
Software—Concepts and Tools (1997) 18: 169–174 Software—Concepts and Tools
© Springer-Verlag 1997

Component-Based Software Development—A New Paradigm in
Software Engineering?

Wolfgang Pree
Software Engineering Group, University of Constance, D-78457 Constance, Germany
e-mail: pree@acm.org

Abstract . Component-based software development is
associated with a shift from statement-oriented coding to
system building by plugging together components. The
idea is not new and some progress has been made over the
past decades. Nevertheless, today's software development
practice is still far away from the vision. In recent years,
the term componentware has become the vogue in the
software engineering community. This paper defines the
relevant terms by relating them to the already well-
established terms of object technology. In particular, the
focus lies on a discussion of the deficiencies of the object-
oriented paradigm and how componentware might solve
these shortcomings. Furthermore, the role of object-
oriented frameworks as underlying technology of plug &
play software is illustrated. Finally, the paper tries to
answer the question of whether some enhancements of the
object-oriented paradigm indeed represent the dawn of a
new era of software development.

Keywords component-based software development,
object-oriented programming, frameworks, dynamic
computing, visual programming

1 . Introduction

Though object technology has become the vogue in the
software engineering community, quite a lot of projects
regarded as being object-oriented have failed in recent
years. Of course, the term failure has different
meanings depending on various circumstances. Never-
theless, it expresses at least that object technology has
not met the expectations in those projects. Both
organizational and technical troubles might have caused
these failures. Primarily, adopters of the object-oriented
paradigm migrate to this camp in order to significantly

improve reusability and the overall quality of software
systems.

The buzzword componentware is now heralded as
the next wave to fulfill the promises that object
technology could not deliver. In addition, proponents
of component-based software development view this
technology as a means to let end-user computing
become reality. This paper contributes to a clarification
of terms by discussing the overlapping concepts
underlying object and component technology and the
few additional ingredients that might indeed justify the
creation of the new term componentware.

Central to the component paradigm are components
and their interaction. Several ways of specifying
components have been proposed. We disagree with the
point of view of authors who regard numerous
language concepts as foundations of components. For
example, Nierstrasz and Dami [10] write “Mixins,
functions, macros, procedures, templates and modules
may all be valid examples of components”. Lakos [6]
describes components as follows: “Conceptually a
component embodies a subset of the logical design that
makes sense to exist as an independent, cohesive unit.
Classes, functions, enumerations and so on are the
logical entities that make up these components”. In
order to formulate a more useful definition, we first
take a look at what should be improved in the object-
oriented paradigm.

Deficiencies of the object-oriented para-
digm. Figure 1 illustrates the problems associated
with the object-oriented paradigm. Classes/objects
implemented in one programming language cannot
interoperate with those implemented in other
languages. Some object-oriented languages even
require the same compiler version. Furthermore,
composition of objects is typically done on the
language level. Composition support is missing, that
is, visual/ interactive tools that allow the plugging
together of objects.

170 Pree: Component-Based Software Development—A New Paradigm in Software Engineering?

2 . Component-Based Software
Development

This section sketches current approaches of
implementing systems with components. We start
with a description of what components essentially are
and how components and their interactions are
formulated in programming languages and/or inter-
active visual environments.

2.1 Components as Abstract Data Types
A component is simply a data capsule. Thus
information hiding becomes the core construction
principle underlying components. Parnas [12] defines
information hiding as follows: “A module is
characterized by its knowledge of a design decision
which it hides from all others. Its interface was chosen
to reveal as little as possible about its inner working.”
Several ways of bringing information hiding down to
earth have been proposed.

Components in module-oriented lan-
guages. In module-oriented languages such as
Modula-2 and Ada, components are called modules. A
module offers an interface to its clients. Clients
interact with a module only through its interface. The
internal implementation in the module’s body is
hidden from clients. Though each module defined in
Ada and Modula-2 represents an abstract data structure
(ADS), module-oriented languages also allow the
definition of abstract data types (ADTs).

Components expressed in module-oriented
languages can only be reused in another project exactly
in the same way as the module was originally
designed. Otherwise the source code or even its
interface have to be changed. This leads to the creation
of multiple versions. Component testing must be
repeated. In other words, such reuse is far from the
ideal world. Unfortunately, most modules require
slight changes to be reusable in other software
systems. Only quite basic modules, such as data
structures and GUI dialog items, allow black-box reuse
(without any modifications).

Components in object-oriented languages.
In object-oriented languages such as Smalltalk, C++
and Java, components are instances of classes. A class
represents an abstract data type (ADT). Analogous to
modules, a class offers an interface and hides its
realization. In contrast to a module, a class serves as a
component factory by allowing the instantiation of
any number of objects. In order to overcome some
reuse problems of module-oriented languages, object-
oriented languages introduce language constructs to
achieve delta changes (programming by difference)
without having to touch the source code of original
modules/classes. Inheritance is central to this solution.
A subclass defines the delta by which a class differs
from its superclass. In other words, inheritance allows
ADT adaptations without having to edit source code or
give up compatibility. To sum up, object-oriented
languages improve the module concept. They allow a
straightforward definition of ADTs and provide
language constructs for their extension and
modification.

As a consequence, many adopters of object
technology expect the usage of an object-oriented
language alone to yield significant improvements in
software reusability. This leads to a quite naive
application of object technology, as corroborated in
Section 3.

Language-independent component speci-
f ication. The goal of component-based software
development is the possibility to implement a
component in (almost) any language, not only in any
module-oriented and object-oriented languages but even
in conventional languages. As a consequence, standards
for describing components have been established. The
component (module) interface is described either

• textually by means of an interface description
language (IDL), or

• visually/interactively by means of appropriate
tools.

In OO languages, several classes (fine-grained
components) typically form one coarse-grained

application

OO (frameworks,
class libraries)

platform (OS, HW)

application

platform (OS, HW)

object model

components

composition tools

Figure 1. Object-orientation versus componentware
(adapted from Weinand [16]).

client components

Figure 2. Granularity of components.

Pree: Component-Based Software Development—A New Paradigm in Software Engineering? 171

component (see Figure 2). The reason for this is that
language-independent component models offer only a
common denominator of features for defining
component interfaces. Thus they allow only the
definition of coarse-grained components that correspond
rather to subsystems than to single classes.

Conventional, procedural languages lack the
language features necessary to define ADTs.
Interactive, visual component programming environ-
ments on top of procedural languages offer both, the
additional language features for defining components
and a means for connecting them. Interactive, visual
component programming environments on top of
object-oriented or module-oriented languages
essentially allow the specification of object inter-
actions.

For example, Visual Basic augments the underlying
procedural language to allow expression of compo-
nents. The resulting components, now called
ActiveXs, differ slightly from modules. ActiveX
components may provide any number of interfaces.
Parts [11] and VisualAge [5] are based on Smalltalk
and represent further examples of interactive environ-
ments for defining the interaction between objects.

2.2 Interoperability Standards
Component standards such as (D)SOM and (D)COM
[2] represent one approach to ameliorate the problem of
making components interoperable. The object models
SOM (System Object Model) and COM (Component
Object Model) indeed make different languages and
compilers interoperable. Unfortunately, these standards
have an unnecessary inherent complexity and fail to
offer meta-information and proper garbage collection,
which is simply a must for extensible systems. Java
Beans [14] represents a new component model that also
offers bridges to the object models (D)SOM and
(D)COM. Time will show which of the
object/component models will become the predominant
standard.

OpenDoc (based on SOM; its further development
was canceled by Apple and IBM in early 1997) and
OLE (Object Linking and Embedding; based on COM)

are framework architectures that build on these object
models and manage resources (such as the keyboard and
the screen) between interoperating components. Figure
3 illustrates schematically the relationship between the
component models and compound document
frameworks.

3 . Frameworks as Core Technology of
Plug & Play Software

In general, reuse of software has obvious advantages,
such as reduced development and maintenance costs and
a positive impact on software quality (already tested
components contribute to correct software).
Components based on efficient algorithms allow the
construction of more efficient software. Reuse of
portable software components implies a more portable
system. But how can software reuse become reality?

Though organizational measures form a crucial
precondition to successful reuse, we focus on technical
and economic issues and discuss the implications of
single component reuse as opposed to framework
reuse. In general, more flexibility implies more
programming effort by the programmers who reuse the
software components. The ordering below reflects
decreasing levels of flexibility and thus increasing ease
of reuse. Black-box frameworks represent the most
rigid albeit the easiest way of reusing components;
thus they form the backbone of pure componentware.

3.1 Naive View: Reuse Based on Lego Kit
Component Libraries

Single component reuse means that programmers build
the overall software system architecture on their own.
They have to locate the appropriate components in a
Lego kit library and define their interaction.

Barry Boehm (1994) presents a study regarding the
reuse costs of single components. The study was

Compound document
applications
(Windows)

OLE

COM

(Compound document
applications

Windows, OS/2, Mac, Unix)

(OpenDoc/Bento)

CORBA IDL

(D) SOM

Figure 3. Component models and compound
document architectures.

required changes

costs

100%

100%

ex
pe

cte
d

reality

12%

55%

5%

Figure 4. Costs of component changes versus costs of
development from scratch (adapted from Boehm [1]).

172 Pree: Component-Based Software Development—A New Paradigm in Software Engineering?

conducted in NASA’s software engineering lab and
comprises a sample of about 3000 modules. Figure 4
summarizes the results; the graph relates the
percentage of necessary changes to a single component
in order to render it reusable (x-axis) to the costs of
these changes relative to the development of a
component from scratch (y-axis).

First, reuse of single components without any
changes does not come for free. One has to locate the
appropriate component, understand its interface and
determine how to fit it into the system under
construction. Furthermore, a (hypertext-based) catalog
of reusable components and the components
themselves have to be maintained. The components
themselves have to be built for reuse, which is more
expensive than for a special purpose. More
intimidating is the fact that only a few changes (12%)
to a component raise the reuse costs to 55% compared
to a from-scratch development of the particular
component; not the changes themselves but the
required component understanding costs a lot. Without
this understanding, changes could cause disastrous side
effects.

The study corroborates programmer’s gut feeling
that single-component reuse is almost as expensive as
development from scratch. Though one might argue
that a 45% cost reduction is a significant improvement
compared to component development from scratch, the
following psycological aspect has to be considered,
too. Programmers often do not trust software written
by others (not-invented-here syndrome). Furthermore,
the code to plug together several single components
has to be written. Assuming that 50% of the resulting
overall system consists of reused single components,
the overall cost reduction is only 22.5% (45%/2) or
even less. As how single components should be
connected might not be completely clear, a significant
amount of bulky extra code could be the price of
plugging together single components.

The bottom line is that it does not matter whether
languages support adaptations in an elegant way or
not. Simply using an object-oriented language instead
of a conventional one or using object/component
models cannot ensure reusability improvements.
Projects that apply components with this naive view
are likely to fail.

3.2 Framework Reuse
Instead of reusing single components, most successful
component-based projects practice framework
development and reuse. A framework is simply a
collection of several single components with predefined
cooperations between them, for the purpose of
accomplishing a certain task. Some of these single
components are designed to be replaceable, typically
corresponding to abstract classes in the framework’s

class hierarchy. We call the points of predefined
refinement hot spots [13]. Figure 5 shows these
framework characteristics with the hot spots in gray.

A framework deserves the attribute well-designed if
it offers the domain-specific hot spots to achieve the
desired flexibility via adaptation of these hot spots.
Well-designed frameworks also predefine most of the
overall architecture, i.e., the composition and
interaction of its components. The lines connecting
method interfaces in Figure 5 express this glue
between the components. Applications built on top of
a framework reuse not only source code but also
architecture design, which we consider as the most
important characteristic of frameworks.

Note that the framework concept is quite
independent of how components are implemented.
Frameworks just require that components can be
replaced by more specific ones that are compatible to
the original placeholders. Of course, object-oriented
languages support specialization in a straightforward
manner through inheritance.

The bad news is that frameworks require enormous
development effort. Many problems result from
complicated interaction scenarios between partially
defined components. The costs of developing a
framework are significantly higher compared to the
development costs of a specific application. So
frameworks represent a long-term investment that pays
off only if similar applications are developed again and
again in a domain.

Furthermore, tools and methods assisting in
framework development are almost non-existent or in
their infancy. Framework technology itself is not yet
mature. For example, it remains unclear how
frameworks designed by different teams with separate
control flows can interoperate. The fragile base-class
problem [8] might overturn fundamental framework
design decisions. Changes in base classes of a
framework can cascade onto numerous classes
inheriting from them.

Finally, framework development and reuse conflicts
with the current project culture that tries to optimize

Figure 5. Framework with hot spots.

Pree: Component-Based Software Development—A New Paradigm in Software Engineering? 173

the development of specific software solutions instead
of generic ones. As this paper focuses on technical
aspects, we refer to the excellent discussion of
organizational issues by Goldberg and Rubin [3].

Despite the mentioned problems with the state of
the art in framework technology, (black-box)
frameworks provide the enabling technology of plug &
play software, where most adaptations can be achieved
by exchanging components.

4 . Dynamic Computing Perspective

Many software systems belong to the category of
fatware [18]. For example, a typical desktop
application such as a spreadsheet has more than 1000
features. The applications require numerous MBs on
hard disks and in RAM.

Instead, users should work with a lean application
that offers the typical features needed. Additional
components are only loaded when they are required.
Language systems must support the flexible
integration of components into running software,
independent of the hardware and operating platform
where the particular software runs. For this purpose,
the language system has to offer appropriate meta-
information and dynamic linking of components.

Java [14], ET++ [15] and the Gadgets [4] derivative
of the Oberon system [17] exemplify how the
portability problem can be solved. Machine-
independent code is dynamically linked as a component
is loaded. The component model represented by Java
Beans [14] will further contribute to platform-inde-
pendent components. Marimba’s Castanet [9] for
automatic, incremental updates of single application
components supports dynamic computing in that
components are only loaded when they are no longer
up-to-date.

Envisioned end user programming sys -
tems. Dynamic computing implies distributing
software components that can be plugged into software
systems. The underlying technology will be
frameworks whose behavior is modified and/or
extended by composition. The Internet could strongly
boost such a component market.

Currently software components are rather mono-
lithic. In many cases components materialize as either
simple GUI items or full-fledged applications. Many
more levels of granularity of software components can
be expected. Visual, interactive composition tools will
become available that allow end users to configure
software systems by handling components that
specialize framework hot spots.

Ted Lewis [7] corroborates our point of view that
“we have the technology to solve most of the

problems left unresolved by the software engineering
elite”. For example, a technically feasible response to
the problem that many projects start from scratch
would be parts assembly tools replacing programming
languages. Small-scale, plugable components represent
an alternative to large-scale, monolithic systems. Ted
Lewis foresees a software economy driven by the
demand to solve these and other decades-long
unresolved issues and the feasibility of meeting that
demand. One consequence will be the rise of a “cottage
industry of application-specific framework developers
— a small corps of elite craftspersons” [7].

Overall, frameworks will r emain the long-term
players towards reaching the goal of developing
software with a building-block approach. Nevertheless,
the creation of frameworks and their corresponding
specializing components will clearly be separated from
their consumption. Ideally, domain experts who are
not familiar with current programming languages will
configure their domain-specific systems. Thus,
component-based software development could indeed
represent a new paradigm in software engineering.

References
1 . Boehm B (1994) Megaprogramming. Video tape by

University Video Communications, Stanford,
California, (http://www.uvc.com)

2 . Brockschmidt K (1995) Inside OLE. Redmont,
Washington, Microsoft Press

3 . Goldberg A, Rubin K (1995) Succeeding with
Objects: Decision Frameworks for Project
Management. Reading, Massachusetts Addison-
Wesley

4 . Gutknecht J (1994) Oberon System 3: Vision of a
Future Software Technology. Software Concepts &
Tools, 15(1), 26-33

5 . IBM (1997) VisualAge for Smalltalk, User’s Guide.
IBM

6 . Lakos J (1996) Large Scale C++ Software Design.
C++ Report, 8(6), 27-37

7 . Lewis (1996) The Next 10.0002 Years Part II. IEEE
Computer, May, 78-86

8 . Lewis T, et al. (1995) Object-Oriented Application
Frameworks. Manning Publications/Prentice Hall

9 . Marimba (1997) Castanet description &
demonstration. White Papers at Marimba Inc.,
http://www.marimba.com,

10. Nierstrasz O, Dami L (1995) Component-Oriented
Software Technology. In Object-Oriented Software
Composition, Nierstrasz O, Tsichtitzis D, Prentice
Hall, 3-28

11. ParcPlace-Digitalk (1997) Parts Workbench User’s
Guide. ParcPlace-Digitalk Inc.

12. Parnas DL (1972) On the Criteria to be Used in
Decomposing Systems into Modules. Communi-
cations of the ACM, 15(12), 1053-1058

13. Pree W (1995) Design Patterns for Object-Oriented
Software Development. Reading, Massachusetts
Addison-Wesley

14. Sun (1997) The Java Language; Java Beans. White

174 Pree: Component-Based Software Development—A New Paradigm in Software Engineering?

Papers at http://java.sun.com, Sun Microsystems
15. Weinand A, Gamma E, Marty R (1989) Design and

Implementation of ET++, a Seamless Object-Oriented
Application Framework. Structured Programming,
10(2), Springer Verlag

16. Weinand A (1996) Komponentenbasierte Software-

entwicklung. Tutorial (in German), OOP'96
Conference, Munich

17. Wirth N, Gutknecht J (1992) Project Oberon.
Wokingham. Addison-Wesley/ACM Press

18. Wirth N (1995) A Plea for Lean Software, IEEE
Computer, 28(2)

