Software—Concepts and Tools (1997) 18: 169-174

Software—Concepts and Tools
© Springer-Verlag 1997

Component-Based Software Development—A New Paradigm in

Software Engineering?

Wolfgang Pree

Software Engineering Group, University of Constance, D-78457 Constance, Germany

e-mail: pree@acm.org

Abstract. Component-based software development is
associated with a shifirom statement-oriented coding to
system building by plugging togethemomponents. The
idea is not new and sonprogress has beemadeover the
past decadedNevertheless, today's softwadevelopment
practice is stillfar awayfrom thevision. Inrecentyears,

the term componentware has become the vogue in the
softwareengineering communityThis paper defines the
relevant terms by relating them to thaready well-
established terms of objetéchnology. Inparticular, the
focus lies on a discussion of the deficiencies of dbgect-
oriented paradigmand how componentwaramight solve
these shortcomings. Furthermore, the role obbject-
oriented frameworks as underlyingchnology ofplug &

play software is illustratedFinally, the paper tries to
answer the question of whether some enhancements of the
object-oriented paradignndeedrepresent thedawn of a
new era of software development.

Keywords component-based
object-oriented programming,
computing, visual programming

softwaredevelopment,
frameworksdynamic

1. Introduction

Though object technology has become the vogue in the
software engineering community, quite a lot of projects
regarded as being object-orientedve failed in @cent
years. Of course, the term failure hadfedent
meaningsdepending on various cinmstancesNever-
theless, it expresses at least that object technology has
not met the expectations in those projects. Both
organizational and technical troubles might haaesed
these failures. Primarily, adopters of the object-oriented
paradigm migrate to this camp in order to significantly

improve reusabilityand theoverall quality of software
systems.

The buzzwordcomponentwards now heraled as
the next wave to fufill the promises that object
technologycould not deliver. In addition, proponents
of component-based software development view this
technology as a means to lend-usercomputing
become reality. This paper contributes to aiftdation
of terms by discussing the overlappingpncepts
underlying object and component technolagyd the
few additional ingredients that might indeedgtjty the
creation of the new term componentware.

Central to the component paradigm are components
and their interaction.Several ways of specifying
components have been proposed. Vigagiee with the
point of view of authors who egard numerous
language concepts as foundationscomponents. For
example, Nierstrasand Dami [10] write “Mixins,
functions, macros, pcedures, emplatesand modules
may all be valid examples of components”. Lakos [6]
describes components as follows: “Conceptually a
component embodies a subset of the logical design that
makes sense to exist as addpendent, cohesive unit.
Classes, functions, enumeratioaed so on are the
logical entities that make up these components”. In
order to formulate a more useful definition, we first
take a look at what should be improved in the object-
oriented paradigm.

Deficiencies of the object-oriented para-
digm. Figure 1 illustrates the problems associated
with the object-oriented paradigm. Classes/objects
implemented in one programming languagannot
interoperate with those implemented in other
languages. Some object-orientechnduages even
require the same compiler version. Furthermore,
composition of objects is typicallydone on the
language ével. Composition support is missing, that
is, visual/ interactive tools that allow the plugging
together of objects.

170

application application

composition tools

0O (frameworks,
components

class libraries)

object model
platform (OS, HW)

platform (OS, HW) ‘

Figure 1. Object-orientation versus componentware
(adapted from Weinand [16]).

2. Component-Based Software
Development

This section sketches currentapproaches of
implementing systems with components. We start
with a description of what components essentially are
and how componentsand their interactions are
formulated in programming languagemd/or inter-
active visual environments.

2.1 Components as Abstract Data Types

A component is simply a data capsule. Thus
information hiding becomes the core construction
principle underlyingcomponents. Parnas [12] defines
information hiding as follows: “A module is
characterized byits knowledge of a design decision
which it hides from all others. Its intade was chosen
to reveal as little as possible about its inner working.”
Several ways of bringing information hidirdpwn to
earth have been proposed.

Components in module-oriented lan-
guages. In module-oriented ahguages such as
Modula-2 and Ada, components are called modules. A
module offers an interface tats clients. Clients
interact with a module only thugh its interfce. The
internal implementation in thanodule’s body is
hidden from cliets. Thougheachmodule defied in
Ada andModula-2 represents an abstract data structure
(ADS), module-oriented ahguages also allow the
definition of abstract data types (ADTS).

Components expressed in module-oriented
languages can only be reused in another prejemttly
in the same way as the module was originally
designed. Otherwise the sour@®de or even its
interface have to be changed. Théads to the creation
of multiple versions. Component testing must be
repeated. In other wordsuch reuse is far from the
ideal world. Unfortinately, most modules equire
slight changes to be reusable in other software
systems. Only quite basic modules, such as data
structures and GUI dialog items, allow black-box reuse
(without any modifications).

Pree: Component-Based Software Development—A New Paradigm in Software Engineering?

client components

Figure 2. Granularity of components.

Components in object-oriented &nguages.
In object-oriented languages such Smmalltalk, C++
and Java, components are instances of classes. A class
represents an abstract dagpe (ADT). Analogous to
modules, a class offers an inteé and hides its
realization. In contrast to a module, a class serves as a
component factory by allowing the instantiation of
any number of objects. In order vercome some
reuse problems of module-orienteghgjuages, object-
oriented languages introduce languagenstructs to
achieve delta changes(programming by ifference)
without having to touch the soura®de of original
modules/classes. Inheritance is central to this solution.
A subclass ddfies the delta by which a classfels
from its superclass. In other words, inheritance allows
ADT adaptations without having to edit sour®le or
give up compatibility. To sum up, object-oriented
languages improve the module concept. They allow a
straightforward defition of ADTs and provide
language constructs for their extension
modification.

As a consequencemany adopters of object
technology expect the usage of an object-oriented
language alone to vyield significant improvements in
software reusability. Thisehds to a quite naive
application of object technology, as alyorated in
Section 3.

and

Language-independent component [seci-
fication. The goal of component-based software
development is thepossibility to implement a
component in (almost) any language, not only in any
module-oriented and object-orientethguages but even
in conventional languages. Ascansequence, asidards
for describing componentzave been established. The
component (module) interface is described either

e textually by means of an intede description
language (IDL), or

e visually/interactively by means ofappropriate
tools.

In OO languages, eseral
components) typically form

classes (fine-grained
one coarse-grained

Pree: Component-Based Software Development—A New Paradigm in Software Engineering?

Compound document (Compound document
applications applications
(Windows) Windows, OS/2, Mac, Unix)

OLE (OpenDoc/Bento)
COM CORBA IDL
(D) SOM

Figure 3. Component models and compound
document architectures.

component (see Figure 2). The reason for this is that
language-independesbmponent models offer only a
common denominator of features for defining
component interfacesThus they allow only the
definition of coarse-grained components that cpoed
rather to subsystems than to single classes.

Conventional, prcedural &nguages lack the
language features necessary to defileDTs.
Interactive, visual component programmiegviron-
ments on top of procedurakriguages offer both, the
additional language features for definis@gmponents
and ameans for connectinchém. Interactive, visual
component programming environments on top of
object-oriented or module-oriented languages
essentially allow the specification of object inter-
actions.

For example, Visual Basic augments tiraerlying
procedural anguage to allow expression of compo-
nents. The resulting components, now called
ActiveXs, dffer slightly from modules. ActiveX
components may provide any number of irtegk.
Parts [11]and Visuafge [5] are based osmalltalk
and represent furtheexamples of interactive environ-
ments for defining the interaction between objects.

2.2 Interoperability Standards

Component sindards sch as (D)SOMand (D)COM
[2] represent one approach to ameliorate the problem of
making components interoperable. Tolgiect models
SOM (System ObjecModel) and COM (Component
Object Model) mdeed make dfferent languages and
compilers interoperable. Unfortunately, thesendards
have an unnecessary inheresimplexity and fail to
offer meta-information and pper garbage collection,
which is simply a must for extensible systems. Java
Beans [14] represents a new component model that also
offers bridges to the object models QM and
(D)COM. Time will show which of the
object/component models will become thedominant
standard.

OpenDoc (based o80OM; its furtherdevelopment
was canceled byApple and IBM in early 1997) and
OLE (Object Linking ancEmbedding; based on COM)

171

costs
A
100% -

55%

5% -

required changes

Figure 4. Costs of component changes versus costs of
development from scratch (adapted from Boehm [1]).

are framework architectures that build on these object
models and manage resources (such akeyigoard and
the screen) between interoperato@mponents. Figure

3 illustrates schematically the relationshipwestn the
component models and compound document
frameworks.

3. Frameworks as Core Technology of
Plug & Play Software

In general, reuse of software habvious advantages,
such as reduced development and maintenarsts end
a positive impact on software quality €ddy tested
components contribute to correct software).
Components based orffieient algaithms allow the
construction of more efficient software. Reuse of
portable software components implies a moreade
system. But how can software reuse become reality?
Though organizationameasures form a crucial
precondition to successful reuse, we focus emfrical
and economic issuesind discuss the implications of
single component reuse aspposed to fmework
reuse. In general, more fleXiby implies more
programming effort by the programmers who reuse the
software components. The ordering below reflects
decreasing levels of flexibilitand hus increasing ease
of reuse. Black-box frameworks represent the most
rigid albeit the easiest way of reusing components;
thus they form the backbone of pure componentware.

3.1 Naive View: Reuse Based on Lego Kit
Component Libraries

Single component reuse means that programmers build
the overall software system architecture on tlosin.
They have to locate the appropriamponents in a
Lego kit library and define their interaction.

Barry Boehm (1994) presents a studgarding the
reuse costs of single components. The study was

172 Pree: Component-Based Software Development—A New Paradigm in Software Engineering?

conducted inNASA’s software engineering lab and
comprises a sample of about 3000 modules. Figure 4
summarizes the results; the graph relates the
percentage of necessary changes to a single component
in order to render it reusable (xis)xto the cets of
these changes relative to the development of a
component from scratch (y-axis).

First, reuse of single components without any
changegdoes notcome for free. One has to locate the
appropriatecomponent, understandits interace and
determine how to fit it into the systenunder
construction. Furthermore, a (hypertext-based) catalog
of reusable componentsand the components
themselves have to be maintained. The components
themselves have to be iliufor reuse, which is more
expensive than for a special purpose. More
intimidating is the fact that only a few chang&g%)
to a component raise the reuse costs to 56fpared
to a from-scratch development of the particular
component; not thechanges hemselves but the
required component understandingstsoa lot. Without
this understanding, changesuld cause disastrous side
effects.

The study cowborates programmer’s gut feeling
that single-component reuse is almost as expensive as
development from scratcithough one might argue
that a 45% cost reduction is a significant improvement
compared to component development from scratch, the
following psycological aspect has to lwensidered,
too. Programmers often do not trust software written
by others ffot-invented-heresyndrome). Furthermore,
the code to plugogether several single components
has to be written. Assuming that 50% of the resulting
overall system consists of reused single components,
the overall costaduction is only 22.5%456%/2) or
even less. As how single components should be
connected might not be completely clear, a significant
amount of bulky extracode could be the price of
plugging together single components.

The bottom line is that itloes not matter whether
languages suppoddaptations in an elegant way or
not. Simply using an object-oriented language instead
of a conventional one or using object/component
models cannot ensure reusability improvements.
Projects that apply components with this naive view
are likely to fail.

3.2 Framework Reuse

Instead of reusing singleomponents, mostuscessful
component-based projects practice framework
developmentand reuse. A &mework is simply a
collection of several single components witledafined
cooperations betweenhdm, for the purpose of
accomplishing a certain task. Some of these single
components are degsied to be repkeable, typically
corresponding to abstract classes in theméwork’s

Figure 5. Framework with hot spots.

class hierarchy. We call the points ofegfined
refinement hot spots [13]. Figure 5haswvs these
framework characteristics with the hot spots in gray.

A framework deserves thattribute welldesigned if
it offers the domain-specific hot spots to achieve the
desired flexibility viaadaptation of these hot spots.
Well-designed frameworks alsoeglefine most of the
overall architecture, i.e., the composition and
interaction of its components. The linesnnecting
method interfaces in Figure 5 express this glue
between the components. Applications built on top of
a framework reuse not only souramde but also
architecture design, which weonsider as the most
important characteristic of frameworks.

Note that the framework concept is quite
independent ofhow components are implemented.
Frameworks just eguire that components can be
replaced by morepgcific ones that are compatible to
the original placeholders. Otourse, object-oriented
languages support specialization instaightforward
manner through inheritance.

The badnews is that fimeworks equire enormous
development effort. Many problems result from
complicated interaction scenarios between partially
defined components. The costs ofleveloping a
framework are sigficantly higher compared to the
development csts of a pecific application. So
frameworks represent a long-ternvéstment thapays
off only if similar applications are developagdain and
again in a domain.

Furthermore, tools and nietds asisting in
framework development are almosbn-existent or in
their infancy. Framework technology itself is not yet
mature. For example, it remainsinclear how
frameworks degned by differentdams with eparate
control flows can interoperateThe fragile base-class
problem [8] might overturn fundamental framework
design decisions.Changes in base classes of a
framework can casde onto numerous classes
inheriting from them.

Finally, frameworkdevelopmentnd reuseonflicts
with the current project culture that tries to optimize

Pree: Component-Based Software Development—A New Paradigm in Software Engineering?

the development of specific software solutions instead
of genericones. As this paper focuses on technical
aspects, we refer to the excellent discussion of
organizational issues by Goldberg and Rubin [3].
Despite the mentioned problems with the state of
the art in framework echnology, (lAck-box)
frameworks provide the enabling technology of plug &
play software, wherenost adaptations can bachieved
by exchanging components.

4 . Dynamic Computing Perspective

Many software systems belong to the egatry of
fatware [18]. For example, a typical desktop
application such as a sadsheet has morban 1000
features. The applicationgquire numerous MBs on
hard disks and in RAM.

Instead, users should work with a lean application
that offers the typical features needefdditional
components are onlyoddedwhen they are equired.
Language systems must upport the flexible
integration of components into running software,
independent of the haware andoperating platform
where the pdicular software runs. For this purpose,
the language system has to offer appropriate meta-
information and dynamic linking of components.

Java [14], ET++ [15nd theGadgets [4] derivative
of the Oberon system [17] exemplifhow the
portability problem can be saled. Machine-
independent code is dynamically linked as a component
is loaded.The componenmodel represented by Java
Beans [14] wll further contribute to platformrde-
pendent components. Marimba’'s Castanet [9] for
automatic, incremental updates of singlpplication
components supportslynamic computing in that
components are onlypadedwhen they are noohger
up-to-date.

Envisioned end user programming sys-
tems. Dynamic computing implies distributing
software components that can be plugged into software
systems. The underlying technology illw be
frameworks whose behavior is modified and/or
extended bycomposition. The Internetould strongly
boost such a component market.

Currently software components are rather mono-
lithic. In many cases components materialize as either
simple GUI items or full-fledgedpplications. Many
more levels of granularity of software components can
be expected. Visual, interactive composition tools will
become available that allownd users toconfigure
software systems byhandling components that
specialize framework hot spots.

Ted Lewis [7] coroborates our point of view that
“we have the technology to solve most of the

173

problems left unresolved by the software engineering
elite”. For example, a technically feasible response to
the problem that many projects start from scratch
would be parts assembly tools replacing programming
languages. Small-scale, plugable component&sept

an alternative to large-scale, monolithic systems. Ted
Lewis foresees a softwareconomy dwen by the
demand to solve these and other decades-long
unresolvedissues and the feasibility of meeting that
demand. One consequence will be the rise of a “cottage
industry of application-specific &mework developers

— a small corps of elite craftspersons” [7].

Overall, fameworks Wl remain the long-term
players owards reaching thegoal of developing
software with a building-block approach. Nevertheless,
the creation of frameworksand their corrgmonding
specializing components will clearly beparated from
their consumption. deally, domain expertsvho are
not familiar with current programming languages will
configure their domain-specific systemsThus,
component-based software development couldbed
represent a new paradigm in software engineering.

References

1. Boehm B (1994Megaprogramming.Video tape by
University Video Communications, Stanford,
California, (http://www.uvc.com)

2. Brockschmidt K (1995) InsideOLE. Redmont,
Washington, Microsoft Press

3. Goldberg A, Rubin K (1995) Succeeding with

Objects: Decision Frameworks for Project
Management. Reading, Massachusetts Addison-
Wesley

4. Gutknecht J (1994) Oberon System 3: Vision of a
Future Software Technology. Software Concepts &
Tools, 15(1), 26-33

5. IBM (1997) VisualAge for Smalltalk, User's Guide.
IBM

6. Lakos J (1996)Large ScaleC++ Software Design.
C++ Report, 8(6), 27-37

7. Lewis(1996) The Next 10.00@ Years Part Il.IEEE
Computer, May, 78-86

8. Lewis T, etal. (1995) Object-OrientecApplication
Frameworks. Manning Publications/Prentice Hall

9. Marimba (1997) Castanet description &
demonstration. White Papers at Marimbalnc.,
http:// www.marimba.com,

10. Nierstrasz ODami L (1995) Component-Oriented
Software Technology. InObject-Oriented Software
Composition, Nierstrasz O,Tsichtitzis D, Prentice
Hall, 3-28

11. ParcPlace-Digitalk (1997) Parts Workbench User's
Guide. ParcPlace-Digitalk Inc.

12. Parnas DL (1972) On the Criteria to lsed in
Decomposing Systems into Modules. Communi-
cations of the ACM, 15(12), 1053-1058

13. Pree W(1995) Design Patterns for Object-Oriented
Software Development. Reading, Massachusetts
Addison-Wesley

14. Sun(1997) The Java Language; Java BeaWhite

174

15.

16.

Pree: Component-Based Software Development—A New Paradigm in Software Engineering?

Papers at http://java.sun.com, Sun Microsystems
Weinand A,Gamma E,Marty R (1989) Design and

Implementation of ET++, a Seamless Object-Oriented

Application Framework. Structured Programming,
10(2), Springer Verlag
Weinand A(1996) Komponentenbasiert&oftware-

17.

18.

entwicklung. Tutorial (in German), OOP'96
Conference, Munich
Wirth N, Gutknecht J (1992) ProjecOberon.

Wokingham. Addison-Wesley/ACM Press
Wirth N (1995) APlea for LeanSoftware, IEEE
Computer, 28(2)

