol supports global mode switches. The length of the 
cluster cycle can be changed from cluster mode to cluster mode and the messages 
transferred in the rounds of each node can be changed as well. However, although the 
protocol is designed for mode switches per subsystem, the current limitation of the 
TTTech tools is that they only support a single global mode of execution.  

Regarding off-line scheduling and flexibility in real-time systems, [4] describes 
algorithms to support also aperiodic messages and to switch modes at run-time. When 
the condition for a mode change is enabled, the mode change request is commun-
icated within a message on the network. All nodes receive the request at the same 
time, and perform the mode switch at the same time (that is, there is a consistent view 
of the mode switch requests). The duration of the mode switch results from the delay 
in the current schedule until it gets to a slot where the switch is feasible, and the 
duration of a transition schedule. This mode switch delay can be computed off-line 
and tested to be lower than some deadline set at design time. 

7   Conclusions 

The LET abstraction invented in the realm of the Giotto project paved the way for 
transparent distribution in real-time systems. We think this novel approach will lead 
to significantly more robust embedded software and will reduce the costs of 
integration testing. The TDL component architecture implies that modes may switch 
independently in each component, which is a radical innovation in real-time systems. 
We presented a scheduling algorithm for message communication, to support these 
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independent mode switches, while maintaining transparent distribution. Future 
research and implementation efforts are required to show the scalability of transparent 
distribution and the scheduling algorithm. Another set of challenges comprises 
optimizations, improved heuristics and metrics for generating the communication 
schedules, considering the feedback from the time safety check for task execution, 
and strategies for avoiding the re-generation of schedules when components are added 
or modified. 
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