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Abstract 

 
This paper presents the architecture of a model-

driven engineering framework which relies on the uni-
fied notion of classes and objects, as pioneered by 
SELF [1]. We implemented this architecture for the 
domain of testbed automation systems and argue that 
this architecture can be generalized. We outline why 
our first prototype implementation following a conven-
tional, UML-like metamodeling approach failed and 
how the follow-up implementation is aligned with the 
more appropriate so-called Orthogonal Classification 
Architecture (OCA). While the OCA has been thor-
oughly studied theoretically, we applied OCA for a 
real-world case in the automation system domain. We 
demonstrate that this modeling approach is feasible 
and implies a straightforward, clear-cut decomposition 
of the framework into implementation modules, leading 
to comprehensible software architectures.  
 

1. Introduction 
 

For the development of large software intensive sys-
tems, model-driven engineering (MDE) is a promising 
approach for coping with the inherent complexity. The 
basic idea of MDE is that models are the main artifacts 
describing a system under study, and that a model at a 
certain level of abstraction can be transformed into 
another model at a possibly different level of abstrac-
tion. Metamodels play an important role in MDE: they 
specify the structure of models that are to be processed, 
i.e. they define modeling languages [2]. For some do-
mains general purpose metamodels are not well suited, 
so that in practice metamodeling tools are used to de-
fine domain specific languages.  

Atkinson and Kühne [3] argue that for certain do-
mains the classical approach of metamodeling falls 
short because it does not allow describing the domain 
at different levels of abstractions, i.e. at different do-
main specific meta-levels. Most of the prominent 
metamodeling languages do not have built-in support 

for such domain specific meta-levels, and so work-
arounds are used in practice [3]. 

The main contribution of this paper is the presenta-
tion of a MDE environment for the specific domain of 
testbed automation systems, featuring multi-level mod-
eling. We further describe the resulting, significant 
impacts on the software architecture. By examining an 
instructive example of this domain, in section 2 we 
show some problems resulting from employing a con-
ventional metamodeling approach. In section 3 we pre-
sent the basic idea of the Orthogonal Classification 
Architecture [4] that clearly distinguishes between two 
metamodeling dimensions. We further describe how 
our framework benefits from that approach, and present 
the corresponding tool in section 4. The impacts on the 
software architecture are discussed in section 5. A brief 
presentation of the current implementation and future 
work is given in section 6. Related work is discussed in 
section 7, while section 8 concludes the paper. 

 
1.1 Model-driven parameter generation 

 
Testbed automation systems, used for example in 

R&D of clean technology engines, are inherently com-
plex for various reasons. They are (1) usually built in-
dividually of (2) thousands of ready made parts, which 
are (3) often customized. Testbeds also integrate (4) 
sophisticated measurement devices that are software 
intensive systems by themselves. Therefore, the auto-
mation system software has to be flexible and highly 
customizable. Customization is done by providing val-
ues for software parameters, such as PID-controller 
values. In a typical setup they account to tens of thou-
sands of integer, string, and float parameters. Currently 
these parameters are managed in many different, 
mostly unstructured, configuration files. Without ap-
propriate software support, testbed customization is an 
error-prone and time-consuming task. 

Our research aims at developing of a framework for 
model-driven generation of automation system configu-
ration parameters. The idea in essence is to describe all 



necessary parts of the testbed’s structure in a domain 
specific modeling language. A testbed model comprises 
all hardware and software parts such that configuration 
parameters for the automation system can be generated 
automatically. Figure 1 sketches this concept. 

 

 
Figure 1. MDE for testbed configuration 

 
Processing of testbed models involves three phases: In 
the modeling phase a user builds or modifies a testbed 
model. Once the model is finished, the corresponding 
automation system parameters can be generated in the 
generation phase by a separate transformation system. 
In the execution phase, the automation system is started 
and a defined sequence of test steps is performed. 

In this paper we only consider the modeling aspect 
and do not deal with other aspects such as the trans-
formation. To illustrate our arguments, we use a typical 
example from the domain: Modeling an engine and the 
corresponding sensors.  

 

2. Conventional metamodeling 
 
In state of the art metamodeling tools, the meta-

model is explicitly represented and generation or inter-
pretation techniques are used for creating the modeling 
environment. MetaEdit+ [5] or GME [6], for example, 
are two widely used tools for creating domain specific 
modeling environments. Usage of such tools basically 
involves two steps: a) defining a metamodel that de-
fines the domain specific language, and b) using the 
metamodel to provide an environment for domain spe-
cific modeling. The latter step can be realized either by 
a generic environment that interprets the metamodel, or 
by a custom environment generated from the meta-
model. For both cases, however, the metamodel ap-
pears as “fixed” in the modeling environment, that is, it 
cannot be modified there, as sketched in figure 2.  

 

 
Figure 2. Conventional metamodeling 

 

The metamodeling environment allows for defining 
the language concepts, such as “Sensor”, “Engine”, 
“I/O Device”, as well as their properties, such as the 
sensor’s measurement range, or that an engine’s speed 
and inertia. Relations between these concepts such as 
the fact that engines can contain sensors and sensors 
are connected to I/O devices are also part of the lan-
guage and thus are described in the metamodeling envi-
ronment. For defining additional constraints, these en-
vironments usually provide some dedicated language. 
Besides defining just the metamodel, i.e. the abstract 
syntax of the domain specific language, these environ-
ments typically also allow specifying the visual appear-
ance, such as specific symbols used for representing 
domain concepts. 

Once the metamodel is defined, it can be used for 
creating the modeling environment. The metamodel 
controls what domain models can be created and the 
concrete syntax associated with the metamodel controls 
the look of the diagrams that can be drawn. In other 
words, the domain model is an instance of the meta-
model. The domain model and the metamodel are at 
different meta-levels, similar to the M1 and M2 levels 
in UML [7]. To our knowledge, all prominent meta-
modeling environments in principle follow this ap-
proach. 

 
2.1 Hierarchies of model levels 

 
As Atkinson and Kühne [4] show, the limitation to 

only two modeling levels is not suited well for all do-
mains. As an example, consider the case where the do-
main model level itself needs to be able to represent 
both domain types such as a manufacturer’s family of 
four cylinder Diesel engines and domain instances such 
as concrete engines being mounted on the testbed. In 
the context of UML, work-arounds for representing 
both, types and instances within class diagrams, have 
been proposed such as the type object pattern [8]. At-
kinson and Kühne describe in detail why such work-
arounds lead to accidental complexity [3].  

Similarly to the type object pattern, the representa-
tion of types and instances within the same model level 
is also possible in the mentioned metamodeling tools. 
The rich constraint language they provide can be used 
to encode the semantics of the artificial instantiation 
relationship to ensure that only valid models might be 
built. Analogously to the previous case, this also in-
duces accidental complexity. 

Another option is to split the domain model level 
into a domain type model level and a domain instance 
model level. One might use a metamodeling tool to a) 
create a modeling environment for domain types, such 



as all the engine families of a manufacturer. The gener-
ated metamodeling tool then can be used to b) create 
the final modeling environment where one creates con-
crete engine instances. The domain instance model thus 
conforms to the domain type model, which in turn con-
forms to the metamodel. So the three models form a 
linear metamodel hierarchy, as sketched in figure 3.  

 

 
Figure 3. Metamodeling tool chain 

 
Since conventional metamodeling environments do 

not support multiple model-levels, however, the meta-
model can not be explicitly represented in the final 
modeling environment for domain instances, which is 
depicted by the asterisk in figure 3. As a consequence, 
the instance models can not explicitly access the infor-
mation represented in the leftmost model. So in context 
of the modeling environment shown at the right hand 
side, it is for example not possible to determine the 
circle’s meta-type, i.e. the corresponding square. If this 
information is of importance, e.g. for the transforma-
tion system in an MDE-framework, the concepts of the 
meta-model have to be represented somehow in the 
type-model, which again is a workaround and leads to 
the problem of “replication of concepts”. 

 
2.2 Our prototypical implementation 

 
Our first implementation of the modeling environ-

ment followed the conventional metamodeling princi-
ples shown in figure 2. The metamodel was represented 
in UML and transformed into C#-code using the open-
ArchitectureWare [9] MDE tool. The generated code 
was then linked with our own implementation of a ge-
neric modeling environment. The problem was that our 
environment had to support both, domain types and 
domain instances. We sidestepped that issue by simply 
treating them as technically the same kind of things. 
This solution was inspired by the concept of prototypi-
cal programming languages, such as SELF [1]. 

Figure 4 shows how we translated this idea into our 
domain. Component is an example of the fixed meta-
model elements represented as code in the environ-
ment. Such metamodel elements can be instantiated to 
create initial domain model elements such as Engine. 
Different kinds of engines may now be either created 

by also directly instantiating Component, or by cloning 
the initial Engine. Cloning, however, is the preferred 
way to create new elements, since this way features can 
be introduced incrementally. In the example, Engine 
declares two attributes, Inertia and MaxSpeed. Since in 
the prototypical approach each element is an instance, 
Engine must provide values for these attributes. 
Whether these values are reasonable default values or 
special “null” values does not matter for the formalism, 
but can cause confusion. 

 

 
Figure 4. Cloning domain elements 

 
 Diesel and Otto represent two kinds of engines; 

since they are cloned from Engine, they receive copies 
of the attributes Inertia and MaxSpeed, as well as their 
values. Italics script is used to mark such copied attrib-
utes; grey text is used to express that the attribute val-
ues are kept unchanged. DType represents a family of 
diesel engines. As such, values of attributes copied 
from other engines can now be made more specific. 
Inertia for which Engine could only propose a rough 
guess can now be made more specific; the low value 
for MaxSpeed proposed by Engine to prevent damage 
can now be safely raised to the engine’s nominal speed. 
D1 finally is a concrete, physically existing member. 
Inertia, for which DType proposes a default value, can 
now be determined. 

 
Necessity for domain types. 

In our initial prototypical approach, following the 
ideas of SELF, cloned elements may be modified with-
out any restrictions. So it is valid to add new attributes, 



change the values of copied attributes, but also to re-
move them, or change their data type. Our domain, 
however, often demands for more strictness in the hier-
archy of elements, because clients of such model ele-
ments may depend on them. For example, the attribute 
Inertia, which is considered essential for all engines, 
must not be removed; the value of the MaxSpeed at-
tribute specified for the whole family of DType engines 
must not be changed for individual DType engines. 
Figure 5 gives an example of such a client: the code for 
generating parameters. 

  

 
Figure 5. Parameter generation 

 
As described in section 1, the main purpose of our 

environment is generating an automation system con-
figuration. Thus the transformation code must be able 
to rely on a correct model in order to generate valid 
corresponding configuration parameters. Assume that 
one specific part of the transformation code, responsi-
ble for generating diesel engine related parameters, 
relies on the fact that all diesel engines are engines and 
as such have an Inertia attribute. If any element claim-
ing to be a diesel engine violates the transformation 
code’s assumptions, no parameters can be generated.  

The point is that elements must be able to make 
statements about other, more specific elements, which 
actually is similar to a relation between classes and 
instances. To emphasize this fact, levels should be 
drawn like in figure 6.  

 

 
Figure 6. Model levels 

A problem is that with the prototype formalism 
these levels can not be represented explicitly, because 
the Clone-of relationship could stand for generalization 
as well as for instantiation. The relation between the 
elements at the domain type level is that of generaliza-
tion, as represented by the Clone-of relationship. The 
relation between elements at the domain type-level and 
the domain instance level, however, is also modeled by 
the same relationship. The resulting ambiguity and the 
resulting problems are analogous as introduced by the 
type-object pattern [3].  

Besides these rather technical problems with a pro-
totypical modeling approach, we realized that we also 
faced a more severe problem with perception. Users of 
our environment often got confused about what a 
model element means, i.e. whether it is a domain type, 
such as a family of engines, or a domain instance, such 
as a concrete engine, and whether cloning an element 
means creating a domain type or a domain instance. 

 

3. Multi-Level Modeling 
 
To overcome the limits of conventional metamodel-

ing discussed in section 2.1, multi-level modeling is an 
alternative approach. The basic idea of multi-level 
modeling is to explicitly represent the different abstrac-
tion levels of model elements in complex domains. 
Different flavors of multi-level modeling have been 
proposed. Atkinson and Kühne, for example, propose a 
uniform notion of classes and objects, also known as a 
clabject [3], that allows for an arbitrary number of clas-
sification levels and whose advantages are well docu-
mented in literature [3, 10, 11]. In principle, a clabject 
is a modeling entity that has a class facet as well as an 
object facet. 

 
3.1 Clabjects 

 
The example in figure 6 demonstrated that in the 

testbed domain the representation of elements at differ-
ent abstraction levels is required. In figure 7 we present 
how this example can concisely be modeled with clab-
jects. The notation used here is similar to that of the 
original clabject concept, that is, a combination of 
UML notations for classes and objects [3, 12]. Each 
model element has a compartment for the name, and a 
combined compartment for the type facet and the in-
stance facet represented by fields [3]. The dashed ar-
rows between the levels represent the “instance of” 
relationship. In this notation inherited or instantiated 
fields are only repeated when assigned a specific value. 

 



 
Figure 7. Domain model with clabjects 

 
With a uniform representation of type facets and in-

stance facets, modeling our example is straight-
forward. At the domain metatype level, clabjects En-
gine, Diesel and Otto are modeled as a conventional 
class hierarchy. Their fields, like Inertia and Preheat-
Time, are part of the corresponding clabject’s type 
facet. Specified at the domain type level, the clabject 
DType is an instance of Diesel. It provides values for 
the fields MaxSpeed and PreheatTime, which are part 
of DType’s instance facet. Although not shown in the 
figure, DType could also introduce a new field, which 
would then be part of its type facet. The domain in-
stance D1 in turn instantiates DType and provides a 
value for the Inertia field. Note that D1’s type facet is 
empty. By definition, the clabjects at the top-level only 
have a type facet, whereas the clabjects at the bottom 
level only have an instance facet.  

An important property of this model is that we only 
have one kind of instance-of relationship, rather than 
the ambiguous relationships as we had in figure 6. 
Moreover, this relationship is well-defined and has the 
same semantics at all modeling levels. 

 
3.2 Orthogonal classification 
 

Atkinson and Kühne separate two orthogonal kinds 
of instantiation, also known as the Orthogonal Classifi-
cation Architecture [10]: linguistic and ontological 
instantiation. Linguistic instantiation represents the 
type-instance relation between a modeling language 
and model elements. Ontological classification repre-
sents the type-instance relation between model ele-
ments at different levels, such as the elements of our 
last example in figure 7. 

An illustration of this concept, adapted from [10], is 
shown in figure 8. Linguistic classification is about the 
relation between the modeling formalism’s implemen-
tation, e.g. Clabject on the left hand side, and its in-
stances, e.g. Engine or DType in the middle part. The 

relation between reality and the model elements is also 
a linguistic classification. “Reality” here comprises 
real-world physical elements such as engines, but also 
conceptual entities as perceived by domain experts, 
such as the family of diesel engines. 

Ontological classification, in contrast, is about the 
relation between model elements at different levels, 
e.g. the relation between Diesel and DType, or the rela-
tion between DType and D1. It is important to note that 
our particular example requires only four ontological 
levels; the number of ontological levels required by 
another domain might be different. 

 

 
Figure 8. Classification dimensions 

 
Tool support. 

Separating the linguistic and the ontological classi-
fication dimensions has immediate effect on the im-
plementation of a modeling environment. The envi-
ronment provides the implementation of the modeling 
language, i.e. the linguistic classification of modeling 
elements. Because the ontological dimension is or-
thogonal, the modeling environment can immediately 
handle multiple ontological classification levels, as 
shown in figure 9. 

 

 
Figure 9. Multi-level tool 

 
The figure illustrates that due to the explicit defini-

tion of the ontological instance-of relation, an arbitrary 
number of ontological modeling levels can be sup-
ported by a single tool. The relationships between these 



layers are concisely captured. The linguistic meta-
model, which is not shown in the figure, is orthogonal 
to the ontological model levels. Thus, adding additional 
ontological meta-levels is straightforward, which en-
ables tools to support a wide range of application do-
mains. Although the different meta-levels have to be 
editable in principle, they are not necessarily editable at 
all times. Nevertheless, all metalevels are represented 
and accessible at all times, which for example is bene-
ficial for building model transformations. 

 

4. Multi-level MDE tool 
 
In a second version of our model-driven parameter 

generation framework, we employed the multi-level 
modeling approach as presented in the previous sec-
tion. Here we present the system’s architecture from 
the developer’s perspective. 

The basis for multi-level modeling is the separation 
of the two classification dimensions. In our domain, the 
model layers are as shown in figure 8. For the architec-
tural decisions on how to decompose the system into 
implementation modules, the multi-level hierarchy also 
plays a central role: The two classifications dimensions 
not only define how the model is organized, but also 
define the dependencies of implementation modules. 
Figure 10 shows an example. 

 

 
Figure 10. Module alignment 

 
The implementation modules comprising the MDE-

tool are arranged according to the two classification 
dimension. The Language Implementation module 
contains the C# implementation of the core language 
constructs such as Clabject, Field, or Connector. The 
modules on the left hand side depend on these language 
concepts only. The modules on the right hand side, in 
contrast, depend on the language implementation and 
also on concepts defined at different metamodeling 

levels. The software modules implementing the render-
ing of hardware and software aspects, for example, 
depend on the Meta-Metamodel since there the corre-
sponding model elements, such as Sensor or Dataflow 
Signal, are defined. These generic visualization mod-
ules, however, are independent of more domain spe-
cific concepts such as Engine or Diesel. But we also 
can identify implementation modules that rely on ex-
actly these concepts, e.g. the transformation module for 
generating automation system parameters. In fact, as 
motivated in figure 5, there are two such transformation 
modules: one that implements transformation at the 
level of the domain metatypes, and a second one for 
specific transformations of certain domain types, such 
as DType. 
 
4.1 Language module 

 
The linguistic level of a multi level modeling envi-

ronment must be capable of representing arbitrary on-
tological models at runtime. Thus an appropriate lin-
guistic metamodel has to support the ontological model 
entities, their properties, and relationships between 
them. Furthermore, multiple ontological levels have to 
be supported, so the abstractions in the linguistic level 
must provide a means of expressing instantiation and 
generalization relations. The entities of our language 
module basically are Clabject, Connector, Field, and 
Data Type, as shown in figure 11. Note that we omit 
certain implementation details. 

 

 
Figure 11. Language module entities 

 
Clabjects represent model elements which may ei-

ther be types or instances. As described in section 3.1, 
a clabject can be an instance of another clabject or it 
can be a specialization of another clabject. Clabjects 
are further described by their contained fields, which 
can represent either type or instance specific informa-
tion. Each field has a data type, which may either be a 
predefined primitive data type such as integer or text, 
or a user defined type such as a list or record. As with 
clabjects, connectors also can represent types or in-
stances, and connectors can be specializations of other 
connectors. Properties of connectors, such as multiplic-
ities, are further described by their contained fields. 

The linguistic level manages arbitrary hierarchies of 
ontological models in memory, represented by these 



basic abstractions. It does not interpret the models be-
yond enforcing constraints, such as multiplicities of 
connectors. In other words, the linguistic level is neu-
tral to the models it holds, or domain independent. 

 
4.2 Language support modules 
 

Besides providing modeling primitives, the linguis-
tic level is also concerned with managing models. A 
typical function implemented in a language support 
module is, for example, persistency of models. In our 
case this includes functions for loading and storing 
model elements and a library mechanism that allows 
modularizing the model space and enables reuse of 
compound model elements. Another typical function is 
a query mechanism for searching the model space. 

 
4.3 Model support modules 

 
Ontological model elements represent the domain 

concepts and entities. In realm of an MDE approach, 
the implementation of certain functionality depends on 
these domain abstractions, such as the transformation 
code for automation system parameters. The implemen-
tation of a model support module relies on the structure 
of the corresponding ontological model level. 

An interesting property of multi-level modeling is 
that every ontological model layer in fact defines a set 
of domain abstractions which form domain specific 
language. A generic framework thus could render the 
domain entities with different, custom defined symbols. 
The infrastructure proposed by Atkinson et al. [13] 
uses this approach. In our tool we take this idea one 
step further and allow model support modules to pro-
vide a completely custom visualization of domain enti-
ties. The Hardware-View and the Software-View mod-
ules as shown in figure 10, for example, define very 
specific visualizations for subsets of the model entities. 
Support modules for lower ontological levels may pro-
vide a further customized visualization, such as a spe-
cific symbol for a diesel engine. 

 
4.4 Separation of concern dimensions 
 

The presented alignment of implementation modules 
along the two orthogonal classification dimensions 
provides a straightforward separation of modules with 
different concerns. Modules implementing the language 
and supporting functions are at the linguistic dimen-
sion, while modules implementing model-dependent 
features are at the ontological dimension. So we get a 
clear separation between models that are domain inde-
pendent, which can be reused among domains, and 

modules that are domain specific, which can be reused 
within a domain, e.g. for software product lines [14]. 

This particular alignment also defines a certain pat-
tern of module dependencies. The linguistic implemen-
tation modules are independent of the ontological im-
plementation modules. The converse, however, does 
not hold since the ontological implementation modules 
might need to access the functions of the linguistic im-
plementation modules. The software view module, for 
example, uses the query module to traverse model ele-
ments. As a consequence, an ontological implementa-
tion module can make use of on any linguistic imple-
mentation module and also any ontological implemen-
tation module at a higher level. A linguistic implemen-
tation module in contrast can make use of other linguis-
tic implementation modules only. 

This separation of concerns, which now clearly 
separates domain specific concerns from general con-
cerns, can also be used as a measure of where to im-
plement new functions. Assume, for example, that we 
want to extend the multi-level MDE tool with 
undo/redo functionality. Since undo/redo clearly is 
independent of our target domain, it has to be imple-
mented along the linguistic classification domain, i.e. in 
figure 10 it has to be placed next to the Persistency and 
Query modules. 

 

5. Architectural impacts 
 
A multilevel modeling architecture has both techni-

cal as well as organizational impacts. Each ontological 
model level represents a different level of abstraction. 
These model levels define a clear-cut partitioning of 
the implementation modules. However, they also serve 
as a means for communication among the developers 
and users responsible for different levels, so each user 
group can talk in terms of their own abstraction.  

 
5.1 Immediate architectural benefits 

 
After the implementation of the multi-modeling ker-

nel, we ported certain business functionality from the 
first version. By examining the module alignment we 
could verify whether the functions were implemented at 
the correct abstraction level. The old undo/redo 
mechanism, for example, was spread over different 
ontological model levels. Thus in the new version we 
factored out the mechanism and implemented it as a 
language support module. In a later architectural re-
view this turned out to have positive effects due to en-
hanced encapsulation. 

To utilize the power of the compiler’s static type 
checking facility, we provide a way of creating type 



information from ontological model elements in order 
to allow checking the corresponding modules. After 
aligning the logical software architecture along the 
classification dimensions, we discovered that this 
mechanism was implemented specifically for the higher 
model levels, but that it actually is independent of the 
ontological classification. Implementing the generator 
for type-information as a language-support module, 
which is planned in near future, will allow all model 
support modules to benefit from static compiler checks. 

Checking the implementation against the depend-
ency rules described in section 4.4 also revealed a sub-
tle flaw in the module dependency graph: one of the 
language-support modules depended on the top onto-
logical model level. This demonstrated that the explicit 
definition of a dependency pattern is indeed a benefi-
cial tool to ensure that the implementation does not 
violate the defined architecture. 

 
5.2 Splitting model layers 

 
The ontological metamodeling approach allowed us 

factoring out common behavior that follows a certain 
pattern. Figure 12 shows clabject diagrams for two 
sample cases: a) expresses that a Component can con-
tain other Components as well as Sensors; b) expresses 
that a Component can have a Hardware Drawing, on 
which Widgets are rendered, which in turn represent 
components.1  

 

 
Figure 12. Meta-metamodel fragments. 

 
The examples stand for two general patterns shown 

in figure 13: the fact a) that a model element can con-
tain other model elements is rather trivial. The visuali-
zation pattern b) is motivated by the fact that hardware 
as well as software aspects are eventually represented 
as boxes with ports, connected by lines on multiple 
drawings.  

Component and Sensor are instances of the generic 
Element, and the “contains” connector between Com-
ponent and Sensor is an instance of the generic “con-
tains” connector defined for Element. Analogously 
Hardware Drawing, Component Widget and the 

                                                           
1 We use clabjects not only for the model elements, but 
also for describing the visualization of models. The real 
visualization pattern however is more elaborate. 

“shows” connector between them are instances of the 
generic visualization concepts. 

 

 
Figure 13. Meta-metamodel patterns. 

 
Introducing generic components for expressing such 

patterns is not an end in itself; instead it allows us to 
implement certain aspects of the meta-metamodel sup-
port module in a more generic way. Pattern a) is used 
to visualize the containment hierarchy of all possible 
models in a tree view. Pattern b) is used for example 
for managing multiple drawings associated with a com-
ponent. These functionalities can be implemented 
without knowledge about Component, Sensor, Hard-
ware Drawing or Component Widget. It is thus an addi-
tional ontological level, as shown in figure 14. 

 

 
Figure 14. Split meta-metamodel. 

 
Analogously to splitting the meta-metamodel level, 

other model levels could be split. Ontological levels 
above and below, their support modules, and the lan-
guage and its support modules need not be touched. 

 
5.3 Product families 

 
Ontological levels help creating families of similar 

products from a shared model and implementation code 
base. Suppose we have to create multiple modeling 
environments to support different testbed automation 
systems, provided by different vendors. Chances are 



that these environments share not only the meta-
metamodel, but also the domain metamodel for engine 
testbeds. The different environments however are likely 
to require different type models, containing for exam-
ple different I/O devices.  

The same principle holds if we need to create yet 
another modeling environment targeted, for example, at 
factory automation systems. Chances are that both test-
bed automation systems and factory automation sys-
tems have enough in common and thus can share the 
same meta-metamodel and its associated implementa-
tion code. They will however not share the same do-
main metamodel. Figure 15 shows an example.  

The example highlights the product family member 
“Testbed Automation System 1”, which uses a set of 
common elements, shared among different testbed 
automation systems. These similarities among model-
ing environments thus define product families or prod-
uct lines. In other words: a range of different modeling 
environments can be produced simply by combining 
models and their implementation modules. 

 

 
Figure 15. Product family. 

 

6. Status of implementation 
 
Our MDE tool currently exists in its second version, 

which in contrast to the first version features multi-
level modeling. Among the features as presented in 
section 4, the following are implemented: the modeling 
language kernel, supplemental modules such as persis-
tency, the ontological layering and the top domain 
model levels, and the model support modules for visu-
alization of the domain specific language. A generic 
visualization based on the linguistic level, i.e. a generic 
clabject view, is not yet implemented.    

We are in the fortunate position that an industry 
partner provides resources for an empirical study. Do-
main experts currently use the system to model differ-
ent kinds of real testbeds. These experiments provide 

strong evidence that modeling testbeds in the way we 
presented in section 3 allows for a concise description. 
Another separate group is in parallel working on the 
corresponding transformation engine. 

 

7. Related work 
 
The idea of unifying classes and objects has a long 

tradition in the context of object-oriented programming 
languages, namely in prototype-based languages such 
as SELF [1]. A SELF-object consists of named slots that 
can carry values, which in turn are references to other 
objects. SELF uses only one relationship, the “inherits 
from”-relationship [1, table 1] that unifies instantiation 
and specialization. Our first implementation was in-
spired by that concepts, but the lack of a type hierarchy 
turned out inadequate for our domain, and this led to 
the application of multi-level modeling. 

Various metamodeling environments are available 
today, such as the Generic Modeling Environment [6], 
the Eclipse Modeling Framework [15], or the commer-
cial solution MetaEdit+ [5]. Although built for differ-
ent purposes, their meta-metamodels are comparable. 
Nevertheless, none of the three mentioned environ-
ments directly supports multi-level modeling. Gutheil 
et al. point out that these tools can operate within an 
implicit multi-level framework by building a tool chain 
[11]. As already outlined in section 2, this does not 
allow for accessing meta-information except for the 
immediate metamodel, and thus does not support a 
uniform treatment of the ontological model levels.  

Atkinson et al. [13] propose a prototypical frame-
work for language engineering also based on the Onto-
logical Classification Architecture [10]. The authors 
present the basic difficulties of implementing a multi-
level modeling environment and describe the benefits 
in terms of two small case studies. They also describe a 
generic visualization algorithm that is capable of repre-
senting domain entities in the form of custom symbols. 
Furthermore, they argue for the need of a constraint 
language that is aware of the different ontological lev-
els. Overall, their work builds a foundation for experi-
menting with the various aspects of building a multi-
level modeling tool. 

Our work, in contrast, aims to bridge the gap be-
tween theoretical work and industrial applications. As 
such, it on one had is tied more closely to the applica-
tion of MDE for automation systems. On the other 
hand, however, this demonstrates that the rather theo-
retical discussion of the benefits of multi-level model-
ing can have real impacts in large applications. More-
over, since we not only studied the modeling environ-
ment, but the whole MDE architecture, we were able to 



identify the architectural impacts of the system as a 
whole and demonstrate the resulting benefits. 

Analyzing dependencies in large software system as 
a measure to manage the architecture is often used. 
Murphy et al. [16], for example, propose a method to 
reverse-engineer the so-called “reflexion model”, 
which is then compared to a so-called “high-level 
model”. Our proposed MDE architecture includes a 
coarse-grained pattern for the dependencies of mod-
ules, i.e. it includes such a high-level model. Depend-
ency extraction and management approaches can be 
used to check the actual implementation’s conformance 
to the dependency pattern, and further to manage the 
fine-grained dependencies not covered by the pattern.  

The MDE-system as presented here is of course 
only one view on the architecture. In terms of Kruch-
ten’s “4+1 View Model” [17], this roughly corresponds 
to the development view. 

 

8. Conclusion 
 

Multi-level modeling is a powerful approach for 
concisely describing complex domains where conven-
tional metamodeling is inadequate. Although the ap-
proach’s advantages are well known, it is not yet 
widely used in industry. In this paper we presented the 
application of multi-level modeling in the domain of 
testbed automation systems. We showed why conven-
tional modeling is insufficient for our MDE require-
ments and how multi-level modeling can solve the fun-
damental issues. The lessons learned led to interesting 
conclusions regarding the overall system architecture. 
We showed how the principal idea of separating lin-
guistic and ontological classification not only builds the 
foundation of multi-level modeling, but furthermore 
provides a reasonable framework for aligning the logi-
cal architecture of the whole MDE-system. 

Our particular implementation undoubtedly is highly 
influenced by the peculiarities of the target domain. 
The conclusions drawn, however, can be generalized 
since they are only based on the assumptions of the 
multi-level modeling principles, e.g. the separation of 
the two classification dimensions. Thus we are confi-
dent that our work clearly demonstrates that applying 
these principles, which have been around for quite 
some time, in industrial practice is appropriate for rep-
resenting the domain and also beneficial for the overall 
system architecture. As such this work can pave the 
way for applying multi-level modeling to a broader 
range of applications.  
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