
Essential Framework Design
Patterns
Wolfgang Pree

University of Constance
D-78434 Constance, Germany

Voice: +49.7531.88.44.33; Fax: +49.7531.88.35.77
E-mail: pree@informatik.uni-konstanz.de

Abstract. Most excellent object-oriented frameworks are still the product of a more or
less chaotic development process, typically carried out in the realm of research-like
settings. This contribution first discusses the few essential framework construction
principles. Frameworks represent a generic solution for a particular domain and enable
the exploitation of the full potential of object-oriented software construction: Not only
source code and single components but also architectural design is reused. Adaptation
takes place at points of predefined refinement that we call hot spots. If these hot spots are
identified explicitly in the requirements phase, they can be combined with the essential
construction patterns to form domain-specific design patterns. Such a hot-spot-driven
framework design can contribute to a more systematic development process.

Key words: design patterns, frameworks, object-oriented design, object-oriented soft-
ware development, software reusability

Essential Framework Design Patterns 2

1 Framework types
Frameworks are well suited for domains where numerous similar applications are built
from scratch again and again. A framework defines a high-level language with which
applications within a domain are created through specialization (= adaptation).
Specialization takes place at points of predefined refinement that we call hot spots. We
consider a framework to have the quality attribute well designed if it provides adequate
hot spots for adaptations. For example, Lewis et al. (1995) present various high-quality
frameworks.

Hot spots in white-box frameworks
White-box frameworks consist of several incomplete classes, that is, classes that contain
methods without meaningful default implementations. Class A in the sample framework
class hierarchy depicted in Figure 1 illustrates this characteristic of a white-box
framework. The abstract method of class A that has to be overridden in a subclass is
drawn in gray. The abstract methods form the hot spots in this type of framework.

. . .

B2B1

Framework
Classes

Framework
Adaptation

.

A1

A

B

A

A1

Figure 1 Sample framework class hierarchy (from Pree, 1996)

Programmers modify the behavior of white-box frameworks by applying inheritance to
override methods in subclasses of framework classes. The necessity to override methods
implies that programmers have to understand the framework’s design and
implementation, at least to a certain degree of detail.

Hot spots in black-box frameworks
Black-box frameworks offer ready-made components for adaptations. Modifications are
done by composition, not by programming. Hot spots also correspond to the overridden
method(s), though the one who adapts the framework only deals with the components as
a whole.
In the framework class hierarchy in Figure 1, class B already has two subclasses B1 and
B2 that provide default implementations of B’s abstract method. Supposed that the
framework components interact as depicted in Figure 2(a). (The lines in Figure 2
schematically represent the interactions between the components.) A programmer adapts
this framework, for example, by instantiating classes A1 and B2 and plugging in the

Essential Framework Design Patterns 3

corresponding objects (see Figure 2(b)). In the case of class B, the framework provides
ready-to-use subclasses; in the case of class A the programmer has to subclass A first.

(a) (b)

B

A

B2

A1

Figure 2 Framework (a) before and (b) after specialization by composition.

Available frameworks are neither pure white-box nor pure black-box frameworks. If the
framework is heavily reused, numerous specializations will suggest which black-box
defaults could be offered instead of just providing a white-box interface. So frameworks
will evolve more and more into black-box frameworks when they mature.

2 Flexibility through hooks
Methods in a class can be categorized into socalled hook and template methods: Hook
methods can be viewed as place holders or flexible hot spots that are invoked by more
complex methods. These complex methods are usually termed template methods1 (Wirfs-
Brock et al., 1990; Gamma et al., 1995; Pree, 1995). Template methods define abstract
behavior or generic flow of control or the interaction between objects. The basic idea of
hook methods is that overriding hooks through inheritance allows changes of an object’s
behavior without having to touch the source code of the corresponding class. Figure 3
exemplifies this concept which is tightly coupled to constructs in common object-oriented
languages. Method t() of class A is the template method which invokes a hook method h(),
as shown in Figure 3(a). The hook method is an abstract one and provides an empty
default implementation. In Figure 3(b) the hook method is overridden in a subclass A1.

1 Template methods must not be confused with the C++ template construct, which has a completely

different meaning.

Essential Framework Design Patterns 4

(a) (b)

t(...)

h()

A AA1

Figure 3 (a) Template and hook methods and (b) hook overriding.

Let us define the class that contains the hook method under consideration as hook class H
and the class that contains the template method as template class T. A hook class quasi
parameterizes the template class. Note that this is a context-dependent distinction
regardless of the complexity of these two kinds of classes. As a consequence, the
essential set of flexibility construction principles can be derived from considering all
possible combinations between these two kinds of classes. As template and hook classes
can have any complexity, the construction principles discussed below scale up. So the
domain-specific semantics of template and hook classes fade out to show the clear picture
of how to achieve flexibility in frameworks.

2 . 1 Unification versus separation patterns
In case the template and hook classes are unified in one class, called TH in Figure 4(a),
adaptations can only be done by inheritance. Thus adaptations require an application
restart.

(a) (b)

HTTH

Figure 4 (a) Unification and (b) separation of template and hook classes.

Separating template and hook classes is equal to (abstractly) coupling objects of these
classes so that the behavior of a T object can be modified by composition, that is, by
plugging in specific H objects.
The directed association between T and H expresses that a T object refers to an H object.
Such an association becomes necessary as a T object has to send messages to the
associated H object(s) in order to invoke the hook methods. Usually an instance variable
in T maintains such a relation. Other possibilities are global variables or temporary
relations by passing object references via method parameters. As the actual coupling
between T and H objects is an irrelevant implementation detail, this issue is not discussed
in further detail. The same is true for the semantics expressed by an association. For
example, whether the object association indicates a uses or is part of relation depends on
the specific context and need not be distinguished in the realm of these core construction
principles.
A separation of template and hook classes also forms the precondition of run-time
adaptations, that is, subclasses of H are defined, instantiated and plugged into T objects
while an application is running. Gamma et al. (1995) and Pree (1996) discuss some
useful examples.

Essential Framework Design Patterns 5

2 . 2 Recursive combination patterns
The template class can also be a descendant of the hook class (see Figure 5(a)). In the
degenerated version, template and hook classes are unified (see Figure 5(b)). The
recursive compositions have in common that they allow building up directed graphs of
interconnected objects. Furthermore, a certain structure of the template methods, which is
typical for these compositions, guarantees the forwarding of messages in the object
graphs.
The difference between the simple separation of template and hook classes and the more
sophisticated recursive separation is that the playground of adaptations through
composition is enlarged. Instead of simply plugging two objects together in a
straightforward manner, whole directed graphs of objects can be composed. The
implications are discussed in detail in Pree (1995, 1996).

(a) (b)

H

T

. . .

TH

Figure 5 Recursive combinations of template and hook classes.

2.3 Hooks as name designators of GoF pattern catalog entries
Below we assume that the reader is familiar with the patterns in the pioneering Gang-of-
Four catalog (Gamma et al., 1995). Numerous entries in the GoF catalog represent small
frameworks, that is, frameworks consisting of a few classes, that apply the few essential
construction patterns in various more or less domain-independent situations. So these
catalog entries are helpful when designing frameworks, as they illustrate typical hook
semantics. In general, the names of the catalog entries are closely related to the semantic
aspects that are kept flexible by hooks.

Patterns based on template-hook separation
Many of the framework-centered catalog entries rely on a separation of template and hook
classes (see Figure 4(b)). Two catalog patterns, Template Method and Bridge, describe
this construction principle. The following catalog patterns are based on abstract coupling:
Abstract Factory, Builder, Command, Interpreter, Observer, Prototype, State and
Strategy. Note that the names of these catalog patterns correspond to the semantic aspect
which is kept flexible in a particular pattern. This semantic aspect again is reflected in the
name of the particular hook method or class. For example, in the Command pattern
“when and how a request is fulfilled” (Gamma et al., 1995) represents the hot spot
semantics. The names of the hook method (Execute()) and hook class (Command) reflect
this and determine the name of the overall pattern catalog entry.

Patterns based on recursive compositions
The catalog entries Composite (see Figure 5(a) with a 1: many relationship between T and
H), Decorator (see Figure 5(a) with a 1:1 relationship between T and H) and Chain-of-
Responsibility (see Figure 5(b)) correspond to the recursive template-hook combinations.

Essential Framework Design Patterns 6

3 How to find domain-specific patterns
Hot spot identification in the early phases (eg, in the realm of requirements analysis)
should become an explicit activity in the development process. There are two reasons for
this: Design patterns, presented in a catalog-like form, mix construction principles and
domain specific semantics as sketched above. Of course, it does not help much, to just
split the semantics out of the design patterns and leave framework designers alone with
bare-bone construction principles. Instead, these construction principles have to be
combined with the semantics of the domain for which a framework has to be developed.
Hot spot identification provides this information. Figure 6 outlines the synergy effect of
essential construction principles paired with domain-specific hot spots. The result is
design patterns tailored to the particular domain.

essential framework
construction principles

THHT

H

T

. . .

TH

hot spot semantics
(eg, captured in hot
spot cards)

Rate calculation

rate calculation when rental items are returned;
the calculation is based on application-specific
parameters

hotel system: calculation results from the
room rate * number of nights + telephone
calls + mini bar consumption

car rental system: calculation results from
the car type rate * number of days + probably
rate per mile * (driven miles - free miles) +
price for refilling + rate for rented extras such
as a mobile telephone.

specify degree of flexibility:

adaptation by end user

adaptation without restart

commonalities of rental items:
management of reservation periods (is the
item available, actual reservation)
category/price inquiries,
rate calculation upon return,
statistics

Rental item

hotel room, motor cycle, pair of skies

specify the importance:

principal domain abstraction

subordinate abstraction

domain-specific
design patterns

time: long

Actor

Actor(t: long)
commit()

abstract

abstract{ }

Simulation

time: long
actors: SortedQueue

Simulation()
schedule(a: Actor, time: long)
simulate(duration: long)
reset()

*0 manages

Figure 6 Essential construction principles + hot spots = domain-specific design patterns

Hot spot identification can be supported by hot spot cards, a communication vehicle
between domain experts and software developers. Pree (1996) presents the concept of
hot spot cards and detailed case studies where they are applied.
A further reason why explicit hot spot identification helps, can be derived from the
following observations of influencing factors in real-world framework development: One
seldom has two or more similar systems at hand that can be studied regarding their
commonalities. Typically, one too specific system forms the basis of framework
development. Furthermore, commonalities should by far outweigh the flexible aspects of
a framework. If there are not significantly more standardized (= frozen) spots than hot
spots in a framework, the core benefit of framework technology, that is, having a widely
standardized architecture, diminishes. As a consequence, focusing on hot spots is likely
to be more successful than trying to find commonalities.

4 Outlook
Above we discussed technical aspects of framework development by presenting the
fundamental framework design patterns. But organizational measures are at least equally
important to be successful as framework development requires a radical departure from
today’s project culture. Goldberg and Rubin (1995) present these aspects in detail.

Essential Framework Design Patterns 7

Overall framework development does not result in a short-term profit. On the contrary,
frameworks represent an investment that pays off in the long term. But we view
frameworks as the long-term players towards reaching the goal of developing software
with a building-block approach. Though the state of the art still needs profound
refinement, many currently existing frameworks corroborate that frameworks will be the
enabling technology in many areas of software development.
A word of advice for those who have not worked with frameworks so far: No
methodology or design technique will help avoid this painful learning process. Toy
around with some of the available large-scale frameworks and get a better understanding
of the technology by first reusing frameworks before jumping into framework
development.

5 References
Gamma E., Helm R., Johnson R. and Vlissides J. (1995). Design Patterns—Elements of Reusable

Object-Oriented Software. Reading, Massachusetts: Addison-Wesley

Goldberg A., Rubin K. (1995). Succeeding with Objects—Decision Frameworks for Project
Management. Reading, Massachusetts: Addison-Wesley

Lewis T. et al. (1995). Object-Oriented Application Frameworks. Greenwich, CT: Manning
Publications/Prentice Hall.

Pree W. (1995). Design Patterns for Object-Oriented Software Development. Reading, MA: Addison-
Wesley/ACM Press

Pree W. (1996). Framework Patterns. New York City: SIGS Books

Wirfs-Brock R. and Johnson R. (1990). Surveying Current Research in Object-Oriented Design.
Communications of the ACM, 33(9)

