
Legacy System Integration using a Grammar-based Transformation
System

Guido Menkhaus and Urs Frei

Abstract. Enterprise information system management
is the operation of different corporate databases, appli-
cations, and more and more often of integration and in-
teroperability of legacy systems, acquired through merg-
ers and acquisitions. These legacy systems produce
structured or semi-structured data that add to the vast
amounts of data that a company generates every day.
This data needs to be communicated between hetero-
geneous systems within the same company and eventu-
ally beyond the company’s walls. Transformations of
communicated data are required to enable companies
to tightly integrate their systems into a cohesive infras-
tructure without changing their applications and sys-
tems. This article presents a transformation system that
uses a grammar-based approach to provide direct inte-
gration of applications and systems at the data level.
Sequences of transformations allow flexible and effec-
tive exchange of data between heterogeneous systems
resulting in a single information network.

Keywords. Legacy System, Transformation, Enter-
prise Information System

1. Introduction

Most established companies have acquired legacy
systems through mergers and acquisitions. The sys-
tems were developed independently of each other and
very often they do not align with the evolving IT in-
frastructure. Still, they drive day-to-day business pro-
cesses. Replacing the legacy application with new solu-
tions might not be feasible, practical or cost a consider-
able amount of time. However, immediate integration
might be a requirement for a strategic project, such as
supply chain management or e-business [7, 15].

This article presents a legacy system data integra-
tion middleware that allows flexible and effective trans-
formation of data between heterogeneous systems. Our
data integration middleware provides a transformation
system in which transformation sequences are described
based on the grammar of the format of the source and
the target data. It provides direct integration of appli-
cations and systems at the data level.

The remainder of the article is structured as fol-
lows: The motivation and the requirements of this work
are discussed in Section 2. Section 3 provides a brief
overview about related work and Section 4 presents
transformation systems. Section 5 illustrates a use-case
scenario for legacy data integration. The architecture
of the system is presented and discussed in Section 6.

Section 7 concludes the article with a brief talk about
our future research directions and work.

2. Motivation and Requirements

For companies to stay competitive, it has become
important to interconnect seamlessly their databases,
applications and legacy systems into a coherent IT in-
frastructure. Integrated, flexible and extensible enter-
prise information systems allow providing services to
the maximum efficiency. However, heterogeneous sys-
tems including legacy systems acquired through merg-
ers and acquisitions often do not easily integrate with
other enterprise-wide applications. They become bar-
riers to agility and innovation [1]. These systems use
different communication protocols and produce data in
proprietary format. We need to transform the data, con-
trol that data and ensure that the transformation from
one format to another is correctly carried out.

Transforming data is usually done by writing cus-
tom programs [6]. However, if either the format of
the source data or the target data changes, if new re-
quirements emerge, the custom programs need to be
rewritten. Adapting to frequent changes results in high
maintenance costs. To integrate legacy system data we
need transformation systems that provide the following
features:

1. Adaptation:The way data is processed and stored is
diverse and might be subject to changes. If the for-
mat of the source data or the target data in a trans-
formation sequence changes, quick adaptation to the
transformation sequence is essential to sustain sys-
tem interconnection.

2. Control: When data is transformed while communi-
cated between two systems, the target system might
require the data to change, to be enriched, filtered,
and modified.

3. Format Guarantee:The transformation sequence guar-
antees that the data results in a specified format. The
specified structure of the target data is produced, be-
cause the transformation is generated based on the
grammar describing this structure.

We present a grammar-based transformation sys-
tem, in which the transformation sequence is generated
originating from a set of grammars describing the target
data structure of each transformation step. Semantic
controls need to be programmed manually. The system
provides means to integrate them into the transforma-
tion sequence. Adaptation is accomplished by respeci-
fying the grammars describing the data structures.



Legacy


System
 Database


IT


Infrastructure


System A


IT


Infrastructure


System B


Transformation


System


Internet

Internet


Figure 1: Application scenario: Integration of legacy system

3. Related Work

This section provides a brief overview about the related
work. It also aims at giving a short view on legacy
system modernization and integration techniques.

Software system evolution activities can be divided
into three categories: maintenance, modernization, and
replacement [18]. System maintenance supports the
evolution of the system according to the business needs
but has its limitations, since maintenance does not in-
clude major structural changes. Modernization involves
extensive and pervasive changes, requiring a signifi-
cantly greater effort than during maintenance activi-
ties. Replacement is necessary if the system can not
keep up with business requirements [4]. Legacy sys-
tems are therefore characterized as ”information sys-
tems that significantly resist modernization as part of
an evolution towards delivering business solutions”[18,
2].

The most proven solution to legacy integration and
modernization is legacy system wrapping [20]. It can
be subdivided into wrapping presentation modules, func-
tionality and data.

Carr presents a technique for user interface modern-
ization, where new user interfaces wrap old, text-based
interfaces [3].

Wrapping functionality for utilization of legacy sys-
tem in a distributed environment to cope with new re-
quirements that the Internet has introduced, is provided
by Yoshiokaet al. They use CORBA and DCOM tech-
nology to wrap the functionality and to provide network-
centric communication. However, the legacy system
needs to provide the appropriate level of abstraction, be
modular and fine-grained enough to allow wrapping the
business rules and functions [1]. The ERCOLE project
provides a process that describes how to wrap legacy
applications with OO systems. The process involves
encapsulation, reengineering and concepts for the co-
existence of objects with legacy application functional-
ity [9].

Wrapping legacy data involves the addition of an
extra layer or bridge to provide transparent access to the
legacy system. Ontology Works provides an ontology
and bridges to map data from legacy information sys-

tems onto the ontology [12]. DataMirror [5] provides
an engine for bi-directional data transformation, ex-
change and integration. The engine incorporates build-
in functionality and promises that zero-programming is
required for application integration.

As described, many researchers have been active
to develop diverse approaches allowing integration of
legacy system at the data level. However, not many
have been conducted to build grammar-based systems
that allow transformation of data and flexible adapta-
tion of changing data structures.

4. Short Overview of Transformation Systems

Transformation systems transform elements of a
source language into elements of a target language. The
source and the target language can be very different
from one another [19]. Partsch and Steinbruggen di-
vide transformations into two types of processes [13]:
proceduralandschematic. Procedural transformations
specify semantic rules that can be applied globally to
the entire source data. They have applicability terms
that contain semantic conditions that are not easily de-
cidable by inspecting the syntax. Procedural transfor-
mations include consistency checks and analysis tasks.
Schematic transformations are syntax-oriented; their ap-
plicability conditions can be verified by checking a por-
tion of the syntax. They make local changes to the
source data. It should be noted that global, procedu-
ral transformations can be accomplished by schematic
processes, but that the required transformation might
become arbitrary complex. Therefore, complex rules
are better expressed applying procedural rather than sche-
matic transformations [19].

Partsch and Steinbruggen classify transformation sys-
tems into manual, semi-automatic, and automatic trans-
formations [13].
• Manual: In manual transformation systems, the user

chooses from a predefined set of transformations those,
which the user wants to apply to the source language.
Manual transformation systems provide an environ-
ment that puts the user in the position to use transfor-
mations more effectively than the current program-



Transformation


System


Engine


Source


Transformation


Generator


Target


Transformation


Generator


Source Data


Semantic


Analysis


Set of predefined

Transformations


Transformation


Grammar


Target Data


Grammar


Source Data


Grammar


Figure 2: Transformation System Architecture.

ming paradigm that requires s programmer to manu-
ally code a transformation.

• Semi-automatic:The objective of semi-automatic trans-
formation systems is to automate the process of trans-
forming and to minimize the intervention of the user.
Although the major decisions will still be made by
the user.

• Automatic: The intent of automatic transformation
system is to fully automate the transformation pro-
cess.

The class of problems that can be solved using manual
transformation systems is the largest, since most trans-
formation solutions require insight in the problem do-
main and decision taking that is beyond what automa-
tion techniques can do. Semi-automatic systems need
a restricted problem domain where difficult decisions
about transformation configuration do not occur and
transformations can be generated automatically. Most
limitations are in the automatic transformation system
class, where the system selects on the basis of a knowl-
edge base the transformation sequence. However, the
system can only be as good as the programmer has de-
signed the knowledge base.

In this paper, we present a transformation system
that is semi-automatic. The automatic part of the sys-
tem is schematic-based and syntax-oriented. The pro-
cedural part of the transformation consists of seman-
tic analysis and actions, which are applied to the entire
source data, which need to be programmed manually,
since this part requires insight into the problem domain.

5. Application Scenario

The transformation system was designed as mid-
dleware for the integration of legacy systems. This
section outlines in brief a practice area, which demon-
strates the value of our transformation system.

Supply chain management helps companies in con-
trolling the flow of information and goods within their
network of suppliers and customers by providing a full

view on what happens in the network [7, 15]. But be-
fore extending operation management beyond the com-
pany’s wall and integrate companies’ suppliers and cus-
tomers into a single information network, the company’s
own operations must run smoothly towards cooperation
and collaboration. This involves the integration and in-
teroperability of different corporate databases, appli-
cations, and more and more often of legacy systems.
These legacy systems produce structured or semi-struct-
ured data. This data needs to be communicated be-
tween heterogeneous systems within the same company
and eventually beyond the company’s walls (Figure 1).
Transformations of communicated data are required to
enable companies to tightly integrate their systems into
a cohesive infrastructure without changing their appli-
cations and systems.

In our application scenario, the legacy system pro-
duces data. This data is checked and verified, trans-
formed into an internal and intermediate XML format,
and finally imported into a central database and pre-
pared for publishing on the Internet.

6. Architecture of Transformation System

The architecture of the transformation system is il-
lustrated in Figure 2. The transformation system runs
a sequence of transformations, in which source data
complying with a source data grammar is transformed
into target data described by the target grammar. The
schematic part of each transformation sequence is gen-
erated using parser and transformation generating sys-
tems. The procedural aspect is manually programmed
and integrated in the schematic part.

Each transformation in a sequence consists of three
intermediate subtransformations, which are driven by:

• Source Data Grammar
• Configuration
• Target Data Grammar



Source Data Grammar-based Transformation The
source data grammar based transformation (SD) is de-
composed into an analysis and a synthesis part.

Analysis: The analysis consists of the lexical, syn-
tactic, and semantic analysis. It breaks a complex struc-
ture into elementary pieces.

1. Lexical Analysis:The lexical analysis is done using a
scanner component. The scanner is generated on the
basis of a lexical analysis specification of the source
data and produces a sequence of tokens. A token is
a syntactically structures symbol, whose structure is
described in the lexical analysis specification.

2. Syntactic Analysis:The sequence of tokens produced
by the scanner is forwarded to the parser, which veri-
fies the structure of the source data against the source
data grammar. We use an attributed grammar for
structured and semi-structured data.

3. Semantic Analysis:The semantic analysis checks lo-
cal and global context conditions. It checks condi-
tions that can not or are hard to be verified using a
syntactic analysis. The results influence subsequent
semantic analysis steps.

Synthesis:The synthesis is a process that proceeds
from elementary to complex structures. In the transfor-
mation phase a complex target document is constructed
from simple elements.

1. Transformation:The transformation converts the data
that has passed the syntactic and semantic analysis
into an internal, intermediate format.

We use CoCo/R [11] as transformation tool. The
lexical analysis specification is described by regular ex-
pressions. The attributed grammar of the source data is
defined in EBNF. Attributed grammars were introduced
by Knuth in [8] to formalize the semantics of context-
free languages. They describe in their original form de-
pendencies between attributes of symbols, originating
from the lexical analyzer. However, attributed gram-
mars can be seen as a dynamic description of a process,
i.e. as a syntax-directed algorithm. The structure of the
source data determines the order of the global semantic
analysis and the local transformations.

Configuration-based Transformation The configu-
ration driven transformation system (CD) contains a set
of CD types with associated configurations for differ-
ent target data formats. The CD transformation bridges
the source and target transformations. It decouples the
source data grammar from the target data grammar so
that the two can vary independently. This avoids a
binding between the associated transformations and al-
lows flexible adaptation in case of a modification or
extension of the source and the target data grammar,
respectively.

Target Data Grammar-based Transformation The
target data grammar based (TD) transformation is gen-
erated from the target data grammar. It takes the data
from the CD transformation and generates data in the
target grammar format. Since the transformation is pro-
duced from the target grammar, the transformation sys-
tem guarantees that the data results in the specified for-
mat.

6.1. Legacy System Integration

In the application scenario we take the data from the
legacy system and

1. Import the data into a central database.

2. Prepare them to be published on the Internet.

The transformation system applies a sequence con-
sisting of two transformations. For the import into the
database we convert the legacy data into XML format
while verifying the data during the SD subtransforma-
tion. The second transformation parses and processes
the data before importing it into the database. For pub-
lishing on the Internet we substitute the second trans-
formation with a XSLT transformation.

6.2. Token-XPath Matrix

The first transformation converts the legacy system’s
proprietary data format into an intermediate format (Fig-
ure 3).

In the SD subtransformation, the parser is gener-
ated from an attributed grammar. The semantic verifi-
cation (in our application scenario suppression of du-
plicate data entries in the source data) is manually pro-
grammed and integrated into the generated parser as
is the following CD subtransformation via a callback
style.

The CD subtransformation determines where data,
originating from a token produced by the scanner com-
ponent and semantically checked and converted dur-
ing the semantic analysis, is inserted into the resulting
XML document, serving as an intermediate data for-
mat in the transformation sequence. This is performed
applying a Token-XPath-Assigment matrix (TXPA ma-
trix) MTX = T × X, which consists of the tokens
symbolsT of the source data grammar and the target
data grammar XML elements, expressed as XPath ele-
mentsX. The target grammar is presented as a XML
Schema. The target grammar driven subtransformation
is generated using JAXB [16], which generates a suite
of hierarchical classes that produces an XML document
complying with the XML Schema. This suite of classes
is subsequently used by the CD and the TD transfor-
mation. To accomplish the construction of the XML
document using the hierarchical suite of classes we use
reflection to determine the class representing the root
element. An object of the class is instantiated using a



Source Data

SD Transformation
 CD Transformation
 TD Transformation


Source Data


Attributed Grammar


TXPA


Configuration

XML Schema


XML


Figure 3: Transformation from legacy data to XML.

XML

SD Transformation
 CD Transformation
 TD Transformation


XML Schema

XML2OJB


Configuration


Database


OJB


Figure 4: Import from XML into a database.

factory. The factory is analyzed for objects that are re-
quired to be present for the resulting XML document
being grammatically correct. These objects are being
instantiated dynamically, filled with the corresponding
data and integrated in the XML document. This is done
using a set of heuristics in order to find the correct
methods and classes.

The intermediate (CD) subtransformation decouples
the source and the target grammar driven subtransfor-
mation. If the source or the target grammar is modified
or the semantic analysis changes, only the TXPA ma-
trix needs to be adapted. This makes the transformation
system flexible and robust in the case of changes.

6.3. XPath-Database Configuration

The second transformation imports the data from the
XML document into a database (Figure 4). Most data-
bases allow importing XML data or comma-separated
value lists. However, data can only be inserted into a
single table, and most often this data requires further
processing such as splitting the data and distributing
the data among several database tables.

The SD transformation is accomplished employing
an XML parser. The CD and the TD transformations
use OJB [17]. OJB generates a set of classes on the
basis of a database design allowing transparent persis-
tent mapping of objects against relational databases. It
allows storing objects, or part of an object in relational
databases, and reading data from a relational database
into the generated object structure. The grammar-oriented
transformation needs to rework the data from an XML
into an OJB object representation. The OJB object
structure is then imported into the database.

The objective of the CD transformation is to remain
independent from the grammar of the source XML doc-
ument and the target configuration of the database. We
need to take into account the following requirements:

• Specification of a mapping between XML elements
and OJB objects.

• Instantiation of OJB objects creating a new dataset.
• Relations between the OJB objects.
• Processing of duplicate datasets. Duplicates are al-

ready filtered out in the first transformation. How-
ever, at this stage we cannot detect duplicates, which
might occur during the reordering of the data in the
second transformation, nor can we detect duplicates
that are already in the database.

• Declaration of an import sequence to prevent primary
key violation.

We have developed XML2OJB, a mapping from XML
documents to OJB object structure [10]. It allows flexi-
ble, adaptable, and independent import of arbitrary struc-
tured XML data into arbitrary database table configura-
tion. The XML2OJB configuration is divided into five
parts.

• Target Definition:This section defines the target ob-
jects that are imported into the database.

• Source Definition:This element declares where to
find the necessary information in the XML source
document.

• Duplicate Record Definition:The Duplicate Record
section specifies the element that functions as au-
tokey in the database. The specification of an autokey
is necessary to avoid duplicate entries in database ta-
bles.

• Workflow Definition:The ImportSequence section de-
termines the sequence in which OJB objects import
their data into the database. Together with the as-
sembly section they specify a control flow when and
where data is inserted into the database. A Repeat
element specifies the start of a new data record in the
XML document. The CreateObject element defines
the objects that are required to be instantiated and an
Insert element specifies where the data is set in cre-
ated the OJB objects.



The TD transformation consists of importing the set of
OJB classes into the database. The process is config-
ured using a specific OJB configuration file.

6.4. Internet Publishing

Maverick [14] is framework that is build around the
Model-View-Controller principle. It is intended to pub-
lish data on the Internet and to process incoming re-
quests. Maverick is composed of commands. Each
command consists of a set of views and a controller.
The controller connects to the model and decides which
view renders data from the model. The view then exe-
cutes a XSLT transformation and publishes the data.

7. Conclusion

We have presented a transformation system that
manages sequences of transformation. Each transfor-
mation is made up of three individual subtransforma-
tions, which are grammar-based. The objective is to
decouple the source and target grammar transforma-
tion by using an intermediate transformation. Semantic
analysis and the configuration of the intermediate trans-
formation require domain knowledge and therefore this
task is done manually.

The TXPA matrix maps a sequence of tokens onto
XML elements. The XML2OJB configuration maps
XML elements to OJB objects, which can be imported
into a relational database. Communicating data via the
Internet is accomplished applying a XSLT transforma-
tion and the Maverick framework. The TXPA matrix
and the XML2-OJB transformation proved to be suc-
cessful due to their flexibility. The architecture of the
transformation system represents a viable solution for
rapid legacy systems integration requiring frequent re-
configuration and maintenance.

Future work will focus on extending the set of pre-
defined transformations. We will continue working on
fault tolerance and error recovery within a single trans-
formation.

References

[1] H. A. Aminian. The Legacy System Dilemma:
Making the Right Choices. Technical report, In-
surity, 2003.

[2] M. Brodie and M. Stonebraker.Migrating Legacy
Systems Gateways, Interfaces and the Incremen-
tal Approach. Morgan Kaufman, 1995.

[3] D. Carr. Web-enabling legacy data when re-
sources are tight.Internet World, 1998.

[4] S. Comella-Dorda, K. Wallnau, R.C. Seacord, and
J. Robert. A Survey of Legacy System Modern-
ization Approaches. Technical Report CMU/SEI-
2000-TN-003, Carnegie Mellon University, Pitts-
burgh, PA, USA, 2000.

[5] DataMirror. Managing Your Data the XML Way:
Data Transformation, Exchange and Integration,
2001.

[6] P. Fiore. Data Warehousing.Evolving Enterprise,
1(1), Spring 1998.

[7] R. Hieber.Supply Chain Management. A Collab-
orative Performance Measurement Approach. vdf
Hochschulverlag, Z̈urich, Switzerland, 2002.

[8] D.E. Knuth. Mathematical System Theory 2,
chapter Semantics of Context-Free Languages,
pages 127 – 145. D.E. Knuth, 1968.

[9] A. De Luzia, G.A. De Lucia, A.R. Fasolino, and
P. Guerra. Migrating Legacy Systems towards
Object-Oriented Platforms. InInternational Con-
ference on Software Maintenance (ICSME), 1997.

[10] G. Menkhaus and U. Frei. Transformation-
oriented Middleware for Legacy System Integra-
tion. In International Conference of Enterprise
Information Systems, Porto, Portugal, April 2004.

[11] H. Mössenbeck. A Generator for Fast Compiler
Front-Ends. Technical Report Report 127, Institut
für Computersysteme, ETH Zürich, 1990.

[12] Ontology Works. Integration of Legacy Informa-
tion Systems. Technical report, Ontology Works,
2002.

[13] H. Partsch and R. Steinbruggen. Program Trans-
formation Systems. ACM Computing Surveys,
15(3), September 1983.

[14] Sourceforge. Maverick, 2003.
[15] M. Stör, N. Birkeland, J. Nienhaus, and

G. Menkhaus. IT Infrastructure for Supply Chain
Management in Company Networks with Small
and Medium-sized Enterprises. InProceedings
of the 5th International Conference of Enterprise
Information Systems, volume 4, pages 280 – 287,
Angers, France, April 2003.

[16] SUN Microsystems. Java Architecture for XML
Binding (JAXB), 2003.

[17] The Apache DB Project. Object/Relational
Bridge (OJB), 2003.

[18] N. Weiderman, H. Nelson, J.K. Bergey, and
D.B. Smith. Approaches to Legacy System
Evolution. Technical Report CMU/SEI-97-TR-
014, Carnegie Mellon University, Pittsburgh, PA,
USA, 1997.

[19] V.L. Winter. Program Transformations in HATS.
In Proceedings of the Software Transformation
Systems Workshop, California, USA, 1999.

[20] M. Yoshioka, T. Sudo, A. Yoshikawa, and
K. Sakata. Legacy System Integration Technol-
ogy for Legacy Application Utilization from Dis-
tributed Object Environment. Hitachi Review,
47(6):284 – 290, 1998.


