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Abstract We present the Timing Definition Language (TDL), which supports the development of de-

pendable embedded real-time systems. TDL is conceptually based on the time-triggered programming model 

introduced by Giotto but provides a more convenient syntax, more control over the timing of periodic activi-

ties, an industrial strength tool chain, and, most importantly, adds a component model and supports the 

integration of asynchronous activities in a time-triggered system. We present the introduced language con-

cepts and outline the TDL-based tool chain, which also includes support for simulation, distribution, and 

automatic code generation. Finally, we show an example that uses some of the extensions and compare TDL 

with other extensions of Giotto. 
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0 How it all began 

Manfred Broy represents one of the light towers of research in software engineering. I 

have been lucky to meet and cooperate with Manfred early in my scientific career: Back in 

1993 the research branch of Siemens in Munich, located on the beautiful Perlach campus, 

set up a visionary research project called Automated Software Engineering (ASE). Manfred 

was one of the university research partners, together with Gust Pomberger from the Johan-

nes Kepler University Linz and me as Assistant Professor at Washington University in Saint 

Louis. Though all partners and team members contributed to the success of the ASE project, 

it was definitely Manfred who set the sails. I'd summarize, a bit oversimplified, the direction 

he set as follows: Let us define a solid theoretical framework with appropriate abstractions 

that form the programming model for the target domain, which was ubiquitous computing. 

Based on these abstractions we should try to automatically generate executable code. In 

other words, the project should aim at the refinement of a higher level of abstraction that is 

appropriate for the particular domain, so that a more detailed and platform-specific level can 

be automatically generated. Based on that general direction and his valuable ideas how such 
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abstractions could look like, we came up with what would nowadays be called a mod-

el-based approach for ubiquitous computing. The ASE project was a huge success for Sie-

mens and all its partners. 

Later on in 2000-2001 while I spent a sabbatical with Tom Henzinger at the University 

of California, Berkeley, Manfred and I met at the first EmSoft (Embedded Software) con-

ference that was initiated by Tom and Christoph Kirsch. The remote resort near Lake Tahoe 

was an ideal place to discuss ideas and get inspirations for future research directions. 

Manfred presented results from his exciting projects in the domain of embedded systems. 

Some of the research activities of my group already focused on embedded systems. Manfred 

nicely sketched the numerous opportunities he sees from a research perspective. For me this 

also corroborated that an uncompromised focus on the domain of embedded systems is 

worthwhile to pursue. This journal contribution summarizes some of the results that my 

research group produced during the decade that followed. The master mind behind the Tim-

ing Definition Language (TDL) is Dr.-ETH Josef Templ, a senior researcher in my group, 

whose exceptional talent for balancing theory and practice paired with a relentless strive for 

lean software made TDL a solid foundation for research as well as for its commercial suc-

cess. 

Since I moved to Salzburg in 2002 Manfred and his wife Karin together with my wife 

Ingrid and me enjoyed performances at the Salzburg Festival every year, paired with 

thought-provoking discussions about research directions and the state-of-the-art in software 

engineering. I thank Manfred for helping to point out what has proved to be a visionary 

research framework in software science, to motivate me as young researcher and become a 

much appreciated friend. 

1 Introduction 

The Timing Definition Language (TDL) [13] aims at supporting the development of 

deterministic, portable software for dependable, embedded real-time systems. It is concep-

tually based on the time-triggered programming model introduced in Giotto [16] but goes 

beyond Giotto in a number of aspects. While Giotto is basically an abstract mathematical 

model of a time-triggered language with a rather simple tool chain that primarily proofs that 

it can be implemented, the TDL project aims at a tool chain that makes Giotto’s concepts 

available for real-world industrial projects.  

This paper describes the main evolution steps that we found necessary for successfully 

applying the Giotto concepts in practice. We assume a basic knowledge of the underlying 

Giotto concepts but also try to repeat some of them (in prose form) in order to make the 

presentation more self-contained. The development of TDL started in 2003 and continued in 

a sequence of steps until today, where the integration of asynchronous activities in 2008 

marked a significant milestone. 

Giotto introduced the notion of Logical Execution Time (LET) for the semantics of a 

task invocation. The data flow (reading input ports and writing output ports) is done at 

well-defined time instants independent from the actual execution speed of the underlying 

platform given that the platform is fast enough for dealing even with the task’s Worst Case 

Execution Time (WCET). The execution of the task’s body is considered to be a long run-

ning operation that cannot simply be ignored. On the other side, arranging the data flow (e.g. 

reading input ports and writing output ports) is considered a Logical Zero Time (LZT) oper-

ation. A compiler transforms a Giotto program, i.e. a timing definition, into instructions of a 
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virtual machine (called E-code) which is executed by an appropriate runtime system (called 

E-machine) [19]. 

TDL inherits these basic concepts and adds new ones as de-scribed below. We shall 

start with a description of new language concepts and continue with tool related extensions. 

Finally, we shall give an example of a TDL application that uses some of the introduced 

extensions and we shall compare our work with other extensions of Giotto. 

2 New language concepts 

This section describes the language concepts that TDL introduces as extensions of 

Giotto. We will not describe the language syntax formally but focus on the underlying con-

cepts. Note that Giotto is basically an abstract mathematical model of a language. There 

exists, however, a prototype Giotto compiler that introduced a concrete syntax which is also 

used in source code examples in the original Giotto papers [16, 19]. A detailed TDL lan-

guage specification including an EBNF grammar can be found in [13]. The syntax we have 

chosen can also be seen in the example section below. 

2.1 General language refinements 

TDL tries to be more user-friendly than Giotto by removing the notion of a driver from 

the language. A Giotto driver is essentially a task prolog or epilog, i.e. a sequence of 

memory copy operations that is either used for reading input parameters or writing output 

parameters. TDL specifies the input parameters directly with a task invocation as it is also 

done in a function call in normal programming languages. The drivers still exist internally at 

the implementation level but they are generated automatically. 

Giotto requests to specify all task ports (input, output, state) globally. TDL allows 

treating a task as a name space for task ports. In addition, TDL also allows the usage of 

global output ports. 

As additional syntactical refinements we mention the introduction of named constants 

and user defined data types in TDL. We refrain from going into any details here because 

these features are expected from any high level programming language. 

2.2 Adding a component model 

A Giotto program is an (anonymous) automaton that consists of a set of states (called 

modes), where every mode specifies a set of periodic activities. TDL encapsulates one such 

automaton in a (named) container called a module and allows multiple modules to run in 

parallel. Due to the LET semantics of TDL tasks, the timing behavior of a module is not 

affected by adding other modules to an application as long as the overall set of modules 

passes a time-safety check. 

In the simplest case, modules are independent from each other and are used for ECU 

(electronic control unit) consolidation, for example. 

In general, modules may depend on each other, i.e. the output produced by a task of 

one module may be the input of a task in another module. This is accomplished by means of 

an import declaration and a qualification of port names by a module identifier. TDL supports 

cyclic imports of modules in order to express a cyclic data flow between modules. This 

requires some adjustments on the implementation level (E-code structure) as will be de-

scribed later. 

The following list summarizes the purposes that TDL modules serve. 
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• Modules provide a named program unit. Module names may be structured (e.g. 

com.my.app1.M2) in order to create globally unique module names. 

• Modules introduce a name space and allow for exporting a program entity to 

other modules. 

• Modules act as unit of composition. All modules are executed in parallel, so we 

have a parallel composition in the TDL component model. 

• Modules partition the set of actuators. An actuator may only be assigned a value 

within the module it is defined in. This ensures deterministic actuator updates. 

• Modules act as unit of static linking or dynamic loading, depending in the capa-

bilities of the execution platform. 

• Modules act as unit of execution. Every module may provide a start mode which 

will be executed at startup time. The execution of all modules is synchronized to 

a common time base even when the modules are executed on a distributed plat-

form. 

• Modules act as editing unit in our Simulink integration approach. We provide a 

Simulink library block that represents a module and behind this block is a 

graphical editor for the ingredients of the module. The task implementations can 

be done by normal Simulink subsystems. A module block can be connected to 

other Simulink blocks via its sensor and actuator ports. 

• Modules act as unit of distribution. In the TDL tool chain a module is assigned to 

a node of a potentially distributed platform. The requirements for the (remote) 

data flow in a distributed system can be deduced automatically from the modules 

and a scheduler can compute the network schedule automatically. 

2.3 Adding slot selection 

The timing specification of a periodic activity in Giotto is based on the mode period p 

and the activity’s frequency number f. The activity is performed f times per mode period. In 

case of a task invocation activity, the LET of the invocation is implicitly specified as p / f 

and the mode period is filled with f such task invocations. As shown in Figure 1, TDL sup-

ports a more fine grained specification of the timing of periodic activities by means of a 

mechanism called slot selection, where the Giotto timing is only a special case (actually the 

default case). 

A TDL mode period is divided into a sequence of f slots with length p / f. A task invo-

cation is associated with a sequence of adjacent slots. This sequence defines the LET of the 

task invocation explicitly and decouples the task’s period from its LET. In practice, it allows 

one to specify, for example, breaks between invocations or to define that a task should be 

invoked at the beginning or at the end of a mode period only. As a consequence, it may help 

the task scheduler to find a feasible schedule and it may reduce the latency in the data flow 

between invocations of different tasks. 

Figure 1.  Giotto and TDL timing models 
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2.4 Adding digital controller support 

Control theory states that as a rule of thumb the reaction time of a (digital) controller 

should be below 10% of the sample time in order to achieve stable controller behavior. In 

the Giotto model, the reaction time equals 100% of the sample time, which requires a high 

degree of oversampling in order to achieve the same result. Since this oversampling in-

creases the CPU load unnecessarily, we added special support for digital controllers in TDL 

by means of task splitting and task sequences. 

A Giotto task is associated with a single external function that represents the task’s 

body. Similar to Simulink’s S-functions [20], a TDL task may be associated with two exter-

nal functions (also called task splitting), a long running function that corresponds with 

Giotto’s task function and Simulink’s Update function, and an LZT function that acts as 

Simulink’s Output function. The basic idea is that the Output function is called first at the 

LET start and provides the new output values in a very short time, closely approximating 

LZT. The Update function is executed during the LET and prepares the task’s internal state 

by some advance calculations such that the next call of the Output function can be done fast. 

This can be utilized e.g. for digital controllers which need to evaluate a polynomial as the 

core of their implementation.  

In addition, TDL allows for performing an actuator update right after the call of the 

Output function by means of so-called task sequences. A task sequence consists of a task 

invocation followed by a set of actuator updates. The actuator updates of a task sequence are 

carried out right after the task’s outputs are available, which is at the LET start if an Output 

function is available. 

2.5 Semantic differences to Giotto 

There are some small but noticeable differences in the semantics of the time-triggered 

programming model between Giotto and TDL. The following list describes all of them. 

• [Program start] In Giotto, the actuator updates and mode switches of the start mode 

are executed at time zero. There are, however, no further actuator updates or mode 

switches after a mode switch at time zero. A TDL module is started by simply 

switching to the start mode. This means that at time zero, there are neither actuator 

updates nor mode switches. 

• [Non-harmonic mode switch] Giotto allows a mode switch even if there are run-

ning tasks as long as those tasks exist with the same task period in the target mode. 

TDL does not allow non-harmonic mode switches because there may be delays in-

volved when switching to the target mode. Furthermore, the task will deliver output 

values to the target mode, which do not correspond to inputs specified there. 

• [Deterministic mode switch] Giotto requests that among all mode switch guards of 

a mode only one may return true at a particular point of time. In contrast, TDL 

evaluates mode switch guards in textual order from top to bottom and performs the 

first mode switch whose guard returns true. This definition allows a more efficient 

implementation without compromising determinism. 

• [Guarded actuator update] A guarded actuator update in Giotto means that the actu-

ator setter is called independently of the guard's result. In TDL, actuator update and 

actuator setter are both guarded and performed only if the guard returns true. 

• [Mode port assignments] Assignments of task output ports upon a mode switch is 

done as an initialization in the affected target task in TDL. In Giotto it is performed 
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before the target task is invoked, thus, it is visible to clients earlier and thereby im-

plies problems for distributed execution. 

• [Sensor read] Giotto defines that sensors are read right before task invocations and, 

as a consequence, sensor values used e.g. for actuator updates or mode switch 

guards are old values. TDL uses current values for sensors in all places in order to 

provide deterministic behavior even in the case that multiple modules access a 

shared sensor. However, a sensor is read only once for every logical time instant. 

2.6 Adding asynchronous activities 

In addition to time-triggered (alias synchronous) activities, there is often a need for ex-

ecuting event-triggered (alias asynchronous) activities as well. TDL adds support for asyn-

chronous activity sequences consisting of task invocations and actuator updates. An asyn-

chronous activity sequence is triggered by the occurrence of one of the following events. 

• [Hardware interrupt] A (non maskable) hardware interrupt has the highest priority 

in the system. It may even interrupt synchronous activities. The TDL semantics 

therefore takes care that the impact of hardware interrupts on the timing of syn-

chronous activities is minimized. In addition, it is assumed that a maskable inter-

rupt is switched off until the associated event is executed. This reduces the danger 

of denial of service due to a large number of interrupts. Hardware interrupts may be 

used e.g. for connecting the system with asynchronous input devices. 

• [Asynchronous Timer] A periodic asynchronous timer may be used as a trigger. 

Such a timer is independent from the timer that drives the synchronous activities 

because it introduces its own time base. An asynchronous timer may for example 

be used as a watchdog for monitoring the execution of the time-triggered opera-

tions. 

• [Port Update] Updating an output port may trigger an asynchronous activity. We 

assume that both a synchronous and an asynchronous port update may be used as a 

trigger event. In case of a synchronous port update, i.e. a port update performed in 

a time-triggered activity, the TDL semantics takes care that the impact on the tim-

ing of the synchronous activities is minimized. Port update events may e.g. be used 

for limit monitoring or for change notifications. 

 

Events may be associated with a priority and are registered in a priority queue when 

they arrive. Processing the event is delayed and supposed to be performed by a single back-

ground thread that runs whenever there are no time-triggered activities to perform. Reading 

input ports is done as part of the asynchronous execution, not at the time of registering an 

event. Output ports are updated right after an asynchronous task invocation has been fin-

ished. If an event reoccurs before it has started processing it will not be executed twice but 

remains registered once. 

The TDL runtime system ensures correct synchronization of the data flow between 

synchronous and asynchronous activities. It has been shown in [12] that a lock-free syn-

chronization approach is possible. In case of a distributed system, the communication of 

asynchronous output values to remote nodes is supposed to rely on asynchronous network 

operations, i.e. it may be delayed. 
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3 Implementation 

This section outlines the TDL tool chain, which builds on core ideas introduced in 

Giotto [19] but provides a clean room implementation that supports all of TDL’s extended 

features. We shall start with an overview and then go deeper into the format and structure of 

the E-code we introduced for TDL. 

3.1 Tool chain overview 

Figure 2 outlines the TDL tool chain. It shows as a central component the TDL compil-

er, which offers a plug-in-architecture based on an abstract syntax tree (AST) for generating 

target platform specific output in addition to platform independent .ecode files. The E-code 

together with platform specific output and the functionality code is used by the E-machine, 

which provides the runtime system for executing TDL programs. As an optional graphical 

front-end we provide a tool named TDL Visual Creator, which can also be integrated in 

MATLAB/Simulink. In case of the Simulink integration, the functionality code can be gen-

erated automatically from the Simulink model by a standard MATLAB tool named Re-

al-Time Workshop Embedded Coder (RTW-EC). For organizing the various build steps, in 

particular for distributed systems, we provide a tool named TDL Visual Distributor, which is 

not shown in the figure. 

3.2 E-code structure 

The TDL compiler generates E-code for each mode of a module. The E-code covers a 

single mode period and is repeated then by means of a jump instruction to the beginning of 

the mode. For every logical time instant which needs to execute E-code one E-code block is 

generated. An E-code block is a list of E-code instructions terminated by a return instruction. 

It specifies for one logical time instant the actions that must be taken by the E-machine in 

order to comply with the timing specifications and LET semantics.  

The structure of a TDL E-code block follows from the requirement for parallel execu-

tion of a set of modules rather than executing only a single module as it is the case in Giotto. 

If two modules execute E-code at the same logical time, we must take care that all modules 

use the current values of output ports because modules may depend on each other, i.e. there 

may be a data flow between modules and this data flow may also be cyclic. Therefore we 

use a multi-phase strategy and start every E-code block with a task termination section 

whose end is marked by a special instruction in the E-code. The execution of a set of mod-

ules always starts with executing the task termination section of all modules (that need to 

Figure 2.  TDL tool chain overview 
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execute E-code at a particular time) first. Then we know that all output ports are updated 

and can be used in any order. The rest of the E-code instructions could in principle be exe-

cuted in a second phase but for the purpose of simulation (e.g. with Simulink) we introduce 

three sections in total. The second section covers all instructions that are necessary for per-

forming actuator updates, and the third section checks for mode switches and releases tasks. 

The following sequence of actions comprises one E-code block for a logical time instant t: 

1. Update output ports of task invocations logically terminating at t with the result 

values from its execution. 

2. Mark end-of-task-termination (EOT) section. 

3. Update actuators that are defined to be updated at t. 

4. Mark end-of-actuator-update (EOA) section. 

5. Switch mode if a mode switch is defined at t. 

6. (*) Update input ports of tasks that are defined to be released at t. 

7. Release tasks that are defined to be released at t. 

8. Advance the module’s future time to the next logical time instant t + deltaTime and 

register the address at which to continue. 

9. Return from E-code block. 

In case of a mode switch (and also for startup) execution starts at (*) of the first E-code 

block of the target mode. This is the mode’s entry point. 

Note that it is not practical to generate E-code that covers all modules at once because 

modules may switch mode independently. An enormous code explosion would result from 

generating E-code for all possible combinations. 

3.3 E-code instruction set 

The E-code instruction set is defined in Table 1. It differs from the E-code instruction 

set introduced in Giotto by (1) using only up to 2 arguments and thereby saving some 

memory, (2) by adding the switch and repeat instructions, and (3) by adding an argument to 

the nop instruction, which is used as a marker for the various sections in one E-code block.  

The repeat instruction has been added as a means for E-code compression because it 

turned out that in some cases there are repeating patterns that can be compressed effectively 

by an iteration construct. 

The switch instruction has been added because a mode switch differs from an ordinary 

jump instruction and detecting a mode switch at runtime by checking the target address of a 

jump is an unnecessary overhead. A switch may need to perform additional internal house-

keeping work and it needs to reset the counter used by the repeat instruction. 

Table 1  E-code instructions 

Instruction Meaning 

nop(f) A dummy (no operation) instruction. The argument f is used as a marker for iden-
tifying different sections in the E-Code. 

call(d) Executes the driver d. 
release(T) Marks the task T as ready for execution. 
future(a, dt) Plans the execution of the E-Code block starting at address a in dt microseconds. 
if(g, elsePC) Proceeds with the next instruction if g evaluates to true else jumps to elsePC. 
jump(a) Jumps to the instruction at address a. 
return Terminates an E-Code block. 
repeat(a, n) Uses a counter per module for jumping n times to instruction a. After that it con-

tinues with the next instruction. 
switch(M) Performs a mode switch to mode M, i.e. the E-machine continues at the entry point 

of M. In addition, the module’s repeat counter is set to zero. 
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3.4 Adding distribution support based on modules 

The original Giotto papers already envision the possibility of distributing a Giotto pro-

gram as one of the core advantages of the LET concept. Distribution is supposed to be based 

on tasks, which are assigned to different nodes of a distributed system. TDL differs regard-

ing the unit of distribution. It takes the module as the distribution unit, i.e. it assigns a mod-

ule to a node of a distributed system. This follows naturally because a module also contains 

sensor and actuator ports, which are bound to specific I/O devices that need to be available 

on a node. More details about distribution in TDL can be found in [9]. 

3.5 Simulation and code generation 

Simulation of LET-based systems is particularly useful since simulation results of the 

synchronous activities exactly match the behavior on any target platform. The 

MATLAB/Simulink environment [20] offers support to model, simulate, and analyze plant 

and controller dynamics, and also supports code generation (e.g. Real-Time Workshop Em-

bedded Coder). 

Giotto’s S/G tool applies a transformation to Simulink models in order to adhere with 

the timing specification and LET semantics in the simulation [17]. More precisely, the data 

flow is adjusted using standard Simulink blocks such as Zero-Order-Hold and Unit-Delay. 

However, this approach fails for complex mode switching logic and for tasks with individual 

execution rates as has been shown in [11]. 

The Simulink integration in the TDL tool chain uses a model transformation with an 

E-machine implementation for Simulink at its core. While the task and guard functionality 

itself is modeled in Simulink, the timing behavior is specified in TDL. Drivers and wrappers 

for tasks and guards are automatically generated as function-call subsystems and are con-

nected via Simulink signals. The input ports of a driver block are directly connected to its 

output ports, which corresponds with assignments in an imperative program. We imple-

mented an E-machine using the S-Function mechanism provided by Simulink to timely 

trigger their execution and thus to ensure TDL semantics. To avoid restrictions on the set of 

supported blocks (e.g. for the plant) caused by Simulink’s block execution strategy, we split 

duties of the E-machine among two collaborating S-Functions. This allows Simulink to 

execute the plant or other blocks after actuators are updated and before sensors are read. As 

a precondition, E-code instructions for actuator updates must be separated from all other 

instructions, which motivates the E-code trisection as outlined earlier. An additional delay 

block between the release and the termination driver of a task and between the two 

E-machines enables Simulink to resolve algebraic (feedback) loops without affecting the 

timing behavior. Figure 3 outlines the Simulink model that results from our model transfor-

mation. To ensure that data flow between synchronous and asynchronous activities follows 

TDL semantics and to preserve the different priority levels, also the asynchronous part is 

handled by the E-machines.  

In case of simulating asynchronous activities, the simulation is not guaranteed to match 

the behavior of a specific target platform because the simulation is not aware of any sched-

uling strategy, distribution topology, or CPU speed of the target platform. 

The Real-Time Workshop Embedded Coder (RTW-EC) was already used as part of 

Giotto’s S/G tool to generate C code for tasks and guards from Simulink subsystems. Addi-

tionally, for supporting TDL’s task splitting we make use of the possibility to split a Sim-

ulink task function implementation into an Output and an Update function. 
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3.6 Threading model for integrating asynchronous activities 

Besides the TDL component model, the integration of asynchronous operations is the 

most significant extension of TDL over its predecessor Giotto. The detailed description of 

the implementation, in particular the synchronization of the data flow between synchronous 

and asynchronous operations, is beyond the scope of this paper. We shall, however, give an 

overview of the basic ideas. It has been shown in [12] that a lock-free synchronization is 

possible with the semantics we have chosen. 

Figure 4 outlines the involved threads including their priority and the critical regions 

that need synchronization. The time-triggered activities are represented by a thread named 

E-machine. This thread may need further internal threads but we assume that all synchroni-

zation issues are concentrated in a single thread that coordinates the time-triggered activi-

ties. 

Elements are enqueued in the queue of registered events when an asynchronous event 

occurs and the event is not yet registered. As mentioned earlier, an event can be a hardware 

interrupt, an asynchronous timer event, or a port update event. Port updates may originate 

from an asynchronous task or from a synchronous task that is executed by the E-machine. 

enqueue will never be preempted by dequeue, however, enqueue may be preempted by 

other enqueue operations. Elements are dequeued by the single background thread that exe-

Figure 4.  Threads and critical regions 

Figure 3.  Transformed simulation model 
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cutes asynchronous activities. This thread may be preempted by interrupts and by the 

E-machine. Thus, dequeue may be preempted by enqueue operations.  

Since enqueue operations that originate from interrupts or synchronous port updates 

affect the timing of the E-machine, it is important that enqueue is an efficient, constant time 

operation. This can be achieved by using an array representation for the registered events 

with a simple Boolean flag per event for expressing that the event is pending. 

Access to ports (which are essentially global variables) must be synchronized such that 

asynchronously reading a set of input ports respectively writing a set of output ports always 

appears as an atomic action and it must interfere with the timing of the E-machine as little as 

possible. 

4 Example 

As an example for a real-world TDL application we present an augmented strap down 

inertial navigation system (INS) [12] designed for computing the position, velocity, and 

attitude of a sailing vessel at sea. The example uses asynchronous activities for connecting 

asynchronous I/O with the time-triggered navigation system core. 

An INS determines the position of a vehicle with respect to some (inertial) reference 

system by measuring the three accelerations along and the three angular velocities around 

the vehicle’s axes with respect to the reference system, using three accelerometers and three 

gyroscopes which are firmly attached to the vehicle’s body. By solving the equations of 

motion the INS computes the position, velocity, and attitude of the vehicle. An augmented 

INS uses additional inputs, such as position information from a GPS receiver and compass 

headings, to correct the drift of the inertial sensors. 

4.1 Hardware 

The hardware (see Figure 5) for the augmented INS consists of an Analog Devices 

ADSP-21262 Signal Processor [4], a LAN interface with TCP/IP functionality in firmware, 

an ADIS family micromechanical inertial sensor [5] and a two axis fluxgate compass [6]. 

Besides a floating point signal processing core with a peak SIMD performance of 1.2 

GFlops, the ADSP-21262 contains an I/O processor that is capable of managing several 

block transfers between memory and periphery simultaneously. The inertial sensor is con-

nected to the signal processor using an SPI bus [10]. It samples the rotations around the 

three axes of the vehicle and the accelerations along these axes 819.2 times per second. The 

excitation coil of the fluxgate compass is attached to the ADSP-21262 using a sampling DA 

converter. The two sense coils of the compass are connected to two sampling AD converters. 

All three converters operate at 48K samples per second. For determining the heading of the 

vehicle the compass has to be excited periodically via the DA converter and its response 

measured via the two AD converters. 

Figure 5.  INS hardware 
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4.2 TDL definitions 

A TDL module starts with its name and the list of imported modules. When importing a 

module it is possible to define an abbreviation for it: 

module INS { 

  import Kalman as K;  

  ... //constants, types, ports, tasks, modes, asyncs 
} 

Next, constants and types can be declared. Besides the basic types as in Java, TDL 

supports structures and arrays of constant size. By denoting a name public any importing 

module is allowed to refer to this name: 

  public const NavPeriod = 1220us; 

  public type Vector = struct { 

    float x, y, z; 

  }; 

  type FluxBuffer = int[120]; 

The sensor and actuator declarations that follow define the hardware inputs and outputs 

used by the module. With the uses clause one specifies the name of the external getter or 

setter function that the E-machine calls to access the hardware: 

  public sensor InSens in uses getInertial; 

The global output ports come next. A port is updated at the end of the LET of the task 

that writes it: 

  public output Vector pos; 

Next the tasks with their inputs are declared. In the uses clause the name of the external 

function providing the task’s functionality is specified. The last four parameters in the ex-

ample below refer to global output ports: 

  task solveMotion { 

    input InSens in; Vector cPos; Vector cVel; Quaternion cAtt; 

    uses deadReconing(in, cPos, cVel, cAtt, pos, vel, att, time); 

  } 

A mode is a set of activities, i.e. task invocations, actuator updates and mode switches, 

which are executed periodically with the mode period p. For each activity a frequency f and, 

optionally, a guard can be specified. For a task invocation the LET of this invocation is p/f 

unless slot selection is being used for specifying the LET explicitly. In the following mode 

declaration, the period is set to NavPeriod. Both, the solveMotion and acquireMagHandling tasks 

are invoked once per period so that the LET of both tasks is NavPeriod. The mode Navigation 

is declared as start mode which means that the execution of the module starts with this mode. 

The names of objects imported from some other module are qualified either by the 

name of the imported module or by its abbreviation (e.g. K.pos): 

  start mode Navigation [period = NavPeriod] { 

    task [freq = 1] solveMotion(in, K.pos, K.vel, K.att); 

    task [freq = 1] acquireMagHeading(); 

  } 

Finally, asynchronous activities can be specified as in the following code fragment. 

Once the interrupt named iGPS occurs, the task receiveGPS is enqueued for later processing 
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and executed by a background thread. The mapping of the logical interrupt name iGPS to a 

particular interrupt line is platform specific and part of the TDL Visual Distributor tool: 

  asynchronous { 

    [interrupt = iGPS, priority = 2] receiveGPS(INS.time); 

  } 

4.3 Complete TDL modules 

In our hardware three independent asynchronous timing sources are visible to the soft-

ware: the processor clock, the sampling events of the inertial sensor, and the sampling 

events of the DA and AD converters. Choosing the sampling events of the inertial sensor as 

the time base for the E-machine allows us to solve the equations of motion and to consider 

other sensor inputs using Kalman filters [15] synchronously with the inertial data stream. 

The module INS processes the inputs of the inertial sensor and of the fluxgate compass. 

For each new inertial measurement the task solveMotion advances the estimates for the posi-

tion, the velocity, and the attitude of the vehicle. Quaternions are used for the representation 

of attitudes. 

The excitation of the fluxgate compass is supplied with a continuous data stream by the 

I/O processor of the ADSP-21262. The data streams from the two sense coils are captured 

and transferred to buffers in memory by I/O processor. The size of the array type FluxBuffer is 

made large enough to hold the data acquired during one period of the mode Navigation for 

both sense coils. A state port containing two buffers, one for capturing and one for pro-

cessing, is introduced for avoiding any array copy operations. The task-release function 

exciteFluxGate restarts the data stream to the fluxgate compass and switches between the two 

buffers at the start of the LET of task acquireMagHeading. By invoking acquireMagHeading with 

the same frequency as solveMotion the compass is synchronized to the inertial sensor. 

The module INS counts the sampling events in the task solveMotion to provide a time 

base for the other modules. The period of 1220 microseconds for the mode Navigation is the 

time that passes between two consecutive samples of the inertial sensor. 

module INS { 

  import Kalman as K; 

  public const NavPeriod = 1220 us; 

  public type Vector = struct {float x, y, z;}; 

  public type Quaternion = struct {float x0, x1, x2, x3;}; 

  public type InSens = struct {float aX, aY, aZ, omegaX, omegaY, omegaZ;}; 

  type FluxBuffer = int[120]; 

  type FluxDoubleBuffer = struct {byte bufState; FluxBuffer flux1, flux2;} 

  public sensor InSens in uses getInertial; 

  public output Vector pos; Vector vel; Quaternion att; 

  public output long time; Vector mHead; 

  task solveMotion { 

    input InSens in; Vector cPos; Vector cVel; Quaternion cAtt; 

    uses deadReconing(in, cPos, cVel, cAtt, pos, vel, att, time); 

  } 

  task acquireMagHeading { 

    state FluxDoubleBuffer flux; 

    uses [release] exciteFluxGate(flux); 

    uses integrateFluxGate(flux, mHead); 

  } 
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  start mode Navigation [period = NavPeriod] { 

    task [freq = 1] solveMotion(in, K.pos, K.vel, K.att); 

    task [freq = 1] acquireMagHeading(); 

  } 

} 

The module GPS receives position and velocity information from a GPS receiver via 

the LAN interface typically once per second. The LAN interface chip has an internal 

memory buffer. It activates interrupt iGPS of the signal processor to demand service. 

To maintain a timing relationship with the inertial data each dataset from the GPS re-

ceiver is time stamped as soon as it is received.  

module GPS { 

  import INS; 

  public output INS.Vector pos; INS.Vector vel; long timeStamp;  

  public task receiveGPS { 

    input long time; 

    uses getGPSData(time, pos, vel, timeStamp); 

  } 

  asynchronous { 

    [interrupt = iGPS, priority = 2] receiveGPS(INS.time); 

  } 

} 

On power on the module Kalman aligns the estimates for the vehicle’s position, velocity, 

and attitude. Once a good initial fix has been achieved it switches to Filter mode. It then 

combines the inertial measurement, the GPS position and velocity, and the compass heading 

into an estimate of the vehicle’s position, velocity, and attitude. 

module Kalman { 

  import INS; GPS; 

  public output INS.Vector pos; INS.Vector vel;  

  public output INS.Quaternion att; long stamp; 

  public task align { 

    input INS.InSens in; INS.Vector mHead; long time; 

    uses doAlign(in, mHead, time, pos, vel, att, stamp); 

  } 

  public task filter { 

    input INS.Vector nPos; INS.Vector nVel; INS.Quaternion nAtt; 

    input INS.Vector mHead; long time; 

    input INS.Vector gpsPos; INS.Vector gpsVel; long gpsStamp; 

    uses doKalmanFilter(nPos, nVel, nAtt, mHead, time, gpsPos, gpsVel, gpsStamp, pos, vel, att, stamp); 

  } 

  start mode Align [period = INS.NavPeriod] { 

    task [freq = 1] align(INS.in, INS.mHead, INS.time); 

    mode [freq = 1] if isAligned() then Filter; 

  } 

  mode Filter [period = INS.NavPeriod] { 

    task [freq = 1] filter(INS.pos, INS.vel, INS.att, INS.mHead, 

                        INS.time, GPS.pos, GPS.vel, GPS.timeStamp); 

  } 

} 

The module NavReporter finally communicates the navigational solutions to the outside 

world. Whenever a new measurement is available, indicated by a port update on the port 
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Kalman.stamp, it makes it available on the LAN. The asynchronous operation uses the default 

priority, which is the lowest priority (0). Reading the input ports (K.pos, K.vel etc.) is an 

atomic operation. 

module NavReporter { 

  import Kalman as K; INS; 

  public task reportNav { 

    input INS.Vector pos; INS.Vector vel; INS.Quaternion att; long stamp; 

    uses doReporting(pos, vel, att, stamp); 

  } 

  asynchronous { 

    [update = K.stamp] reportNav(K.pos, K.vel, K.att, K.stamp); 

  } 

} 

Figure 6 depicts the dataflow between the modules INS and Kalman. Arrows of the 

same style indicate measurements that are combined by the Kalman filter into one naviga-

tion solution. Note that it takes two sampling periods of the inertial sensor until the data 

arrives at the output ports of the Kalman filter. For slow moving vehicles like sailing vessels 

this deems satisfactory. For faster moving vehicles one would combine the two functions 

solveMotion and doKalmanFilter in one task.  

5 Related work 

This section gives an overview of other evolution lines of Giotto and compares them 

with TDL. 

5.1 xGiotto 

xGiotto [14, 2] extends Giotto by (1) adding an implementation language for the body 

of a task and (2) by adding asynchronous event handling by means of a completely new 

syntax for expressing time-triggered and event-triggered activities. In contrast to TDL, 

xGiotto does not provide a component model and it is not targeted at distribution. To our 

knowledge, there is also no simulation support available for xGiotto. 

Adding a new language for the functionality code significantly increases the complexi-

ty of xGiotto and its tool chain. It is not clear to us what the advantage of this extension for a 

real-time system is, given that it is supposed to be compiled into so-called F-code, which is 

an instruction set for a virtual stack machine that needs to be interpreted at run-time. 

The new syntax for specifying time-triggered and event-triggered activities is based on 

a mechanism called event scoping. An event scope (also called a reaction block) defines the 

actions to be taken in a given time span which will be terminated after the specified time or 

by the occurrence of the specified event. xGiotto builds on the assumption that asynchro-

nous events reoccur only after a certain waiting time. However, this assumption is not ex-

pressed explicitly but encoded implicitly in an xGiotto program. Event scopes may be nest-

ed and, by means of special statements and options, they allow a variety of patterns to be 

specified for the activities inside an event scope. Besides some exceptions with 

non-harmonic mode switches, this includes all possibilities of Giotto programs and it adds 

the execution of LET-based asynchronous task invocations. Event scoping also separates the 

LET of a task invocation from its execution period and thereby goes beyond Giotto. This is 

similar to TDL’s slot selection approach and, in fact, many xGiotto examples can be trans-

formed to TDL in a straight-forward way, including the xGiotto asynchronous activities, 
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which can be expressed as guarded synchronous task invocations within selected slots. 

xGiottos’s event scoping syntax looks somewhat verbose and requires about 3 times the 

space of a corresponding Giotto program. In particular, the timing behavior of an asynchro-

nous task invocation is hard to read because it depends on all reaction blocks within the 

same container scope as the asynchronous task invocation. In contrast, TDL sticks more 

closely to the lean Giotto syntax for specifying synchronous activities and adds additional 

constructs for specifying asynchronous activities. 

The handling of events differs between TDL and xGiotto. There is no guarantee when 

and if at all an event is handled in TDL whereas in xGiotto the time until an event is pro-

cessed is bounded according to the specification of the event scope. Also in contrast to 

xGiotto, in TDL there is no LET assigned to an asynchronous activity as ports are read and 

written right before and after its execution. TDL’s advantage is that it can also express 

long-running background tasks for which a reasonable worst case execution time is not 

available. 

xGiotto's compiler is supposed to perform a static check for the absence of race condi-

tions, which occur when a port is updated multiple times at the same logical time instant. 

Due to the specific design of xGiotto, a precise check is possible but not in polynomial time. 

Therefore, only a conservative check is done in the compiler. We do not need such a check 

at all as we defined appropriate semantics for event-triggered activities and use appropriate 

synchronization mechanisms for their integration into a time-triggered system. Furthermore, 

the schedulability analysis is also expensive in xGiotto as it involves solving a two-player 

safety game. For TDL programs the check is only slightly more complicated (due to slot 

selection) than for Giotto, for which it can be done by a simple utilization test in polynomial 

time [18]. Note that asynchronous activities are not taken into account in this test, and need 

not be taken into account, as TDL provides no guarantees for their execution.  

5.2 HTL 

The Hierarchical Timing Language (HTL) [3] extends Giotto in the following two as-

pects. Firstly, HTL adds parallel composition of multiple Giotto programs similar to TDL. 

Secondly, HTL adds abstract task invocations which may be refined later in a separate pro-

gram. This is called hierarchical refinement and gives HTL its name. Refinement does not 

add expressiveness as every refined program is expressible by an equivalent non-refined one. 

However, it results in a much more compact representation, and simplifies program analysis 

and schedulability tests.  

Although HTL follows the time-triggered programming model of Giotto, it does not 

specify the LET of a task invocation explicitly. The timing is derived implicitly from data 

dependencies between task invocations. 

Figure 6.  Data flow 
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Data flow in HTL is based on so-called communicators – typed variables that are ac-

cessible only at particular, periodic time instants. They define a program-wide fixed com-

munication matrix. The LET of a task results from the communicator instances it reads from 

and writes to. This allows for decoupling the LET from the execution period and also pro-

vides support for task sequences. TDL uses slot selection to achieve the same goal but pro-

vides even more flexibility because in TDL a task may be invoked several times per mode 

period and each invocation may specify its own LET.  

Tasks with the same frequency form a mode in HTL. Within a mode, tasks can com-

municate directly via ports without the need for communicators. Ports are not bound to a 

particular timing.  

Similar to TDL, HTL uses modules for parallel composition and as units of distribution. 

However, HTL modules are neither independent nor self-contained and thus not reusable as 

they depend on globally defined communicators and their timing. In contrast to TDL, HTL 

lacks the support for asynchronous activities.  

HTL is either compiled into Giotto-style E-code or into a newly defined HE-code (hi-

erarchical E-code) [1]. As E-code cannot express hierarchies, HTL programs must be flat-

tened, which results in E-code of exponential size. HE-code supports hierarchical structures 

by extending the original E-code instruction set and thus trades off code size for runtime 

performance and a lean E-machine.  

There is also a Simulink integration of HTL [7]. In contrast to our approach, the simu-

lation results do not match the HTL description exactly. The deviations are due to introduc-

ing additional blocks for breaking algebraic loops. These blocks influence the observable 

timing. Additionally, the HTL integration in Simulink trades off accuracy for performance 

since it requires the sample rate of some blocks to be at least one decimal order of magni-

tude higher than actually required by the HTL description. 

6 Conclusions 

TDL goes beyond its predecessor Giotto in a number of aspects. Besides syntactical re-

finements, it separates the LET from the period of a task invocation, it provides better sup-

port for digital controllers, it adds a component model, and it integrates asynchronous activ-

ities into a time-triggered system. TDL’s component model makes use of Giotto’s concept of 

LET and allows for parallel composition of multiple synchronized Giotto programs without 

any timing interferences. The component model together with the LET concept also builds 

the foundation for transparent distribution. It is not observable if a set of TDL modules is 

executed on a stand-alone node or on a distributed platform. The multi-phase structure of the 

TDL E-machine and the trisection of the E-code follow naturally from Giotto’s concept of 

an E-machine that executes E-code instructions. Only small instruction set changes have 

been necessary for efficiently supporting the TDL component model. Also, TDL’s approach 

for integrating asynchronous activities preserves the basic idea of LET for the time-triggered 

activities but adds background processing while the CPU is idle otherwise. This simplifies 

many programming tasks that are not time critical and thereby paves the way for applying 

the time-triggered programming model in real-world embedded software systems. Com-

pared to other extensions of Giotto, the TDL approach preserves the simplicity of the origi-

nal concepts and is the only one which aims at an industrial strength tool chain. It is fully 

implemented for multiple platforms, supports simulation in a MATLAB/Simulink environ-

ment, and distribution based e.g. on a FlexRay network. 
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