Where Is Software Headed?

W. Pree, G. Pomberger
C. Doppler Laboratory for Software Engineering
University of Linz
Altenbergerstr. 69
A-4040 Linz, Austria
Voice: +43.70.2468.9431
Fax: +43.70.2468.9430
e-mail: {pree, pomberger}@swe.uni-linz.ac.at

Before we outline future trends regarding software, let's briefly look
back. Due to the enormous difficulties encountered with the
development of software, many expected a single panancea to overcome
the problems of the state of the art in software development. Computer
aided software engineering, prototyping, automated programming,
object-orientation and visual programming are just a few examples of
technologies that staked the claim to cope with the known deficiencies of
software development.

The past taught us the following: No single technology or concept
comprises a breakthrough. Furthermore, promising technologies are not
applied immediately in industrial software development environments.
On the contrary, it often takes decades until new technolgies exercise an
impact outside of research laboratories. There are manyfold reasons for
this dilemma, especially that many companies are stuck with legacy
software and often believe that they cannot afford to overcome this
hurdle. The computer industry "helps"” them by providing products that
are compatible with the older ones.

Another phenomenon characterizes software. Though it's true that the
problems software should solve are complex and that this implies many
difficulties in the development process, unnecessary complexity is added
in most software systems. Programmers are often proud of producing
complicated solutions, probably in order to become indipensible and to
justify the high costs. Furthermore, meticulous engineering is not
rewarded.

What can we expect from the future? A pessimistic scenario results

from extrapolating the past and current situation as sketched above. This
means that the struggle (summarized as software crisis) continues and
even gets worse due to additional domains where software is required
and due to the fact that rediscovered or new technologies and concepts
won't migrate into the mainstream.



Such a pessimistic view is corroborated by taking a look at current and
soon-to-be-established defacto standards. Take object-oriented
technology as an example. Though object-orientation could contribute to
overcoming essential problems in software development, the most wide-
spread languages applied to realize object-oriented software are
antiqguated and complicated and thus form no adequate tool from the
viewpoint of state of the art in software engineering. Unfortunatley,
higher level standards, e.g., for object/component distribution and
operating systems, are being built on top of these languages.

Such premature standards significantly add complexity to software
products. Programmers are forced to produce unnecessarily
complicated and unprofessional solutions for problems which could
otherwise be solved much more efficiently.

Though standards are becoming en vogue in the computer industry, they
cement the software crisis. Despite the negative experience with defacto
standards, the industry continues going this way.

Thus we dare to predict that adopters of such standards will not be able
to exploit the potential of the underlying concepts and probably will get
stuck in a dead end. It is simply too early to establish standards. If we do
so, we will continue to get the impression that primarily marketing
people and economic forces, not scientific advances, drive the software
technology.

The trend of forming increasingly larger project teams to develop
software comprises another obstacle to overcoming the software
problems. Wirth (1995) states that “the belief that complex systems
require armies of designers and programmers is wrong. A system that is
not understood in its entirety, or at least to a significant degree of detail
by a single individual, should probably not be built.”

Software production still differs from other engineering disciplines in
that software is developed almost from scratch. The percentage of
reused components is very low. This implies that software suffers from
teething troubles and quality problems that are common to newly built
products. This would not be necessary. Especially object-oriented
concepts would allow overcoming the reusability problem when they are
used to build generic software architectures (= frameworks) for a
particular domain where components can easily be replaced and/or
added. Again, existing and emerging defacto standards as well as an
industry which hesitates to apply this technology delay the long awaited
breaktrough.

Though we draw a realistic picture of the future of software by
extrapolating the current situation and trends, there is also hope. The



future looks bright for those who depart from the current trail. An
increasing number of companies that have applied computer technology
almost since its emergence, such as banks, recognize that maintaining
legacy software does not allow meeting current and future requirements
any longer. They have the chance to show courage and replace the old
systems by really new ones without compromises.

Those will be disappointed who remain in their lethargy and wait for a
silver bullet to overcome the software crisis. No single concept, method
or tool will result in a breakthrough. The key to successful software
development lies in overcoming the obstacles sketched above and in
applying a combination of already well-known concepts, methods and
tools in the development process that is adequate for the problem at
hand. Nevertheless, the development of real-world software systems will
remain a difficult task that requires creativity and expert knowledge.

To sum up, we hope that the few who will set for new shores are so
successful that the rest are forced to follow.

References

Wirth N (1995)A Plea for Lean SoftwafdEEE Computer, 28(2)



