
TDL Specification and Report

Josef Templ

Department of Computer Science
University of Salzburg
Austria

Technical Report T004
(revises T001)

November 2004
http://cs.uni-salzburg.at/pubs/reports/T004.pdf

Abstract

This report defines the syntax and semantics of the timing definition languageTDL, which has been developed
as part of project MoDECS at the Paris Lodron University of Salzburg (Austria).TDL allows us to specify the
timing behavior of a hard real time control application in a descriptive way and separates the timing aspect of such
applications from the functionality, which must be provided separately using an imperative programming language
such as Java, C or C++.TDL is conceptually based onGiotto, but provides extended features, a more convenient
syntax, and an improved set of programming tools.

1

Contents

1 Introduction 3
1.1 Relation to Giotto . 3
1.2 Acknowledgements . 3

2 Lexical Structure 3
2.1 White Space and Line Separators . 3
2.2 Comments . 3
2.3 Identifiers . 3
2.4 Keywords and Operators . 4
2.5 Literals . 4

3 Syntactical Structure 4
3.1 Module . 4
3.2 Import Declaration . 5
3.3 Constant Declaration . 5
3.4 Type Declaration . 6
3.5 Sensor Declaration . 6
3.6 Actuator Declaration . 6
3.7 Task Declaration . 6
3.8 Mode Declaration . 7

3.8.1 Task Invocation . 7
3.8.2 Actuator Update . 8
3.8.3 Mode Switch . 8

4 Distribution 8

5 Language Bindings 9
5.1 Java . 9

5.1.1 Naming Conventions . 9
5.1.2 Type Mapping . 9

5.2 ANSI-C . 9
5.2.1 Functionality Code . 9
5.2.2 Naming Conventions . 10
5.2.3 Type Mapping . 10
5.2.4 Parameter Passing . 10

6 Differences to Giotto 10

7 References 11

A TDL Grammar 12
A.1 Complete EBNF Grammar . 12
A.2 ExampleTDL Modules . 14

B Format of .ecode Files 15
B.1 Grammar of .ecode Files . 15
B.2 Examples for Decoded .ecode Files . 17

C Functionality Code 20
C.1 Examples for Java-based Functionality Code . 20
C.2 Examples for Generated Glue Code . 21

2

1 Introduction

This document defines the syntax and semantics of the timing definition languageTDL, which was developed as
part of project MoDECS at the Paris Lodron University of Salzburg (Austria). This report is not an introduction
into the emerging field of time triggered control systems and model based development.

We deliberately avoid the term programming language forTDL, but use the more general notion ofsoftware
description language, which was suggested by Prof. N. Wirth at the EmSys Summer School 2003 in Salzburg.
TDL allows us todescribethe timing properties of a hard real time control application and thereby separates the
timing aspect of such applications from the functionality.TDL programs are purely declarative, all imperative parts
of a control application must be provided separately using an imperative programming language such as Java, C or
C++. This separation leads to platform independentTDL timing models, which may be implemented on an open
set of target platforms.

The following sections describe the lexical structure, the syntactical structure and the semantics ofTDL step
by step. A complete definition of all lexical and syntactical rules as well as a complete example is presented in the
Appendix.

1.1 Relation to Giotto

TDL is conceptually based on the time triggered modelling languageGiotto[1], but provides a more convenient
syntax and an improved set of programming tools. TheTDL compiler and the runtime system needed for the
execution ofTDL programs (E-machine [2]) resulted from a clean room implementation without access to the
Giotto compiler or E-machine sources. We tried to preserve the spirit of Giotto as far as possible and made only
changes and extensions which we believe are absolutely necessary for applying this technology in an industrial
environment as opposed to the research lab usage of Giotto. Please see Section 6 for a list of differences.

1.2 Acknowledgements

I would like to thank Christoph M. Kirsch, the author of the original Giotto compiler, for many hints regarding
subtle points of the Giotto specification and his willingness to discuss possible modifications of Giotto finally
leading toTDL. I also want to thank Wolfgang Pree and the members of the MoDECS team for their contributions.
Finally I want to thank Hanspeter M̈ossenb̈ock for providing the excellent compiler generator Coco/J free of charge
and for the changes he made in response to my needs.

2 Lexical Structure

A TDL module is represented as an ASCII text. Sequences of characters form words, also called tokens, and the
sequence of tokens forms the text. White space between tokens as well as comments are ignored. Tokens may be
keywords, operators, identifiers or literals. Keywords are reserved and must not be used as identifiers.

2.1 White Space and Line Separators

Blank, line feed (LF), carriage return (CR) and tabulator (TAB) characters are ignored and commonly referred to
aswhite space. They serve to separate tokens but have no further meaning except that line feed and carriage return
characters are used to count line numbers in order to emit precise error messages.TDL supports three common
forms of line separators: CR, LF and CR+LF.

2.2 Comments

TDL allows comments as in the programming language Java, i.e. line comments start with// and end with the
end of line, and block comments are enclosed within/* and*/ . Block comments may not be nested, however,
block comments may contain line comments.

2.3 Identifiers

An identifier starts with an ASCII-letter (A-Z, a-z,) followed by an arbitrary sequence of such letters and digits
(0-9). Identifiers must not contain white space and must be different from keywords.

3

2.4 Keywords and Operators

The following set of keywords is defined inTDL. Keywords must not be used as identifiers.

actuator as const false if import init input mode module output
public sensor start state task then true type uses

The following set of operators and special symbols is used inTDL:

{ } [] () ; = . := ,

2.5 Literals

TDL supports numeric and string literals. A numeric literal is a sequence of digits, a string is a sequence of arbitrary
characters enclosed in single or double quotes. The enclosing character must not occur inside the string. Character
literals are strings of length one.

Examples: 0, 123, ’abc’, "xyz", "a man’s world"

3 Syntactical Structure

The syntax ofTDL is defined usingExtended Backus-Naur Form(EBNF) rules. Keywords, operators and special
symbols are enclosed in double quotes. The following EBNF meta symbols are used to define the grammar.

::= separates the non terminal symbol (left hand side) of a production from the right hand side.
. terminates a production.
| separates alternatives.

[] encloses optional parts (zero or one).
{ } encloses iterated parts (zero or more).
() overrides binding rules.

The overall goal of the chosen syntax is thatTDL programs should be easily readable by humans. Since many of
the readers are expected to be used to work with Java or C programs, some aspects are similar to those languages.
In addition some constructs have been borrowed from Pascal style languages and, of course, from Giotto. The
TDL grammar is designed to be parsed by a top down recursive descent parser, as produced, for example, by the
compiler generator Coco/R. Thus, it fulfills the LL(1) rule for context free grammars. For the sake of explaining
the syntax, however, we do not always use the LL(1) version of the grammar, which is presented in the appendix.

In the following subsections, we proceed in a top-down fashion and start with the definition of a compilation
unit, which is called amodulein TDL.

3.1 Module

A module has a name (after keyword ”module”) and provides a namespace for the definition of constants, types,
sensors, actuators, tasks and modes.

The name of a module may be composed of a sequence of identifiers separated by dots, called a qualified
identifier. In general a qualified identifier consists of a qualifier and an identifier. The qualifier my be empty,
though.

In order to create globally unique module names, we recommend to use the vendor’s internet domain name in
reverse order (most significant part first, e.g.com.mycompany) followed by a project name as the qualifier and
then a module identifier as the right most part of the module name.

tdlModule ::=
"module" qualIdent "{"

{"import" {importDecl ";"}}
{attr "const" {constDecl ";"}}
{attr "type" {typeDecl ";"}}
{attr "sensor" {sensorDecl ";"}}
{attr "actuator" {actuatorDecl ";"}}

4

{attr "task" taskDecl}
{modeDecl}

"}" EOF.
qualIdent ::= [qualifier] identifier.
qualifier ::= {identifier "."}.
attr ::= ["public"].

The namespace introduced by a module is enclosed within braces. Names declared within this namespace are
visible from the point of declaration up to the end of the module. There may only be a single module per input
text, which means that EOF (end of file) must follow the module.

Declarations may be preceded by the specification of a visibility attribute. All names which are declared
public are visible to client modules outside the declaring module. Names which are not declaredpublic are
private.

A namen declaredpublic in a modulem can be referred to in client modules by using the notationm.n. A
public task (cf Sec. 3.7) implicitly exports all of its output ports. An ouput porto of taskt of service modulem
can be accessed in client modules using the notationm.t.o. It is not possible to invoke the task in client modules,
but only to access its output ports. An exported actuator can actually not be used in client modules.

Please refer to the appendix for an example of a complete module.

3.2 Import Declaration

A module may depend on other modules. This dependency is expressed by specifying an import declaration. With
respect to the import relationship between modules, the imported module is called aservice module, whereas the
importing module is called aclient module. A module must not import itself. Thus, the import relationship between
modules forms a directed acyclic graph (DAG).

importDecl ::= simpleImport | groupImport.
simpleImport ::= qualIdent [moduleAlias].
groupImport ::= qualIdent "{" importModule {"," importModule} "}".
importModule ::= identifier [moduleAlias].
moduleAlias ::= "as" identifier.

A simple import declaration specifies the qualified name of the imported module optionally followed by an
alias name. The alias name, if specified, is used inside a client module to refer to a service module. If no alias is
specified, the module identifier as opposed to the fully qualified module name is used. This allows and actually
forces the usage of unqualified module names within a client module to refer to imported modules, which simplifies
the program text.

If a group of modules with equal qualifiers is to be imported, a short hand notation may be used as an alternative
to a sequence of simple imports. The group import specifies the qualifier followed by a set of module identifiers
enclosed in braces. For every module an alias may be specified optionally.

Examples of valid import declarations (including the keywordimport) are

import M1; M2;
import com.xxx.yyy.M2 as M2xy;
import com.xxx.yyy{M1 as M1xy, M3, M4};

3.3 Constant Declaration

A constant declaration associates a name with a constant value. The constant value may be denoted as a literal or
as the name of another constant. Currently there are no operators allowed within constant expressions. This may
be added in a later version. Constants may be used, for example, for initialization of state and output variables or
for timing attributes.

constDecl ::= identifier "=" constExpr.
constExpr ::= ["-"] number [identifier]

| constExprBoolean | string | constDesignator.
constExprBoolean ::= "true" | "false".
constDesignator ::= qualIdent.

5

The optional identifier following a number may assume the valuesmsor us and denotes a time value expressed
in milliseconds or microseconds resp., where the latter is the default. Millisecond values will be converted to
microseconds, i.e. they are multiplied by 1000.

3.4 Type Declaration

A type declaration introduces a new type or provides an alias for an existing type. A new type consists only of the
type’s name and is opaque forTDL. In order to execute a control application, the type must be provided in a form
accepted by the E-machine being used. For a Java-based E-machine, for example, a class with the name of the type
must be provided. This is, however, outside the scope of theTDL language definition (see Sec. 5).

TDL provides a set of basic types, which matches those found in the programming language Java. The basic
types are predeclared in a universal scope outside the module and namedbyte , short , int , long , float ,
double , char , boolean , andstring .

typeDecl ::= identifier ["=" typeDesignator].
typeDesignator ::= qualIdent.

3.5 Sensor Declaration

A sensor declaration defines a read-only variable which represents a particular value of the physical environment
of a TDL program. During execution, sensor values may change with the progression of time as implied by the
physical environment.

Sensors are typed variables which may be connected with the environment by using a so-calledgetterfunction.
The getter is a parameterless external function which returns a value compatible with the sensor’s type. It must be
implemented according to the language binding rules and environment the program is executed in.

sensorDecl ::= typeDesignator identifier ["uses" extIdent].
extIdent ::= qualIdent.

3.6 Actuator Declaration

An actuator declaration defines a write-only variable which controls the setting of a particular value of the physical
environment of aTDL program. During execution, actuator values may change with the progression of time as
defined by theTDL program (see 3.8.2). Actuators may only be set within the module they are declared in.

Actuators must be initialized either with a constant value or with an external function, called aninitializer.
Initializers are, like getters, parameterless functions, which must return a value compatible with the actuator’s
type. It must be implemented according to the language binding rules and environment the program is executed in.

Actuators are typed variables which may be connected with the environment using a so-calledsetter func-
tion. The setter is an external function with a single parameter compatible with the actuator’s type. It must be
implemented according to the language binding rules and environment the program is executed in.

actuatorDecl ::= typeDesignator identifier [initExpr] ["uses" extIdent].
initExpr ::= ":=" constExpr | "init" extIdent.

3.7 Task Declaration

A task declaration defines a task, which encapsulates a computation to be carried out by a control application.
Tasks provide a namespace for the declaration of input, output and state ports. In addition, a task has an associ-
ated external procedure (including arguments), which performs the computation. The arguments of the external
procedure call are taken exclusively from the task’s ports and must be treated by the external procedure as value or
reference parameters accordingly.

A task has a worst case execution time (wcet), which specifies the maximum time the computation needs.
Optionally, this attribute may be explicitly namedwcet . The amount of time is specified by a constant expression.

taskDecl ::= identifier wcet "{"
{"input" {inPortDecl}}
{"output" {portDecl}}
{"state" {portDecl}}

6

"uses" call ";"
"}".

wcet ::= "[" [attrName "="] constExpr "]".
attrName ::= identifier.
inPortDecl ::= typeDesignator identifier ";".
portDecl ::= typeDesignator identifier [initExpr] ";".
call ::= extIdent "("[portDesignator {"," portDesignator }] ")".
portDesignator ::= qualident.

Tasks may be connected via their input and output ports to other program entities. State ports, however, are
always private to the task and serve only to save state between repeated invocations. The details of connecting
tasks will be defined in mode declarations further below.

Output and state ports must be initialized either with a constant value or with an external function, called an
initializer.

3.8 Mode Declaration

A mode declaration defines a mode, which is a particular state of operation of a control application. In general,
control applications may consist of multiple modes1, one of them will be thestart mode. Starting aTDL program
means to switch the E-machine into the distinguished start mode.

A TDL mode consists of a set of activities executed periodically. The period of a mode is defined by a constant
expression which may be preceded by the explicit attribute nameperiod . Activities carried out in a mode include
task invocations, actuator updates and mode switches.

modeDecl ::= ["start"] "mode" identifier period "{"
{"task" {taskInvocation}}
{"actuator" {actuatorUpdate}}
{"mode" {modeSwitch}}
"}".

period ::= "[" [attrName "="] constExpr "]".

Every activity is performed with a particular frequency per period. The mode period must be divisible by this
frequency without remainder. The frequency is specified as an attribute of each activity and may be explicitly
namedfreq .

Every activity may be guarded by an external function, called aguard. A guard takes sensors or task output
ports as arguments and returns a boolean result. The activity will only be carried out if the guard evaluates totrue.

3.8.1 Task Invocation

A task invocationmeans that the task’s input ports are updated according to the assignment list and the task’s com-
putation is scheduled for execution. The assignment list may be specified either by a set of assignment statements
or by providing an argument list, where each port is assigned to an input port in declaration order. The source ports
must either be sensors or task output ports.

taskInvocation ::= frequency guard taskDesignator assignList.
frequency ::= "[" [attrName "="] constExpr "]".
guard ::= ["if" call "then"].
taskDesignator ::= qualIdent.
assignList ::= "{" {identifier ":=" portDesignator ";"} "}"

| ["(" [portDesignator {"," portDesignator}] ")"] ";".

Execution of the computation may be done in parallel with other activities and constitutes an asynchronous
operation. The output values, however, will only be available after the fixed logical execution time (FLET) of the
task has elapsed. The FLET for a task invocation with frequencyf in a mode with periodp is defined asp/f . In

1A Helicopter control system, for example, may consist of a hover mode and a cruise mode. In hover mode the system tries to maintain a
fixed position, in cruise mode it will try to reach a previously defined position. The control tasks will be different for both modes, although
there may also be common functionality.

7

case of using the output ports of a task by other activities before the task’s FLET has elapsed, the previous values
of the output ports are used. The intermediate values of output ports are never visible to other program entities.

Note that the sum of the worst case execution times (wcet) of all task invocations must not exceed the mode
period.

3.8.2 Actuator Update

An actuator updatemeans that the value of an actuator is set according to the specified assignment. In addition,
the setter of the actuator will be called. An actuator update is a synchronous operation taking place in logical
zero time. Theupdate periodof an actuator update with frequencyf in a mode with periodp is defined asp/f .
Actuator updates start after the update period has elapsed, i.e. they are neither carried out at time zero nor in the
target mode at the time of a mode switch, but with a delay of one update period.

actuatorUpdate ::= frequency guard identifier ":=" portDesignator ";".

3.8.3 Mode Switch

A mode switchmeans that the control application switches its current mode of operation to the specified target
mode and performs the specified port assignments. The assignments must be to output ports of tasks invoked in
the target mode and must be thought of as initializations carried out as a first step in the affected target task’s
functionality code. The target mode must be different from the source mode.

modeSwitch ::= frequency guard modeDesignator assignList.
modeDesignator ::= qualident.

A mode switch is a synchronous operation taking place in logical zero time. Theswitch periodfor a mode
switch with frequencyf in a mode with periodp is defined asp/f . A mode switch must not occur during the
FLET of an invoked task, thus, mode switches are said to beharmonic. If multiple mode switches are possible at
a particular time, they are evaluated in textual order and the first applicable one is taken.

Mode switches in the target mode are never evaluated at the time of the mode switch but with a delay of one
switch period. This prevents mode switch cycles without any time passing. The same holds for actuator updates
in the target mode, which are not carried out at the time of the mode switch but after the first update periode has
elapsed.

4 Distribution

The FLET-based programming model of TDL provides for transparent distribution of modules across a network
of processing nodes. A configuration file is used for describing the topology of the network and the assignments
of modules to nodes. The configuration file is based on the conventions for Java property files and consists of a
sequence of (key, value) pairs written askey = value , where white space surrounding the ’=’ character is not
significant. Lines starting with ’#’ denote comment lines. The order of lines is not significant. The property file
format for the configuration file is exemplified below. Indexed properties are used to express lists. The property
name without an index specifies the number of list elements and the properties indexed from0 to length − 1
specify the elements.

tdl.bus.nodes = <number of nodes>
tdl.bus.nodes.0 = <name>:<data>
tdl.bus.nodes.1 = <name>:<data>
...
#
tdl.bus.modules = <number of modules>
tdl.bus.modules.0 = <name>:<nodeID>
tdl.bus.modules.1 = <name>:<nodeID>
...

8

5 Language Bindings

Functionality required by aTDL program is provided as static (global) functions in a particular programming
language. In principle, there is an open set of languages which may be used by an E-machine. The following
subsections define the recommended conventiones for commonly used programming languages.

5.1 Java

For every external function (sensor getter, actuator setter, port initializer, task implementation, guard) there must
be a correspondingpublic static Java function with appropriate parameters and return types. The external
function may be qualified in theTDL program by a dot-separated list of identifiers in front of the function’s name
or it my be unqualified. The following naming conventions apply.

5.1.1 Naming Conventions

The Java name for an unqualified functionf in modulemis m.f . Thus, it must be defined in a class named after
the module and contained in a package as indicated inm. The package name ofmis the qualifier, if there is one,
otherwise the anonymous Java package is used. The class name is the identifier ofm.

Qualified external functions must be provided in a class and package as specified by the qualification.

5.1.2 Type Mapping

The basicTDL types are mapped 1:1 to primitive Java types. For opaqueTDL types, a public class named after
the type must be provided in the package indicated by the module name. In addition this class must have a public
no-arg constructor and it must implement interfaceemcore.tools.emachine.types.Opaque in order to
provide the ability to copy itself.

For output and state ports of a primitive type, an auxiliaryreferenceclass has to be used2. These classes are
contained in packageemcore.tools.emachine.types for all primitive types. The naming convention is
that for a primitive typeT there exists a corresponding reference class namedref T.

For output and state ports of an opaque type, there is no need to provide auxiliary reference classes since objects
are passed by reference in Java anyway. Opaque types are treated likestruct in C orRECORDin Pascal and are
copied by the E-machine when assigned to a port.

5.2 ANSI-C

External functionality code written in ANSI-C is provided in two files, a header and a body file. According to
common C programming conventions the header file contains the exported function prototypes and type definitions.
The body file includes the header file and defines the functions as declared in the header file. For a modulemthe
header file is namedm.h and the body file is namedm.c where every ’. ’ in mis replaced by ’’. The replacement
of dots by underscores also applies wherevermis used in the C code as part of a qualified name which containsm
as a prefix.

A template of the header file can be generated by theTDL compiler plugin for ANSI-C. This template can be
renamed tom.h and missing parts such as type definitions or comments can be filled in manually.

The basic types defined inTDL are available by includingtdl types.h .

5.2.1 Functionality Code

For every external function (sensor getter, actuator setter, port initializer, task implementation, guard) there must
be a correspondingextern ANSI-C function with appropriate parameters and return types. The external function
may be qualified in theTDL program by a dot-separated list of identifiers in front of the function’s name or it may
be unqualified. The following naming conventions apply.

2Note that Java does not provide reference parameters. Therefore we have to emulate them by using auxiliary classes.

9

5.2.2 Naming Conventions

The C name for an unqualified functionf in a modulemis mf . Thus, name spaces inTDL are mapped to fully
expanded C names where name parts are concatenated by using the ’’ character. This provides unique C function
names without the need of a name space construct.

The C name for a qualified functionf is derived fromf by replacing all occurrences of ’. ’ by ’ ’.

5.2.3 Type Mapping

The basicTDL types are mapped to primitive C types according to the following table. For opaqueTDL types, a C
type must be defined by using atypedef statement (or by defining a macro). The name of the type follows the
naming conventions described above for functions.

It should be noted that the E-machine may copy variables. Thus, there must not be any reference to parameters.
In C, arrays are always passed by reference, therefore array types must be enclosed by a structure in order to
achieve the desired call-by-value semantics for input parameters.

TDL type C name default C type
byte tdl byte unsigned char
boolean tdl boolean unsigned char
char tdl char unsigned char
short tdl short short int
int tdl int long int
long tdl long long long
float tdl float float
double tdl double double
string tdl string unsigned char[24]

5.2.4 Parameter Passing

Sensor getters and port initializers are parameterless functions that return their value as function result. Actuator
setters are void functions that have exactly one input parameter. Guards are boolean functions with all parameters
passed by value. The number and order of parameters of task implementation functions is exactly the same as in
theTDL source code. Input ports are passed by value whereas state and output ports are passed by reference.

6 Differences to Giotto

The most visible syntactical differences betweenTDL and Giotto are:

• the introduction of a top level language construct (module) and the reorganization of mode declarations,
where ’start’ is a modifier of a mode declaration inTDL.

• the elimination of global output ports, which are replaced by task output ports inTDL,

• the elimination of explicit task and mode drivers, which are merged into mode declarations inTDL,

• the addition of constants, which may also be used to initialize ports inTDL,

• the introduction of units for timing values inTDL.

The following list explains differences to the Giotto semantics.

program start a TDL program is started by switching to the start mode. This means that at time zero, there are
neither actuator updates nor mode switches. In Giotto, the actuator updates and mode switches of the start
mode take place at time zero. There are, however, no further actuator updates or mode switches of the target
mode at time zero.

10

non-harmonic mode switch Giotto allows a mode switch even if there are running tasks as long as those tasks
exist with the same task period in the target mode. However, there may be delays involved when switching to
the target mode. Furthermore, the task will deliver output values to the target mode, which do not correspond
to inputs specified there.TDLdoes not allow non-harmonic mode switches. We are thinking about alternative
ways of performing even faster mode switches without the need to continue running tasks in the target mode,
with simpler semantics and, last but not least, without any delays.

deterministic mode switch Giotto requests that among all mode switch guards of a mode only one may return
true at a particular point of time. In contrast,TDL evaluates mode switch guards in textual order from top to
bottom and performs the first mode switch whose guard returns true. This definition allows a more efficient
implementation without compromising determinism.

actuator update A guarded actuator update in Giotto means that the actuator setter is called independently of the
guard’s result. InTDL, actuator updateandactuator setter are both guarded and performed only if the guard
returns true.

mode port assignmentsAssignments of task output ports upon a mode switch is done as an initialization in the
affected target task inTDL. In Giotto it is performed before the target task is invoked, thus, it is visible to
clients earlier and thereby implies problems for distributed execution.

The following list describes tool related differences betweenTDL and Giotto.

E-code file format TDL defines a binary, platform independent E-code file format and uses statically typed APIs
for connecting programs with external functionality code.

E-code instructions The structure and semantics of Giotto E-code instructions has not been changed inTDL but
one addition has been made.

A SWITCH instruction has been added to E-code. It is used to perform mode switches. In Giotto, mode
switches are performed by the JUMP instruction by jumping to code of a different mode. The SWITCH
instruction makes this special usage of JUMP explicit and thereby simplifies the detection of mode switches
by the E-machine.

Time Resolution TDLuses microseconds internally for all timing values, whereas Giotto is based on milliseconds.
This means, thatTDL programs may use mode periods below 1 millisecond, given that the underlying E-
machine supports fast enough scheduling.

Java based E-machineis designed as a JavaBean, which means that it is possible to register any number of
listeners. This may be used to visualize the execution ofTDL programs, for example, without including
visualization in the basic E-machine directly.

7 References

References

[1] Henzinger, T., Horowitz, B., Kirsch, Ch.:Giotto: A Time-Triggered Language for Embedded Programming.
Proceedings of the IEEE, Vol. 91, No. 1, January 2003.

[2] Henzinger, T., Kirsch, Ch.:The Embedded Machine: predictable, portable real-time code.Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pp 315–326,
2002.

[3] Mössenb̈ock, H.: Coco/R for Java.http://www.ssw.uni-linz.ac.at/Research/Projects/Coco

11

A TDL Grammar

A.1 Complete EBNF Grammar

The lexical and syntactical structure ofTDL is defined using the compiler generatorCoco/R for Java[3]. The
complete grammar without attributes and semantic actions is shown in the following. CHARACTERS defines the
character sets for the lexical tokens, IGNORE defines the characters being ignored in addition to blank characters,
TOKENS defines the lexical token classes, COMMENTS defines the structure of comments and PRODUCTIONS
defines the syntax ofTDL.

COMPILER tdlc;

CHARACTERS
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_".
digit = "0123456789".
tab = "\t".
lf = "\n".
cr = "\r".
noQuote1 = ANY - "’" - cr - lf.
noQuote2 = ANY - ’"’ - cr - lf.

IGNORE cr + lf + tab

TOKENS
identifier = letter {letter | digit}.
string = "’" {noQuote1} "’" | ’"’ {noQuote2} ’"’.
number = digit {digit}.

COMMENTS FROM "/*" TO "*/"
COMMENTS FROM "//" TO cr
COMMENTS FROM "//" TO lf

PRODUCTIONS

tdlc = tdlModule EOF.

tdlModule =
"module" qualIdent<ˆSem.modName> "{"

{"import" {importDecl ";"}} attr /* avoid LL(1) conflict with attr */
{"const" {constDecl ";"} attr}
{"type" {typeDecl ";"} attr}
{"sensor" {sensorDecl ";"} attr}
{"actuator" {actuatorDecl ";"} attr}
{"task" taskDecl attr}
{modeDecl}

"}".

qualIdent = identifier {"." identifier}.

importDecl = qualIdent
["as" identifier
| "{" importModule {"," importModule} "}"
].

importModule = identifier ["as" identifier].

constDecl = identifier "=" constExpr.

12

constExpr = ["-"] number [unit]
| constExprBoolean | string | constDesignator.

constExprBoolean = "true" | "false".

typeDecl = identifier ["=" typeDesignator].

sensorDecl = typeDesignator identifier
["uses" extIdent] [portAnnotation].

extIdent = qualIdent.

actuatorDecl = typeDesignator identifier [initExpr]
["uses" extIdent] [portAnnotation].

initExpr = ":=" constExpr | "init" extIdent.

taskDecl = identifier "[" [attrName "="] constExpr "]" "{"
{"input" {inPortDecl}}
{"output" {portDecl}}
{"state" {portDecl}}
"uses" call ";"
[taskTimingAnnotation]
"}".

inPortDecl = typeDesignator identifier ";".

portDecl = typeDesignator identifier [initExpr] ";".

call = extIdent "(" [portDesignator {"," portDesignator }] ")".

modeDecl = ["start"] "mode" identifier "[" [attrName "="] constExpr "]" "{"
{"task" {taskInvocation}}
{"actuator" {actuatorUpdate}}
{"mode" {modeSwitch}}
"}".

taskInvocation = frequency guard taskDesignator assignList.

frequency = "[" [attrName "="] constExpr "]".

guard = ["if" call "then"].

assignList = "{" {identifier ":=" portDesignator ";"} "}"
| ["(" [portDesignator {"," portDesignator}] ")"] ";".

actuatorUpdate = frequency guard identifier ":=" portDesignator ";".

modeSwitch = frequency guard modeDesignator assignList.

designator = identifier {"." identifier}.

/* renamed productions */
attrName = identifier.
unit = identifier.
constDesignator = designator.

13

typeDesignator = designator.
taskDesignator = designator.
portDesignator = designator.
modeDesignator = designator.

/* annotation currently used */

/* annotations currently ignored */
annotation = "[" {ANY} "]".
hardwareAnnotation = annotation.
portAnnotation = annotation.
taskTimingAnnotation = annotation.
modeAnnotation = annotation.
modeConnectionAnnotation = annotation.
modeSwitchAnnotation = annotation.
taskAnnotation = annotation.

END tdlc.

A.2 ExampleTDL Modules

ModuleM1defines and exports two tasks, one counting up, and one counting down. Both counters are expected to
count modulo 11. ModuleM2 importsM1and calculates the sum of the counters of M1, which is supposed to be
constant (initially 10) whileM1is in modem1, and not constant otherwise.

moduleM1 {

public const
c1 = 0; c2 = 10;
refPeriod = 100ms;

sensor
int s usesgetS;

actuator
int a1 := c1usessetA1;
int a2 := c2usessetA2;

public task inc [wcet=20ms]{
output int o := c1;
usesincImpl(o);

}

public task dec [20ms]{
output int o := c2;
usesdecImpl(o);

}

start modem1 [period=refPeriod]{
task

[1] inc();
[1] dec();

actuator
[1] a1 := inc.o;
[1] a2 := dec.o;

mode

14

[1] if switch2m2(s)then m2;
}

modem2 [period=refPeriod]{
task

[1] inc();
[2] dec();

actuator
[1] a1 := inc.o;
[2] a2 := dec.o;

mode
[1] if switch2m1(s)then m1;

}
}

moduleM2 {

import M1;

actuator
int a := M1.c2usessetA;

public task sum [wcet=20ms]{
input int i1; int i2;
output int o := M1.c2;
usessumImpl(i1, i2, o);

}

start modemain [period=M1.refPeriod]{
task

[1] sum(M1.inc.o, M1.dec.o);
actuator

[1] a := sum.o;
}

}

B Format of .ecode Files

B.1 Grammar of .ecode Files

The following attributed EBNF grammar describes the format of .ecode files generated by theTDL compiler. Note
that there is no white space between any symbols. Integers (int4) are written in big-endian-first byte order, strings
are written as zero terminated character sequences and booleans are encoded as 1 (true) and 0 (false). byte1 is
stored as a single byte. Terminal and non-terminal symbols may contain an optional name attribute written as
name: followed by the structure or value of the symbol. All entities namednofXXX specify the number of
elements of the subsequent list. Byte values are denoted as in Java or C by using0x as prefix of the hexadecimal
value. Single byte character values are written under single quotes (’). All time values (e.g. mode period, task
wcet, ecode future delay) are given in microseconds. This means that the maximum time value is about 35 minutes,
if signed 4 byte integers are used by an E-machine.

ECodeFile ::= ’E’ ’C’ ’0’ ’2’ moduleName:string moduleKey:int4
0x80 Modules
0x81 Constants

15

0x82 Types
0x83 Ports
0x84 Tasks
0x85 Drivers
0x86 Guards
0x87 Modes
0x88 Ecodes.

Modules ::= nofModules:int4 {name:string key:int4}.

Constants ::= nofConstants:int4 {name:string pub:boolean ConstVal}.

ConstVal ::=
0x0 val:int4

| 0x1 val:boolean
| 0x2 val:string.

Types ::= nofTypes:int4 {name:string pub:boolean Struct}.

Struct ::=
opaque:0x0 moduleName:string typeName:string

| byte:0x1
| short:0x2
| int:0x3
| long:0x4
| float:0x5
| double:0x6
| boolean:0x7
| char:0x8
| string:0x9.

Ports ::= nofPorts:int4
{name:string pub:boolean Struct

(sensor:0x0 (0x0 | 0x1 getter:string driverID:int4)
|actuator:0x1 Init (0x0 | 0x1 setter:string driverID:int4)
|input:0x2
|output:0x3 Init
|state:0x4 Init
)

}.

Init ::= 0x0 | 0x1 initializer:string driverID:int4 | 0x2 init:ConstVal.

Tasks ::= nofTasks:int4
{name:string pub:boolean wcet:int4

inputs:LocalPortList outputs:LocalPortList states:LocalPortList}.

LocalPortList ::= nofPorts {portID:int4}.

Drivers ::= nofDrivers:int4
{ set:0x0 portID:int4 setter:string
| get:0x1 portID:int4 getter:string
| actuator:0x2 srcPort:QualPortID actPortID:int4
| release:0x3 srcPorts:PortList dstPorts:LocalPortList
| terminate:0x4 taskID:int4
| start:0x5 taskImpl:LocalFunCall taskID:int4
| stop:0x6 taskID:int4

16

| switch:0x7 srcPorts:PortList dstPorts:LocalPortList
}.

QualPortID ::= moduleID:int4 portID:int4.

PortList ::= nofPorts {QualPortID}.

LocalFunCall ::= name:string args:PortList.

Guards ::= nofGuards:int4 {FunCall}.

FunCall ::= name:string args:PortList.

Modes ::= nofModes:int4
{name:string start:boolean period:int4 pcBegin:int4 Activities}.

Activities ::=
nofInvokes:int4 {freq:int4 guardID:int4 taskID:int4 releaseDriverID:int4}
nofUpdates:int4 {freq:int4 guardID:int4 actuatorDriverID:int4}
nofSwitches:int4 {freq:int4 guardID:int4 targetID:int4 switchDriverID:int4}.

Ecodes ::= nofEcodes:int4
{opcode:byte1 arg1:int4 arg2:int4 arg3:int4 comment:string}.

The individual operation codes together with their arguments are specified in the following table. Unused
operands of E-code instructions have value -1, unused comments in E-code instructions are empty strings.

opcode mnemonic arg1 arg2 arg3
0x0 nop -1 -1 -1
0x1 future 0 futurePC deltaTime
0x2 call driverID -1 -1
0x3 schedule taskID -1 -1
0x4 if guardID thenPC elsePC
0x5 jump targetPC -1 -1
0x6 return -1 -1 -1
0x7 switch modeID -1 -1

B.2 Examples for Decoded .ecode Files

The TDL tool suite provides a decoder utility, which produces the following output for the example modules
defined in Sec. A.2.

MODULE M1 {
version=02
key=−579190198

IMPORTS
CONSTS

public c1 = 0
public c2 = 10
public refPeriod = 100000

TYPES
PORTS

[0] actuator int a1
[1] actuator int a2
[2] sensor int s
[3] public output int o

17

[4] public output int o
TASKS

[0] public dec, wcet=20000, input, output 3, state
[1] public inc, wcet=20000, input, output 4, state

DRIVERS
[0] start, taskID=0, decImpl(3)
[1] stop, taskID = 0
[2] terminate, taskID = 0
[3] start, taskID=1, incImpl(4)
[4] stop, taskID = 1
[5] terminate, taskID = 1
[6] set, portID=0, uses=setA1
[7] set, portID=1, uses=setA2
[8] release
[9] release
[10] actuator, 0 := .4
[11] actuator, 1 := .3
[12] get, portID=2, uses=getS
[13] switch
[14] release
[15] release
[16] actuator, 1 := .3
[17] actuator, 0 := .4
[18] switch

GUARDS
[0] switch2m2(.2)
[1] switch2m1(.2)

MODES
[0] name=m1, start=true, period=100000, pcBegin=3

task: freq=1, guardID=−1, taskID=1, releaseDriverID=8
task: freq=1, guardID=−1, taskID=0, releaseDriverID=9
actuator: freq=1, guardID=−1, actuatorDriverID=10
actuator: freq=1, guardID=−1, actuatorDriverID=11
mode: freq=1, guardID=0, targetID=1, switchDriverID=13

[1] name=m2, start=false, period=100000, pcBegin=20
task: freq=1, guardID=−1, taskID=1, releaseDriverID=14
task: freq=2, guardID=−1, taskID=0, releaseDriverID=15
actuator: freq=1, guardID=−1, actuatorDriverID=17
actuator: freq=2, guardID=−1, actuatorDriverID=16
mode: freq=1, guardID=1, targetID=0, switchDriverID=18

[2] name=<stub>, start=false, period=100000, pcBegin=44
ECODES

[0] call 6 //actuator init: setA1(a1)
[1] call 7 //actuator init: setA2(a2)
[2] return
[3] call 8 //release task: inc
[4] schedule 1 //schedule: incImpl
[5] call 9 //release task: dec
[6] schedule 0 //schedule: decImpl
[7] future 0, 9, 100000
[8] return
[9] call 5 //terminate task: inc
[10] call 2 //terminate task: dec
[11] call 10 //actuator update: a1 := o
[12] call 6 //actuator setter: setA1(a1)
[13] call 11 //actuator update: a2 := o
[14] call 7 //actuator setter: setA2(a2)

18

[15] call 12 //get: s := getS()
[16] if 0, 17, 19 //mode switch guard: switch2m2
[17] call 13 //mode switch driver
[18] switch 1 //mode switch−> m2:0
[19] jump 3 //next cycle: m1
[20] call 14 //release task: inc
[21] schedule 1 //schedule: incImpl
[22] call 15 //release task: dec
[23] schedule 0 //schedule: decImpl
[24] future 0, 26, 50000
[25] return
[26] call 2 //terminate task: dec
[27] call 16 //actuator update: a2 := o
[28] call 7 //actuator setter: setA2(a2)
[29] call 15 //release task: dec
[30] schedule 0 //schedule: decImpl
[31] future 0, 33, 50000
[32] return
[33] call 5 //terminate task: inc
[34] call 2 //terminate task: dec
[35] call 17 //actuator update: a1 := o
[36] call 6 //actuator setter: setA1(a1)
[37] call 16 //actuator update: a2 := o
[38] call 7 //actuator setter: setA2(a2)
[39] call 12 //get: s := getS()
[40] if 1, 41, 43 //mode switch guard: switch2m1
[41] call 18 //mode switch driver
[42] switch 0 //mode switch−> m1:0
[43] jump 20 //next cycle: m2
[44] future 0, 46, 100000
[45] return
[46] call 5 //terminate task: inc
[47] call 2 //terminate task: dec
[48] jump 44 //next cycle:<stub>

}

MODULE M2 {
version=02
key=−1477044379

IMPORTS
[0] moduleName=M1, key=−579190198

CONSTS
TYPES
PORTS

[0] actuator int a
[1] input int i1
[2] input int i2
[3] public output int o

TASKS
[0] public sum, wcet=20000, input 1 2, output 3, state

DRIVERS
[0] start, taskID=0, sumImpl(1 2 3)
[1] stop, taskID = 0
[2] terminate, taskID = 0
[3] set, portID=0, uses=setA

19

[4] release 1:=0.4 2:=0.3
[5] actuator, 0 := .3

GUARDS
MODES

[0] name=main, start=true, period=100000, pcBegin=2
task: freq=1, guardID=−1, taskID=0, releaseDriverID=4
actuator: freq=1, guardID=−1, actuatorDriverID=5

[1] name=<stub>, start=false, period=100000, pcBegin=10
ECODES

[0] call 3 //actuator init: setA(a)
[1] return
[2] call 4 //release task: sum
[3] schedule 0 //schedule: sumImpl
[4] future 0, 6, 100000
[5] return
[6] call 2 //terminate task: sum
[7] call 5 //actuator update: a := o
[8] call 3 //actuator setter: setA(a)
[9] jump 2 //next cycle: main
[10] future 0, 12, 100000
[11] return
[12] call 2 //terminate task: sum
[13] jump 10 //next cycle:<stub>

}

C Functionality Code

C.1 Examples for Java-based Functionality Code

The functionality code for the example modules in Sec. A.2 can be specified in any programming language
supported by the E-machine being used for exeution of TDL programs. The following code examples assume that
a Java-based E-machine is used and therefore the functionality code is written in Java following the Java language
binding rules.

import emcore.tools.emachine.types.refint;
import emcore.tools.emachine.Out;

classM1 {

static int getS(){
return 0;

}

static void setA1(int a1){
Out.println(”a1 = ” + a1);

}

static void setA2(int a2){
Out.println(”a2 = ” + a2);

}

static void incImpl(ref int x) {
int h = x.val + 1;
x.val = h<= 10? h: 0;

20

}

static void decImpl(refint x) {
int h = x.val− 1;
x.val = h>= 0? h: 10;

}

static booleanswitch2m2(int s){
return (s == 2);

}

static booleanswitch2m1(int s){
return (s == 1);

}
}

import emcore.tools.emachine.types.refint;
import emcore.tools.emachine.Out;

classM2 {

static void setA(int a){
Out.println(”a = ” + a);

}

static void sumImpl(int i0, int i1, ref int o) {
o.val = i0 + i1;

}
}

C.2 Examples for Generated Glue Code

The following programs show the auxiliary Java code generated for the modules. For every module there is one
outer class, which consists of 3 sections: ports, drivers, and guards and provides the table of drivers and the table
of guards to the E-machine interpreter. In addition it implements the interfaceModuleBase .

In principle, the Java based E-machine would also work without this class by falling back to a reflection-based
mechanism, which is, however, much slower, requires dynamic memory, and requires the reflection API to be
available.

The presented Java code is strongly dependent on a particular E-machine implementation and subject to change
at any time. It is shown here only as an example of glue code that might inspire implementations of other E-
machines and it shows that the E-machine, glue code, and functionality code work together in a systematic way.
The parts related to distribution (everything namedstub) should be considered as work in progress.

import emcore.tools.emachine.types.∗;

/∗∗
∗ This class has been generated automatically by tdlc−java on
∗ Wed Nov 17 12:07:17 CET 2004 from module ’M1’.
∗ Compile this file with a Java compiler and make the generated .class
∗ files available to the Java based E−machine in order to speed up
∗ execution. Do not modify this file.
∗/

public classM1$ implementsemcore.tools.emachine.ModuleBase{

21

private static emcore.tools.emachine.Module module$;

//ports
private static int port$0 = 0;//actuator a1
private static int port$1 = 10;//actuator a2
private static int port$2;//sensor s
private static int port$2 tick =−1;
public static int port$3 = 10;//output dec.o
private static ref int port3out =new ref int(); //actual output dec.o
static {

port$3 = 10;
port3out.val = 10;

}
public static int port$4 = 0;//output inc.o
private static ref int port4out =new ref int(); //actual output inc.o
static {

port$4 = 0;
port4out.val = 0;

}

private static classDrivers$implementsemcore.tools.emachine.Drivers{
public void call(int id) throws Exception{

int ticks;
switch (id) {

case0: //start task dec
M1.decImpl(port3out);
break;

case1: //stop task dec
if (module$.usage == emcore.tools.emachine.Module.USAGEPUSH){

emcore.tools.emachine.bus.BusController.setInt(module$.itemIDs[0][0], port$3$out.val);
}
break;

case2: //terminate task dec
port$3 = port$3$out.val;
break;

case3: //start task inc
M1.incImpl(port4out);
break;

case4: //stop task inc
if (module$.usage == emcore.tools.emachine.Module.USAGEPUSH){

emcore.tools.emachine.bus.BusController.setInt(module$.itemIDs[1][0], port$4$out.val);
}
break;

case5: //terminate task inc
port$4 = port$4$out.val;
break;

case6: //set a1
M1.setA1(port$0);
break;

case7: //set a2
M1.setA2(port$1);
break;

case8: //release task inc
break;

case9: //release task dec
break;

22

case10: //actuator update a1
port$0 = port$4;
break;

case11: //actuator update a2
port$1 = port$3;
break;

case12: //get s
ticks = (int)emcore.tools.emachine.Interpreter.ticks;

if (port$2 tick != ticks){
port$2 = M1.getS();
port$2 tick = ticks;

}
break;

case13: //mode switch to m2
break;

case14: //release task inc
break;

case15: //release task dec
break;

case16: //actuator update a2
port$1 = port$3;
break;

case17: //actuator update a1
port$0 = port$4;
break;

case18: //mode switch to m1
break;

default: throw new IllegalArgumentException(”invalidid:” + id);
}

}
}

private static classStubDrivers$implementsemcore.tools.emachine.Drivers{
public void call(int id) throws Exception{

int ticks;
switch (id) {

case0: //start task dec
break;

case1: //stop task dec
break;

case2: //terminate task dec
port$3 = emcore.tools.emachine.bus.BusController.getInt(module$.itemIDs[0][0]);

break;
case3: //start task inc

break;
case4: //stop task inc

break;
case5: //terminate task inc

port$4 = emcore.tools.emachine.bus.BusController.getInt(module$.itemIDs[1][0]);
break;

case6: //set a1
break;

case7: //set a2
break;

case8: //release task inc
break;

case9: //release task dec

23

break;
case10: //actuator update a1

break;
case11: //actuator update a2

break;
case12: //get s

break;
case13: //mode switch to m2

break;
case14: //release task inc

break;
case15: //release task dec

break;
case16: //actuator update a2

break;
case17: //actuator update a1

break;
case18: //mode switch to m1

break;
default: throw new IllegalArgumentException(”invalidid:” + id);

}
}

}

private static classGuards$implementsemcore.tools.emachine.Guards{
public booleaneval(int id) throws Exception{

switch (id) {
case0: return M1.switch2m2(port$2);
case1: return M1.switch2m1(port$2);
default: throw new IllegalArgumentException(”invalidid:” + id);

}
}

}

//implement ModuleBase
public void init(emcore.tools.emachine.Module m){module$ = m;}
public int getKey(){return −579190198;}
public emcore.tools.emachine.Drivers getDrivers(){

if (module$.usage == emcore.tools.emachine.Module.USAGESTUB){
return new StubDrivers$();

} else{
return new Drivers$();

}
}
public emcore.tools.emachine.Guards getGuards(){return new Guards$();}

}

import emcore.tools.emachine.types.∗;

/∗∗
∗ This class has been generated automatically by tdlc−java on
∗ Wed Nov 17 11:11:19 CET 2004 from module ’M2’.
∗ Compile this file with a Java compiler and make the generated .class
∗ files available to the Java based E−machine in order to speed up
∗ execution. Do not modify this file.

24

∗/
public classM2$ implementsemcore.tools.emachine.ModuleBase{

private static emcore.tools.emachine.Module module$;

//ports
private static int port$0 = 10;//actuator a
private static int port$1;//input sum.i1
private static int port$2;//input sum.i2
public static int port$3 = 10;//output sum.o
private static ref int port3out =new ref int(); //actual output sum.o
static {

port$3 = 10;
port3out.val = 10;

}

private static classDrivers$implementsemcore.tools.emachine.Drivers{
public void call(int id) throws Exception{

int ticks;
switch (id) {

case0: //start task sum
M2.sumImpl(port$1, port$2, port3out);
break;

case1: //stop task sum
if (module$.usage == emcore.tools.emachine.Module.USAGEPUSH){

emcore.tools.emachine.bus.BusController.setInt(module$.itemIDs[0][0], port$3$out.val);
}
break;

case2: //terminate task sum
port$3 = port$3$out.val;
break;

case3: //set a
M2.setA(port$0);
break;

case4: //release task sum
port$1 = M1$.port$4;
port$2 = M1$.port$3;
break;

case5: //actuator update a
port$0 = port$3;
break;

default: throw new IllegalArgumentException(”invalidid:” + id);
}

}
}

private static classStubDrivers$implementsemcore.tools.emachine.Drivers{
public void call(int id) throws Exception{

int ticks;
switch (id) {

case0: //start task sum
break;

case1: //stop task sum
break;

case2: //terminate task sum
port$3 = emcore.tools.emachine.bus.BusController.getInt(module$.itemIDs[0][0]);

break;

25

case3: //set a
break;

case4: //release task sum
break;

case5: //actuator update a
break;

default: throw new IllegalArgumentException(”invalidid:” + id);
}

}
}

private static classGuards$implementsemcore.tools.emachine.Guards{
public booleaneval(int id) throws Exception{

switch (id) {
default: throw new IllegalArgumentException(”invalidid:” + id);

}
}

}

//implement ModuleBase
public void init(emcore.tools.emachine.Module m){module$ = m;}
public int getKey(){return −1477044379;}
public emcore.tools.emachine.Drivers getDrivers(){

if (module$.usage == emcore.tools.emachine.Module.USAGESTUB){
return new StubDrivers$();

} else{
return new Drivers$();

}
}
public emcore.tools.emachine.Guards getGuards(){return new Guards$();}

}

26

