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Abstract. The paper first presents the integration options of what we call the
Timing Description Language (TDL) with MathWorks' Simulink tools. Based
on the paradigm of logical execution time (LET) as introduced by Giotto [2],
TDL enhances Giotto towards a component architecture for real-time control
applications [9]. The challenge is to provide appropriate visual and interactive
modeling capabilities so that the developer can come up with the TDL timing
model in the context of Simulink which has established itself as defacto model-
ing standard for control applications. The paper illustrates by means of a simple
case study how we envision an adequate integration of both the TDL and the
Simulink modeling approaches.

1 The Power of an Appropriate Software Model

Traditionally, control theory and hardware-based engineering have addressed the de-
sign of robust control applications using continuous-time signals. The permanent in-
crease of the computing power of microprocessors has been reinforcing the trend to
implement control functionality in software [3]. Software processes however, evolve
in discontinuous time [4]. The distinction between embedded hardware and software
systems lies conceptually in the different treatment of concurrency and the role of
time [6]. As the complexity of embedded control applications increases, it is essential
to introduce means to master the complexity of the software [5] and to define ade-
quate methods and tools for building such control systems.

The buzz word model-based development has been coined to express that control
and software engineers should use methods and tools that support application-centric
development instead of a platform-centric approach. The key challenge is to identify
the appropriate modeling abstractions and to provide a set of tools that better supports
the process of modeling control applications. Giotto and its successor TDL illustrate
the key ingredients of a good software model for control applications:

Application-centric abstractions. Traditionally, a control system is designed us-
ing tools for mathematical modeling and simulation, such as MathWorks' Simulink.
Giotto has introduced the separation of the timing behavior from the functionality
code (control laws). Giotto focuses only on the timing behavior. The functionality
code can be programmed in any non-embedded programming language such as C.
Simulink can be used to model the control laws and to generate the corresponding C
code from these models.
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The main abstractions introduced by Giotto are the task and mode constructs. A
task periodically computes a function (typically a control law). A mode contains a set
of activities, task invocations, actuator updates and mode switches. A Giotto program
is in one mode at a time. Mode switch conditions are checked periodically to deter-
mine whether to switch from the current mode to another one.

Tasks form the units of computation. They are invoked periodically with a speci-
fied frequency. They deliver results through task output ports connected to actuators
or to other tasks, and they read input values from sensor ports or from output ports of
other tasks. Thus, a TDL model specifies the real-time interaction of a set of compo-
nents with the physical world, as well as the real-time interaction between the compo-
nents.

What makes Giotto a good software model is the fact that the developer does not
have to worry about platform details, for example: will the application be executed on
a single node or on a distributed platform; which scheduling scheme ensures the tim-
ing behavior [4]; which device drivers copy the values from sensors or to actuators.
Thus, the software model emphasizes application-centric transparency (simplicity),
improves reliability and enables reuse, whereas the compiler that generates the code
from the model emphasizes performance.

Determinism. The key property of the TDL semantics is the logical execution time
(LET) assumption, which means that the execution times associated with all computa-
tion and communication activities are fixed and determined by the model, not by the
platform. In TDL, the logical execution time of a task is always exactly the period of
the task, and the logical execution times of all other activities (mode switching, data
transfer across links, etc.) are always zero. According to [2] the LET assumption has
all concurrent task executions within a TDL mode run logically in parallel. The logi-
cal execution time of a task is an abstract notion which is possibly very different from
the actual, physical execution time of the task on a particular CPU, which may vary
from task invocation to task invocation. The power of the LET assumption stems
from the fact that logical, not physical execution times determine when sensors are
read, when actuators are written, and when data travels across links.

As a consequence of the LET assumption, a TDL model is environment deter-
mined: for any given behavior of the physical world seen through the sensors, the
model computes a unique trace of actuator values at periodic time instants [2]. In
other words, the only source of nondeterminism in a TDL system is the physical envi-
ronment. Furthermore, TDL represents a real-time process model that lifts program
composition to process composition [10]: processes composed in that model compute,
given a sequence of inputs, the same sequence of outputs (value-determinism) at the
same time (time-determinism) provided the composition preserves the process timing
(time-invariant) and is schedulable (time-safe), and the individual processes are value-
and time-deterministic.

Syntax. The original syntax of both, Giotto and TDL is a textual one. The TDL
language report [8] describes this representation of TDL programs in detail. Though
one might prefer the textual representation of a TDL program, it was a goal from the
beginning to also provide a visual and interactive modeling support for TDL. We aim
at a seamless integration with the Simulink paradigm and tools, in particular its simu-
lation capabilities. The paper first sketches the integration options of TDL and Simu-
link that have seemed to be the natural choices but finally turned out to lead to dead



ends. Based on that experience we present in section 3 what we regard as the most
suitable integration. The paper assumes that the reader has a basic knowledge about
Mathworks’ Matlab/Simulink tools.

2 TDL as Part of Simulink

This section describes what have seemed to be the two straight-forward integration
approaches. We explain, why these integration approaches that we have actually im-
plemented, have lead to a dead end. On the one hand this explains why we regard the
third way, using Simulink as a back-end (section 3), as the most suitable one. On the
other hand this might help to select the appropriate integration with Simulink for other
model-based approaches.

2.1 TDL Tasks as Simulink S-Function Blocks

A Simulink model is composed of blocks and signal lines. Blocks contain either func-
tionality which is used to calculate the output value(s) from the input value(s) of a
block, or they contain further Simulink blocks. These container blocks are called Sub-
system blocks and allow an arbitrary nesting. Subsystem blocks are the only means
for structuring a Simulink model. From a programming language perspective, a Sub-
system block corresponds conceptually to a function. Thus, the module construct is
completely missing in Simulink. In other words, the Simulink modeling paradigm is
stuck at function-oriented, top-down design. No module or class constructs which are
nowadays regarded as essential for component-based development, are available for
modeling.

Signal lines connect output ports of blocks with input ports of other ports and rep-
resent visually the data flow in a Simulink model. The common way of extending the
Simulink functionality is through so-called System-function blocks (S-function
blocks). Their functionality is programmed either in C, Ada, Fortran or Matlab. The
program providing the particular S-function block behavior has to adhere to Simu-
link's callback architecture. This means that several callback functions have to be im-
plemented in the chosen programming language. The most important callback func-
tions are mdlOutputs(...) and mdlUpdate (...). The execution phase of
each Simulink block is an iterative computation of (1) the block outputs (2) block
states and (3) the next time step. The function md1Outputs (...) calculates the
output of the block, while md1Update (. ..) updates the block states.

The basic idea of coming up with a periodic task is to harness the subsystem trig-
gering mechanism. Figure 1 illustrates this Simulink feature. If the triggering S-
function block sends a 1 (true) via the data flow link to the subsystem, the subsystem
is activated. Thus, the S-function block has to trigger the subsystem which represents
a TDL task according to the desired frequency.
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Fig. 1. A triggered Subsystem block in Simulink.

Managing a LET-based task communication requires that the result of a task execu-
tion (output values calculated by the Subsystem block) is communicated to another
task after a fixed time period. Thus we need conceptually another S-function block
that delays the communication of the values that flow between TDL tasks. To stream-
line the usage we have implemented the communication and triggering behavior de-
scribed above in one S-function block. Figure 2 shows how a simple TDL program is
specified with that S-function block. The S-function block has a clock as symbol in-
side. Note that one S-function block instance is used for triggering a subsystem and
another one is used for the output signal line. The two Giotto tasks represented as
Simulink subsystems simply increase their input by one. Taskl (upper Subsystem
block in Figure 1) runs twice as fast as Task2.

= GiottoTest * B
File Edit “iew Simulation Format Tools  Help

DEE&| 2R |9 mES ®|» 5 [Nom

lemlecp o ABB B E &

==

Tasl-freq. 2 .
Trigger) B -
S [ Out1
output port of Taskl-freq. 2y U R
Giotto Taskl
|
Tas@-freq. 1 ,
v " ' :
Triggen) E
3
] i1 outt @ 1] T e
output port of Task2~freq. 1
Giotto Taskz

Fig. 2. A TDL program with two tasks.



Benefits and drawbacks. The presented approach is the recommended choice for ex-
tending Simulink. Nevertheless, applying S-functions to TDL tasks is too fine-
grained: The generated code (Real-Time Workshop) does not allow the preemption of
TDL tasks.

This limitation is a show stopper: First, the time intervals between two simulation
steps have to be as small as determined by the fastest TDL task. Second, all task com-
putations have to be done within that interval. Thus, the S-Function integration option
at the granularity of TDL tasks results in inefficient code that might be useless in
practice in most situations.

Instead, the usage of S-functions to implement the TDL E-machine proved to be the
ideal way of integrating TDL with Simulink. Section 3 sketches this usage of S-
functions.

2.2 Integration of TDL Tasks and Modes through Model Transformation

The basic idea of this kind of integration is to use standard Simulink blocks to model
the LET behavior of TDL tasks. The Zero-Order-Hold (ZOH) and Unit-Delay (UD)
blocks allow the modeling of this core TDL property. Figure 3 shows the TDL pro-
gram with the same semantics as the one in Figure 2.
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Fig. 3. A TDL program with two tasks constrained by ZOH and UD blocks.

From the developer’s point of view the insertion of the ZOH and UD blocks becomes
inconvenient for more complex programs. With several tasks and numerous input and
output lines it is tedious to place the ZOH and UD blocks and to define their parame-
ters so that they correspond to the desired task periods. Above all, this would only



suffice for simulation. To benefit from TDL, the compilable textual TDL program
would have to be written by hand after the model simulation leads to satisfying re-
sults. This is why we have defined a TDL task block that is used to specify the model.
The model then can be transformed by the S/TDL translator tool for simulation (the
ZOH and UD blocks are inserted automatically by the S/TDL translator). The S/TDL
translator also generates the TDL textual program from the model. That can be com-
piled for a specific execution platform. Below we model a simple throttle control sys-
tem to illustrate this approach. This sample application only comprises TDL tasks in
one mode. So no modes and no mode switches have to be modeled.
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Fig. 4. Top level view of the throttle control model.

Developer’s perspective. We use the Simulink editor to define both, the TDL pro-
gram (timing aspects) and the functionality (control laws corresponding to the task
functions) of the throttle controller. On the top level subsystem, we define the TDL
controller and the plant, that is, the model of the throttle, which interacts with the con-
troller during the simulation. To model the plant, we use standard Simulink blocks
and put them into a subsystem block. To define the TDL controller, we use the so-
called TDL program block from a library. Figure 4 shows the top level view of the
model.



A TDL program block contains TDL task blocks, which are also in the TDL li-
brary. In our case study, only one task is needed for controlling the throttle (see Fig-
ure 5). In a dialog box the developer defines the task frequency relative to the period
of the TDL program block and its initial output values. The initial output values are
set to 0, while we configure the relative task frequency to 1, which means a task exe-
cution period of 25ms (hyper period defined for the TDL program block).
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Fig. 5. Definition of a TDL task.

Finally, we model the functionality of the task inside that subsystem block with the
appropriate Simulink blocks (see Figure 6).

Simulation of a TDL program. After modeling the controller in Simulink, the de-
veloper typically simulates it. For that purpose, the S/TDL translator tool translates
the model to one which has the ZOH and UD blocks inserted so that the model exhib-
its the TDL semantics.

The translation results in a new Simulink model file. The developer loads that
model into Simulink and starts the simulation. The user analyses the simulation re-
sults and decides if modifications have to be done to the original model. In this case,
the developer changes the original model, repeats the translation step and starts the
simulation again.
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Code generation. Once the model exhibits the desired behavior the code for the tar-
get platform has to be generated. We refrain from describing the details of the code
generation process and refer the interested reader to [7]. The S/TDL translator gener-
ates on the one hand the textual TDL program which is then compiled with the TDL
compiler. On the other hand glue code is generated that allows the linking of the TDL
executable (timing code) with the functionality code, which is the C code generated
from the tasks by means of one of the Simulink to C generator tools such as the
Real-Time Workshop (RTW) or TargetLink. We have shown the feasibility of that
code generation process in the realm of the throttle control example for the MPC555
platform, with the OSEK operating system and the RTW.

Hitting the wall—providing TDL modes in addition to TDL tasks. The semantics
of TDL modes implies a significant increase in the complexity of the transformed
model. As TDL mode switches correspond to constrained state transitions in state
flow diagrams, the idea was to use Simulink’s StateFlow editor for specifying a TDL
mode switch. (The TDL mode switches are so far constrained as the mode switch
conditions are checked periodically, thus complying with the LET assumption. Fur-
thermore TDL currently does not support nested modes.) Figures 7 and 8 show a
sample model with two modes. The modes are modeled in the Simulink editor (Figure
7). We do not explain here the nasty detail that a merge block is required. The chart
block represents a link to another editor, the StateFlow editor that is part of the Simu-
link tool suite. Figure 8 shows the modeling of the transition between the two modes
in the StateFlow editor. Note that the variables used in the switch conditions, such as
NormalMode outl have to adhere to a naming convention so that the two diagrams
are connected. The number 2 separated by a bar (|) from the condition specifies the
relative frequency how often the switch condition is going to be checked.
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Fig. 7. Modeling a TDL program with modes in Simulink.
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Fig. 8. Modeling mode switch conditions with the StateFlow editor.

Though the simple example seems to be manageable from a developer’s perspective,
Figure 9 corroborates that this is not the case any longer in a slightly more complex
example: a TDL program with three modes and several input and output signal lines.
Note that this is still the simplified modeling view the developer has. Even the usage
of Multiplexer/Demultiplexer blocks and GoTo blocks does not help to simplify the
model.

Benefits and Drawbacks. If modeling TDL programs without mode switching, the
presented approach is the most straightforward one. A Simulink user can easily ac-
complish that. It leads to better structured Simulink models where the timing and
functionality behavior is separated. However, if modes are required, which typically
is the case in practice, the model becomes too cluttered and thus barely understand-



able. In addition, the developer has to obey to several guidelines and naming conven-
tions. The Simulink model editor does not provide means to give feedback about
modeling rule violations. Potential violations could only be caught by the S/TDL
translator tool when the model is processed. All the disadvantages of this approach
compared to the separate TDL editor suite are discussed in section 3.2.
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Fig. 9. Three modes already result in complex models that cannot easily be understood.

3 Separate TDL Editor Suite with Simulink as Simulation Platform

Analogous to the fact that StateFlow is a separate editor focused on state transition
diagrams and integrated in the Simulink tool suite, a separate TDL editor suite can
best support the developer in modeling the timing behavior of an application. Similar
to StateFlow, the TDL Editor suite is well integrated to Simulink so that it seems to
the user as if he or she would work with the same application.

The seamless integration, however, does not stop at providing a separate editor suite
for modeling TDL applications: As mentioned before, execution times associated with
all computation and communication activities are fixed and determined by the TDL
program not by the platform. This means that TDL applications are platform-
independent. To ensure that the timing behavior of such an application is the same on
different platforms, a virtual machine called E machine is used. For supporting a new
platform, only the E machine has to be ported to that platform. This section shows



that it is possible to provide such an E machine for the Simulink simulation environ-
ment too. As a consequence of that fact, Simulink is not longer seen as a Simulation
environment with some special treatment regarding the TDL toolchain. Indeed, Simu-
link is seen now as a platform like any other (hardware) platform. The section de-
scribes the new tool chain with the TDL editor suite and the Simulink platform from
the developer’s perspective. The enhanced throttle control case study, that now com-
prises two modes, illustrates the modeling of a sample application. A discussion of the
advantages of this integration solution rounds out the paper.
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Fig. 10. An overview about the TDL/Simulink tool chain

3.1 The Tool Chain with the TDL Editor Suite

Figure 10 shows schematically how the tools interact. The TDL editor suite offers the
developer a convenient development environment that is adjusted to the needs of
TDL, without sacrificing the advantages of Simulink for modeling the functionality
(control laws) and for modeling the plant that interacts with the TDL program (con-
troller) during the simulation. The main aspects of the tool chain are separated by ver-
tical dotted lines into the following three areas:

1. Description of the timing aspects of a control system corresponding to a
TDL program



2. Implementation of the functionality (control laws) of a control system using
Simulink

3. Linking of the timing and the functionality parts of the control system

In addition, Simulink is also used for modeling the plant by the use of standard Simu-
link blocks. The horizontal lines separate the development process into the modeling
and simulation phase on a simulation platform (i.e. Simulink) as well as the execution
phase on a specific hardware platform (e.g. OSEK based platforms). In the following,
we discuss the three modeling and development steps in more detail.

TDL-based visual and interactive modeling: Separation of timing and function-
ality. The functionality, that is the implementation of the TDL tasks, is modeled in
Simulink with the available Simulink blocks. The functionality, for example, a PID
controller, is then provided as a Simulink subsystem, which can be easily accessed by
the TDL editor suite.

The definition of the timing behavior and of the time-triggered mode switches is
accomplished with the TDL editor suite. The TDL editor suite is a collection of the
following tightly coupled editors:

1. Mode transition editor: This editor is used to specify when to switch be-
tween modes.

2. Mode editor: This editor allows the definition of a mode, that is, which TDL
tasks it contains, how they interact, and how they communicate with sensors
and actuators. The developer specifies which Simulink models are used for
providing the functionality of the tasks.

3.  Mode communication editor: The developer defines how values are copied
between modes if a mode switch occurs.

In the following, we illustrate how the different editor types are used to define a TDL
program according to our needs in the throttle control case study:

Defining the control system in Simulink. A TDL program usually consists of one or
more TDL modules. A TDL module defines a namespace for a set of TDL language
constructs like modes, tasks, etc. In case of a distributed application, a TDL module is
the smallest, undividable unit running on one processing node whereas several mod-
ules can run on one node. Independently if modules run on the same node or not, one
module can import another module, which means that is has access to the imported
module’s sensors, task output ports, etc.

Regarding our case study, we define a Simulink model that is based on one TDL
module. The model defines the interaction between the TDL module, that is, the con-
troller, and the plant. This step is analogous to the one presented in Section 2.2 (see
figure 4). The model consists of two blocks: One models the plant, which is a subsys-
tem block that contains standard Simulink blocks. This block is connected to the TDL
module block, which is provided by a TDL block library. In contrast to the model in
Section 2.2, this block is not configured by mask variables or inner blocks provided
by the TDL block library. A double-click opens an editor window of the TDL editor
suite. The editor window consists of a left part (called the module navigator) and a
right part that consists of one of the three editors listed above. If a new editor window



opens, the right pane consists of the mode transition editor by default. The module
navigator, which lists and organizes all types of TDL language constructs by using a
tree representation, is used to navigate through the TDL module: Clicking on certain
nodes of the navigator opens either a dialog to configure one concrete instance of a
TDL language construct (e.g. a sensor) or displays an adequate editor within the right
pane of the window (e.g. the mode editor regarding task assignment for a certain
mode). The following paragraphs explain which editor is used to define what TDL
language construct. From the developer’s point of view, using the TDL editor suite is
like opening the content of the TDL module block, which is modeled by using special
editors.
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Fig. 11. Specification of mode switches

The mode transition editor. In our example, the throttle control system can be in
two modes, in the normal operation mode and in a failure mode. Figure 11 shows how
the transition between the two modes is modeled by using the mode transition editor.
As mentioned before, this editor is selected by default, if a new editor window opens.
Alternatively, the mode transition editor (once the editor window has been opened al-
ready) is activated by clicking on the module node (i.e. the root node with the label
ThrottleControl) or on the node with the label Modes, which organizes all defined
modes of the module. The editor mimics a state diagram editor and does not allow the
nesting of states. The NormalMode is marked as the start mode. The directed line
connecting the NormalMode with the DegradedMode denotes that a mode switch oc-
curs from the NormalMode to the DegradedMode if the mode switch condition be-
comes true. There is no connection between the modes in the other direction. This
means that if the mode DegradedMode is entered, the TDL program cannot switch
back into NormalMode until the program is restarted. The switch condition [failure-
Checker.diff > 10] means that a mode switch occurs if the value of the task output



port diff of the task failureChecker is greater or equal to 10. The task failureChecker
calculates the difference of two measurements of the angle of the throttle.
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The mode editor. This editor is opened by a single-click on one of the mode nodes of
the module navigator (e.g. NormalMode). It allows the specification of TDL tasks and
how they are connected to each other as well as to sensors and actuators (see Figure
12). The figure shows that NormalMode consists of two task blocks. The functionality
of both tasks has been modeled in Simulink. As can be seen in the module navigator
tree, every task consists of a task function too. This is indicated by a separate subnode
of the task node that has a small rectangle containing the letter ‘f” as its icon (e.g. the
node etcControllerlmpl). A double click on this node opens a new standard Simulink
editor that shows the task functionality modeled by standard Simulink blocks. In this
way, the TDL editor suite is seamlessly integrated into the Simulink environment.

The task function of the TDL task etcController is the same controller as the one pre-
sented in the previous sections. The task function of the task failureChecker calculates
the difference between the two measurements of the throttle position. The tasks are
connected to the corresponding sensors and actuators.

The DegradedMode contains only a task called constant0. The task has no input
parameters and the output value of this task is constantly set to 0. Therefore, the throt-
tle will be closed upon activation of this mode.

The mode communication editor. Finally, we have to define how values are copied
from one mode to another during a mode switch. Both mode input and mode output
ports are a subset of the task output ports of the tasks contained in a mode. The mode
communication editor (see figure 13) is opened either by a double-click on a connec-
tion line in the mode transition editor or by a single-click on the mode switch node
found as a subnode of a mode node. In the case study, the output value of the task



etcController should go to the output port of task constant0, though this has no effect
on the behavior of the DegradedMode.
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Fig. 13. Definition of how values are copied in case of a mode switch.

Simulink as simulation platform. TDL modules are typically developed as follows:
First, a TDL module is defined either textually (TDL code) or graphically (using the
TDL editor suite). The implementation of the task function (functionality code) is ex-
ternal to TDL and done in any imperative programming language. In case of using
Matlab/Simulink, the functionality code is modeled in a Simulink subsystem (see
above). Then the TDL compiler compiles the TDL code to platform independent tim-
ing code, the so-called E code. It defines exactly at which points in time sensors are
read, actuators are written and task functions are executed. The E code is platform-
independent and has to be interpreted by a virtual machine which we call E machine.
The E machine has to be ported to each platform on which the TDL module(s) should
run. It ensures that the behavior of the TDL application meets the timing specification
found in the E code.

In case of using Simulink, we have to provide an E machine for Simulink that en-
sures among other duties that the corresponding task functions (i.e. Simulink subsys-
tems) are called at the appropriate points in time. The Simulink E machine does not
differ from E machines on specific hardware platforms. As long as the E machine is
implemented in a correct way, it is guaranteed that the behavior in the simulation is
exactly the same as on the platform.

As an alternative to providing such an E machine, we could also have used algo-
rithms that generate Simulink models by using standard Simulink blocks that model
the timing behavior according the TDL semantics. We tried that way too, but decided
to use the approach described above because of the following two reasons: (1) It is
very hard to prove that the algorithm generates Simulink models with TDL semantics
in every case. In addition, MathWorks tends to change the semantics of their blocks



during release updates. Thus, we would depend on those changes. (2) Performance:
The additional Simulink blocks introduce an overhead, especially for large TDL
modules.

Providing an E machine for Simulink. Within a Simulink model, Simulink usually
calculates the order when the blocks are executed. A so-called sample time step is
used as basis for such calculations: For every sample time step, Simulink decides
whether to call a specific block and, if more than one block has to be called, in what
order those blocks have to be called. The logical time between two sample time steps
need not to be constant and is also determined by Simulink.

Nevertheless, so-called triggered Subsystem blocks outsource this duty to the
Simulink developer: Triggered Subsystem blocks have an additional signal input,
whose value determines if a Subsystem (and its content) is executed or not. The signal
input could stem from various sources: For example, Simulink provides a so-called
Function-Call Generator block that calls a triggered Subsystem at a fixed periodic
rate. In addition, Stateflow blocks are used to call external functions (defined by trig-
gered Subsystems) based on some state changes inside the block. And finally, there
are so-called S-Function blocks (already mentioned in section 2.1), which are able to
trigger Subsystem blocks by using their output signals. The functionality of an S-
Function block is implemented externally, for example in C. In contrast to the
Stateflow block and the Function-Call Generator block, the implementation of the S-
Function block is able to decide at which sample time the S-Function block is called
by Simulink.

These properties of the S-function block allow us to implement the E-Machine
within such a block. The basic idea is that before simulation starts, two things are
done automatically by the TDL editor suite: First, TDL code is generated by the TDL
editor suite, which is immediately compiled to E code by the TDL compiler. Second,
a Simulink model is generated inside the TDL module block that mainly consists of
triggered Subsystem blocks (in which the task functionality is embedded too) as well
as of one S-Function block that implements the E machine. The triggered Subsystem
blocks implement so-called drivers that are responsible for value transportation and
function execution. Usually, these drivers are called by the E machine according the
timing description found in the E code. Since in our approach the E machine is im-
plemented by using a Simulink S-Function block on the one hand and the drivers are
implemented by triggered Subsystem blocks on the other hand, the block triggering
mechanism described above is used to achieve the correct system behavior. For a
more detailed description about the Simulink E machine and the generated model see

[11].

3.2 Why Is a Separate, but Well Integrated TDL Editor Suite Significantly More
Intuitive than the TDL-In-Simulink Approach?

In the TDL-in-Simulink approach as described in section 2, we use two editors: the
default Simulink editor and the StateFlow editor. The visual editing of TDL programs
becomes more tedious as the two editors, which are proprietary implementations by
MathWorks, cannot be coupled with each other. As a consequence, changes such as



the renaming of a mode port have to be made manually by the developer in two
places. Another example is the definition of a mode switching condition in the
StateFlow editor. The developer has to look up the port names in the default Simulink
editor, while the TDL editor suite can provide the available names in pop-up menus.
In addition to a tedious model update, potentially inconsistent updates might mislead
the developer when simulating models. In case of the TDL-in-Simulink approach,
changes in one editor are automatically updated in all the others. Thus the develop-
ment environment is more robust against modeling errors.

As updates have to be accomplished manually if we go for the TDL-in-Simulink
approach, the number of editors has to be kept to a minimum. Thus, we offer two edi-
tors (default Simulink editor and StateFlow editor) and intertwine the data flow be-
tween modes in case of mode switches (mode communication) with the data flow
from the sensors and to the actuators. The dilemma is that this leads to diagrams that
are difficult to understand. The best solution is a further editor together with the
automatic update as provided by the separate TDL editor suite.

The necessity of introducing Merge blocks is one detail that further increases the
complexity of the visual representation of the TDL-in-Simulink approach: two differ-
ent source modes may copy to the same mode port of their common target mode. In
the TDL editor suite, we model mode communication separately for each mode
switch.

During a mode switch, values are copied between mode ports. Only task output
ports can become mode ports. But in Simulink, it is not possible to connect two output
ports. As a consequence, in the TDL-in-Simulink approach we have to connect output
ports of the source mode block with Simulink input ports of the target mode block (by
using the De/Multiplexer and Goto/From blocks; see Figure 9), though the input ports
are semantically output ports. The ‘input ports’ are not used inside the mode block.
They are only used for the specification of the model. This is, of course, extremely
difficult to understand and a nightmare from the human-computer-interaction point of
view. In contrast, in the TDL editor suite we simply connect the mode ports directly
in the separate mode communication editor.

Finally, the Simulink editor is not TDL-syntax-sensitive so that no feedback can be
provided if some aspects of the edited model are not correct. Only the S/TDL transla-
tor can detect errors in the model. This reduces the interactivity of the modeling proc-
ess.

4 Conclusion

Overall, the combination of TDL and Simulink has several benefits. As TDL allows
the time-safe, deterministic distribution of TDL components [9], the developer can
easily come up with control systems that exhibit these properties that state-of-the-art
tools do not support directly. In other words, the TDL component architecture frees
the developer from targeting a specific single-node or distributed platform. He or she
can focus on the application aspects, in particular the control problems. Furthermore,
the resulting model is well structured into the timing and the functionality behavior.



The integration of TDL and Simulink modeling provides a powerful simulation en-
vironment. In addition, the TDL editor suite is fully integrated into the Simulink envi-
ronment and is even designed to imitate Simulink’s look and feel as far as possible.
Experienced Simulink developers should grasp the combination with TDL quickly. In
other words, the learning curve for experienced Simulink developers is supposed to be
flat.
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