
 MVC-based Architecture for e-commerce.Journal.doc 1/22

DESIGN AND IMPLEMENTATION OF A
MVC-BASED ARCHITECTURE FOR E-

COMMERCE APPLICATIONS

E. Althammer and W. Pree

C. Doppler Lab for Software Research
University of Constance
Campus P.O. Box D188

D-78457 Constance, Germany

althammer@acm.org, pree@acm.org
www.SoftwareResearch.net

Abstract. Though the separation of a model from its visual representation (view) im-
plies well-known benefits, available Java libraries do not sufficiently support this con-
cept. The paper presents a straightforward way to smoothly enhance Java libraries in
this direction independently of the particular graphic user interface (GUI) library. The
lean framework JGadgets, which was inspired by the Oberon Gadgets system [1], allows
developers to focus on model programming only. This significantly reduces the devel-
opment costs, in particular in the realm of quite simple, form-based GUIs which are
common-place in commercial e-business-systems.

We first present a small case study implemented on top of JGadgets which demon-
strates the benefits of the MVC architecture. The paper then goes on to sketch the reflec-
tion-based design of JGadgets itself.
Keywords: software components, reuse, MVC architecture, reflection, automated con-
figuration, Java

1 Introduction

Many commercial applications, in particular e-commerce applications, have a client-
server architecture which follows roughly the schematic representation in fig. 1: a client
accesses and manipulates data in a data repository which is stored on the server. The
client might be conceptually split into model and view components, where the model
corresponds to the particular client side business logic and the view to the visual repre-
sentation of the model. The server consists of the application server which contains the
server side model and the data repository which contains the data base. The paper fo-
cuses on the model-view aspects of the client and leaves out the server part.

Model View
represents
client side
business logic

dialogs
buttons
...data flow

over the
network

Client

event flow

data flow

Server

data base

Model
represents
server side
business logicdata

flow

Figure 1 Simplified diagram of a client/server architecture.

Clients in real-world commercial client/server systems usually consist of several dozens
if not hundreds of dialogs that form the overall application. The development and en-

 MVC-based Architecture for e-commerce.Journal.doc 2/22

hancement of such applications involves, besides careful data modeling, the tedious task
of implementing the dialogs so that end users can view, enter and edit data. Since
Graphical User Interfaces (GUIs) have become popular, numerous tools support the
'drawing' of these dialogs and automate the development of the client part in various
ways.

We found that state-of-the-art Java development environments for Java 2 (formerly
called JDK 1.2) [2, 3] only partially automate the development of the client part of such
applications. Though these tools let a developer draw the GUI and generate some event
handling code, a clear separation of a model and its view is not pursued.

Model-view separation is crucial when a client server application has to serve differ-
ent clients with different characteristics, e.g. a desktop client has a large screen and a
strong processor whereas the screen of a PDA (personal digital assistant such as a Palm
Pilot) or a mobile phone is rather small. Since the application has to be suited to the dif-
ferent clients (depending on the characteristics and capabilities of the device) there is,
generally speaking, a separate version of the client application for each device which has
to be implemented and maintained.

By separating the views from the model, we can save development and maintenance
charges by just having one version of the model (since the model is the same for each
client type) and an own version of the view for each device. Thinking one step further
the views can be automatically generated out of the model descriptions so that the de-
velopment costs are minimized.

A framework that supports model-view separation should thus foster a single model
for different views. For the developer this means that he or she just focuses on working
with the models and the framework generates the views out of the model descriptions.

The GUI libraries underlying the views depend on the used platform as well as on
the type of the JVM (java virtual machine). E.g., a desktop client (which uses Java 2
standard edition) may rely on Swing or AWT and a PDA client (which uses the Java 2
micro edition) may rely on the KVM GUI library [4]. These libraries are incompatible
among each other and cannot be easily exchanged. To allow a switch of platforms, the
framework should therefore encapsulate the different GUI libraries. Overall the model-
view separation should yield the following benefits for the developers:
A simplified development. Developers should be able to almost ignore the GUI represen-
tation. Event handling should also be simplified compared to bare-bone Swing pro-
gramming.
Different platforms should be supported. The switch of the platform and thus the em-
ployed GUI library should not affect the already developed dialogs or models.
A better reuse of components. Developers should be able to define and reuse model
components independent of their visual representation.
The model-view separation should support a developer of client-server as sketched
above. At the same time it should impose as little overhead as possible. The enhance-
ments following these considerations were implemented as a small framework called
JGadgets. Analogous to the Oberon Gadgets system, the Java-based model-view frame-
work JGadgets should basically take care of features, such as synchronizing model and
views as well as automating the event handling.

JGadgets was developed in a cooperation between the RACON Linz Software
GmbH (short RACON), a software company of the Austrian Raiffeisen banking group

 MVC-based Architecture for e-commerce.Journal.doc 3/22

and the Software Research Lab at the University of Constance. RACON applies Java
technology together with JGadgets for implementing the client part of various systems,
in particular, Internet banking applications for desktop PCs and mobile phones.

JGadgets is derived from the original MVC (model-view-controller) architecture
which is described in [5, 6] but differs in several points. The following subsection
evaluates the most important characteristics of the traditional MVC architecture and
contrasts it with the JGadgets architecture.

1.1 JGadgets versus the Traditional MVC Architecture

MVC assumes that a model does not know which views are plugged to it. As a conse-
quence, it allows multiple views on the same model and a decoupled change of the
views. JGadgets makes a different approach: the model knows about the existence of its
view(s) and about how the views are organized (i.e. the view hierarchy). The motivation
behind this is that models are normally not designed without having in mind how the
views are going to look like. On the other hand, the decoupling is even stronger than in
MVC. Models and views do not have to know the other’s interface. The connection is
done dynamically based on a naming convention. This approach allows a more flexible
connection of model and view.

The MVC architecture provides a strict separation of view and controller. This, how-
ever, might introduce an extra complexity to the system. Controllers cannot be fully de-
coupled from the views because they have to understand the events triggered by the
view. Thus, each view needs its special controller. The idea is to give up the strict MVC
separation and to integrate view and controller into a single component. Modern GUI
libraries such as Swing which are based on an MVC architecture [7] do this. For in-
stance, the Swing list has two classes, JList which corresponds to view and controller
and ListModel which corresponds to the model. Swing provides a model-view separa-
tion for most of its components. JGadgets does not combine view and controller but
provides a generic implementation of the controller as part of the framework which
automates the basic MVC operations, such as the event propagation, the connection,
synchronization and disconnection of models and views.

The MVC architecture in general reduces performance. Each update of the model
causes an update of the views and a user event causes the controller to contact the
model. This is critical when model and view are distributed over a network, e.g. as in
Web-based client server applications. Thus model-view interaction has to be brought to
a minimum, respectively a part of the model has to be kept on the client side, as illus-
trated in fig. 1.

The MVC architecture is based on the existence of only a single model and does not
specify how different models should be organized within an application. JGadgets ex-
tends the MVC paradigm by introducing a controller hierarchy that administers the
models and the interactions between them.

MVC fosters a transparent reuse of model components independently of their visual
representation: a typical model element is a list box with the associated buttons for add-
ing, modifying and deleting list items as well as an editor dialog for editing them [8].
The logic of the list box (list handling, buttons) is quite simple and thus can be easily
reused. The view of the list box, however, can vary significantly: the list view could be a
single- or multi-column list or a combo box; the buttons could be right aligned or bot-
tom aligned. A button could be left out or exist twice, and so on. By separating model

 MVC-based Architecture for e-commerce.Journal.doc 4/22

and view a developer can reuse the (black box) model component but is not restricted to
use a certain view template. Analogously, view and controller components can be de-
fined. Due to the model hierarchy of JGadgets reusing of model components gets even
simpler.

In summary, the important aspects of JGadgets are the automated linking mechanism
between models and views, the generic controller and the scalability of these compo-
nents.

The next section presents the features and usages of JGadgets from a developer's
perspective. A discussion of the core design aspects of the framework is presented in
Section 3. We assume that the reader is familiar with the core concepts of object-
oriented frameworks as described in [9, 10, 11].

2 Reduced Development Effort Through Model-View Separation—A
Case Study

The sample dialog (see fig. 2), which shows the authentic German labeling, allows end
users to retrieve information about a bank customer. The tab control supports the selec-
tion of various search criteria such as name, personal identification number, account
number, and telephone number. In case of a name-based search, the end user enters the
last name (text field labeled Name/Bezeichnung), and/or the first name (text field la-
beled Vorname) and/or the date of birth or date when the company started its operation
(text field labeled Geb./Grün. Dat.). After pressing the Search (Suchen) button, the list
in the lower half of the dialog displays the search results, in this search example cus-
tomers with the last name Schwarzenegger.

Figure 2 Searching for customers with the last name Schwarzenegger.

In order to display or modify the detailed information associated with the customer se-
lected in the list, the end user presses the Modify (Ändern) button. This opens another
dialog where the corresponding data can be edited (see fig. 3).

 MVC-based Architecture for e-commerce.Journal.doc 5/22

Figure 3 Editing customer data.

The views illustrated in fig. 2 and 3 are rather complex and are often subject to change.
If the application is ported to a device with a small display (e.g. a Palm Pilot) the views
have to be separated into several single views. A model-view separation makes this
process significantly easier.

The next subsection describes how the developer composes an application with
JGadgets by means of the case study of fig. 2 and 3.

2.1 Overview

The developer only implements the model part of the application. The view is generated
out of the model descriptions and is edited with a GUI editor. The controller is part of
the framework. Hence, the major part of the following subsections is dedicated to model
programming. The view part describes the view generation and the controller part de-
scribes the controller API used by the model programmer.

2.2 Model Programming in JGadgets

A developer who defines a model basically defines what we call attributes and services.
Attributes store data of a specific type which corresponds to any Object type in Java.
This could range from basic Java types, such as Integer, Float, Double and String, to
more complex structures such as lists or formatted fields (date fields, currency fields,
etc.).

Services are model entities which do not contain data but describe self-contained op-
erations of the business logic. Input and output parameters of services are stored in at-
tributes. E.g., a service searchCustomer performs a search for customer data on a data-
base using search criteria. The search criteria are specified in a set of String attributes
and the result (the customer data which matches the criteria) is stored in a list attribute.
Attributes and services become instance variables of the class that represents the model.

2.3 Attributes and Services

JGadgets requires the developer to store data exclusively in attributes in order to keep it
synchronized to the views. A model developer has to understand the API of attributes
and services because they represent the skeleton of each model. That is the reason why
we start with the properties and methods of attributes and services. The other features of
JGadgets, such as event handling, rely on these concepts.

2.3.1 Implementation of Attributes

 MVC-based Architecture for e-commerce.Journal.doc 6/22

JGadgets provides the class JGAttribute as the general abstraction for attributes (note
that classes that belong to JGadgets all start with JG…). JGAttribute is implemented as
a Java bean and has a set of properties which are listed in table 1.

Table 1

Properties of an attribute: bound properties are marked with *, read only properties with **

Note that some properties are bound which means that JGadgets automatically notifies
and updates the corresponding view elements when that property has changed. Bound
properties are marked with a *. Properties marked with ** are read only. They are auto-
matically set by JGadgets.

The properties can be grouped into three categories, the data field, the MVC field
and the accessibility field.

The data field manages the data contained in the attribute. The data property holds
the actual data. Note that primitive types are not allowed in JGadgets. Instead, wrapper
classes such as Integer are used. The type property (of type Class) specifies which data
type can be stored in the attribute. Whenever an attempt is made to change the data
property, a type check is performed: only data which is an instance of the specified type
(thus also sub-types) or a string that contains the string representation of a compatible
data type is accepted; incompatible data is refused. E.g., an integer attribute only accepts
integers or strings that contain an integer value. The property dataOld keeps a backup of
the data.

Note that the only difference to “normal” Java programming is that the single in-
stance variables are wrapped into the JGAttribute objects. JGAttribute itself is never
sub-classed, the variation of the attribute is implemented in the type property which can
be any valid java class. Thus all existing Java classes can be used. The data is accessed
with the JGAttribute’s method getData(). Since this method returns an object of type
Object, the result has to be casted to the correct type. Data changes must be imple-
mented with the data’s setter method setData() to start the JGadgets update mecha-
nisms. For complex data changes it is recommended to make a local copy of the data,
perform the changes on the copy and invoke setData() only once.
The MVC field is responsible for maintaining the relationships between models, views
and controllers. Each attribute has a reference to the controller object (controller prop-
erty) and to the corresponding view gadgets (views property). These properties are set by
JGadgets automatically and are read-only.

Property Type Description
Data Field

data* Object holds actual data
type Class Allowed data type

dataOld** Object keeps a backup of the data
MVC Field
controller** JGController Reference to the controller

views** Vector Reference to the view elements
Accessibility Field

enabled*
visible*
focus*

Boolean Accessibility flags

 MVC-based Architecture for e-commerce.Journal.doc 7/22

The accessibility field describes the accessibility status of the encapsulated data of an
attribute. Information such as enabled, visible and focus somehow introduces a view
flavor into the model. Thus, the fact that model elements contain view information
seems to undermine the strict model/view separation. We argue that this information
belongs to the business logic and thus to the model. The business logic specifies the ac-
tual state of an attribute, for example if it is accessible. This is expressed by the attrib-
ute’s flag enabled. JGadgets takes care that the status is correctly displayed by the view.
This forces the developer to describe the business logic more carefully. A second reason
for putting these properties into the model is to keep multiple views synchronized.

Typical GUI representations of attributes would be text fields and combo boxes
(String, numeric attributes), lists/tables (list/table structures), labels (Strings), check
boxes and sliders (Boolean, Integer).

2.3.2 Implementation of Services

JGadgets uses the class JGService as an abstraction for services. Services have the same
properties as attributes but lack the data field (see table 1). This is reasonable because
services do not contain data. The JGService class is also not sub-classed.

A service is activated in the model with the service’s method perform() which is im-
plemented in the JGadgets framework. It does not contain the implementation of the
service but is only the starting mechanism. It checks whether the service is active (e.g.,
the flag enabled must be set true) and triggers a JGadgets action event where the event
is encapsulated in an object of type ActionEvent. The implementation of the service is
contained in the corresponding event handling method (see subsection 2.5). The reason
for this is that services can also be activated in the view, e.g. when the user clicks on the
corresponding view element (button or menu item). Since the activation in the view is
event based, this mechanism allows a uniform handling of services.

2.4 Naming Convention to Link Models and Views

JGadgets uses a naming convention to automatically link the models to the views:
Model and view elements are associated with each other if they have the same name.
The name refers to the name of the instance variable of an attribute or service in the
model class and a GUI element inside the view class. The programmer has only to en-
sure that the names of the instance variables are the same and JGadgets takes care of the
linking (see fig. 4).

CustomerSearchModel CustomerSearchView

lastName (Text Field)

searchCriteria (Tab Control)

lastName_2 (Text Field)

searchCustomer searchCustomer (Button)

lastName (String)

searchCriteria (Integer)
attributes

services

Figure 4 Naming convention for linking model and view.

For example, the attribute with the name lastName (of type String) corresponds to the
GUI field (text field) with the name lastName. If there is more than one visual represen-
tation for a model item, a _2 (_3, …) is attached to the names of the view elements

 MVC-based Architecture for e-commerce.Journal.doc 8/22

(lastName_2, …) to distinguish them. This mechanism permits an unambiguous connec-
tion of model and view elements. The link between model and view is done once when
models and views are instantiated.

The advantages of the naming convention are evident. The developer does not need
to explicitly set links between a model and its views. This is done by JGadgets at run-
time. Hence, the correctness of the binding cannot be statically checked by the Java
compiler. For this reason JGadgets provides a verification tool which does exactly this.
If the view is generated, the corresponding names for the view elements are automati-
cally set.

The naming convention makes two assumptions about the model. First there must be
a model element for each view element whose data content exactly corresponds to the
data the view should display. Thus the model programmer has to have in mind which
elements could be displayed in the view. Thus models may have to define attributes
which depend on others just to satisfy all view elements.

In simple cases – if the view field is not editable – JGadgets could be extended to
support so called view combination fields through an extended naming convention:
Consider the case that a text element of the view should display the full name of a per-
son. The model contains, however, only the two string attributes, firstName and last-
Name. Thus the view element would display a string containing the content of the two
attributes plus a white space in between. Instead of defining a dependent model attribute
which contains both names, the view name could be like firstName_SPACE_lastName.
In this case JGadgets automatically links the two model elements to one view element
and updates it whenever firstName or lastName is changed.

For attributes which contain a complex data structure (e.g. customer data) and whose
data elements should be described in several view elements JGadgets provides an ele-
gant solution with the use of sub models. If the attribute is formulated as a sub model
(where the single data elements are defined as attributes and services, see subsection
2.6), JGadgets parses it recursively, extracts the attributes and services and connects
them accordingly to the view.

The second assumption is that attributes or services with the same name mean the
same thing and are therefore connected to the same view fields. The developer has to
carefully select the names of attributes and services to avoid the connection of wrong
elements. The standard name for different kinds of attributes and services should be part
of the documentation of the application. It will also happen that more than one attribute
of the same kind is used in the application. This would result in a wrong association.
JGadgets provides a solution for sub models but does not come up with a general solu-
tion.

2.5 JGadgets Events

2.5.1 Listening to JGadgets Events

JGadgets provides a simplified event handling for standard events, for example when a
bound property of an attribute is changed or a service is started. These so-called JGadg-
ets events differ from the standard Java events in the sense that the event listener needs
not to register with the event source but is automatically bound if it implements a
method, the so-called event handling method, whose name matches the following nam-
ing convention:

 MVC-based Architecture for e-commerce.Journal.doc 9/22

An event handling method which handles events triggered by a certain attribute or ser-
vice is composed by the name of the attribute or service and a string which character-
izes the event.
E.g., the event that describes the change of the data property of an attribute is called
dataChanged. That means that the event handling method of the data-changed-event of
the attribute lastName has the name lastName_dataChanged(..). Note that a “_” is put
between the names to clearly separate attribute and event names. Other event handling
methods are defined by combining a property with -Changed, such as focusChanged.
The activation of a service is handled inside the method
<name>+_+<actionPerformed>, hence searchCustomer_actionPerformed(..) (see fig.
5). The event handling methods can optionally have one parameter which contains the
Java event object. In the case of the dataChanged event the parameter would be an ob-
ject of type java.beans.PropertyChangeEvent and in the case of the actionPerformed
event an object of type java.awt.event.ActionEvent.

The event handling methods are defined in the model where the event is handled.
This can either be the model where the event source is defined but also other models.
JGadgets automatically notifies them and invokes the event handling method. Note that
the event handling methods are only invoked by the framework.

2.5.2 Triggering JGadgets Events

JGadgets automatically generates a JGadgets event when a user makes an action with
the mouse or keyboard, for instance pressing a button or entering text into a text field.
Further a JGadgets event is triggered when the model programmer invokes the per-
form() method of a service.

If the model programmer wants to generate JGadgets events manually and/or needs
other events than those specified above, he or she generates them with the method
fireEvent() of JGController. This method will be explained in subsection 2.8 under point
3.

2.5.3 Other Types of Events

Data Events: JGadgets supports events generated by the data property of an attribute
other than the standard dataChanged event. For instance, the data property of a list at-
tribute listBox generates an event when list items have been selected. These events are
implemented as regular Java events and the controller works as event adapter. Thus it
has to register with the model. (For this reason JGController implements all the neces-
sary listener interfaces.) The model implements the event handling method which is
composed by data and the event type such as selectionChanged, thus list-
Box_dataSelectionChanged(..). Thus, in the case of a list attribute, the normal Swing list
model can be used.
General Model and Controller Events: General model events do not refer to a specific
attribute or service but to general changes of the model. They are handled with
this_<eventName>(), for example this_dataChanged(..) (= the data of any attribute in
this model has changed), this_focusChanged(..) (= any model element has changed the
focus). Controller events are events which are handled by the controller. These are, for
instance, standard events referring to the window hierarchy, such as the windowClosing
event. When this event is triggered, the controller automatically closes the associated
view(s) and sub-view(s) and disconnects the view elements.

 MVC-based Architecture for e-commerce.Journal.doc 10/22

CustomerSearchView

searchCustomer (button)

addElement (button)

searchResult_listBox (list)

lastName (text field)

CustomerSearchModel

searchCustomer (service)

searchResult (submodel)

lastName (attribute)

ListBoxModel

addElement (service)

...

listBox (attribute)

searchCustomer_
 actionPerformed()

lastName_dataChanged()

Figure 5 A sample connection process

2.6 Further Issues of Model Programming

2.6.1 Reuse of Model Components – Sub Models

JGadgets fosters the reuse of model components independently of their visual represen-
tation. A typical model building block would be a list box with associated services for
adding, modifying and deleting list items. Such building blocks are described in separate
models and are integrated into other models as sub models. Sub models are imple-
mented exactly like normal models, hence any model can be used as a sub model inside
a parent model. Sub models become instance variables of the parent model and their at-
tributes and services are connected as the attributes and services of the parent model.
The name of the view element is either equal to the name of the attribute or – to avoid
possible interferences – is composed by the name of the sub model and the attribute
name: <nameOfSubModel>_<nameOfAttribute>. E.g., the sub model named searchRe-
sult contains a service addItem. Thus the name of the corresponding view element is
addItem or searchResult_addItem.

Fig. 5 illustrates the connection of the list box as a sub model. The model of the list
box is implemented in the class ListBoxModel. It is integrated into the model Custom-
erSearchModel where it gets the name searchResult. The view CustomerSearchView
contains the visual representation of the list box model.

2.6.2 Dynamic Models

Normal models are implemented statically, thus attributes and services are instance vari-
ables of the model class. JGadgets also offers dynamic models which allow adding and
removing attributes and services at runtime. These models administer the elements in
dynamic lists and implement the interface JGDynamicModel which contains methods
for adding and removing model elements. Dynamic models are used, for instance to read
tables of a relational data base. The columns correspond to the attributes that are dy-
namically added. When a model changes, it has to be reconnected to the view. This is
automatically handled by JGadgets.

2.6.3 Model Implementation Example

 MVC-based Architecture for e-commerce.Journal.doc 11/22

Example 1 sketches the implementation of CustomerSearchModel, which corresponds
to the model underlying the dialog in fig. 2. A Model has to implement the empty
JGadgets interface JGModel, in order to be recognized as a model by the JGadgets
framework. The constructor initializes the attributes searchCriteria and lastName as
attributes of type Integer and String, respectively. Note that the type is passed as a Class
parameter. The field searchCriteria is used to control the tabbed pane of the dialog.
Each different selection state is reflected through a different integer value of searchCri-
teria. If it is set to 0, it means that the leftmost panel is selected (labeled
"Name/Bezeichnung" in fig. 2). The field lastName together with the method last-
Name_dataChanged(PropertyChangeEvent e) contains the last name of a customer. The
service searchCustomer (and method searchCustomer_actionPerformed(ActionEvent
e)) performs a data base query on the base of the attributes such as lastName stores the
result in customerData and puts it into the attribute searchResult which is of type List-
BoxModel and represents a list box. It is an example of a sub model (implementation,
see Example 2). It contains items of type CustomerData.

package jgadgets.*;

import jgadgets.listBox.*;
import java.awt.event.*;
import java.beans.*;

public class CustomerSearchModel implements JGModel {

public JGAttribute searchCriteria; // manages the tab control of the view
public JGAttribute lastName; // stores the last name of a customer,
…
public JGService searchCustomer; // searches a customer from the data base

// and displays the result in the
…
public ListBoxModel searchResult; // list box (implemented as sub model)
public CustomerData[] customerData; // stores the customer data which match

// the query (sub model)
…

public CustomerSearchModel () {
searchCriteria = new JGAttribute(Integer.class); // short constructor
searchCriteria.setData(0); // sets selection state of the tab control

// to the leftmost value

lastName = new JGAttribute(String.class);
…
searchCustomer = new JGService();
…
searchResult = new ListBoxModel(); // initializes the list box
searchResult.itemType.setData(CustomerData.class);

// sets the type of the list items
…

}

public void lastName_dataChanged (PropertyChangeEvent e) {
// checks the entered text

}
public void searchCustomer_actionPerformed (ActionEvent e) {
// perform a search on the data base
// result is stored in customerData
…
searchResult.listBox.setData(customerData); // fill the list box with the data

}
…

}

 MVC-based Architecture for e-commerce.Journal.doc 12/22

Example 1 A sample model class.

The list box model (Example 2) is a standard component that can be reused. It contains
an attribute listBox which stores the list items. The list functionality including the selec-
tion of items is defined in an element of type javax.swing.DefaultListModel. Note that
this is just an example and any other list model class could be used. The listBox attribute
triggers a data event and thus the controller has to register. This is done in the (optional)
method init() because at the time the constructor is invoked the controller is not defined
(see subsection controller, task 1). The corresponding event handling method is list-
Box_dataSelectionChanged(ListDataEvent e). The attribute itemType which contains a
Class object specifies the type of the list items. The list box has services for adding (ad-
dItem is shown), modifying and removing list items.

package jgadgets.listBox;

import jgadgets.*;
import javax.swing.*;

public class ListBoxModel implements JGModel {

public JGAttribute listBox; // stores the list items
public JGAttribute itemType; // specifies the type of the list items
public JGModel editDialog; // model where items can be edited

public JGService addItem; // adds a list item
…
public ListBoxModel () {
listBox = new JGAttribute(DefaultListModel.class); // uses the swing list model
itemType = new JGAttribute(Class.class);
addItem = new Service();
…

}

init() { // the controller registers with the list box
((DefaultListModel)listBox.getData()).addListDataListener(listBox.getContoller());

}

public listBox_dataSelectionChanged(ListDataEvent e) {
// handles changes of the list selection state

}

… // other event handling methods
}

Example 2 The list box model.

2.7 View Generation

The view describes the presentation layer and contains a static description of the GUI
items. Note that the view does not contain any business logic.

JGadgets encapsulates the existing GUI libraries, such as Swing, AWT, and the GUI
components for the KVM library by introducing a new set of GUI classes, which start
with JG-, such as JGTextField or JGButton. The JG-GUI-components contain the nec-
essary methods for the automated model-view connection as well as for the JGadgets
event handling. The view only contains JG-components and is independent of the under-
lying GUI library.

For a faster view development JGadgets provides a tool that supports the generation
of the view out of the model descriptions: the user chooses the JG-components for the

 MVC-based Architecture for e-commerce.Journal.doc 13/22

attributes and services and the tool generates the source code of the view. By means of a
GUI editor the user places the GUI widgets at the correct position.

The view elements are placed into a container which can be a dialog, frame, applet
or even a simple panel. This is not specified by the view itself but by the controller. The
reason for this is the possibility to use the same view in different containers.

Views are hierarchically organized in sub views, similar to sub models. Sub views
are placed into JGPanels which are part of the parent view. Note that since the container
element is not specified in the view, every view can be used as sub view of another
view.

Views do not need to show all the GUI elements to the user at the same time. Instead
they can be organized dynamically, for example with a tabbed pane (see fig. 2). The
control of the dynamic part is typically managed by an extra integer or string attribute
which indicates the dynamic state of the view. In our example we used the integer at-
tribute searchCriteria.

Example 3 shows source code fragments of class CustomerSearchView which was
generated out of class CustomerSearchModel. Note that the instance variables search-
Criteria, lastName and searchCustomer follow the naming convention, i.e., they have
the same names as the corresponding items in the model. Instance variable names with
an underscore refer to items of sub models. Here searchResult_listBox refers to the
attribute listBox of the sub model searchResult. The instance variable lastNameLabel is
an example of an extra item that has no counterpart in the model. It represents the label
of the text field lastName.

import JGadgets.*;

public class CustomerSearchView implements JGView {

public JGTabControl searchCriteria; // same name as attribute in model
public JGLabel lastNameLabel;
public JGComboBox lastName; // same name as attribute in model
…
public JGButton searchCustomer; // same name as service in model
public JGList searchResult_listBox; // refers to submodel searchResult
…

public CustomerSearchView() {
searchCriteria = new JGTabControl();
searchCriteria.setLabel("Name/Bezeichnung…");

lastNameLabel= new JGLabel();
lastNameLabel.setLabel("Vorname:");
lastNameLabel.setBounds(size and position);

lastName = new JGTextField();
lastName.setBounds(size and position);
…
searchCustomer = new JGButton();
searchCustomer.setLabel("Suchen");
searchCustomer.setBounds(size and position);
searchResult_listBox = new JGList()
searchResult_listBox.setBounds(size and position);
…

}

Example 3 A sample view class.

 MVC-based Architecture for e-commerce.Journal.doc 14/22

2.8 Controller

The JGadgets controller (class JGController) is a generic implementation that is inde-
pendent of the specific view. The following section explains the functionalities of the
controller which can be grouped into four tasks.

1. Instantiation and connection of model and view
2. Managing the application hierarchy
3. Generation and propagation of JGadgets events
4. Exchanging information between models

Instantiation and connection of model and view: A model creates a new model/view
pair with the static method connect() as illustrated in Example 4. The first two parame-
ters of the method represent the model and view which are to be created. These can ei-
ther be specified with the class (either as String or Class) or with an object. In the first
case the corresponding objects are instantiated dynamically.

JGController customerSearchCtrl = JGController.connect(“CustomerSearchModel”,
CustomerSearchView.class,
new JGFrame(),
<parentController>);

Example 4 Instantiation and connection of the model/view pair of example 1 and 3.

Since this statement is invoked by the model, it assumes that the model knows about the
existence of the views which are connected to it (see second parameter in Example 4; it
is possible to connect more than one view by invoking connect() more than once). The
model needs, however, not to know about the implementation of the views. JGadgets
connects them dynamically on the basis of the naming convention. This is the strength
of JGadgets.

The third parameter of the method indicates the view container object which is one
of the JGadgets container widgets. If JGFrame or JGDialog is specified, a new window
for the view is opened. If the parameter is of type JGPanel, the new view is placed as
sub view inside the view of the actual model.

With the creation of a model/view pair also a new controller maybe instantiated, de-
pending on the needs of the business logic. This is specified with the fourth parameter.
If it is not null, it defines the position of the new controller within the existing controller
hierarchy by specifying its parent controller (see also task 2 and fig. 6).

The result of the connection process is that each model element has a reference to its
corresponding view elements and vice versa. Both model and view elements get a refer-
ence to the controller.

Closing a model works the same way using the method disconnect(). This method
disconnects the elements of the specified model and view and removes the model, the
view, the controller and all the child elements - if there are any - from the application
hierarchy.
Managing the application hierarchy: The architecture of the overall application is de-
fined by the relationship of the controllers instances and the attached models and views.
Fig. 6 schematically illustrates this aspect. M, V, C are the abbreviations of model, view
and controller and the class names next to the circles refer to our case study. The con-
troller CustomerSearchCtrl holds the model CustomerSearchModel and the view Cus-

 MVC-based Architecture for e-commerce.Journal.doc 15/22

tomerSearchView. When the end user presses the Modify (Ändern) button in the dialog
in fig. 2, a new dialog is opened. For this purpose a new model/view pair (Cus-
tomerEditModel and CustomerEditView) is created together with a new controller Cus-
tomerEditCtrl which is a child of the first controller.

The controller hierarchy (especially the graphic version as in fig. 6) gives us a good
insight into the current state of the application. If we only take into account the models
and controllers, we see the relevant business logic and the relationships between the
models. If we leave out the models (left hand), we get the window hierarchy.

C

C

VM

M V

...

M

CustomerSearchCtrl

ListBoxModel

CustomerSearchModel

CustomerEditCtrl

CustomerSearchView

CustomerEditModel CustomerEditView

C
......

parentController

Figure 6 Controller hierarchy.

Generation and propagation of JGadgets events: The controller provides a method
fireEvent() to generate JGadgets events (see Example 5). This method has two parame-
ters: the first is the event type encapsulated in an event object. This event corresponds to
a Java event object such as a PropertyChangeEvent. The event object is instantiated
manually (as in the example) or is taken over from a Java GUI event (e.g. an action
event). The second parameter is a constant that specifies the event propagation inside
the controller hierarchy. Available constants are JGController.DEFAULT for default
propagation (first the local model, then downward and upward), JGController.LOCAL
only the local model, JGController.DESCENDING only downward and JGControl-
ler.ASCENDING only upward.

fireEvent(new PropertyChangeEvent(<attribute>, "data”, <oldValue>, <newValue>),
// type of event
JGController.DESCENDING);
// controls event propagation (controller constant)

}

Example 5 Sending an descending property-change event for the data property

The controller looks for models which implement the according listener methods which
would be <attributeName>_dataChanged(PropertyChangeEvent e) in case of example
5.

The event propagation is defined with the controller constants but can be controlled
by the event handling methods: with the use of a return parameter of type Boolean
which indicates whether the event handling should be continued (value true) or termi-

 MVC-based Architecture for e-commerce.Journal.doc 16/22

nated (value false or no return parameter). In the case that the event propagation termi-
nates no other model is considered for event handling.

Note that the return parameter is not implemented in the sample model implementa-
tions in example 1 and 2. Fig. 7 illustrates the event handling process of the action event
of the service addItem of ListBoxModel. The service triggers the action event with de-
fault propagation (�) which is handled by the model’s default event handling method
addItem_actionPerformed(ActionEvent e). As it returns true (�), the event moves to the
child controllers and the corresponding models (�). The next model in question is the
model CustomerEditModel which implements the event handling method. The method
is invoked by the controller and returns false so that event handling process to termi-
nated (�).

C

C

M

M

M
CustomerSearchCtrl

ListBoxModel

CustomerSearchModel

CustomerEditCtrl

CustomerEditModel

C
parentController

CC
...

...
M

...

...

service addItem
 triggers an
 action event

boolean addItem_
 actionPerformed()
 (returns false)

boolean addItem_
 actionPerformed()
 (returns true)

M

1 3

4

2

Figure 7 Propagation of JGadgets events

Exchanging information between models: A model that needs information of ele-
ments from another model, does not access that model directly but uses the controller
method getModelElem(<nameOfElem>, <model>). The nameOfElem parameter refers
to the name of the model element (attribute, service or sub model). The model parameter
refers to the model and can be specified as a String or Class object. If a model parameter
is specified, the model element is sought there, if it is null, the element is sought glob-
ally. The method returns the references of the found attribute and service as enumera-
tion. The returned model elements are accessed and changed like a local model element.
In larger applications each model may contain an ID to be referenced unambiguously.
This has not been implemented yet.

3 The Architecture of JGadgets

This section first outlines the components of JGadgets, i.e., its classes and interfaces.
Based on this description, the core design aspects of JGadgets such as the connection
and update mechanisms between models and views as well as the encapsulation of the
GUI are discussed.

 MVC-based Architecture for e-commerce.Journal.doc 17/22

3.1 Components of JGadgets

The framework JGadgets consists of only a few classes and interfaces (see UML dia-
gram in fig. 8): The class JGController, the two empty interfaces JGModel and JGView,
the classes JGAttribute, JGService and the GUI classes, such as JGButton, JGTextField
or JGList which are sub classes of JGComponent. Note that the core classes of JGadgets
do not extend other Java classes. They are derived directly from the root class Object
(see UML diagram in fig. 9).

JGModel

MyModel

JGAttribute JGService

JGView

MyView
JGComponent

JGController

* **

connect()
disconnect()
fireEvent()
getModelElem()

*
1..* 1..**

JGButton
JGTextField
JGList
...

empty

 AWT-
 Swing-
Elements

setData()
getData()
...

perform()
setEnabled()
getEnabled()
...

*

empty

1

<<interface>> <<interface>>
1

1

1

Figure 8 Simplified class diagram of JGadgets.

JGController is the core part of JGadgets. It has basically four methods: connect(), dis-
connect(), fireEvent() and getModelElem(). JGController has a reference to the models
and views its manages, to its sub controllers and to its parent controller to maintain the
controller hierarchy.

The framework JGadgets defines two abstract components which we call hot spots
[8]. These are the (empty) interfaces JGModel and JGView which have to be imple-
mented by the adaptation classes which are the models and the views. They are repre-
sented by MyModel and MyView in fig. 8. MyModel contains instance variables of
JGAttribute, JGService and sub models. MyView contains instance variables of the JG-
GUI classes as well as sub views. Note that the model and view itself do not have a ref-
erence to the controller. A model (view) accesses its controller by using the controller
reference of any model (view) element (i.e. JGAttribute, JGService and JGComponent)

JGComponentJGServiceJGAttributeJGController

Object

Figure 9 Core JGadgets classes are derived from the Java Object class.

JGadgets defines the JG-GUI elements which are required for the views, such as text
fields, labels, buttons and grid controls. The JG-GUI classes extend JGComponent and
encapsulate the corresponding elements of the used GUI library. Currently JGadgets

 MVC-based Architecture for e-commerce.Journal.doc 18/22

supports AWT and Swing1. The design allows a migration of JGadgets to future Java
GUI libraries.

3.2 Automated Connection of Model and View

The connect() respectively the disconnect() method is invoked by JGadgets whenever
there is a change of the controller hierarchy and when a model or view has been added
or removed. When an attribute or service has been added to or removed from a dynamic
model, the method connects the added or disconnects the removed attributes and ser-
vices.

To connect a view to the model, the method iterates recursively over the attributes
and services of the model and sub models as well as over the GUI elements of the view,
extracts the names with reflection, checks model and view elements for name equiva-
lence and sets a mutual reference for corresponding elements. For performance reasons
model and view elements, as well as the event handling methods are put into hash tables
with their names as the key.

Corresponding elements are checked for type compatibility. If the check is positive,
the state of the view element is updated with the state of the model element; otherwise,
an error message pops up and the elements are disconnected; e.g. an integer attribute
and a list view are not compatible.

3.3 Automated Synchronization of Model and View Elements

Whenever a property of a model or view elements has been changed, its counterpart is
automatically updated. If the property is bound, additionally a JGadgets property change
event is trigged by the model element. Fig. 10 illustrates the synchronisation of the data
property of the attribute lastName. Note that this is automatically done by JGadgets.

If the user changes the text of the text field lastName, the view field handles the Java
text event (see also subsection 3.4) and makes an attempt to update the model by invok-
ing lastName.setData(newValue) where newValue is the new value of the text field (�).
The attribute validates the new value (�). If it is compatible, the view(s) is/are updated
(�). Otherwise an error message pops up and the view is reset. In case of a successful
update, the model element generates a JGadgets event (dataChanged event) by invoking
the controller’s fireEvent() method (�). The controller invokes the corresponding event
handling method lastName_dataChanged() of the model (�). Note that the parameters
are omitted for simplicity.

If the data property of the attribute is changed in the model, a validation of the new
value is also necessary because the model developer could have assigned a wrong value
to the attribute (�). Further the model element might not be active (property enabled =
false). In neither case the model would be updated.

1 The KVM which is an implementation of the Java 2 Micro Edition for the Palm Pilot
does not contain the reflection API used in JGadgets. Thus JGadgets in its current im-
plementation is not portable to a Palm Pilot device.

 MVC-based Architecture for e-commerce.Journal.doc 19/22

CustomerSearchModel CustomerSearchView

lastName (text field)lastName (string)

lastName_
 dataChanged()

attributes

user changes text

JGController

fireEvent()

lastName.setData()
1

3

5
4

2

Figure 10 JGadgets Event Handling

Note that the automation is mainly implemented in the setData() method of the attribute
which performs the type check, updates the views and triggers the dataChanged event.
The controller method fireEvent() which is reflection-based looks for the event handling
method using the internal hash tables, invokes the method and decides, depending on
the return parameter, whether to continue or terminate the event handling process.

3.4 GUI Encapsulation

The GUI components of JGadgets encapsulate the used Java GUI library. The compo-
nents start with JG- and extend the class JGComponent which is a descendent of Object.
For each GUI library there exists a separate set of JG-components with the same func-
tionality but different implementations. For example there is a JGTextField for AWT
and Swing. The JGadgets components are separated from the Java GUI components
through the Adapter pattern ([9] and fig. 11). Clients which rely on different GUI librar-
ies thus use a different set of JG-GUI components. When a newer version of a Java GUI
library is used, it is sufficient to adapt the JGadgets GUI components. Model and view
remain unchanged.

JGComponent

JGTextField

1

JTextField Swing

Figure 11 Applying the Adapter pattern for providing uniform JGadgets component interfaces

Generally speaking, the GUI elements must at least support the properties specified in
table 1 in order to be synchronized with the attributes. They do because the parent class
JGComponent implements the necessary methods. For some properties, such as enabled
the default implementation of JGComponent is sufficient. For others, such as the data
property, the JG-GUI components have to override the methods. Example 6 sketches the
implementation of the class JGTextField for the Swing library (Example 6). The con-
structor, the method get- and setData(), which have to be overridden, as well as the nec-
essary listener methods are shown.

 MVC-based Architecture for e-commerce.Journal.doc 20/22

The constructor instantiates the GUI element (a javax.swing.JTextField) in the field
guiComponent and registers the JG-GUI element as a document listener. The data prop-
erty is the text contained in the text field. It is accessed by the setter- and getter method
which adapt the getter- and setter methods of the Java GUI element (setText() and get-
Text()). The event handling methods for document events, such as changeUp-
date(DocumentEvent e), update the model element by invoking its setData() method.

package jgadgets;

import javax.swing.*;

public class JGTextField extends JGComponent implements DocumentListener {

public JGTextField() {
guiComponent = new JTextField(); // variable inherited from JGComponent
((JTextField)guiComponent).addDocumentListener(this);

}

public void setData(Object data) { // set the text of the text field
if (data != null)
((JTextField)guiComponent).setText(data.toString());

}

public Object getData() { // get the text of the text field
return ((JTextField)guiComponent).getText();

}

public void changeUpdate(DocumentEvent e) {
// event handling method, set the attribute data with the new text

((JGAttribute)this.getModel()).setData(getData());
}

public void insertUpdate(DocumentEvent e) {
// the same implementation as in event handling method “changeUpdate”

}

public void removeUpdate(DocumentEvent e) {
// the same implementation as in event handling method “changeUpdate”

}
}

Example 6 JGTextField for the Swing text field

4 Conclusion

4.1 Summary

The goal of JGadgets is to augment Java libraries in a lean and convenient manner.
JGadgets allows

• MVC programming using an arbitrary GUI library by using GUI-independent
views

• Linking of models and views based on naming conventions.
• A simplified event handling mechanism for standard events based on naming

conventions.
• while it does not limit the usage of existing Java classes.

Overall, the design and implementation of the framework architecture at hand is rea-
sonably small: The byte code size and LOC of JGadgets, including the JG-GUI compo-

 MVC-based Architecture for e-commerce.Journal.doc 21/22

nents is summarized in table 2. The linking based on naming conventions ensures that
developers benefit from JGadgets without being bothered by the framework.

Table 2

Size of JGadgets

JGadgets Size of byte code LOC
whole framework 80 KB ~5500
core classes:
JGController
JGAttribute
JGService
JGModel, JGView

25 KB ~2000

JG-GUI classes for AWT 25 KB ~1500
JG-GUI classes for Swing 30 KB ~2000

4.2 Related Work

There are numerous other systems that provide a model-view separation and that auto-
mate the synchronization of these two components as well as the event handling in the
GUI. For example, the Microsoft Foundation Classes provide a mechanism for dynamic
data exchange (DDE). [12] describes a system that applies reflection to some extent in
the realm of synchronizing model and view components. The Oberon Gadgets system
was already mentioned as another example originating from the academic community.

4.3 Outlook

The JGadgets views only provide a static descriptions of the GUI. Thus we investigate
in a more appropriate view description format based on XML. Such descriptions could
be useful in the realm of small mobile devices where a full fledged JVM is not imple-
mented, as is the case with the KVM. The migration to XML is done on top of JGadg-
ets’ naming convention. The view description is then a set of XML fields containing the
information of the view gadgets. The device-dependent view would be generated with
adaptation tables similar to the JG-GUI elements.

References
[1] J. Gutknecht, Oberon System 3: Vision of a Future Software Technology. (Software—Concepts &

Tools 15, 1, 1994)

[2] Sun Microsystems, Java 2, http://java.sun.com/jdk

[3] M. Campione, K. Walrath, The Java Tutorial Second Edition. Object-Oriented Programming for the
Internet (Addison Wesley, 1999)

[4] Sun Microsystems, KVM, http://java.sun.com/products/kvm

[5] A. Goldberg, D. Robson, Smalltalk-80 / The Language and its Implementation (Addison-Wesley,
1985)

[6] G. Krasner, S. Pope, A cookbook for using the model-view controller user interface paradigm in
Smalltalk-80, Journal of Object-Oriented Programming, 1(3), August/September 1988, 26-49

 MVC-based Architecture for e-commerce.Journal.doc 22/22

[7] R. Eckstein, M. Loy, D. Wood, Java Swing (O'Reilly, 1998)

[8] W. Pree, E. Althammer, Framelets as Architectural Building Blocks—Concepts & Case Study, ST ’98,
Paderborn, Germany, 1998

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns—Elements of Reusable Object-
Oriented Software (Reading, Massachusetts: Addison-Wesley, 1995)

[10] W. Pree, E. Althammer, H. Sikora, Self-Configuring Components for Client-/Server Applications,
IEEE Workshop on Large Components, DEXA’98, Vienna, Austria, August 1998

[11] M. Fontoura, W. Pree, B. Rumpe, The UML Profile of Framework Architectures (Addison-Wesley,
2000)

[12] C. Hewitt, Developing Business Object-based Applications in JBuilder (http://www.oop.com
/white_papers/java/business_objects.htm, 1998)

	DESIGN AND IMPLEMENTATION OF A MVC-BASED ARCHITECTURE FOR E-COMMERCE APPLICATIONS
	Introduction
	JGadgets versus the Traditional MVC Architecture

	Reduced Development Effort Through Model-View Separation—A Case Study
	Overview
	Model Programming in JGadgets
	Attributes and Services
	Implementation of Attributes
	Implementation of Services

	Naming Convention to Link Models and Views
	JGadgets Events
	Listening to JGadgets Events
	Triggering JGadgets Events
	Other Types of Events

	Further Issues of Model Programming
	Reuse of Model Components – Sub Models
	Dynamic Models
	Model Implementation Example

	View Generation
	Controller

	The Architecture of JGadgets
	Components of JGadgets
	Automated Connection of Model and View
	Automated Synchronization of Model and View Elements
	GUI Encapsulation

	Conclusion
	Summary
	Related Work
	Outlook

