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Abstract

This paper presents the architecture of a model-

driven engineering framework which relies on thé un

for such domain specific meta-levels, and so work-
arounds are used in practice [3].

The main contribution of this paper is the presenta
tion of a MDE environment for the specific domaiih o

fied notion of classes and objects, as pioneered bytestbed automation systems, featuring multi-levetlm
SELF [1]. We implemented this architecture for the eling. We further describe the resulting, significa
domain of testbed automation systems and argue thaimpacts on the software architecture. By examiring

this architecture can be generalized. We outlingy wh
our first prototype implementation following a cemv
tional, UML-like metamodeling approach failed and
how the follow-up implementation is aligned witke th
more appropriate so-called Orthogonal Classificatio
Architecture (OCA). While the OCA has been thor-
oughly studied theoretically, we applied OCA for a

instructive example of this domain, in section 2 we
show some problems resulting from employing a con-
ventional metamodeling approach. In section 3 vee pr
sent the basic idea of the Orthogonal Classificatio
Architecture [4] that clearly distinguishes betweeim
metamodeling dimensions. We further describe how
our framework benefits from that approach, andemes

real-world case in the automation system domain. Wethe corresponding tool in section 4. The impactshen
demonstrate that this modeling approach is feasible software architecture are discussed in section Irief

and implies a straightforward, clear-cut decompiosit
of the framework into implementation modules, legdi
to comprehensible software architectures.

1. Introduction

For the development of large software intensive sys
tems, model-driven engineering (MDE) is a promising
approach for coping with the inherent complexitheT
basic idea of MDE is that models are the mainaotd
describing a system under study, and that a mddel a
certain level of abstraction can be transformea int
another model at a possibly different level of edust
tion. Metamodels play an important role in MDE:ythe
specify the structure of models that are to be gssed,
i.e. they define modeling languages [2]. For some d
mains general purpose metamodels are not welldsuite
so that in practice metamodeling tools are usedeto
fine domain specific languages.

Atkinson and Kuhne [3] argue that for certain do-

presentation of the current implementation andréutu
work is given in section 6. Related work is disegss
section 7, while section 8 concludes the paper.

1.1 Model-driven parameter generation

Testbed automation systems, used for example in
R&D of clean technology engines, are inherently €om
plex for various reasons. They are (1) usuallytbnd
dividually of (2) thousands of ready made partsictvh
are (3) often customized. Testbeds also integréte (
sophisticated measurement devices that are software
intensive systems by themselves. Therefore, the- aut
mation system software has to be flexible and Kighl
customizable. Customization is done by providing va
ues for software parameters, such as PID-controller
values. In a typical setup they account to tenthot-
sands of integer, string, and float parametersredily
these parameters are managed in many different,
mostly unstructured, configuration files. Withoup-a

mains the classical approach of metamodeling falls ProPriate software support, testbed customizatoani

short because it does not allow describing the doma
at different levels of abstractions, i.e. at difiet do-
main specific meta-levels. Most of the prominent

error-prone and time-consuming task.
Our research aims at developing of a framework for
model-driven generation of automation system canfig

metamodeling languages do not have built-in support ration parameters. The idea in essence is to thesali



necessary parts of the testbed’s structure in aadom
specific modeling language. A testbed model coregris
all hardware and software parts such that configura
parameters for the automation system can be gederat
automatically. Figure 1 sketches this concept.

Modeling Environment Testbed

Testbed Model Automation E%uipment:

check | ["Hardware | System ngine,
/\m,\ Actuators,

[_Sofware | [ Perameters | N2 g ersers

Figure 1. MDE for testbed configuration

Processing of testbed models involves three phases:
the modeling phase a user builds or modifies d¢elst
model. Once the model is finished, the correspandin

The metamodeling environment allows for defining
the language concepts, such as “Sensor”, “Engine”,
“I/O Device”, as well as their properties, suchths
sensor's measurement range, or that an engine&ispe
and inertia. Relations between these concepts asich
the fact that engines can contain sensors and rsenso
are connected to 1/0O devices are also part of dhe |
guage and thus are described in the metamodelirig en
ronment. For defining additional constraints, thege
vironments usually provide some dedicated language.
Besides defining just the metamodel, i.e. the abstr
syntax of the domain specific language, these envir
ments typically also allow specifying the visuapepr-
ance, such as specific symbols used for repregentin
domain concepts.

automation system parameters can be generatee in th Once the metamodel is defined, it can be used for
generation phase by a separate transformationnsyste creating the modeling environment. The metamodel
In the execution phase, the automation systenaitest ~ controls what domain models can be created and the

and a defined sequence of test steps is performed.

concrete syntax associated with the metamodel aigntr

In this paper we only consider the modeling aspectthe look of the diagrams that can be drawn. In othe
and do not deal with other aspects such as the-tran words, the domain model is anstance ofthe meta-

formation. To illustrate our arguments, we usepaci

model. The domain model and the metamodel are at

example from the domain: Modeling an engine and the different meta-levels, similar to the M1 and M2 dés/

corresponding sensors.

2. Conventional metamodeling

in UML [7]. To our knowledge, all prominent meta-
modeling environments in principle follow this ap-
proach.

In state of the art metamodeling tools, the meta- 2.1 Hierarchies of model levels

model is explicitly represented and generatiomeeri

pretation techniques are used for creating the timae
environment. MetaEdit+ [5] or GME [6], for example,
are two widely used tools for creating domain sfpeci

As Atkinson and Kihne [4] show, the limitation to
only two modeling levels is not suited well for dib-
mains. As an example, consider the case whereahe d

modeling environments. Usage of such tools bagicall main model level itself needs to be able to represe
involves two steps: a) defining a metamodel that de bothdomain typesuch as a manufacturer’s family of
fines the domain specific language, and b) usirgy th four cylinder Diesel engines amdmain instancesuch
metamodel to provide an environment for domain spe-as concrete engines being mounted on the testhed. |
cific modeling. The latter step can be realizetiesiy ~ the context of UML, work-arounds for representing
a generic environment that interprets the metamadel both, types and instances within class diagramee ha
by a custom environment generated from the meta-been proposed such as tiype object patterii8]. At-
model. For both cases, however, the metamodel apkinson and Kihne describe in detail why such work-
pears as “fixed” in the modeling environment, tisait ~ arounds lead to accidental complexity [3].

cannot be modified there, as sketched in figure 2. Similarly to the type object pattern, the repreaent
tion of types and instances within the same maaiedl|

is also possible in the mentioned metamodelingstool
The rich constraint language they provide can heal us
to encode the semantics of the artificial instdiatia
relationship to ensure that only valid models migat
built. Analogously to the previous case, this aillso
duces accidental complexity.

Another option is to split the domain model level
into adomain typemodel level and @omaininstance
model level. One might use a metamodeling tool)to a
create a modeling environment for domain typeshsuc

Metamodeling ode
Environment 0

L,

Editable Metamodel

Fixed
Metamodel

Editable Model

Figure 2. Conventional metamodeling



as all the engine families of a manufacturer. Teeeg-
ated metamodeling tool then can be used to b) ereat
the final modeling environment where one creates co
crete engine instances. The domain instance mbds| t
conforms to the domain type model, which in turnco

by also directly instantiating Component, ordigning

the initial Engine. Cloning, however, is the preéer
way to create new elements, since this way featars
be introduced incrementally. In the example, Engine
declares two attributes, Inertia and MaxSpeed.€Sinc

forms to the metamodel. So the three models form athe prototypical approach each element is an instan

linear metamodel hierarchy, as sketched in figure 3

? odeling
w Fixed Type
Model

Modeling Env. odeling
(Meta-Type) pe

Fixed
Metamodel

Editable Instance
Model

Editable Metamodel

Editable Type Model

Figure 3. Metamodeling tool chain

Since conventional metamodeling environments do
not support multiple model-levels, however, the anet
model can not be explicitly represented in the Ilfina
modeling environment for domain instances, which is
depicted by the asterisk in figure 3. As a consaqee
the instance models can not explicitly access rifa-i
mation represented in the leftmost model. So inedn
of the modeling environment shown at the right hand
side, it is for example not possible to determihe t
circle’s meta-type, i.e. the corresponding squHrhis
information is of importance, e.g. for the transfiar
tion system in an MDE-framework, the concepts ef th

meta-model have to be represented somehow in the

type-model, which again is a workaround and leads t
the problem of “replication of concepts”.

2.2 Our prototypical implementation

Our first implementation of the modeling environ-
ment followed the conventional metamodeling princi-
ples shown in figure 2. The metamodel was represent
in UML and transformed into C#-code using the open-
ArchitectureWare [9] MDE tool. The generated code
was then linked with our own implementation of a ge
neric modeling environment. The problem was that ou

Engine must provide values for these attributes.
Whether these values are reasonable default values
special “null” values does not matter for the folisma,

but can cause confusion.

i Metamodel

Engine
Inertia = 0.2 kgm?
MaxSpeed = 1000 rpm

Diesel Otto

PreheatTime = <null> Ignition o = <null>

...... DType
Inertia = 0.28 kgm?
MaxSpeed = 5000 rpm
PreheatTime = 1.0 s

SerialNumber = <null>

D1
Inertia = 0.29 kgm?*

SerialNumber = A3S1

Model

------ > Instanceof — Clone of

Figure 4. Cloning domain elements

Diesel and Otto represent two kinds of engines;
since they are cloned from Engine, they receivaesop
of the attributes Inertia and MaxSpeed, as wethas
values. Italics script is used to mark such copittdb-
utes; grey text is used to express that the ateilal-
ues are kept unchanged. DType represents a farily o
diesel engines. As such, values of attributes cbpie
from other engines can now be made more specific.
Inertia for which Engine could only propose a rough
guess can now be made more specific; the low value

environment had to support both, domain types andfor MaxSpeed proposed by Engine to prevent damage

domain instances. We sidestepped that issue bylysimp
treating them agechnically the same kind of things
This solution was inspired by the concept of prgiot
cal programming languages, such asrg1].

Figure 4 shows how we translated this idea into our

can now be safely raised to the engine’s nomina¢dp
D1 finally is a concrete, physically existing membe
Inertia, for which DType proposes a default valcen
now be determined.

domain. Component is an example of the fixed meta-Necty for domain types.

model elements represented as code in the environ-
ment. Such metamodel elements can be instantiated t

create initial domain model elements such as Engine
Different kinds of engines may now be either créate

In our initial prototypical approach, following the
ideas of &LF, cloned elements may be modified with-
out any restrictions. So it is valid to add newibtites,



change the values of copied attributes, but alseeto A problem is that with the prototype formalism
move them, or change their data type. Our domain, these levels can not be represented explicitlyabse
however, often demands for more strictness in tee h  the Clone-of relationship could stand for genegdion
archy of elements, because clients of such moael el as well as for instantiation. The relation betweka
ments may depend on them. For example, the agribut elements at the domain type level is that of gdizara
Inertia, which is considered essential for all eegi tion, as represented by the Clone-of relationshipe
must not be removed; the value of the MaxSpeed at-relation between elements at the domain type-landi
tribute specified for the whole family of DType éngs the domain instance level, however, is also modeied
must not be changed for individual DType engines. the same relationship. The resulting ambiguity tred
Figure 5 gives an example of such a client: theedod resulting problems are analogous as introducechby t

generating parameters. type-object pattern [3].
Besides these rather technical problems with a pro-
B ETY] N totypical modeling approach, we realized that wsoal
m::.sap::dzzk%o om :> faced a more severe problem wjterception Users of

our environment often got confused about what a
model element means, i.e. whether it is a domaie,ty
:> such as a family of engines, or a domain instasweeh
PreheatTime = 1.0 s as a concrete engine, and whether cloning an etemen
means creating a domain type or a domain instance.

Configuration
Parameters

Diesel

Diesel Engine
Transformation

Dx |
MaxSpeed = 900 rpm 3. Multi-Leve Modellng
PreheatTime = 1.0 s
Figure 5. Parameter generation To overcome the limits of conventional metamodel-

ing discussed in section 2.1, multi-level modeliggn

As described in section 1, the main purpose of our alternative approach. The basic idea of multi-level
environment is generating an automation system con-modeling is to explicitly represent the differebstrac-
figuration. Thus the transformation code must ble ab tion levels of model elements in complex domains.
to rely on a correct model in order to generatédval Different flavors of multi-level modeling have been
corresponding configuration parameters. Assume thatproposed. Atkinson and Kihne, for example, progose
one specific part of the transformation code, respo  uniform notion of classes and objects, also knowa a
ble for generating diesel engine related parameters clabject [3], that allows for an arbitrary numbérctas-
relies on the fact that all diesel engines arererggand  sification levels and whose advantages are wellidoc
as such have an Inertia attribute. If any eleméaitne mented in literature [3, 10, 11]. In principle, lalgect
ing to be a diesel engine violates the transfoinati is a modeling entity that has a class facet as aghn
code’s assumptions, no parameters can be generated. object facet.

The point is that elements must be able to make
statements about other, more specific elementsshwhi 3.1 Clabjects
actually is similar to a relation between classed a
instances. To emphasize this fact, levels should be The example in figure 6 demonstrated that in the
drawn like in figure 6. testbed domain the representation of elementdfat-di
ent abstraction levels is required. In figure 7present

RUNIRRR——S - : how this exampl_e can concisely be_ m_odeled with-clab
: : { Metamodel jects. The notation used here is similar to thathef

| : original clabject concept, that is, a combinatioh o

’ Enéine

UML notations for classes and objects [3, 12]. Each
. ’ T t | t om; model element has a compartment for the name, and a
A combined compartment for the type facet and the in-
..... ’ DType ‘ o stance facet represented figids [3]. The dashed ar-
: A omain type model rows between the levels represent the ‘“instance of”

e ] D1 | relationship. In this notation inherited or insiated

fields are only repeated when assigned a spedfigev

Domain instance model

------ > Instance of — Clone of
Figure 6. Model levels



Meta-Metatypes relation between reality and the model elementdsis
a linguistic classification. “Reality” here compes

1
Engine

Thertia real-world physical elements such as engines, lsot a
Domain e : ;
Metatypes MaxSpeed conceptual entlfues as percelv_ed by domain experts,
such as the family of diesel engines.
|__Diesel | [ Otto | Ontological classification, in contrast, is abobe t
[ PreheatTime | [1gnition o | . .
T relation between model elements at different levels
$0main S BTyspgoo e.g. the relation between Diesel and DType, orélee
ypes axSpeed = rpm . ..
ProheatTime = 15 s tion between DType and D1. It is important to nibit
T our particular example requires only four ontoladic
Domain [ D1

levels; the number of ontological levels requireg b

Inst [Inertia = 0.28 k }
nstances nertia = 0. gm? . . .
another domain might be different.

—{= Subtype of ——-=> Instance of
Figure 7. Domain model with clabjects Language S— Reality
With a uniform representation of type facets and in irsaseiielll = (=)}
stance facets, modeling our example is straight- T "
forward. At the domain metatype level, clabjects En Tanguage: |..... Domain Metamodel: | 2
R . . X Engine, Diesel % 5
gine, Diesel and Otto are modeled as a conventional C'Faizllzct A T8
class hierarchy. Their fields, like Inertia and lirat- Connector T ’ Type Model F ,,,,,,,,,,, o
Time, are part of the corresponding clabject’s type Typ B C g
facet. Specified at the domain type level, the jglab ’ Instance Model: % ,,,,,,,,,, g
DType is an instance of Diesel. It provides valtas D1 1
the fields MaxSpeed and PreheatTime, which are part linguistic classification
of DType’s instance facet. Although not shown ie th —— —
-~ linguistic instanceOf ——-> ontological instanceOf

figure, DType could also introduce a new field, @i i o ] ]
would then be part of its type facet. The domain in Figure 8. Classification dimensions
stance D1 in turn instantiates DType and provides a

value for the Inertia field. Note that D1's typecéd is Tool support.

empty. By definition, the clabjects at the top-lesely Separating the linguistic and the ontological dfass
have a type facet, whereas the clabjects at therhot ~ fication dimensions has immediate effect on the im-
level only have an instance facet. plementation of a modeling environment. The envi-

An important property of this model is that we only fonment provides the implementation of the modeling
have one kind of instance-of relationship, rattemt language, i.e. the linguistic classification of rebg
the ambiguous relationships as we had in figure 6.€lements. Because the ontological dimension is or-
Moreover, this relationship is well-defined and ftiaes thogonal, the modeling environment can immediately
same semantics at all modeling levels. handle multiple ontological classification levelas
shown in figure 9.

Multi-Level Modeling
Environment

3.2 Orthogonal classification

Atkinson and Kihne separate two orthogonal kinds Additional Editable
of instantiation, also known as the Orthogonal §lfas T Model Levels
cation Architecture [10]: linguistic and ontologica %% | Solable
instantiation. Linguistic instantiation represertise . -
type-instance relation between a modeling language 2& B ovods!
and model elements. Ontologlcal classification eepr Etoble Doman
sents the type-instance relation between model ele- G-OA Instance-Model

ments at different levels, such as the elementsuof
last example in figure 7.

An illustration of this concept, adapted from [1i3],
shown in figure 8. Linguistic classification is alidhe
relation between the modeling formalism’s implemen-
tation, e.g. Clabject on the left hand side, asdint
stances, e.g. Engine or DType in the middle pane

Figure 9. Multi-level tool

The figure illustrates that due to the explicitidef
tion of the ontological instance-of relation, abiaary
number of ontological modeling levels can be sup-
T ported by a single tool. The relationships betwibese



layers are concisely captured. The linguistic meta- levels. The software modules implementing the rende

model, which is not shown in the figure, is orthngb
to the ontological model levels. Thus, adding addil
ontological meta-levels is straightforward, which- e
ables tools to support a wide range of applicaton
mains. Although the different meta-levels have & b
editable in principle, they are not necessarilyale at
all times. Nevertheless, all metalevels are reprtese
and accessible at all times, which for exampleeiseh
ficial for building model transformations.

4. Multi-level MDE tool

ing of hardware and software aspects, for example,
depend on the Meta-Metamodel since there the corre-
sponding model elements, such as Sensor or Dataflow
Signal, are defined. These generic visualizatiord-mo
ules, however, are independent of more domain spe-
cific concepts such as Engine or Diesel. But we als
can identify implementation modules that rely on ex
actly these concepts, e.g. the transformation neofitul
generating automation system parameters. In fact, a
motivated in figure 5, there are two such transtion
modules: one that implements transformation at the
level of the domain metatypes, and a second one for

In a second version of our model-driven parameter SPecific transformations of certain domain typeshs
generation framework, we employed the multi-level as DType.
modeling approach as presented in the previous sec-

tion. Here we present the system’s architecturenfro
the developer’s perspective.

The basis for multi-level modeling is the separatio
of the two classification dimensions. In our domdime
model layers are as shown in figure 8. For theitech

4.1 Language module

The linguistic level of a multi level modeling envi
ronment must be capable of representing arbitrary o
tological models at runtime. Thus an appropriate li

tural decisions on how to decompose the system intoguistic metamodel has to support the ontologicadeho

implementation modules, the multi-level hierarcigoa
plays a central role: The two classifications disiens
not only define how the model is organized, bubals

entities, their properties, and relationships betwe
them. Furthermore, multiple ontological levels hawe
be supported, so the abstractions in the linguistiel

define the dependencies of implementation modules.must provide a means of expressing instantiatich an

Figure 10 shows an example.

Model-
Support

Model
Hardware
Metamodel Software
View

Domain -
Generic
uage ‘ ransform.
: Specific

........................... Type Model [~ (Transform.

........................... InStance
Model

model
—>dependency D element

Figure 10. Module alignment

Language-
Support

Language

Persistency

77777777 linguistic

instanceOf

_, ontological
instanceOf

software
module

The implementation modules comprising the MDE-
tool are arranged according to the two classificati
dimension. Thelanguage Implementatiormodule

generalization relations. The entities of our laamp
module basically are Clabject, Connector, Fieldd an
Data Type, as shown in figure 11. Note that we omit
certain implementation details.

instance-of Clabiect
subclass-of ™| I

instance-of Connector contains
subclass-of ———™|

Figure 11. Language module entities

’ Data Type ‘

target

source

Field ‘

Clabjects represent model elements which may ei-
ther be types or instances. As described in se&ibn
a clabject can be an instance of another clabjedt o
can be a specialization of another clabject. Cltbje
are further described by their contained fieldsjcivh
can represent either type or instance specificrinés
tion. Each field has a data type, which may eitieea
predefined primitive data type such as integereat, t
or a user defined type such as a list or recordwiéts

contains the C# implementation of the core languageclabjects, connectors also can represent typesi-or i

constructs such as Clabject, Field, or Connectbe T
modules on the left hand side depend on these daegu
concepts only. The modules on the right hand side,

stances, and connectors can be specializationthef o
connectors. Properties of connectors, such aspticiti
ities, are further described by their containettifie

contrast, depend on the language implementation and The linguistic level manages arbitrary hierarchiés
also on concepts defined at different metamodeling ontological models in memory, represented by these



basic abstractions. It does not interpret the neotel
yond enforcing constraints, such as multiplicitiefs
connectors. In other words, the linguistic levehe-
tral to the models it holds, or domain independent.

4.2 Language support modules

Besides providing modeling primitives, the linguis-

modules that are domain specific, which can beegus
within a domain, e.g. for software product lined][1

This particular alignment also defines a certaits pa
tern of module dependencies. The linguistic impleme
tation modules are independent of the ontological i
plementation modules. The converse, however, does
not hold since the ontological implementation medul
might need to access the functions of the linguisti-

tic level is also concerned with managing models. A plementation modules. The software view module, for

typical function implemented in &nguage support
moduleis, for example, persistency of models. In our
case this includes functions for loading and stprin

example, uses the query module to traverse model el
ments. As a consequence, an ontological implementa-
tion module can make use of on any linguistic imple

model elements and a library mechanism that allowsmentation module and also any ontological implemen-
modularizing the model space and enables reuse ofation module at a higher level. A linguistic impien-

compound model elements. Another typical funct®en i
a query mechanism for searching the model space.

4.3 Model support modules

tation module in contrast can make use of othguis:
tic implementation modules only.

This separation of concerns, which now clearly
separates domain specific concerns from general con
cerns, can also be used as a measure of where- to im

Ontological model elements represent the domainPlement new functions. Assume, for example, that we

concepts and entities. In realm of an MDE approach,

the implementation of certain functionality depeias
these domain abstractions, such as the transfamati

want to extend the multi-level MDE tool with
undo/redo functionality. Since undo/redo clearly is
independent of our target domain, it has to be émpl

code for automation system parameters. The implemen mented along the linguistic classification domaie., in

tation of amodel support moduleelies on the structure
of the corresponding ontological model level.

An interesting property of multi-level modeling is
that every ontological model layer in fact defirzeset
of domain abstractions which form domain specific

language. A generic framework thus could render the

domain entities with different, custom defined syisb
The infrastructure proposed by Atkinson et al. [13]
uses this approach. In our tool we take this ide@ o
step further and allow model support modules to pro
vide a completely custom visualization of domaiti-en
ties. The Hardware-View and the Software-View mod-
ules as shown in figure 10, for example, defineyver
specific visualizations for subsets of the modditiess.
Support modules for lower ontological levels mag-pr
vide a further customized visualization, such ape-
cific symbol for a diesel engine.

4.4 Separation of concern dimensions

The presented alignment of implementation modulesthe correct abstraction

figure 10 it has to be placed next to the Persistamd
Query modules.

5. Architectural impacts

A multilevel modeling architecture has both techni-
cal as well as organizational impacts. Each ontoldg
model level represents a different level of absibac
These model levels define a clear-cut partitionarig
the implementation modules. However, they alsoeserv
as a means for communication among the developers
and users responsible for different levels, so esen
group can talk in terms of their own abstraction.

5.1 Immediate architectural benefits

After the implementation of the multi-modeling ker-
nel, we ported certain business functionality frira
first version. By examining the module alignment we
could verify whether the functions were implemenraéd
level. The old undo/redo

along the two orthogonal classification dimensions mechanism, for example, was spread over different

provides a straightforward separation of moduleth wi
different concerns. Modules implementing the lamgua
and supporting functions are at the linguistic dime

ontological model levels. Thus in the new versiom w
factored out the mechanism and implemented it as a
language support module. In a later architectueal r

sion, while modules implementing model-dependent view this turned out to have positive effects duem-

features are at the ontological dimension. So weage
clear separation between models that are domaes ind

hanced encapsulation.
To utilize the power of the compiler's static type

pendent, which can be reused among domains, andhecking facility, we provide a way of creating ¢yp



information from ontological model elements in arde “shows” connector between them are instances of the
to allow checking the corresponding modules. After generic visualization concepts.

aligning the logical software architecture along th

classification dimensions, we discovered that this ; |shows

mechanism was implemented specifically for the &éigh e ’ Drav‘vmg H \Md‘get ‘
model levels, but that it actually is independehthe f ””” T ””” ] l i l
ontological classification. Implementing the getera Componem’mﬁ Sensor b)’ rwing. Wo‘mggf"‘
for type-information as a language-support module,

a)

which is planned in near future, will allow all meld —— Assodaton ——> Instance of
support modules to benefit from static compilerabise Figure 13. Meta-metamodel patterns.
Checking the implementation against the depend-
ency rules described in section 4.4 also revealsaba Introducing generic components for expressing such

tle flaw in the module dependency graph: one of the patterns is not an end in itself; instead it allavesto
language-support modules depended on the top ontoimplement certain aspects of the meta-metamodel sup
logical model level. This demonstrated that theliep ~ port module in a more generic way. Pattern a) &lus
definition of a dependency pattern is indeed a fiene t0 visualize the containment hierarchy of all pbksi
cial tool to ensure that the implementation does no models in a tree view. Pattern b) is used for examp

violate the defined architecture. for managing multiple drawings associated with m€o
ponent. These functionalities can be implemented
5.2 Splitting model layers without knowledge about Component, Sensor, Hard-

ware Drawing or Component Widget. It is thus aniadd

The ontological metamodeling approach allowed us tional ontological level, as shown in figure 14.
factoring out common behavior that follows a certai

pattern. Figure 12 shows clabject diagrams for two Language Model Reality
sample cases: a) expresses that a Component can con
tain other Components as well as Sensors; b) es@ses G%‘s;'gl""éteam"é';ta ,,,,,,,,,, =2
that a Component can have a Hardware Drawing, on 50 P
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Figure 12. Meta-metamodel fragments.
The examples stand for two general patterns shown Inguste dlassficaton

in figure 13: the fact a) that a model element can- - linguistic instanceOf —--- ontological instanceOf

tain other model elements is rather trivial. Theueili- Figure 14. Split meta-metamodel.

zation pattern b) is motivated by the fact thatdhaare

as well as software aspects are eventually repesen  Analogously to splitting the meta-metamodel level,

as boxes with ports, connected by lines on multiple other model levels could be split. Ontological leve

drawings. above and below, their support modules, and the lan

Component and Sensor are instances of the generiguage and its support modules need not be touched.
Element, and the “contains” connector between Com-

ponent and Sensor is an instance of the generit-“co 5 3 product families

tains” connector defined for Element. Analogously

Hardware Drawing, Component Widget and the  onpglogical levels help creating families of simila
products from a shared model and implementatiore cod
base. Suppose we have to create multiple modeling
! We use clabjects not only for the model elememis,  environments to support different testbed automatio
also for describing the visualization of modelseThal systems, provided by different vendors. Chances are
visualization pattern however is more elaborate.




that these environments share not only the meta-strong evidence that modeling testbeds in the way w
metamodel, but also the domain metamodel for enginepresented in section 3 allows for a concise deonp
testbeds. The different environments however &edyli Another separate group is in parallel working oa th
to require different type models, containing foaex corresponding transformation engine.
ple different I/O devices.

The same principle holds if we need to create yet 7. Related work
another modeling environment targeted, for exargle,

factory automation systems. Chances are that lesth t The idea of unifying classes and objects has a long
bed automation systems and factory automation sys+radition in the context of object-oriented prograimg
tems have enough in common and thus can share th‘ﬁanguages, namely in prototype-based languages such
same meta-metamodel and its associated implementagg g [1]. A SELF-object consists of named slots that
tion code. They will however not share the same do-can carry values, which in turn are referencestiero
main metamodel. Figure 15 shows an example. objects. 8LF uses only one relationship, the “inherits
The example highlights the product family member fromr-relationship [1, table 1] that unifies instation
“Testbed Automation System 17, which uses a set of and specialization. Our first implementation was in
common elements, shared among different testbedspired by that concepts, but the lack of a typeaiy
automation systems. These similarities among model-tyrned out inadequate for our domain, and thistted
ing environments thus defiroduct familiesor prod- the application of multi-level modeling.
uct lines In other words: a range of different modeling  various metamodeling environments are available
environments can be produced simply by combining today, such as the Generic Modeling Environment [6]
models and their implementation modules. the Eclipse Modeling Framework [15], or the commer-
cial solution MetaEdit+ [5]. Although built for dér-
ent purposes, their meta-metamodels are comparable.

R *\i SO Nevertheless, none of the three mentioned environ-
AR W3- \ . . . .
",r"%\\)@@?f?ﬁ;&e(\\: <o® ments directly supports multi-level modeling. Guithe

/ R

et al. point out that these tools can operate witim
implicit multi-level framework by building a toolhain

[11]. As already outlined in section 2, this doest n
allow for accessing meta-information except for the
immediate metamodel, and thus does not support a

1
Engine Testbed

i.xlDomain Metamodel |/ /
S O
- SSSETS

|
/[ Automation System B ‘

Type Model g -
ees uniform treatment of the ontological model levels.
Atkinson et al. [13] propose a prototypical frame-
work for language engineering also based on the-Ont
— logical Classification Architecture [10]. The autho
__, ontological D model 77 product N L X N . .
instanceOf element i family present the basic difficulties of implementing altinu
Figure 15. Product family. level modeling environment and describe the bexefit
in terms of two small case studies. They also desa
6. Statusof implementation generic visualization algorithm that is capableayre-

senting domain entities in the form of custom sytebo

Our MDE tool currently exists in its second version Furthermore, they argue for the need of a constrain
which in contrast to the first version features tiaul ~language that is aware of the different ontologleat
level modeling. Among the features as presented in€lS. Overall, their work builds a foundation forpexi-
section 4, the following are implemented: the mogpl ~ Menting with the various aspects of building a mult
language kernel, supplemental modules such asspersi level modeling tool. _ _
tency, the ontological layering and the top domain ~ Our work, in contrast, aims to bridge the gap be-
model levels, and the model support modules far-vis tween theoretical work and industrial applicatioAs.
alization of the domain specific language. A gemeri Such, it on one had is tied more closely to theliepp
visualization based on the linguistic level, i.ggemeric ~ tion of MDE for automation systems. On the other

clabject view, is not yet implemented. hand, however, this demonstrates that the ratlem-th
partner provides resources for an empirical stiy.  INg can have real impacts in large applicationsrevio

main experts currently use the system to modeéuwiff ~OVer, since we not only studied the modeling emviro
ent kinds of real testbeds. These experiments geovi Ment, but the whole MDE architecture, we were able
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whole and demonstrate the resulting benefits.
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