

Towards a Generic Architechture
for Multi-Level Modeling

T. Aschauer, G. Dauenhauer, W. Pree

Technical Report
August 10, 2009

Software & systems Research Center (SRC)

C. Doppler Laboratory Embedded Software Systems
Univ. Salzburg
5020 Salzburg
Austria, Europe

Towards a Generic Architecture for Multi-Level Modeling

Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree
C. Doppler Laboratory Embedded Software Systems, University of Salzburg

Jakob-Haringer-Straße 2, 5020 Salzburg, Austria
firstname.lastname@cs.uni-salzburg.at

Abstract

This paper presents the architecture of a model-

driven engineering framework which relies on the uni-
fied notion of classes and objects, as pioneered by
SELF [1]. We implemented this architecture for the
domain of testbed automation systems and argue that
this architecture can be generalized. We outline why
our first prototype implementation following a conven-
tional, UML-like metamodeling approach failed and
how the follow-up implementation is aligned with the
more appropriate so-called Orthogonal Classification
Architecture (OCA). While the OCA has been thor-
oughly studied theoretically, we applied OCA for a
real-world case in the automation system domain. We
demonstrate that this modeling approach is feasible
and implies a straightforward, clear-cut decomposition
of the framework into implementation modules, leading
to comprehensible software architectures.

1. Introduction

For the development of large software intensive sys-
tems, model-driven engineering (MDE) is a promising
approach for coping with the inherent complexity. The
basic idea of MDE is that models are the main artifacts
describing a system under study, and that a model at a
certain level of abstraction can be transformed into
another model at a possibly different level of abstrac-
tion. Metamodels play an important role in MDE: they
specify the structure of models that are to be processed,
i.e. they define modeling languages [2]. For some do-
mains general purpose metamodels are not well suited,
so that in practice metamodeling tools are used to de-
fine domain specific languages.

Atkinson and Kühne [3] argue that for certain do-
mains the classical approach of metamodeling falls
short because it does not allow describing the domain
at different levels of abstractions, i.e. at different do-
main specific meta-levels. Most of the prominent
metamodeling languages do not have built-in support

for such domain specific meta-levels, and so work-
arounds are used in practice [3].

The main contribution of this paper is the presenta-
tion of a MDE environment for the specific domain of
testbed automation systems, featuring multi-level mod-
eling. We further describe the resulting, significant
impacts on the software architecture. By examining an
instructive example of this domain, in section 2 we
show some problems resulting from employing a con-
ventional metamodeling approach. In section 3 we pre-
sent the basic idea of the Orthogonal Classification
Architecture [4] that clearly distinguishes between two
metamodeling dimensions. We further describe how
our framework benefits from that approach, and present
the corresponding tool in section 4. The impacts on the
software architecture are discussed in section 5. A brief
presentation of the current implementation and future
work is given in section 6. Related work is discussed in
section 7, while section 8 concludes the paper.

1.1 Model-driven parameter generation

Testbed automation systems, used for example in

R&D of clean technology engines, are inherently com-
plex for various reasons. They are (1) usually built in-
dividually of (2) thousands of ready made parts, which
are (3) often customized. Testbeds also integrate (4)
sophisticated measurement devices that are software
intensive systems by themselves. Therefore, the auto-
mation system software has to be flexible and highly
customizable. Customization is done by providing val-
ues for software parameters, such as PID-controller
values. In a typical setup they account to tens of thou-
sands of integer, string, and float parameters. Currently
these parameters are managed in many different,
mostly unstructured, configuration files. Without ap-
propriate software support, testbed customization is an
error-prone and time-consuming task.

Our research aims at developing of a framework for
model-driven generation of automation system configu-
ration parameters. The idea in essence is to describe all

necessary parts of the testbed’s structure in a domain
specific modeling language. A testbed model comprises
all hardware and software parts such that configuration
parameters for the automation system can be generated
automatically. Figure 1 sketches this concept.

Figure 1. MDE for testbed configuration

Processing of testbed models involves three phases: In
the modeling phase a user builds or modifies a testbed
model. Once the model is finished, the corresponding
automation system parameters can be generated in the
generation phase by a separate transformation system.
In the execution phase, the automation system is started
and a defined sequence of test steps is performed.

In this paper we only consider the modeling aspect
and do not deal with other aspects such as the trans-
formation. To illustrate our arguments, we use a typical
example from the domain: Modeling an engine and the
corresponding sensors.

2. Conventional metamodeling

In state of the art metamodeling tools, the meta-

model is explicitly represented and generation or inter-
pretation techniques are used for creating the modeling
environment. MetaEdit+ [5] or GME [6], for example,
are two widely used tools for creating domain specific
modeling environments. Usage of such tools basically
involves two steps: a) defining a metamodel that de-
fines the domain specific language, and b) using the
metamodel to provide an environment for domain spe-
cific modeling. The latter step can be realized either by
a generic environment that interprets the metamodel, or
by a custom environment generated from the meta-
model. For both cases, however, the metamodel ap-
pears as “fixed” in the modeling environment, that is, it
cannot be modified there, as sketched in figure 2.

Figure 2. Conventional metamodeling

The metamodeling environment allows for defining
the language concepts, such as “Sensor”, “Engine”,
“I/O Device”, as well as their properties, such as the
sensor’s measurement range, or that an engine’s speed
and inertia. Relations between these concepts such as
the fact that engines can contain sensors and sensors
are connected to I/O devices are also part of the lan-
guage and thus are described in the metamodeling envi-
ronment. For defining additional constraints, these en-
vironments usually provide some dedicated language.
Besides defining just the metamodel, i.e. the abstract
syntax of the domain specific language, these environ-
ments typically also allow specifying the visual appear-
ance, such as specific symbols used for representing
domain concepts.

Once the metamodel is defined, it can be used for
creating the modeling environment. The metamodel
controls what domain models can be created and the
concrete syntax associated with the metamodel controls
the look of the diagrams that can be drawn. In other
words, the domain model is an instance of the meta-
model. The domain model and the metamodel are at
different meta-levels, similar to the M1 and M2 levels
in UML [7]. To our knowledge, all prominent meta-
modeling environments in principle follow this ap-
proach.

2.1 Hierarchies of model levels

As Atkinson and Kühne [4] show, the limitation to

only two modeling levels is not suited well for all do-
mains. As an example, consider the case where the do-
main model level itself needs to be able to represent
both domain types such as a manufacturer’s family of
four cylinder Diesel engines and domain instances such
as concrete engines being mounted on the testbed. In
the context of UML, work-arounds for representing
both, types and instances within class diagrams, have
been proposed such as the type object pattern [8]. At-
kinson and Kühne describe in detail why such work-
arounds lead to accidental complexity [3].

Similarly to the type object pattern, the representa-
tion of types and instances within the same model level
is also possible in the mentioned metamodeling tools.
The rich constraint language they provide can be used
to encode the semantics of the artificial instantiation
relationship to ensure that only valid models might be
built. Analogously to the previous case, this also in-
duces accidental complexity.

Another option is to split the domain model level
into a domain type model level and a domain instance
model level. One might use a metamodeling tool to a)
create a modeling environment for domain types, such

as all the engine families of a manufacturer. The gener-
ated metamodeling tool then can be used to b) create
the final modeling environment where one creates con-
crete engine instances. The domain instance model thus
conforms to the domain type model, which in turn con-
forms to the metamodel. So the three models form a
linear metamodel hierarchy, as sketched in figure 3.

Figure 3. Metamodeling tool chain

Since conventional metamodeling environments do

not support multiple model-levels, however, the meta-
model can not be explicitly represented in the final
modeling environment for domain instances, which is
depicted by the asterisk in figure 3. As a consequence,
the instance models can not explicitly access the infor-
mation represented in the leftmost model. So in context
of the modeling environment shown at the right hand
side, it is for example not possible to determine the
circle’s meta-type, i.e. the corresponding square. If this
information is of importance, e.g. for the transforma-
tion system in an MDE-framework, the concepts of the
meta-model have to be represented somehow in the
type-model, which again is a workaround and leads to
the problem of “replication of concepts”.

2.2 Our prototypical implementation

Our first implementation of the modeling environ-

ment followed the conventional metamodeling princi-
ples shown in figure 2. The metamodel was represented
in UML and transformed into C#-code using the open-
ArchitectureWare [9] MDE tool. The generated code
was then linked with our own implementation of a ge-
neric modeling environment. The problem was that our
environment had to support both, domain types and
domain instances. We sidestepped that issue by simply
treating them as technically the same kind of things.
This solution was inspired by the concept of prototypi-
cal programming languages, such as SELF [1].

Figure 4 shows how we translated this idea into our
domain. Component is an example of the fixed meta-
model elements represented as code in the environ-
ment. Such metamodel elements can be instantiated to
create initial domain model elements such as Engine.
Different kinds of engines may now be either created

by also directly instantiating Component, or by cloning
the initial Engine. Cloning, however, is the preferred
way to create new elements, since this way features can
be introduced incrementally. In the example, Engine
declares two attributes, Inertia and MaxSpeed. Since in
the prototypical approach each element is an instance,
Engine must provide values for these attributes.
Whether these values are reasonable default values or
special “null” values does not matter for the formalism,
but can cause confusion.

Figure 4. Cloning domain elements

 Diesel and Otto represent two kinds of engines;

since they are cloned from Engine, they receive copies
of the attributes Inertia and MaxSpeed, as well as their
values. Italics script is used to mark such copied attrib-
utes; grey text is used to express that the attribute val-
ues are kept unchanged. DType represents a family of
diesel engines. As such, values of attributes copied
from other engines can now be made more specific.
Inertia for which Engine could only propose a rough
guess can now be made more specific; the low value
for MaxSpeed proposed by Engine to prevent damage
can now be safely raised to the engine’s nominal speed.
D1 finally is a concrete, physically existing member.
Inertia, for which DType proposes a default value, can
now be determined.

Necessity for domain types.

In our initial prototypical approach, following the
ideas of SELF, cloned elements may be modified with-
out any restrictions. So it is valid to add new attributes,

change the values of copied attributes, but also to re-
move them, or change their data type. Our domain,
however, often demands for more strictness in the hier-
archy of elements, because clients of such model ele-
ments may depend on them. For example, the attribute
Inertia, which is considered essential for all engines,
must not be removed; the value of the MaxSpeed at-
tribute specified for the whole family of DType engines
must not be changed for individual DType engines.
Figure 5 gives an example of such a client: the code for
generating parameters.

Figure 5. Parameter generation

As described in section 1, the main purpose of our

environment is generating an automation system con-
figuration. Thus the transformation code must be able
to rely on a correct model in order to generate valid
corresponding configuration parameters. Assume that
one specific part of the transformation code, responsi-
ble for generating diesel engine related parameters,
relies on the fact that all diesel engines are engines and
as such have an Inertia attribute. If any element claim-
ing to be a diesel engine violates the transformation
code’s assumptions, no parameters can be generated.

The point is that elements must be able to make
statements about other, more specific elements, which
actually is similar to a relation between classes and
instances. To emphasize this fact, levels should be
drawn like in figure 6.

Figure 6. Model levels

A problem is that with the prototype formalism
these levels can not be represented explicitly, because
the Clone-of relationship could stand for generalization
as well as for instantiation. The relation between the
elements at the domain type level is that of generaliza-
tion, as represented by the Clone-of relationship. The
relation between elements at the domain type-level and
the domain instance level, however, is also modeled by
the same relationship. The resulting ambiguity and the
resulting problems are analogous as introduced by the
type-object pattern [3].

Besides these rather technical problems with a pro-
totypical modeling approach, we realized that we also
faced a more severe problem with perception. Users of
our environment often got confused about what a
model element means, i.e. whether it is a domain type,
such as a family of engines, or a domain instance, such
as a concrete engine, and whether cloning an element
means creating a domain type or a domain instance.

3. Multi-Level Modeling

To overcome the limits of conventional metamodel-

ing discussed in section 2.1, multi-level modeling is an
alternative approach. The basic idea of multi-level
modeling is to explicitly represent the different abstrac-
tion levels of model elements in complex domains.
Different flavors of multi-level modeling have been
proposed. Atkinson and Kühne, for example, propose a
uniform notion of classes and objects, also known as a
clabject [3], that allows for an arbitrary number of clas-
sification levels and whose advantages are well docu-
mented in literature [3, 10, 11]. In principle, a clabject
is a modeling entity that has a class facet as well as an
object facet.

3.1 Clabjects

The example in figure 6 demonstrated that in the

testbed domain the representation of elements at differ-
ent abstraction levels is required. In figure 7 we present
how this example can concisely be modeled with clab-
jects. The notation used here is similar to that of the
original clabject concept, that is, a combination of
UML notations for classes and objects [3, 12]. Each
model element has a compartment for the name, and a
combined compartment for the type facet and the in-
stance facet represented by fields [3]. The dashed ar-
rows between the levels represent the “instance of”
relationship. In this notation inherited or instantiated
fields are only repeated when assigned a specific value.

Figure 7. Domain model with clabjects

With a uniform representation of type facets and in-

stance facets, modeling our example is straight-
forward. At the domain metatype level, clabjects En-
gine, Diesel and Otto are modeled as a conventional
class hierarchy. Their fields, like Inertia and Preheat-
Time, are part of the corresponding clabject’s type
facet. Specified at the domain type level, the clabject
DType is an instance of Diesel. It provides values for
the fields MaxSpeed and PreheatTime, which are part
of DType’s instance facet. Although not shown in the
figure, DType could also introduce a new field, which
would then be part of its type facet. The domain in-
stance D1 in turn instantiates DType and provides a
value for the Inertia field. Note that D1’s type facet is
empty. By definition, the clabjects at the top-level only
have a type facet, whereas the clabjects at the bottom
level only have an instance facet.

An important property of this model is that we only
have one kind of instance-of relationship, rather than
the ambiguous relationships as we had in figure 6.
Moreover, this relationship is well-defined and has the
same semantics at all modeling levels.

3.2 Orthogonal classification

Atkinson and Kühne separate two orthogonal kinds
of instantiation, also known as the Orthogonal Classifi-
cation Architecture [10]: linguistic and ontological
instantiation. Linguistic instantiation represents the
type-instance relation between a modeling language
and model elements. Ontological classification repre-
sents the type-instance relation between model ele-
ments at different levels, such as the elements of our
last example in figure 7.

An illustration of this concept, adapted from [10], is
shown in figure 8. Linguistic classification is about the
relation between the modeling formalism’s implemen-
tation, e.g. Clabject on the left hand side, and its in-
stances, e.g. Engine or DType in the middle part. The

relation between reality and the model elements is also
a linguistic classification. “Reality” here comprises
real-world physical elements such as engines, but also
conceptual entities as perceived by domain experts,
such as the family of diesel engines.

Ontological classification, in contrast, is about the
relation between model elements at different levels,
e.g. the relation between Diesel and DType, or the rela-
tion between DType and D1. It is important to note that
our particular example requires only four ontological
levels; the number of ontological levels required by
another domain might be different.

Figure 8. Classification dimensions

Tool support.

Separating the linguistic and the ontological classi-
fication dimensions has immediate effect on the im-
plementation of a modeling environment. The envi-
ronment provides the implementation of the modeling
language, i.e. the linguistic classification of modeling
elements. Because the ontological dimension is or-
thogonal, the modeling environment can immediately
handle multiple ontological classification levels, as
shown in figure 9.

Figure 9. Multi-level tool

The figure illustrates that due to the explicit defini-

tion of the ontological instance-of relation, an arbitrary
number of ontological modeling levels can be sup-
ported by a single tool. The relationships between these

layers are concisely captured. The linguistic meta-
model, which is not shown in the figure, is orthogonal
to the ontological model levels. Thus, adding additional
ontological meta-levels is straightforward, which en-
ables tools to support a wide range of application do-
mains. Although the different meta-levels have to be
editable in principle, they are not necessarily editable at
all times. Nevertheless, all metalevels are represented
and accessible at all times, which for example is bene-
ficial for building model transformations.

4. Multi-level MDE tool

In a second version of our model-driven parameter

generation framework, we employed the multi-level
modeling approach as presented in the previous sec-
tion. Here we present the system’s architecture from
the developer’s perspective.

The basis for multi-level modeling is the separation
of the two classification dimensions. In our domain, the
model layers are as shown in figure 8. For the architec-
tural decisions on how to decompose the system into
implementation modules, the multi-level hierarchy also
plays a central role: The two classifications dimensions
not only define how the model is organized, but also
define the dependencies of implementation modules.
Figure 10 shows an example.

Figure 10. Module alignment

The implementation modules comprising the MDE-

tool are arranged according to the two classification
dimension. The Language Implementation module
contains the C# implementation of the core language
constructs such as Clabject, Field, or Connector. The
modules on the left hand side depend on these language
concepts only. The modules on the right hand side, in
contrast, depend on the language implementation and
also on concepts defined at different metamodeling

levels. The software modules implementing the render-
ing of hardware and software aspects, for example,
depend on the Meta-Metamodel since there the corre-
sponding model elements, such as Sensor or Dataflow
Signal, are defined. These generic visualization mod-
ules, however, are independent of more domain spe-
cific concepts such as Engine or Diesel. But we also
can identify implementation modules that rely on ex-
actly these concepts, e.g. the transformation module for
generating automation system parameters. In fact, as
motivated in figure 5, there are two such transformation
modules: one that implements transformation at the
level of the domain metatypes, and a second one for
specific transformations of certain domain types, such
as DType.

4.1 Language module

The linguistic level of a multi level modeling envi-

ronment must be capable of representing arbitrary on-
tological models at runtime. Thus an appropriate lin-
guistic metamodel has to support the ontological model
entities, their properties, and relationships between
them. Furthermore, multiple ontological levels have to
be supported, so the abstractions in the linguistic level
must provide a means of expressing instantiation and
generalization relations. The entities of our language
module basically are Clabject, Connector, Field, and
Data Type, as shown in figure 11. Note that we omit
certain implementation details.

Figure 11. Language module entities

Clabjects represent model elements which may ei-

ther be types or instances. As described in section 3.1,
a clabject can be an instance of another clabject or it
can be a specialization of another clabject. Clabjects
are further described by their contained fields, which
can represent either type or instance specific informa-
tion. Each field has a data type, which may either be a
predefined primitive data type such as integer or text,
or a user defined type such as a list or record. As with
clabjects, connectors also can represent types or in-
stances, and connectors can be specializations of other
connectors. Properties of connectors, such as multiplic-
ities, are further described by their contained fields.

The linguistic level manages arbitrary hierarchies of
ontological models in memory, represented by these

basic abstractions. It does not interpret the models be-
yond enforcing constraints, such as multiplicities of
connectors. In other words, the linguistic level is neu-
tral to the models it holds, or domain independent.

4.2 Language support modules

Besides providing modeling primitives, the linguis-
tic level is also concerned with managing models. A
typical function implemented in a language support
module is, for example, persistency of models. In our
case this includes functions for loading and storing
model elements and a library mechanism that allows
modularizing the model space and enables reuse of
compound model elements. Another typical function is
a query mechanism for searching the model space.

4.3 Model support modules

Ontological model elements represent the domain

concepts and entities. In realm of an MDE approach,
the implementation of certain functionality depends on
these domain abstractions, such as the transformation
code for automation system parameters. The implemen-
tation of a model support module relies on the structure
of the corresponding ontological model level.

An interesting property of multi-level modeling is
that every ontological model layer in fact defines a set
of domain abstractions which form domain specific
language. A generic framework thus could render the
domain entities with different, custom defined symbols.
The infrastructure proposed by Atkinson et al. [13]
uses this approach. In our tool we take this idea one
step further and allow model support modules to pro-
vide a completely custom visualization of domain enti-
ties. The Hardware-View and the Software-View mod-
ules as shown in figure 10, for example, define very
specific visualizations for subsets of the model entities.
Support modules for lower ontological levels may pro-
vide a further customized visualization, such as a spe-
cific symbol for a diesel engine.

4.4 Separation of concern dimensions

The presented alignment of implementation modules
along the two orthogonal classification dimensions
provides a straightforward separation of modules with
different concerns. Modules implementing the language
and supporting functions are at the linguistic dimen-
sion, while modules implementing model-dependent
features are at the ontological dimension. So we get a
clear separation between models that are domain inde-
pendent, which can be reused among domains, and

modules that are domain specific, which can be reused
within a domain, e.g. for software product lines [14].

This particular alignment also defines a certain pat-
tern of module dependencies. The linguistic implemen-
tation modules are independent of the ontological im-
plementation modules. The converse, however, does
not hold since the ontological implementation modules
might need to access the functions of the linguistic im-
plementation modules. The software view module, for
example, uses the query module to traverse model ele-
ments. As a consequence, an ontological implementa-
tion module can make use of on any linguistic imple-
mentation module and also any ontological implemen-
tation module at a higher level. A linguistic implemen-
tation module in contrast can make use of other linguis-
tic implementation modules only.

This separation of concerns, which now clearly
separates domain specific concerns from general con-
cerns, can also be used as a measure of where to im-
plement new functions. Assume, for example, that we
want to extend the multi-level MDE tool with
undo/redo functionality. Since undo/redo clearly is
independent of our target domain, it has to be imple-
mented along the linguistic classification domain, i.e. in
figure 10 it has to be placed next to the Persistency and
Query modules.

5. Architectural impacts

A multilevel modeling architecture has both techni-

cal as well as organizational impacts. Each ontological
model level represents a different level of abstraction.
These model levels define a clear-cut partitioning of
the implementation modules. However, they also serve
as a means for communication among the developers
and users responsible for different levels, so each user
group can talk in terms of their own abstraction.

5.1 Immediate architectural benefits

After the implementation of the multi-modeling ker-

nel, we ported certain business functionality from the
first version. By examining the module alignment we
could verify whether the functions were implemented at
the correct abstraction level. The old undo/redo
mechanism, for example, was spread over different
ontological model levels. Thus in the new version we
factored out the mechanism and implemented it as a
language support module. In a later architectural re-
view this turned out to have positive effects due to en-
hanced encapsulation.

To utilize the power of the compiler’s static type
checking facility, we provide a way of creating type

information from ontological model elements in order
to allow checking the corresponding modules. After
aligning the logical software architecture along the
classification dimensions, we discovered that this
mechanism was implemented specifically for the higher
model levels, but that it actually is independent of the
ontological classification. Implementing the generator
for type-information as a language-support module,
which is planned in near future, will allow all model
support modules to benefit from static compiler checks.

Checking the implementation against the depend-
ency rules described in section 4.4 also revealed a sub-
tle flaw in the module dependency graph: one of the
language-support modules depended on the top onto-
logical model level. This demonstrated that the explicit
definition of a dependency pattern is indeed a benefi-
cial tool to ensure that the implementation does not
violate the defined architecture.

5.2 Splitting model layers

The ontological metamodeling approach allowed us

factoring out common behavior that follows a certain
pattern. Figure 12 shows clabject diagrams for two
sample cases: a) expresses that a Component can con-
tain other Components as well as Sensors; b) expresses
that a Component can have a Hardware Drawing, on
which Widgets are rendered, which in turn represent
components.1

Figure 12. Meta-metamodel fragments.

The examples stand for two general patterns shown

in figure 13: the fact a) that a model element can con-
tain other model elements is rather trivial. The visuali-
zation pattern b) is motivated by the fact that hardware
as well as software aspects are eventually represented
as boxes with ports, connected by lines on multiple
drawings.

Component and Sensor are instances of the generic
Element, and the “contains” connector between Com-
ponent and Sensor is an instance of the generic “con-
tains” connector defined for Element. Analogously
Hardware Drawing, Component Widget and the

1 We use clabjects not only for the model elements, but
also for describing the visualization of models. The real
visualization pattern however is more elaborate.

“shows” connector between them are instances of the
generic visualization concepts.

Figure 13. Meta-metamodel patterns.

Introducing generic components for expressing such

patterns is not an end in itself; instead it allows us to
implement certain aspects of the meta-metamodel sup-
port module in a more generic way. Pattern a) is used
to visualize the containment hierarchy of all possible
models in a tree view. Pattern b) is used for example
for managing multiple drawings associated with a com-
ponent. These functionalities can be implemented
without knowledge about Component, Sensor, Hard-
ware Drawing or Component Widget. It is thus an addi-
tional ontological level, as shown in figure 14.

Figure 14. Split meta-metamodel.

Analogously to splitting the meta-metamodel level,

other model levels could be split. Ontological levels
above and below, their support modules, and the lan-
guage and its support modules need not be touched.

5.3 Product families

Ontological levels help creating families of similar

products from a shared model and implementation code
base. Suppose we have to create multiple modeling
environments to support different testbed automation
systems, provided by different vendors. Chances are

that these environments share not only the meta-
metamodel, but also the domain metamodel for engine
testbeds. The different environments however are likely
to require different type models, containing for exam-
ple different I/O devices.

The same principle holds if we need to create yet
another modeling environment targeted, for example, at
factory automation systems. Chances are that both test-
bed automation systems and factory automation sys-
tems have enough in common and thus can share the
same meta-metamodel and its associated implementa-
tion code. They will however not share the same do-
main metamodel. Figure 15 shows an example.

The example highlights the product family member
“Testbed Automation System 1”, which uses a set of
common elements, shared among different testbed
automation systems. These similarities among model-
ing environments thus define product families or prod-
uct lines. In other words: a range of different modeling
environments can be produced simply by combining
models and their implementation modules.

Figure 15. Product family.

6. Status of implementation

Our MDE tool currently exists in its second version,

which in contrast to the first version features multi-
level modeling. Among the features as presented in
section 4, the following are implemented: the modeling
language kernel, supplemental modules such as persis-
tency, the ontological layering and the top domain
model levels, and the model support modules for visu-
alization of the domain specific language. A generic
visualization based on the linguistic level, i.e. a generic
clabject view, is not yet implemented.

We are in the fortunate position that an industry
partner provides resources for an empirical study. Do-
main experts currently use the system to model differ-
ent kinds of real testbeds. These experiments provide

strong evidence that modeling testbeds in the way we
presented in section 3 allows for a concise description.
Another separate group is in parallel working on the
corresponding transformation engine.

7. Related work

The idea of unifying classes and objects has a long

tradition in the context of object-oriented programming
languages, namely in prototype-based languages such
as SELF [1]. A SELF-object consists of named slots that
can carry values, which in turn are references to other
objects. SELF uses only one relationship, the “inherits
from”-relationship [1, table 1] that unifies instantiation
and specialization. Our first implementation was in-
spired by that concepts, but the lack of a type hierarchy
turned out inadequate for our domain, and this led to
the application of multi-level modeling.

Various metamodeling environments are available
today, such as the Generic Modeling Environment [6],
the Eclipse Modeling Framework [15], or the commer-
cial solution MetaEdit+ [5]. Although built for differ-
ent purposes, their meta-metamodels are comparable.
Nevertheless, none of the three mentioned environ-
ments directly supports multi-level modeling. Gutheil
et al. point out that these tools can operate within an
implicit multi-level framework by building a tool chain
[11]. As already outlined in section 2, this does not
allow for accessing meta-information except for the
immediate metamodel, and thus does not support a
uniform treatment of the ontological model levels.

Atkinson et al. [13] propose a prototypical frame-
work for language engineering also based on the Onto-
logical Classification Architecture [10]. The authors
present the basic difficulties of implementing a multi-
level modeling environment and describe the benefits
in terms of two small case studies. They also describe a
generic visualization algorithm that is capable of repre-
senting domain entities in the form of custom symbols.
Furthermore, they argue for the need of a constraint
language that is aware of the different ontological lev-
els. Overall, their work builds a foundation for experi-
menting with the various aspects of building a multi-
level modeling tool.

Our work, in contrast, aims to bridge the gap be-
tween theoretical work and industrial applications. As
such, it on one had is tied more closely to the applica-
tion of MDE for automation systems. On the other
hand, however, this demonstrates that the rather theo-
retical discussion of the benefits of multi-level model-
ing can have real impacts in large applications. More-
over, since we not only studied the modeling environ-
ment, but the whole MDE architecture, we were able to

identify the architectural impacts of the system as a
whole and demonstrate the resulting benefits.

Analyzing dependencies in large software system as
a measure to manage the architecture is often used.
Murphy et al. [16], for example, propose a method to
reverse-engineer the so-called “reflexion model”,
which is then compared to a so-called “high-level
model”. Our proposed MDE architecture includes a
coarse-grained pattern for the dependencies of mod-
ules, i.e. it includes such a high-level model. Depend-
ency extraction and management approaches can be
used to check the actual implementation’s conformance
to the dependency pattern, and further to manage the
fine-grained dependencies not covered by the pattern.

The MDE-system as presented here is of course
only one view on the architecture. In terms of Kruch-
ten’s “4+1 View Model” [17], this roughly corresponds
to the development view.

8. Conclusion

Multi-level modeling is a powerful approach for
concisely describing complex domains where conven-
tional metamodeling is inadequate. Although the ap-
proach’s advantages are well known, it is not yet
widely used in industry. In this paper we presented the
application of multi-level modeling in the domain of
testbed automation systems. We showed why conven-
tional modeling is insufficient for our MDE require-
ments and how multi-level modeling can solve the fun-
damental issues. The lessons learned led to interesting
conclusions regarding the overall system architecture.
We showed how the principal idea of separating lin-
guistic and ontological classification not only builds the
foundation of multi-level modeling, but furthermore
provides a reasonable framework for aligning the logi-
cal architecture of the whole MDE-system.

Our particular implementation undoubtedly is highly
influenced by the peculiarities of the target domain.
The conclusions drawn, however, can be generalized
since they are only based on the assumptions of the
multi-level modeling principles, e.g. the separation of
the two classification dimensions. Thus we are confi-
dent that our work clearly demonstrates that applying
these principles, which have been around for quite
some time, in industrial practice is appropriate for rep-
resenting the domain and also beneficial for the overall
system architecture. As such this work can pave the
way for applying multi-level modeling to a broader
range of applications.

9. References

[1] D. Ungar and R. B. Smith, “SELF: The power of simplic-

ity”, Proceedings of OOPSLA ’87, ACM SIGPLAN No-
tices, Vol. 22, 1987, pp. 227–242.

[2] D. Gasevic, N. Kaviani and M. Hatala, “On Metamodel-
ing in Megamodels”, Proceedings of MoDELS’07,
LNCS vol. 4735, 2007, pp. 91–105.

[3] C. Atkinson and T. Kühne, “Reducing accidental com-
plexity in domain models”, Software and Systems Mod-
eling, vol. 7, no. 3, 2007, pp. 345–359.

[4] C. Atkinson and T. Kühne, “The Essence of Multilevel
Metamodeling”, Proceedings of the 4th International
Conference on The Unified Modeling Language, Model-
ing Languages, Concepts, and Tools, M. Gogolla and
C. Kobryn, Eds. LNCS vol. 2185, 2001, pp. 19–33.

[5] MetaCase, MetaEdit+, http://www.metacase.com/mwb/
[6] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,

C. Thomason, G. Nordstrom, J. Sprinkle, and P. Vol-
gyesi, “The Generic Modeling Environment”, Proceed-
ings of IEEE Workshop on Intelligent Signal Process-
ing, Budapest, 2001.

[7] Object Management Group, Unified Modeling Lan-
guage Infrastructure, version 2.1.2, OMG document
formal/07-11-04, 2007.

[8] R. Johnson and B. Woolf, “Type object”, in: R. Martin,
D. Riehle, F. Buschmann (Eds.), Pattern Languages of
Program Design 3, Addison-Wesley, 1998.

[9] openArchitectureWare Website, retrieved April 2009,
http://www.openarchitectureware.org.

[10] C. Atkinson and T. Kühne, “Model-Driven Develop-
ment: A Metamodeling Foundation”. IEEE Software,
Vol. 20, No. 5, pp. 36-41, IEEE Computer Society,
2003

[11] M. Gutheil, B. Kennel, and C. Atkinson, “A Systematic
Approach to Connectors in a Multi-level Modeling En-
vironment”, Proceedings of the 11th international Con-
ference on Model Driven Engineering Languages and
Systems, LNCS vol. 5301, Springer-Verlag, 2008, pp.
843–857

[12] Object Management Group, Unified Modeling Lan-
guage Superstructure, version 2.1.2, OMG document
formal/07-11-02, 2007.

[13] C. Atkinson, M. Gutheil, B. Kennel, “A Flexible Infra-
structure for Multi-Level Language Engineering”, To
appear, 2009

[14] P. Clements, L. Northrop, and L. M. Northrop, Software
Product Lines: Practices and Patterns. Addison-Wesley
Professional, 2001.

[15] Eclipse Foundation, Eclipse Modeling Framework Pro-
ject, http://www.eclipse.org/modeling/emf/

[16] G. C. Murphy, D. Notkin, and K. Sullivan, “Software
reflexion models: bridging the gap between source and
high-level models.” Proceedings of the 3rd ACM SIG-
SOFT Symposium on Foundations of Software Engi-
neering, ACM, New York, NY, 1995, pp. 18-28.

[17] P. Kruchten, “The 4+1 View Model of Architecture”,
IEEE Software, vol. 12, no. 6, 1995, pp. 42-50.

