
Portable and composable real-time
software – a disruptive approach
W. Pree

The reliability and quality of embedded systems suffer from the fact that the state-of-the-art in embedded software development is
significantly behind modern programming in non-real-time domains. A major difference is that the platform, consisting in particular of
processors, communication architecture, topology of a distributed system, communication protocols and the operating system(s), needs
to be defined first. The software is then adjusted to that platform. Changes of the platform typically imply a major adaptation if not a
development from scratch. Our research focuses on the envisioned paradigm shift that allows the definition of the timing and
functionality behavior independent from a specific platform. Automatic code generation ensures that the executable code on a specific
platform behaves exactly as specified. Thus the platform and the mapping to it are defined at the end of the development process. This
disruptive approach allows, as typical for disruptive technologies, a cost-quality relation that was previously regarded as impossible:
significantly better quality, reliability and portability at a fraction of today’s development costs.

Keywords: real-time components; model-based development; dependability; portability

Ein Paradigmenwechsel hin zu portablen Echtzeit-Softwarekomponenten.

Zuverlässigkeit und Qualität von eingebetteten Systemen leiden darunter, dass die Softwareentwicklung für diese Domäne, verglichen mit
dem Stand der Technik in anderen Anwendungsbereichen, zu wünschen übrig lässt. Ein wesentlicher Unterschied besteht darin, dass die
Software auf eine bestimmte Plattform zugeschnitten wird. Unter Plattform verstehen wir die Prozessoren, die
Kommunikationsarchitektur, die Topologie eines verteilten Systems, das Betriebssystem sowie die verwendeten Protokolle. €AAnderungen
der Plattform führen meist zu substantiellen €AAnderungen oder sogar zu Neuentwicklungen. Forschungsarbeiten konzentrieren sich
darauf, einen Paradigmenwechsel herbeizuführen, so dass das Zeitverhalten und die Funktionalität unabhängig von der Plattform
definiert werden können. Der Plattform-spezifische Code wird durch automatische Code-Generatoren erzeugt. Mit diesem
Paradigmenwechsel ist es möglich, eine Kosten-Nutzen-Relation zu erhalten, die bisher nicht realistisch erschienen ist: signifikant bessere
Qualität, Zuverlässigkeit und Portierbarkeit zu einem Bruchteil der heutigen Entwicklungskosten.

Schlüsselwörter: Echtzeit-Komponenten; Modell-basierte Entwicklung; Zuverlässigkeit; Portierbarkeit

Eingegangen am 27. September 2006, angenommen am 23. November 2006
� Springer-Verlag 2007

1. Introduction

Traditional development of software for embedded systems is highly

platform specific. The hardware costs are reduced to a minimum

whereas high development costs are considered acceptable in case

of large quantities of devices being sold. However, with more

powerful processors even in the low cost range, we observe a shift

of functionality from hardware to software and in general more

ambitious requirements. A luxury car, for example, comprises about

80 electronic control units interconnected by multiple buses and

driven by more than a million lines of code. In order to cope with

the increased complexity of the resulting software, a more platform

independent ‘‘high-level’’ programming style becomes mandatory.

In case of real-time software, this applies not only to functional

aspects but also to the temporal behavior of the software. Dealing

with time, however, is not covered appropriately by any of the

existing component models for high-level languages.

A particularly promising approach towards a high-level compo-

nent model for real time systems has been laid out in the Giotto pro-

ject (http:==www-cad.eecs.berkeley.edu=�fresco=giotto) (Henzinger,

Horrowitz, Kirsch, 2001a, b; Henzinger et al., 2003) by introduction of

logical execution time (LET), which abstracts from the physical exe-

cution time on a particular platform and thereby abstracts from both

the underlying execution platform and the communication topology.

Thus, it becomes possible to change the underlying platform and even

to distribute components between different nodes without affecting

the overall system behavior. Giotto, however, is primarily an abstract

mathematical concept and there exist only simple prototype imple-

mentations, which show some of the potential of LET.

This paper presents a component model, named TDL (Timing

Definition Language) (Templ, 2004), that has been developed in

the course of the MoDECS1 project at the University of Salzburg,

as a successor of Giotto. It shares with Giotto the basic idea of LET

but introduces additional high-level concepts for structuring large

real time systems.

In the following, we shall start with an explanation of LET and

proceed with an overview of the TDL component model. An outlook

of envisioned future TDL extensions rounds out the paper.

2. Logical execution time (LET)

LET means that the observable temporal behavior of a task is in-

dependent from its physical execution (Henzinger, Horrowitz, Kirsch,

2001a). It is only assumed that physical task execution is fast enough

to fit somewhere within the logical start and end points. Figure 1

shows the relation between logical and physical task execution.

originalarbeiten
Elektrotechnik & Informationstechnik (2007) 124/1/2: 9–12. DOI 10.1007/s00502-006-0410-7

1 The MoDECS project (www.MoDECS.cc, 2003–2005) was supported by the FIT-IT

Embedded Systems grant 807144 (www.fit-it.at).

Pree, Wolfgang, O. Univ.-Prof. Dipl.-Ing. Dr., C. Doppler Lab Embedded Software

Systems, University of Salzburg, Jakob-Haringer-Straße 2, 5020 Salzburg, Austria

(E-mail: pree@SoftwareResearch.net)

heft 1–2.2007 | 9Jänner/Februar 2007 | 124. Jahrgang

The inputs of a task are read at the release event and the newly

calculated outputs are available at the terminate event. Between

these, the outputs have the value of the previous execution.

LET introduces a delay for observable outputs, which might be con-

sidered a disadvantage. On the other hand, however, LET provides the

cornerstone to deterministic behavior, platform abstraction and well-

defined interaction semantics between parallel activities (Kirsch, 2002).

It is always definedwhich value is in use at which time instant and there

are no race conditions or priority inversions involved. As we will see

later, LET also provides the foundation for transparent distribution. A

recent extension of TDL has substantially improved the support for

digital controllers and preserved the semantics of existing TDL features.

3. TDL component model

Based on the concept of LET, Giotto introduces the notion of a mode

as a set of periodically executed activities. The activities are task in-

vocations (according to LET semantics), actuator updates, or mode

switches. All activities can have their own rate of execution and all

activities can be executed conditionally. Actuator updates and mode

switches are considered to be much faster than task invocations, thus

they are executed in logical zero time. The set of all modes reachable

from a distinguished start mode constitutes the Giotto program.

Our successor of Giotto, named TDL (Timing Definition Language),

extends these concepts by the notion of the module, which is a named

Giotto program that may import other modules and may export some

of its own program entities to other client modules. Every module

may provide its own distinguished start mode. Thus, all modules

execute in parallel or in other words, a TDL application can be seen

as the parallel composition of a set of TDL modules. It is important to

note that LET is always preserved, i.e. adding a new module will never

affect the observable temporal behavior of other modules. It is the

responsibility of internal scheduling mechanisms to guarantee confor-

mance to LET, given that the worst-case execution times (wcet) and

the execution rates are known for all tasks. Figure 2 sketches a sample

module with two modes containing two cooperating tasks each.

Parallel tasks within a mode may depend on each other, i.e. the out-

put of one task may be used as the input of another task. All tasks are

logically executed in sync and the dataflow semantics is defined by LET.

Modules support an export=import mechanism similar to modern

general purpose programming languages such as Java or C#. A service

provider module may export a task’s outputs, which in turn may be

imported by a client module and used as input for the client’s computa-

tions. All modules are logically executed in sync and again the dataflow

semantics is defined by LET.Modules are a top-level structuring concept

that serves multiple purposes: (1) a module provides a name space and

an export=import mechanism and thereby supports decomposition of

large systems, (2) modules provide parallel composition of real time

applications, (3)modules serve as units of loading, i.e. a runtime system

may support dynamic loading and unloading of modules, and (4) mod-

ules are the natural choice as unit of distribution because dataflow

within a module (cohesion) will most probably be much larger than

dataflow across module boundaries (adhesion). The possibility to dis-

tribute TDLmodules across different computation nodes leads us to the

notion of transparent distribution as explained below.

4. Transparent distribution

We define the term transparent distribution in the context of hard

real-time applications with respect to two points of view. Firstly, at

runtime a TDL application behaves exactly the same, no matter if all

modules (i.e. components) are executed on a single node or if they

are distributed across multiple nodes. The logical timing is always

preserved, only the physical timing, which is not observable from the

outside, may be changed. Secondly, for the developer of a TDL

module, it does not matter where the module itself and any im-

ported modules are executed. The TDL tool chain and runtime sys-

tem frees the developer from the burden of explicitly specifying the

communication requirements of modules. It should be noted that in

both aspects transparency applies not only to the functional but also

to the temporal behavior of an application.

The advantage of transparent distribution for a developer is that

the TDL modules can be specified without having the execution on a

potentially distributed platform in mind. The mapping of modules to

computation nodes is defined separately. Nevertheless, the func-

tional and temporal behavior of a system is exactly the same no

matter where a component is executed.

The only place where distribution is visible is for the system

integrator, who must specify the module-to-node assignment by

means of a configuration file. This file, which is based on the available

processing nodes with their peripherals (e.g., directly connected

sensors and actuators) and network resources, is used as input for

the TDL tool chain. Figure 3 shows an example of a set of four TDL

modules distributed across three nodes.

Figure 3 shows the screenshot of the TDL:VisualDistributor tool

that allows the visual and interactive specification of the platform

and the module-to-node assignment. In the example we have de-

fined a FlexRay cluster consisting of three nodes (node1, node2, and

node3). The modules M1, M2, M3, and M4 are assigned to theseFig. 2. Visual representation of a TDL module

Fig. 1. Logical execution time

Fig. 3. Example of distributed modules

originalarbeiten
W. Pree Portable and composable real-time software – a disruptive approach

10 | heft 1–2.2007 e&i elektrotechnik und informationstechnik

nodes according to Fig. 3. Assigning a module to a node is a straight-

forward drag-and-drop operation in the TDL:VisualDistributor.

5. TDL tool chain

Figure 5 shows the TDL core tool chain as well as which inputs the

tools require and which outputs they produce. The compiler pro-

cesses TDL source code and generates an abstract syntax tree (AST)

representation of the TDL program as intermediate format as well

as the so-called embedded code (E-code) (Henzinger, Kirsch, 2002),

which describes when to release a task. The plug-in architecture of

the compiler allows the extension of the tool with any number of

tools that rely on the AST.

The bus scheduler is such a plug-in tool that generates the bus

schedule, based on a configuration file. The configuration file simply

contains a list of computing nodes that comprise the particular

platform, the assignment of TDL modules to computing nodes, and

the physical properties of the communication infrastructure. This can

be specified interactively with the TDL:VisualDistributor tool.

The runtime environment of TDL is structured in several layers

and is based on virtual machines. Tasks are executed according to

the LET semantics under the control of the E-machine (Henzinger,

Kirsch, 2002): a virtual machine that executes E-code instructions.

Scheduling decisions can be executed by the OS scheduler or better

by the S-machine (Henzinger, Kirsch, Matic, 2003): a virtual machine

that executes scheduling-code (S-code) instructions.

6. TDL1

The aim of TDLþ is to achieve a comparable leap forward as the

Giotto and MoDECS projects have delivered and thus narrow the gap

close to zero between software development for non-embedded,

non-real-time domains and embedded, hard real-time systems. In

other words, we aim at what is called model-based development of

embedded control systems after mastering the major initial hurdles

in the Giotto and MoDECS projects. Model-based development

means that appropriate abstractions narrow the gap between the

domain problem and its solution. Table 1 sketches in the right col-

umn, in bold face, the gap, that is, the missing steps towards full-

fledged model-based development of embedded control systems.

The left column of Table 1 summarizes the history of programming

languages: This history is a series of successful inventions of abstrac-

tions for general-purpose programming: (1) Basic high-level program-

ming constructs (sequence statements, conditional statements, loop

statements) together with hierarchical structuring means called func-

Fig. 4. Mapping TDL modules to nodes

Fig. 5. TDL tool chain core

Table 1. Abstractions for general purpose programming (left) versus for embedded programming (right)

Abstractions in general-purpose
programming languages

Abstractions in embedded, hard real-time
programming languages

(5) Aspect-Oriented Programming (AOP) harnesses meta-
programming to improve the modularization of software

(5) TDL-AOP for a better structuring of embedded software
and avoidance of replicated code
) well-structured, maintainable code

(4) domain-specific language extensions, for example,
class=component libraries for Graphical User Interfaces (GUIs)

(4) relevant aspects of control theory: 10=1 rule for actuator
updates, advance calculation
) high-quality controllers with minimal hardware resources

(3) object-orientation (abstract data types, inheritance,
dynamic binding)

(3) dynamic loading of TDL modules; instantiable TDL modules
(e.g., for specifying redundancy in fault-tolerant systems);
TDL mode extension through inheritance
) reusability of TDL components

(2) modules (information hiding through abstract data structures)
as means for component-based reuse and for structuring large
software systems

(2) TDL module
) transparent distribution

(1) basic language abstractions and hierachical structuring
constructs (functions and procedures) as foundation of high-level,
platform-independent programming languages

(1) Logical Execution Time (LET)
) determinism, portability

originalarbeiten
W. Pree Portable and composable real-time software – a disruptive approach

heft 1–2.2007 | 11Jänner/Februar 2007 | 124. Jahrgang

tions and procedures set the stage of significanty more platform-

independent programming in the late 1950s and 1960s. This ended

the tedious machine level and assembly coding. (2) The module was

invented as means to structure software in the large and to provide

reusable software components. Modula and Ada as typical represen-

tatives of modular languages were defined in the 1970s and 1980s.

(3) Object-oriented languages improved the reusability of modules.

The class construct as instantiable module was originally provided by

Simula in the 1960s. Smalltalk (1970s) and later on Cþþ (1980s), Java

(1990s) and C# (2000) pushed object-orientation as common pro-

gramming paradigm into the main stream. (4) Domain-specific exten-

sions of languages have been delivered as class or component libraries

since the 1980s. GUI (Graphical User Interface) libraries represent one

important example of such a domain-specific extension. (5) So-called

aspect-oriented programming (AOP), proposed in the 1990s, is her-

alded as post-object-oriented programming paradigm. It harnesses

meta-programming to be able to modify the semantics of a program-

ming language in order to improve the modularization of software.

The items (1) and (2) in the right column of Table 1 summarize the

achievements of the Giotto and MoDECS projects towards closing

the gap between embedded and non-embedded software develop-

ment: The pioneering LET abstraction delivers the important soft-

ware property determinism and together with the TDL component

model forms the foundation of transparent distribution (see section

4). TDLþ aims at delivering (3), (4) and (5) in the right column of

Table 1. Radical innovation is required to invent and shape these

missing abstractions: as (1) and (2) corroborate, the abstractions of

high-level general purpose programming languages cannot be trans-

ferred directly to the real-time domain. For example, a module in

general-purpose programming languages comprises other entities

than a TDL module which has been defined according to the char-

acteristics of hard real-time embedded systems. The same is true for

the LET abstraction. The concepts and intentions of general-purpose

programming language abstractions serve only as inspiration for the

corresponding abstractions in the embedded hard real-time domain.

6.1 Expected results

TDL has already been seamlessly integrated with Matlab=Simulink,

which has been established as industry standard for modeling con-

trol applications. We accomplished the integration in the MoDECS

project and called it the TDL:VisualCreator tool. This tool will be

extended to comprise the TDLþ extensions.

The fully automated code generation and the TDL run-time system

guarantee that the behavior of a TDL module corresponds exactly to

its specification. This is a characteristic and a principal advantage of

model-based software development. The conventional way of show-

ing the correctness of the code generators is by testing various

sample applications. Instead of just testing the code generators we

aim at verifying the most critical generator tool in the TDLþ project,

the bus schedule generator. This represents another significant con-

tribution to full-fledged model-based software development.

To sum up, the principal goals of the planned future research

activities are the following:

" full-fledged model-based development by inventing and imple-

menting abstractions (3), (4), and (5), resulting in the modeling

language TDLþ; some of the control engineering enhancements

(4) have already been accomplished
" corresponding extensions of the MatLab=Simulink integration,

that is, the TDLþ:VisualCreator tool
" verification of the bus schedule generator

6.2 Practical relevance

The TDL tools are currently used and evaluated by automotive suppli-

ers and OEMs, in particular in the realm of time-triggered distributed

systems development with FlexRay and with EtherCAT. TDL will also

be used in the realm of the 2007 DARPA Urban Grand Challenge in

the vehicle developed by the University of California, Berkeley.

7. Conclusion

The LET abstraction invented in the realm of the Giotto project paved

theway for transparent distribution in real-time systems. From our own

experience and the feedback from various industry partners we are

convinced that this novel approach is a breakthrough that will lead

to significantly more robust embedded software and will at the same

time reduce the costs of development and integration testing.

Acknowledgements

We thank the MoDECS project team at the University of Salzburg for

providing valuable input during informal discussions and group

meetings. This research was supported in part by the FIT-IT Embedded

Systems grant 807144 provided by the Austrian government through

its Bundesminsterium für Verkehr, Innovation und Technologie.

References

Giotto Project, http:==www-cad.eecs.berkeley.edu=~fresco=giotto=.

Henzinger, T. A., Kirsch, C. M. (2002): The embedded machine: predictable, portable real-

time code. In: Proc. ACM SIGPLAN Conf. on Programming Language Design and

Implementation (PLDI): 315–326.

Henzinger, T. A., Kirsch, C. M., Matic, S. (2003): Schedule carrying code. In: Springer: Proc.

of the 3rd Int. Conf. on Embedded Software (EMSOFT), LNCS.

Henzinger, T. A., Horowitz, B., Kirsch, C. M. (2001a): Giotto: A time-triggered language

for embedded programming. Springer: Proc. of the 1st Int. Workshop on Embedded

Software (EMSOFT), Lecture Notes in Computer Science 2211: 166–184.

Henzinger, T. A., Horowitz, B., Kirsch, C. M. (2001b): Embedded control systems

development with Giotto. ACM Press: Proc. of the Int. Conf. on Languages, Compilers,

and Tools for Embedded Systems (LCTES): 64–72.

Henzinger, T. A., Kirsch, C. M., Sanvido, M. A. A., Pree, W. (2003): From control models to

real-time code using Giotto. IEEE Control Systems Magazine 23 (1): 50–64.

Kirsch, C. M. (2002): Principles of real-time programming. In: Proc. of EMSOFT 2002,

Grenoble LNCS, 2491.

Templ, J. (2004): TDL specification and report. Technical Report C059, Department of

Computer Science, University of Salzburg, http:==www.cs.uni-salzburg.at=pubs=

reports=T001.pdf=.

The Author

Wolfgang Pree

is a Professor of Computer Science at the

University of Salzburg, Austria. His research

focuses on software construction, in par-

ticular methods and tools for automating

the development of real-time embedded

software.

originalarbeiten
W. Pree Portable and composable real-time software – a disruptive approach

12 | heft 1–2.2007 e&i elektrotechnik und informationstechnik

