
Could an Agile Requirements Analysis be

Automated?—Lessons Learned from the Successful

Overhauling of an Industrial Automation System

Thomas Aschauer1, Gerd Dauenhauer1, Patricia Derler1, Wolfgang Pree1,

Christoph Steindl2

1 C. Doppler Laboratory Embedded Software Systems, Univ. Salzburg

Jakob-Haringer-Str. 2, 5020 Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

www.cs.uni-salzburg.at

2 Catalysts GmbH,

Prager Str. 6, 4040 Linz, Austria

steindl@catalysts.cc

www.catalysts.cc

Abstract. This paper sketches a recent successful requirements analysis of a

complex industrial automation system that mainly required a talented expert,

with a beginner’s mind, who has been willing to dig into the domain details

together with a committed customer and a motivated team. With these key

factors and the application of an appropriate combination of well-established

and some newer methods and tools, we were able to efficiently elicit, refine,

and validate requirements. From this specific context, we try to derive

implications for innovative requirements analysis. We argue that in projects that

go beyond simple, well defined, and well understood applications, automated

requirements analysis is unlikely to lead to a successful specification of a

system.

Keywords: requirements analysis, agile development, use cases, automation

systems

1 Introduction

Our research group cooperates with an industry partner that is a dominant player in

the area of a specific kind of test automation systems that are used, for example, in the

automotive industry. These automation systems need to be tailored to customer

demands. For the software solution our research partner currently offers, this tailoring

process is not supported well. Thus we were asked to develop a system that radically

improves the customization and operation process of such systems.

The inherent complexity of the domain and the vagueness of the original

requirements document we were provided with were major challenges for the

requirements engineering process. We chose an agile, prototype driven approach with

short feedback cycles. In conjunction with an unbiased team, which consisted of a top

software scientist and four motivated software engineers, we were able to successfully

elicit and analyze the requirements and to come up with an innovative solution. We

are confident that it is able to solve the current system’s shortcomings and to

sustainably improve our partner’s competitive advantage.

The main contribution of this paper is twofold. First it presents a successful

requirements analysis process for an industrial innovation project. Second it argues

that in this particular case automatic requirements analysis methods were not

applicable. As such it serves as a reality check for natural language processing

methods in requirements analysis.

The remainder of this section briefly introduces the target domain and gives a short

overview of the customization process in the current system. Section 2 describes the

project context, the initial requirements and the team structure. The actual

requirements analysis process and the development of the prototypes are described in

section 3. Section 4 presents a case study on how the team’s understanding of one

particular requirement grew over time. Section 5 concludes that automated methods

for analyzing requirements are not likely to have succeeded for this particular project

setting.

1.1 The Domain of Test Automation Systems

This section briefly introduces the application domain of test automation systems.

Typically, a test system is used to acquire measurement data from operations of a

device under test. The resulting data is required, for example, for research and

development or for quality assurance. Various variants of test systems are used in

industry.

An automated test system typically comprises the following parts: a device under test

(or device for short), automatic test equipment (or equipment for short) that simulates

force, a mechanical link between the device under test and the automatic test

equipment for force transmission, measurement equipment ranging from simple

temperature sensors to sophisticated measurement devices, actuators such a throttles,

I/O systems as interface to an automation system that controls the test procedure, and

conditioning devices controlling supply for air, oil, water, etc.

This system structure is depicted in Figure 1: Boxes represent hardware

components, the block arrow represents the mechanical link, solid lines represent

electrical connections between components, and the dotted line represents media

supply for air, oil, water, etc.

Automatic Test

Equipment (ATE)

Device Under Test

(DUT)

Automation
System

I/O Devices
Measurement

Devices

Actuators Sensors Actuators Sensors

Conditioning
Devices

ForceAutomatic Test

Equipment (ATE)

Device Under Test

(DUT)

Automation
System

I/O Devices
Measurement

Devices

Actuators Sensors Actuators Sensors

Conditioning
Devices

Force

Fig. 1. Typical automated test system structure.

A typical test procedure for an automated test system has a duration ranging from

minutes to hours or even days. During that time, up to millions of measurement

values are recorded, which can amount to several gigabytes of measurement data. The

automation system’s software is responsible for controlling the device and the

equipment in real-time, for executing test procedures, and for collecting and recording

the measurement data. Evaluation of the measurement data is performed by separate

post-processing tools.

An automated test system can be operated as stand alone system or in a larger

context, the so-called test-factory. A test-factory is a set of separate automated test

systems, with possibly different capabilities, that share common infrastructure such as

measurement data archiving. The overall goal of a test-factory is to optimize the

throughput by scheduling test orders accordingly.

1.2 Problems of the Current System

Our work is based on the cooperation with a dominant player in the field of test

automation systems. Our research partner offers a software solution that can be

applied to all kinds of test systems through customization to specific requirements.

The software evolved over the last two decades during which its code base, mainly

written in C++ and C, grew to about 1.5 million lines of code.

The automation system software consists of a number of specialized subsystems

such as a hard real-time kernel executing the device under test and the automatic test

equipment, and a subsystem for measurement data acquisition. The interactions

between these subsystems are established through variables in globally shared

memory. Thus the subsystems have to be configured consistently. Due to the

evolution of these subsystems, they all use their own configuration file formats for

customization, ranging from plain text files to binary files.

Configuration parameters describe properties of hardware and software. Properties

of hardware are, for example, the device’s weight. Software properties described in

configuration files include the characteristic values for the equipment’s controller, the

safety limits for the force affecting the device, device driver settings for certain

measurement devices, or user defined formulas and scripts to be executed by the

automation system.

A major hurdle for users that have to customize the system is that the current tool

directly reflects the automation system’s software structure and low-level design

decisions in the user interface. Moreover, all parameters are presented in a tabular

form. The main view basically is a plain table, where each table row represents the

associated subsystem of the automation system and is used to navigate to a detailed

view for the subsystem. In other words, the configuration interface is presented as a

set of interrelated spread-sheet pages.

As an example, the automation system has a separate subsystem for proportional-

integral-derivative controllers (PID-controllers). When a user needs to modify the

parameters for a specific controller of the equipment, the user would need to navigate

to that subsystem, browse through all PID-controllers in the system to find the right

one, and then modify the corresponding parameters. This customization system forces

engineers that are used working with the parts of the test system such as the device,

the equipment, etc. to understand the internals of the software to be able to set

parameters correctly.

In the customization process, engineers have to modify parameters in configuration

files that are loaded by the automation system at system startup. In a typical setup

there are about 10,000 configuration parameters with about 120,000 values to be set

correctly. The creation of a consistent set of configuration files is a time consuming

and error prone procedure which may take weeks or even months for a complex test

system setup.

The current systems offers very limited support for the initial creation of these

configuration files. Only the skeletons representing the structure of the test system can

be created by a tool, the details have to be filled in manually. The time it takes to get

the system running depends on the experience of the engineers in charge. They often

use a form of ad-hoc reuse by using configuration files from previous similar projects

as templates.

Once a set of configuration files is created, it has to be kept synchronized with the

automation system software. When software is updated during the lifetime of a test

system, its configuration files have to be modified accordingly. Again, tool support

for the update process only barely exists. Updating configuration files has to be

performed manually. As a consequence, customers update their automation system

software to major revisions only when absolutely necessary, because the process of

modifying configurations files is time consuming and error prone. Our research

partner therefore has to invest a lot of development effort in the maintenance of many

different software revisions in parallel.

2 Project Setup

Our research partner identified the necessity for improving the current customization

process. Due to the fact that multiple tries to overcome the current system’s

shortcomings by the company itself have failed for different reasons, a research

project in cooperation with our research institute was initiated. This section briefly

describes the initial requirements and the project team structure.

2.1 Initial Requirements

The main mission goal is to develop a system that radically improves the usability of

customization and operation of test automation systems. In the beginning, we were

provided with a rather haphazard requirements document consisting of about 20

items. The list includes specific functional requirements as well as some general non-

functional requirements such as maintainability and security issues. The most

important requirements are summarized as follows:

a) Introduce components, i.e. named sets of parameters, that naturally map to

domain entities such as device under test, automatic test equipment, PID-

controller, etc. and that describe both their visualization and their parameters.

b) On-site extensibility, meaning that new functionality can be added to the system

without the need to recompile any source code.

c) Provide different parameter views including guidance through customization

tasks. The basic idea is that of separation of concerns [1], meaning the splitting

of various aspects of a system into independent parts that can be dealt with

independently. As an example, there should be a separate view for hardware-

related parameters, such as the weight of the device, and another separate view

for software-related parameters, such as the characteristic values of the PID-

controller for the equipment.

d) Support users in mastering the complexity of test system setups, e.g. by hiding

those parameters that are not needed for a specific task. For example, a service

task concerned with finding the defect part between the automation system and a

certain device does not require knowledge about the simulation model for the

device.

e) Provide a context-aware work environment that supports the user in specifying

only valid parameter values for a component by evaluating the component’s

context.

f) Do as many checks as possible as early as possible. Inconsistent measurement

and consumption frequencies, for example, can be detected by comparing

parameters of connected components when the connection is established,

whereas the existence of a piece of hardware in a test system can only be

checked when the system is connected to the actual test system.

Furthermore, ensure that these checks can be integrated in different products to

avoid duplicated implementations.

g) Replace configuration files by parameter sets, i.e. by components.

h) Provide an operations view describing a component’s visualization and the

parameters that are modifiable during the operation of a test system.

i) Compatibility to existing systems, which means supporting a wide range of tools

and technologies.

j) Maintainability of components, which means support for versioning, change

tracking, comparison, and interoperability between different systems and also

between different software versions.

In addition, we also received a huge amount of user documentation, system

requirements specifications for the existing system, and UML diagrams. The latter

consisted of use case diagrams and use cases describing functionality at the level of

specific technical details. These documents evolved along with the existing system

during the last two decades. They were, however, hardly up to date.

2.2 Project Team and Location

Due to the importance of the project for our customer, the company is fully

committed to it and we report to one of its executives. The project is set up around

one of the company’s most respected experts, who is also fully committed to the

project goals. The project leader has more than one decade of experience in the

domain and long time experience in successfully managing projects of comparable

complexity, including innovative software development projects. Later on we realized

that this particular project leader is like an advocate for the project, in the sense as

Wile described knowledgeable advocates as crucial for the success of their domain

specific language experiments [2].

Company representatives with in-depth domain knowledge as well as product

managers were available in the requirements analysis phase. Additionally, we had

access to employees that formerly were associated with competitors and also to

developers of the current system.

The initial software development team consisted of one top software scientist as

team leader, and four young software engineers with little or no project experience.

The team leader has extensive software development experience, social skills training,

and an additional solid background in automation systems, but had no prior

knowledge of the particular automated test system.

During the course of the project, the team grew in size by two software developers

and two domain engineers with background in automation systems and the target

domain.

The project team intentionally resides at a different geographical location than our

partner, which emphasizes the company’s intention to strike a new path in the

development of their software solutions.

3 Prototyping-based, Agile Requirement Analysis

Considering the ambiguity in the provided requirements document (cf. section 2.1),

the fact that the team had no prior knowledge of the domain and the overall vision of

the project seemed somewhat unsettled, the right methods for the requirements

engineering task had to be chosen.

We decided to stick to an agile approach for the following reasons: First, the short

feedback cycles would allow us to quickly respond to changes in the requirements and

to misunderstandings of the original requirements document. As stated by Hirsch,

“the desired properties of the end product can not be known until at least part of the

solution is built” [3]. Second, the project leader’s intuition gave him the feeling that

for an innovation project, a front-up design method would not lead to success. Third,

the team leader had previous, successful experience in applying agile methods.

This section chronologically describes the project phases, beginning from the

initial phases of paper prototyping to the current phase. In addition, the planned

project phases are sketched to depict the different approaches necessary in the

different phases.

3.1 Phase I: Paper Prototyping (September 2006 – February 2007)

Since the project team was completely new to the domain, we started the project with

a 5 day workshop. We approached the problem from the user’s point of view, first

developing a global context with the user roles and their targets, then detailing the

tasks of the users – completely unrestricted by the existing system. During the first

workshops we looked also at systems from three competitors.

We wrote down the discussions in detailed workshop protocols, and we visualized

the scenarios on slides, some with animations so that they resembled how a system

could actually work. Some of these presentations were prepared from one workshop

day to the other, so that we could start with a recapitulation of the previous day, and

extend on it.

Figure 2 shows a conceptual drawing for how a perfect parameterization system

would show the physical parts of a sample test system. Basically, boxes represent

components which are pieces of hardware or software that are connected to other

components. Concepts such as grouping, abstraction by hierarchically structuring

components, and different ways of connecting components were applied and refined

using these drawings.

Fig. 2. Conceptual drawing showing the physical parts of a test system.

We held several workshops in a row, with approximately a month in between, which

gave us time to understand the existing system. Thus we were able to conceptualize

the requirements step by step. This process was documented by writing a glossary

comprising about 90 terms as well as by analyzing and writing some 130 use cases.

At that time the project focus to develop a system that would eventually replace the

parameterization tool of the current software solution was clearly communicated to

the team.

Due to the radical departure from the original system, we knew that we had to

present the ideas in an easy-to-grasp way; hence we decided to develop a mock-up

prototype that would allow showing how various users, in their various roles, would

use the system. For that we specified scenarios such that we could exactly define the

click paths through the prototype for every user. Numerous concepts and ideas were

proposed and discussed in simple drawings on paper, in slide presentations and

figures drawn with common drawing tools. These drawings exemplified how the

software could appear for each scenario.

Similar to the drawing in Figure 2, the mock-up prototype provided a view

representing the physical components of a test system. Figure 3 shows the

corresponding screen.

Wall

Device

Under

Test

Automation

System

Rack

 Interface

Cabinet

Pallet / Cart

Boom

Building

Services

Automatic

Test

Equipment

Measurement

Device 1

Measurement

Device 2

Automation

System

Console

Conditioning

Device

1

232

232232

Fig. 3. Physical view of test system in mock-up prototype.

The development of the mock-up prototype served as a vehicle to document and elicit

customer requirements and to gain domain understanding, such that we were able to

derive 16 core features which represent the essence of the system’s functionality.

Each of those core features was meant to be orthogonal to the others; together they

yield a powerful system to solve the underlying problem. The most essential core

features are summarized as follows:

• Definition of the concept of domain components. Domain components are

defined as sets of parameters that are grouped into self-contained units.

• Support for configuring domain components, that is, setting their parameters or

connecting them to other domain components.

• Support for combining domain components in groups or hierarchies. By allowing

domain components to be built hierarchically, that is, by layering component

systems as described by Szyperski [4], complexity can be managed. Collapse and

expand mechanisms help hiding unnecessary details.

• Support for management of domain components in libraries, which might be

predefined by our customer or be user-specific.

• Support for comparing domain components and helping users to discover

similarities and differences.

• Support for versioning of domain components.

• A mechanism for undo and redo management and for creating and recording

macros at the user interface layer.

• Provide a mechanism for guiding users performing predefined tasks or for

resolving problems. Furthermore, allow users to provide their own experience in

form of guidance for other users.

• Management of different views of domain components and corresponding access

rights.

For the actual demonstrations we decided to have one person clicking through the

prototype, while another person would do the talking, watching the audience, being

able to answer questions and to improvise, and to lead the questions back to the click

paths that we had prepared beforehand. Eventually the team presented the prototype,

which was enthusiastically received by the customer’s top management in January

2007.

We captured the demonstrations as video sequences with a couple of introductory

slides and an animated demo part. Those videos had several advantages:

• They allowed everyone to get some insights about what the project was about.

With the prototype, getting these insights would not have been possible, since the

prototype required in-depth knowledge of the prototype’s implementation and the

predefined click-paths. Only a small percentage of click-paths a typical user

would do were implemented.

• They allowed us to preserve the presentations, so that we ourselves could have a

look at them later on, e.g. when new people were to join the team.

• They allowed us to explain the system without having to conserve the executable

or without installing the executables; hence it was easier to share.

• They forced us to get the user stories right and consistent. We had to remove all

vagueness from the ideas.

However, the videos also had some drawbacks, e.g.:

• Even though we asked for feedback on the last slide shown in the videos, we did

not get valuable feedback from the customer.

• We were told not to distribute information about the project in this format any

more, since some of the customer’s employees spent much time on them.

Moreover, the videos caused disturbance in the current system’s development

team, since this was one of the first sources of information about our project that

was made available to them. As Ramos et al. point out [5], the introduction of

radically new software and the vision of a future work reality associated with it is

never free of emotions.

The system to be built was split in two layers, a generic framework layer and an

application layer built on top of the framework. The framework, developed by our

team, provides a platform for building custom applications that can be developed by

application engineers with profound domain knowledge, but without programming

skills. While the framework incorporates generic domain knowledge, such as sensors,

measurement values, etc., the application incorporates specific domain knowledge

such as the types of equipment applicable for a specific device and test system.

During the first project phase, the software development team gradually gained

understanding for the customer’s demand of a component-oriented framework for test

automation systems. The different interpretations of the term component framework

were one of the major causes of confusion between the customer representatives and

the development team: The development team had components in mind as defined in

software science, that is, components describing a unit of composition with

contractually specified interfaces and explicit context dependencies only. Such a

software component can be deployed independently and is subject to composition by

third parties [6]. Furthermore, the development team had a technical component

framework in mind, in the sense of e.g. the OSGi platform [7], while the customer

representatives thought of a framework for modeling and assembling components

specific to the domain, such as DUT and controllers. Domain components are

somehow related to software science components, that is, they are units of

composition, they explicitly describe dependencies, and they are units of deployment.

For the further success of the project it was crucial to overcome this

misunderstanding.

3.2 Phase II: Working Prototype Based on a Domain-Specific Language

(March 2007 – September 2007)

Early in the project, we considered a domain-specific language (DSL) as crucial basis

for describing test system components. Motivated by our project leader, the DSL was

designed as a generic one for describing automation systems. This means that the

DSL offers, for example, a means for describing data types of values, the construct of

a generic component for grouping values and also for grouping associations between

these components. The language for describing test systems is an extension of the

generic one. We refer to the generic language as CDL (Component Description

Language) and to the test-system-specific language as tsCDL.

For the refinement of CDL and tsCDL we applied an informal approach. Starting

in April, we evaluated tools and methodologies that would best fit this task. We first

used the Unifid Modeling Language (UML) syntax [8] to sketch and iteratively refine

the key test automation system concepts such as electrical plugs, wires, mechanical

connections, sensors, and actuators. It turned out that a simple UML diagram drawing

tool with limited UML capabilities was better suited for this purpose compared to a

full-featured UML editor.

In addition to the UML-based CDL and tsCDL refinement, we came up with a

textual representation of CDL and tsCDL. We used both, the UML-based and text-

based versions of tsCDL to describe test system components such as devices, data

acquisition units and also complete test systems. The definition and refinement of the

textual syntax of the language and the UML-based version were intertwined.

The following code fragment in Figure 4 sketches the description of a test

automation system. The sample test automation system consists of three components,

the automatic test equipment Ate, an I/O hardware called IO, and the automation

system called AuSys . The component Ate is of type AteType127, the component IO is

of type IODevice, and the AuSys component is of type AutomationSystemPC. The test

automation system description also states which locations are relevant in this case: a

location called Floor3 and a ControlRoom. The second line in the RELATIONS

section harnesses the location description by stating that the Ate component is located

on Floor3. The Ate component is hierarchically composed of other components, such

as the BendingBeam. The BendingBeam’s plug Plug2 is connected to plug X17 of the

IO component, which is specified in the first line of the RELATIONS section.

COMPONENT TestSystem
 COMPONENTS
 Ate : AteType127
 IO : IODevice
 AuSys : AutomationSystemPC
 END
 LOCATIONS
 Floor3
 ControlRoom
 END
 RELATIONS
 Ate.BendingBeam.Plug2 CONNECTS IO.X17
 Ate AT Floor3
 ...
 END
END

Fig. 4. Sample test automation system described textually in the tsCDL.

Splitting the domain-description language in a generic one (CDL) and a test-system-

specific one (tsCDL) is an example of an architectural aspect that could not be

derived as requirement from the information we received from the customer.

Nevertheless, this extra effort of coming up with both description languages turned

out to be crucial for other system parts that rely on them. For example, we only

needed to implement an interactive visual editor for CDL, not the much richer tsCDL

which is constantly changed and extended. This is also true for the persistence layer

for storing and retrieving domain components. A key objective for the project was the

compatibility between components stored in different software versions. Another key

objective was that software upgrades must not result in costly database schema

migrations. As such, the persistence format has to be stable and should not change

often during the further evolution of the software. Our experiments corroborated that

we only need to define a database schema for the CDL, not for the the tsCDL.

The design of CDL and tsCDL as well as the development of the interactive visual

editor, the persistence mechanism for CDL components and their versioning were

inherently difficult to plan. Initial attempts to establish a development process, such

as Scrum [9], were abandoned since the estimated efforts turned out to be unrealistic

and the process became an overhead without any benefit.

The major milestone of Phase II was the development of a prototypical first

version of the software system incorporating the most essential features of the 16 core

features identified in the previous phase.

3.3 Decompression Phase III (September 2007 – February 2008)

After presenting the results of the second phase to the executives of our customer, the

team entered a short decompression phase [10], which means the team performed a

retrospective to improve subsequent phases. The retrospective revealed the following

key success factor: Defining concrete scenarios helped to focus the development of

the prototype. Furthermore, the scenarios had to be defined in detail, so that all

vagueness had to be eliminated and the concepts had to be sound and understandable

from the user’s point of view.

The following factor has been identified as restraining to the project success: Due

to the inherent complexity of the application domain and its peculiarities, the team

depends on a variety of information sources. We did not consistently question the

quality and the completeness of the information we got.

3.4 From Research Prototype to Product (Starting February 2008)

The software system has reached a level of maturity so that domain engineers can use

it to model real-world test system components. The foundation, based on CDL and

tsCDL, is stable and additional features are continuously integrated enabling domain

engineers to model the various aspects of test system components as they are found in

test system products. The goal of a milestone in August 2008 is to demonstrate that

the software system is capable of modeling, configuring and operating a real test

system. The long-term plan is that the newly developed software system will be

shipped as product to customers in 2010.

The additionally required features are derived from the feedback of the customer's

domain engineers. We have established a bi-weekly release cycle now. The release

planning incorporates the requests of domain engineers in the form of user stories,

describing the expected behavior in terms of the user interface. These stories are

usually a few lines of text and the effort to implement them ranges from one person-

day to about one person-week.

These requests of domain engineers represents one source for our release planning.

The other sources are the initial requirements as presented in section 2.1 and the

refactorings suggested by the development team itself. We treat the identified

refactorings of the existing code as user stories.

4 Case study: Understanding the Versioning Requirement

We exemplify how our understanding of the requirements evolved over time by

picking one of the 20 initial requirements which we consider as a representative

example. The initial list of requirements contained the following text, which was

summarized as the last bullet-hole item in section 2.1:

«12. Maintainability: it must be possible to version parameters and parameter sets;

Change logging, i.e. who changed what and when; Export/import among test

fields, also language independent; Search/find; Difference of parameters and

parameter sets; Undo; Interoperability of previous software versions with data in

newer version and vice versa»

We were quite aware that this key requirement was intentionally phrased quite

vaguely, for example, the “and vice versa” phrase. Therefore, we tried to de-scope

some of the requirements for the initial project Phase I:

«12. Maintainability:…»

« � we will propose a concept for the operation until the end of 2006

� the domain model and meta-model will allow for versions

� since the implementation would require major changes to the existing system,

we won’t perform them until the end of 2006»

So for a while we turned back to the more challenging requirements and developed

concepts, prototypes etc. as explained in section 3.1 above. One of the 16 core

features identified in Phase I was the following:

«13. Updating of components with a transport mechanism for changes:

It is possible to deliver application components in a new version and deploy

them. Macros can be used as transport mechanism for changes.

There will be a language for describing:

• How old data shall be migrated

• Whether the new version must be deployed or can (optionally) be

deployed

• Whether user interaction / acknowledgement is necessary or whether the

update shall be performed silently

Updating application components is not about updating software, but about

updating descriptions of components (together with the underlying data).

Updating of system functions would require a software update which we do not

address in the first release. »

Even then we thought that updating would “simply” mean that we need some flexible

mechanism to get data of older versions migrated to the schema of the new version.

During a workshop with another project team of the customer in February 2007 they

presented the following requirements or conclusions:

«‘Import mechanism is enabled to do needed data migration’

‘Migration Framework is a MUST!’

‘Be migration aware’

‘Versioning - Implemented within our storage services’»

We took those statements again as hints that we will only need to import old data in

new versions of the software. We acknowledged the need for a migration framework

and versioning but deferred the topic nevertheless, believing that we will also be able

to implement it in the persistence layer with some import / export filters.

In March 2007, we augmented the requirements with use cases. We identified the

following use cases:

• UC Versioning 1 – Select a version

• UC Versioning 2 – Browse version log

• UC Updating 1 – Define data migration

• UC Updating 2 – Perform data migration

However, we sketched only the main scenario for the versioning use cases, and left

the updating use cases undefined. Back then, leaving everything open was the best we

could do, since any detail would have been speculation.

At the end of March 2007, we had an architecture workshop with the customer

where the development manager of the existing system mentioned that the new

system will have to sustain the concurrent operation of automated test systems in

multiple versions. We considered it sufficient if our software were able to cope with

new and old versions of the data.

In Phase III at the beginning of December 2007, we discussed the topic in detail

with our advocate. The discussion was summarized with the following versioning

requirements:

• In a test field, multiple test systems will be in use with various versions of the

new software system.

• The new software system must be able to process old and new components.

• It shall be possible to migrate components in old versions to newer versions, such

that test systems with new versions of the software system can use the old

components.

• If possible, it shall be possible to use the new components even on old test

systems, possibly just in a read-only mode.

We discussed the implications of those requirements on the various layers of the

system and how changes in each layer would affect upper layers. Analogies from

books on database refactoring were drawn, e.g. the idea of scaffolding code in the

database, which transparently enables one version of the software to work with

several versions of the data model. As described by Ambler [11], this can be achieved

by introducing views and triggers in the database layer. Furthermore, we drew

analogies from related scientific papers, dealing for example with the problem how to

co-evolve a model when the corresponding meta-model evolves, as described by

Wachsmuth [12].

We identified two principal approaches to deal with version changes: to track all

transformations, i.e. a priori, versus to derive modifications from delta detection, i.e. a

posteriori. The latter approach was ruled out by construction of examples that showed

its deficiencies.

However, we still did not really accept the need for bidirectional compatibility, i.e.

that new versions of the software can work with old and new data, and that old

versions of the software can work with old and new data.

At the end of December 2007, our advocate kept pushing towards bidirectional

compatibility. In January 2008, we finally accepted the challenge of bidirectional

compatibility and gave it a try, i.e. we did a so-called spike in eXtreme Programming

terminology [13]:

• We refined the implementation from the user’s point of view.

• We implemented the solution, which required several extensions of the

persistence layer and upper software layers.

• We demonstrated to the customer how data model transformations can be defined

and how a new version of the system can then automatically transform data from

the old format into the new format. Furthermore we demonstrated how an old

version of the system can automatically transform data from the new format into

the old format, given that a bidirectional mapping between old and new meta-

model exists.

Summarizing the case study,

• we considered versioning and updating as a black box for a long time

• we ignored repeated hints by the customer, or we did not understand them

• we placated our advocate for a long time

Finally, we worked through the problem within three calendar weeks, and we came up

with an appropriate solution for a problem that the customer has had for decades but

that resisted several previous attempts to be solved. In the end, all the extensions did

not have a negative impact on the existing architecture. We think that it would have

been impossible to derive the requirements of this aspect from documents we received

from the customer.

5 Limits of Automated Requirements Analysis

This real-world project corroborates, in our point of view, that requirements analysis

can barely be automated if the stakeholders do not have a clear understanding about a

software system. In this case it was the feeling of the customer that the current system

could be improved significantly. The customer and its team were somehow trapped in

the existing system. Knowing too many details and worrying about significant

changes made it virtually impossible to come up with appropriate requirements for an

overhauled system. The required creativity cannot be expected from tools. To quote

Deming [14]: “As a good rule, profound knowledge comes from the outside, and by

invitation. A system cannot understand itself.”

The beginner’s mind [15] allowed the team to profoundly analyze the features of

the current system as well as its strengths and weaknesses. This is a quality already

pointed out by Berry [16]. He describes a computer-system-savvy person without any

knowledge of the domain as the person asking ignorant, not stupid, questions to

expose tacit assumptions made by domain-expert stakeholders assuming incorrectly

that all other domain-expert stakeholders understand. By making those assumptions

explicit, conflicts in the understanding are discovered at an early stage in the software

development.

5.1 Could Automated Support for Requirements Analysis have been

Beneficial?

Reflecting on potential use of automated approaches to requirements analysis, we

identified two areas where application of such approaches could have been beneficial

in our case: term extraction and preventing ambiguity. For a recent overview of state-

of-the-art approaches to requirements engineering in general see Cheng and Atlee

[17].

Since the project team was completely new to the problem domain, automated

support for extracting the domain specific terms could have been applied. As Kof

points out [18], a thorough understanding of domain concepts is essential and a

precise definition for each concept is required. An approach to semi-automatically

extract ontology from requirements documents is proposed. Such an approach or

similar ones are, however, likely to have failed in our case for the following reasons:

• As pointed out in section 2.1, the initial requirements document we received

consisted of only 20 items that just briefly described the system to be built.

Domain specific terms occurred in the document, but due to the document’s

limited size the usage of a semi-automated or an automated tool for term extraction

is not likely to have produced substantially better results than performing this task

manually. In the paper prototyping Phase I, as described in section 3.1, we created

a glossary for the essential domain concepts.

• Along with the initial requirements document, we also received a huge amount of

documents related to the current system, such as requirements specifications and

user documentation. When the team sifted through these documents, it soon

became obvious that most of the information was not relevant in the early project

phases. It still is in question whether the majority of the material will be of any use

at all since it deals with specific technical details and peculiarities. Applying a

system for term or ontology extraction on these documents would have been a

challenge on its own due to the size of the documents. It is not clear how such a

system could have helped in the decision which concepts to ignore, and which not

to ignore, in particular if one keeps in mind that the number of essential concepts is

very small compared to the overall number of concepts.

For example, an automatic analysis of the documentation would likely have

identified the normname as one of the most relevant concepts in the domain just by

the number of references. Normnames are, however, just a necessity of the current

system's implementation: A normname is the unique name of a variable in the

global shared-memory which is used to connect the different functions and

subsystems, as mentioned in section 1.2. These global variable names are one

major shortcoming of the current system that we could get rid of in the new

system.

• Important concepts of the new system were completely missing in the current

system; they were only described by general terms in the initial list of

requirements. The versioning and compatibility requirement as described in section

4 is an example. Term extraction techniques would not have been helpful for

understanding these requirements either.

Another area where application of natural language processing tools would have been

conceivable is in preventing ambiguity in the documents we generated. For example,

Fantechi et al. [19] present an approach that analyzes use cases written in natural

language and provide certain metrics for measuring aspects related to ambiguity.

These might have improved the consistency of the use case documents we created in

Phase I as described in section 3.1. Because these use cases were not the final

specification of the system to be built, but just a vehicle to further understand the

requirements and to structure the problem domain, fewer ambiguities in these

documents would have just been a minor benefit.

 For a project of this type, i.e. searching for a creative and revolutionary solution,

the successful application of automated techniques is unlikely. Typically, the

customer would not present a fully specified requirements document and expect a

development team to return a working program after a certain amount of time, within

a predefined budget. Instead, in an iterative process with frequent workshops,

demonstrations and presentations, the customer can see how the project is evolving

and how the team performs. Moreover, the team can gradually gain better

understanding of the customer’s real demands.

5.2 Conclusion

We assume that none of the tools that automate requirements analysis could lead to a

successful completion of the requirements analysis for our project, because the

available inputs from the customer are too haphazard and the terminology is not

precise enough—a situation that is typical for many real-world software projects. In

such a context the sketched agile requirements analysis with short feedback cycles

together with the communication vehicle of a throw-away prototype has turned out to

be an appropriate requirements analysis method. We are convinced that no automated

system would have been able to support, let alone accomplish something close to such

a successful requirements analysis and specification based on the available natural

language descriptions of the requirements, the current system and its envisioned

features.

References

1. Dijkstra, E. W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New

Jersey (1976)

2. Wile, D.: Lessons Learned from Real DSL Experiments. Proceedings of the 36th Hawaii

International Conference on System Sciences (HICSS’03), IEEE Computer Society (2003)

3. Hirsch, M.: Moving from a Plan Driven Culture to Agile Development. Invited talk at ICSE

‘05, The 27th International Conference on Software Engineering, St. Louis (2005)

4. Szyperski, C.: Component software and the way ahead. In Foundations of Component-

Based Systems, G. T. Leavens and M. Sitaraman, Eds. Cambridge University Press, New

York, NY, 1-20 (2000)

5 Ramos, I., Berry, D. M., Carvalho, J.: The Role of Emotion, Values, and Beliefs in the

Construction of Innovative Work Realities. In Soft-Ware 2002: Proceedings of the First

International Conference on Computing in an Imperfect World. Springer-Verlag, London

(2002)

6. Szyperski, C., Pfister, C.: Workshop on Component-Oriented Programming, Summary. In

Muehlhaeuser, M. (ed.): Special Issues in Object-Oriented Programming – ECOOP96

Workshop Reader. Heidelberg: Dpunkt Verlag (1997)

7. OSGi Alliance, Open Services Gateway initiative , http://www.osgi.org/.

8. UML, Unified Modelling Language, http://www.uml.org/.

9. Rising, L., Janoff, N. S.: The Scrum Software Development Process for Small Teams, IEEE

Software, vol. 17, no. 4, pp. 26-32 (July/August, 2000).

10. Gamma, E.: Agile, open source, distributed, and on-time: inside the eclipse development

process. Keynote talk at ICSE ‘05, The 27th International Conference on Software

Engineering, St. Louis (2005)

11. Ambler, S. W., Sadalage, P. J.: Refactoring Databases : Evolutionary Database Design

(Addison Wesley Signature Series). Addison-Wesley Professional (2006)

12. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In Ernst, E. (ed.)

Proceedings of the 21st European Conference on Object-Oriented Programming

(ECOOP’07). LNCS vol. 4609, Springer, Heidelberg (2007)

13. Beck, K.: Test-driven development: By example. Addison-Wesley Publishing (2002)

14. Deming, W. E.: The New Economics for Industry, Government, Education - 2nd Edition.

MIT Press. ISBN 0-262-54116-5 (2000)

15. Suzuki, S.: Zen Mind, Beginner’s Mind, Weatherhill (1973)

16. Berry, D. M.: The Importance of Ignorance in Requirements Engineering, Journal of

Systems and Software (1995)

17. Cheng, B. H., Atlee, J. M.: Research Directions in Requirements Engineering. In 2007

Future of Software Engineering, International Conference on Software Engineering. IEEE

Computer Society, Washington, DC (2007)

18. Kof, L.: Natural Language Processing: Mature Enough for Requirements Documents

Analysis? In Natural Language Processing and Information Systems, 10th International

Conference on Applications of Natural Language to Information Systems, Alicante, Spain

(2005)

19. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: pplication of Linguistic Techniques for Use

Case Analysis. In Proceedings of the 10th Anniversary IEEE Joint international Conference

on Requirements Engineering. IEEE Computer Society, Washington, DC (2002)

