
Software—Concepts and Tools (1995) 16: 94–103 Software—Concepts and Tools
© Springer-Verlag 1995

Active Guidance of Framework Development

Wolfgang Pree1), Gustav Pomberger1), Albert Schappert2), Peter Sommerlad2)

1) C. Doppler Laboratory for Software Engineering, Johannes Kepler University Linz, A-4040 Linz, Austria
e-mail: {pree, pomberger}@swe.uni-linz.ac.at

2) Siemens AG, ZFE T SE 42, Otto-Hahn-Ring 6, D-81739 Munich, FRG
e-mail: {albert.schappert, peter.sommerlad}@zfe.siemens.de

Abst rac t . An appropriate combination of object-
oriented programming concepts allows the development
not only of single reusable components but also of
semifinished architectures (= frameworks).

The paper discusses an adequate way to represent the
know-how of software engineers in the realm of
developing and adapting frameworks. Active cookbooks
rely on a particular knowledge base. These electronic
books form an integration basis of various tools adjusted
to a domain-specific framework. Active cookbooks guide
programmers and end users through typical framework
adaptation steps. Examples taken from a prototype
implementation of such a cookbook illustrate the concepts
that allow active support of framework-centered software
development.

Keywords: knowledge-based software engineering,
automated software development, application frameworks,
rule-based systems, software architecture, visual object-
oriented programming, design patterns, reuse

1 . Motivation

Despite the obvious advantages of software reuse,
almost all software systems continue to be developed
from scratch. Even when object-oriented programming
languages are used, their real reuse potential is seldom
tapped. The concepts of inheritance and dynamic binding
are sufficient to construct frameworks, that is, reusable
semifinished architectures for various application
domains. Such frameworks mean a real breakthrough in
software reusability: not only single building blocks
but whole software (sub)systems including their design
can be reused. So frameworks enable a degree of
software reusability that can significantly improve
software quality.

Unfortunately, the complexity of framework devel-
opment and adaptation constitutes a major hurdle for a
widespread use of this advanced object-oriented technol-

ogy. In order to cope with a framework’s complexity,
its design has to be captured and communicated, and
guidelines for its adaptation have to be provided. The
project carried out at Siemens started with these goals
in mind. This paper presents the concepts and ideas
behind frameworks and the concepts of the rule-based
system underlying active cookbooks. A discussion of
an active cookbook prototype illustrates how an
adequate tool can significantly automate the framework-
centered software development process.

2 . Framework Concepts

Frameworks rely on abstract classes, whose general idea
is clear and straightforward:

• Properties (that is, instance variables and methods)
of similar classes are defined in a common
superclass.

• Classes that define common behavior usually do not
represent instantiable classes but abstractions of
them. Thus they are called abstract classes.

• Some methods of the resulting abstract class might
be implemented, while only dummy or preliminary
implementations are be provided for others. Though
some methods cannot be implemented, their names
and parameters are specified since descendants cannot
change the method interface. So an abstract class
creates a standard class interface for all descendants.
Instances of all descendants of an abstract class will
understand at least all messages that are defined in
the abstract class.
Sometimes the term contract is used for this
standardization property: instances of descendants of
a class A support the same contract as supported by
instances of A.

• The implication of abstract classes is that other
software components based on them can be

Pree, et al.: Active Guidance of Framework Development 95

implemented. These components rely on the
contract supported by the abstract classes. In the
implementation of these components, reference
variables are used that have the static type of the
abstract classes they rely on. Nevertheless, such
components work with instances of descendants of
the abstract classes by means of polymorphism.
Due to dynamic binding, such instances can bring in
their own specific behavior.

The key problem is to find useful domain abstractions
so that software components can be implemented
without knowing the specific details of concrete objects.

2.1 Frameworks as Sets of Abstract and
Concrete Classes

Wirfs-Brock and Johnson [18] describe the relationship
between abstract classes and frameworks in a general
way: “Although abstract classes provide a way to
express the design of a class, classes are too fine-
grained. A framework is a collection of abstract and
concrete classes and the interface between them, and is
the design for a subsystem.”

The term application framework is used if this set of
abstract and concrete classes comprises a generic soft-
ware system for an application domain. Applications
based on such an application framework are built by
customizing its abstract and concrete classes. It is often
hard to decide whether a framework migrates to this
category. So we use the terms framework and
application framework as synonymous terms.

GUI application frameworks such as MacApp [17]
and ET++ [14, 15, 2, 13] provide a reusable, blank
application that implements much of a given user
interface look-and-feel standard. GUI application
frameworks can be viewed as the first test bed for the
development of reusable architectures by means of
object-oriented programming concepts. They have
become one of the main reasons why object-oriented
programming enjoys such a good reputation for
promoting extensibility and reuse.

ET++ provides an impressive example of the degree
of reusability that can be achieved in well-designed
frameworks. (Well-designed means that a framework
offers the required domain-specific flexibility for
adaptations.) Besides allowing reuse of the architecture
of the framework, Weinand et al. [15] state that writing
an application with a complex GUI by adapting ET++
can result in a significant reduction in source code size
(that is, the source code that has to be written by the
programmer who adapts the framework) compared to
software written with the support of a conventional
graphic toolbox.

Of course, application frameworks are not limited to
the construction of direct-manipulation, graphic user

Figure 1. Framework as frozen cloud with flexible hot
spots.

interfaces. Domain-specific application frameworks
represent a newly emerging field in the realm of object-
oriented technology that allows exploitation of the reuse
potential of object-orientation. Examples are Taligent’s
frameworks [8], frameworks for visual language
systems [1] and ProcessTalk [9], a framework for
distributed process control systems.

2.2 Framework-Centered Software
Development

In general, a given framework already anticipates much
of a software system’s design. This design is reused by
all software systems built with the framework. So not
only source code but also architecture design—which we
consider as the most important characteristic of
frameworks—is reused in applications built on top of a
framework. So frameworks are well suited for domains
where numerous similar applications are built from
scratch again and again.

A framework defines a high-level language with
which applications within a domain are created through
spezialization (= adaptation). Specialization takes place
at points of predefined refinement that we call hot
spots. Figure 1 illustrates this property of frameworks
with the flexible hot spots in gray color. The overall
framework is represented as a white cloud representing
the standardized, i.e., frozen, domain aspects.

The specialization of hot spots requires the definition
of additional classes in order to override methods and/or
object configurations based on components already
provided by the framework.

Experience has proven that both the development of
a framework and its specialization are difficult. The pain
of designing a framework from scratch is described by
Wirfs-Brock and Johnson [18]: “Good frameworks are
usually the result of many design iterations and a lot of
hard work.” Design patterns as discussed by Gamma [3,
4] and Pree [10, 11] help to develop new frameworks by
applying design approaches that have already matured in
other frameworks. Thus design patterns can help to
reduce the number of iterations.

We consider a framework to be well-designed if it
offers the required hot spots. As a framework evolves,
software engineers will encounter missing or inadequate
hots spots. It is often impossible to fix such design
flaws without having to change a framework’s source

96 Pree, et al.: Active Guidance of Framework Development

Rule
Interpreter

Rule and
Data Element

Selection

Working Memory

Knowledge Base

Fact Memory

Rule Base

Selected rule

Selected data

Figure 2. Principal components of a rule-based system
(adapted from Hayes-Roth [6]).

code. This problem is addressed by what we call
structural relations (see Sections 3 and 4).

The first available frameworks, such as Smalltalk’s
Model-View-Controller (MVC) framework [7] and
MacApp, revealed that a framework’s complexity is a
burden for its user. (By the term user we mean the pro-
grammer who uses a framework to produce a specific
application.) In order to adapt it, a framework user must
become familiar with its design, that is, the design of
the individual classes and the interaction between these
classes, and maybe with basic object-oriented program-
ming concepts and a specific programming language as
well.

This is why framework cookbooks have come to
light. Their recipes describe in an informal way how to
use a framework to solve specific problems. For
example, in a framework for reservation systems a
recipe could describe how to adapt the rate calculation
for rental items.

A programmer has to find the recipe that is
appropriate for a specific framework adaptation. A
recipe is then used by simply adhering to the steps that
describe how to accomplish a certain adaptation task.

A cookbook recipe is typically structured into the
sections purpose, procedure (including references to
other recipes), and source code example(s). Cookbook
recipes with their inherent references to other recipes
lend themselves to presentation as hypertext. Recipes
usually do not explain the internal design and
implementation details of a framework.

What we call informal relations (see Sections 3 and
4) evolved from recipes as means to actively support
framework adaptation at hot spots.

3 . Rule-Based Active Cookbooks

Hayes-Roth [6], for example, describes the principal
components of a rule-based system. Figure 2 illustrates
these components and their relationships.

Working Memory
Knowledge Base

Rule
Interpreter

+
GUI

Active
Cookbook

informal relations
and

structural relations

recipes

Figure 3. Rule-based active cookbook.

Garlan and Shaw [5] view a rule-based system as a
special case of an architectural style called table-driven
interpreter: The knowledge base represents the pseudo-
code to be interpreted. The rule interpreter forms the
core of the inference machine and can be considered as
the interpretation engine. The control state of the
interpreter is represented by the rule and data element
selector. The working memory stores the current state
of the interpreted program.

3.1 Knowledge Representation
Conventional ways to represent a software engineer’s
know-how, such as descriptive logic as used in the
software component construction environment CD-
CON [12] and algebraic specifications, proved to be
inappropriate means to support framework-centered
software development. Thus suitable knowledge
representation formalisms had to be explored to tame
the complexity of state-of-the-art frameworks.

Recipes constitute a viable vehicle for this purpose:
Framework components require only certain localizable
steps in order to be completed. Recipes describe these
steps, ignoring the numerous irrelevant details of
involved components. Recipes rely on either informal
or structural relations as outlined below. Figure 3
shows the rule-based system underlying active
cookbooks.

3.2 Informal Relations
As mentioned in Section 2, frameworks introduce a sort
of language on an abstraction level significantly higher
than the particular underlying object-oriented
programming language. Basic elements of such a
framework language are the class and method names.
Typically a group of classes and methods works

Pree, et al.: Active Guidance of Framework Development 97

together in order to provide a certain service. “Working
together” usually means a complex interaction—i.e.,
method calls—between components. The various
building blocks and interactions constitute the
application framework language.

Ideally programmers adapting application frameworks
to specific needs do not have to know all the details of
the application framework language. They only have to
know and understand some aspects in order to customize
hot spots. Thus they think in terms of specific rules for
accomplishing a certain adaptation.

Informal relations serve the purpose of capturing
these rules. They describe in an informal way the coarse
interaction between components and the purpose of
particular methods. They lead the developer step by step
through the adaptation process. For this purpose recipes
based on informal relations provide the appropriate
tools to specify adaptations. Some adaptations might
lend themselves for visual manipulations. Tree editors,
data flow editors and resource editors are examples of
visual manipulation tools incorporated in a recipe.

When such recipes are interpreted, the developer is
guided actively through all development and
configuration steps of a certain task. Typically, the
developer just invokes the tools associated with each
step of a recipe. The recipe also checks dependencies
between steps: sometimes certain steps have to be
accomplished before tools associated with other steps
can be invoked.

3.3 Structural Relations
Framework designers anticipate its specialization by
defining hot spots. But a framework can hardly meet
entirely new requirements unless the design and
implementation of the original framework is changed.
However, when frameworks are used in practical
applications, their design and implementation cannot be
changed continously. On the other hand, framework
users have to meet requirements that were not
anticipated by the framework designers. We propose
structural relations to attack this problem.

Conceptually, structural relations capture the interac-
tion between components (see Figure 4). Usually inter-
action code is distributed over several framework com-
ponents. Structural relations bundle this interaction.
The arrows in Figure 4 express schematically the
interaction between components, i.e., method calls
between components. The gray components plugged
into the structural relation are placeholders. If existing
framework components or newly developed ones are
plugged into a structural relation, they have to offer a
certain method protocol depending on the particular
interaction defined in the structural relation.

Structural relations offer the following advantages:

structural relation

Figure 4. Capturing interaction between components in
structural relations.

• An already defined interaction relationship between
components can be applied to new components not
yet provided by the framework. Thus interaction
design is reused. Furthermore, a structural relation
specifies the interface that the attached components
must offer. The corresponding methods and probably
parts of their implementation can be generated based
on the information provided by a structural relation.

• More complex structural relations can be constructed
out of basic ones. This represents another way of
interaction design reuse.

Note that structural relations lend themselves to be
embedded in informal relations. In this case an informal
relation describes the steps to reuse a structural relation,
i.e., how to attach newly defined components to a
structural relation. The prototype presented in Section 4
illustrates this combination of informal and structural
relations in recipes: The active cookbook user interacts
with a hypertext recipe based on an informal relation.
This recipe is in turn based on (a) structural relation(s).

Structural relations have further advantages:

• Component interaction need not to be mirrored in
the class hierarchy of an object-oriented system.
Explicit modeling of the interaction keeps the
structure of the class hierarchy simple and easier to
understand.

• Appropriate modeling of interaction code postpones
necessary redesign steps and allows the evaluation of
redesign intentions.

3.4 Rule Interpreter
Note that the rule and data element selection component
of a rule-based system is conceptually unified with the
rule interpreter component in an active cookbook (see
Figure 2 and 3). The rule interpreter of an active
cookbook:

• allows selection of a particular recipe
• presents the recipes as hypertext
• maintains temporary information accumulated

during the interpretation of a recipe in working
memory

• generates the source code of additional or modified
framework classes

98 Pree, et al.: Active Guidance of Framework Development

The arrow drawn from the rule interpreter to the
framework in Figure 3 expresses the rule interpreter’s
involvement in the framework development process: the
generated classes modify/extend the particular
framework.

The knowledge base is typically influenced by the
evolving framework. Changes in relationships between
framework components might imply additional
structural or informal relations that modify recipes or
add new ones to the knowledge base.

In the following section the realization of these
concepts is illustrated by an active cookbook prototype
for a specific domain.

4 . An Active Cookbook Prototype

This section presents an active cookbook prototype that
demonstrates how the framework development process
can be actively supported. First we outline the
framework that serves as our testbed for the active
cookbook prototype. As communication systems form
an important strategic product category for Siemens, we
chose the ubiquituous computing domain ([16]; see
below), for which we developed a framework. The
informal and structural relations embedded in the active
cookbook prototype for that framework illustrate the
realization of these concepts and their automation
potential. Overall, the rule-based active cookbook
whose architecture is depicted in Figure 3 offers the
following features:

• Active guidance: Recipes invoke the appropriate
tools that are suited for a particular adaptation.

• Context-sensitive behavior: Recipes are stored
embedded in class code and are scanned during their
invocation; hence specifics of certain classes
influence the recipes; recipes might also change
themselves while they are being processed by the
interpreter component of the active cookbook.

• Incremental extensibility: All classes as well as
informal and structural relations are stored in a
common format so that third vendor components
can be integrated.

Note that an active cookbook for a particular framework
should especially help an experienced programmer
develop software based on this reusable architecture.
Providing as an aid for end user computing is a
secondary goal of this electronic book.

4.1 A Communication System Framework as
Testbed

Mark Weiser’s vision of a ubiqituous computing world
[16] was chosen as an ideally suited application domain
in order to test the practicability of our concepts. One of

Figure 5. Screenshot of an ubiqituous computing world
simulation.

the key ideas underlying a ubiqituous computing world
is to offer everyone a personal working environment
whatever computer is used and wherever a person
resides. So, for example, personally configured desktops
can be displayed no matter whether its owner is sitting
in front of a workstation or using a white board on a
wall. Another characteristic is that one can specify
which messages (phone calls, e-mails, etc.) are to be
forwarded to where the addresse currently is.

The backbone of a ubiqituous computing world is
communication software. Its development forms the
central issue of the testbed framework UbiComm,
which stands for ubiqituous communication.

Functionality of UbiComm. The UbiComm
framework implements the communication control
infrastructure required in an ubiqituous computing world
together with a GUI for simulating this vision (see
Figure 5).

Without the modification or extension of UbiComm,
the framework offers the following features:

• Interactive configuration of the topology. The
simulated ubiqituous computing world as shown in
Figure 5, for example, is interactively configured by
simply moving devices between different rooms
with the mouse. Note that the inner nodes group
devices and thus represent rooms, floors or

Pree, et al.: Active Guidance of Framework Development 99

buildings. People wear badge devices that store
personal configurations and localize a person’s
physical position. Badge devices are depicted as
persons in the simulation.
In order to insert a device into a simulated
ubiqituous computing world, the user selects the
device group where the additional device should be
inserted and chooses the corresponding menu item in
the Edit menu (see Figure 5). Without extensions
UbiComm offers badge devices, e-mail devices and
devices to group other devices.

• Distribution of message tokens. Depending on the
type of a device, different message tokens can be
handled. For example, an e-mail device can handle e-
mail tokens. In order to simulate the sending of e-
mails, the user selects a badge device and chooses
the Send Msg Token menu item from the Edit
menu. Depending on the devices located in a room,
a particular message can be composed and sent.
(Without extensions, UbiComm offers only email
devices which generate email messages.) The default
behavior of UbiComm is to forward a message to
the room where the receiver is located. If no
appropriate device could process the message token
there, the message is queued and forwarding is retried
later.

Typical UbiComm adaptations. The key
abstractions in UbiComm are the abstract classes
Device, MsgToken and MsgDispatcher. Adaptations of
UbiComm are accomplished by defining subclasses and
overriding the corresponding methods of these abstract
classes. Adaptations of UbiComm typically extend the
framework by defining additional devices and probably
message tokens. A change of the message forwarding
strategy constitutes another UbiComm specialization.
The active cookbook provided for UbiComm
significantly automates these framework specializations
as shown below.

Project status. UbiComm and the corresponding
active cookbook prototype were developed in order to
demonstrate the feasability of our concepts and their
pros and cons in the realm of a specific domain. It was
definitely not the goal to develop a reusable prototype.
As the results were promising, the prototype now
serves as a reference system for the implementation of
tools for numerous domains.

Both UbiComm and the active cookbook prototype
were implemented in C++. ET++ formed the basis for
providing the GUI. UbiComm comprises around 30
classes, the active cookbook around 50 classes. The
prototype was developed in 35 person months. It is
available on Unix workstations and PCs.

Figure 6. Activation of a tree editor in an active recipe.

4.2 A Recipe for Integrating an Additional
Device

This UbiComm adaptation is a typical one that is
already anticipated in the framework design. Thus an
informal relation underlies the recipe that actively
guides through the process of integrating a new device.
We assume that an additional fax component was
already defined by means of the corresponding recipe
presented in Section 4.4. This new fax component has
to be integrated into UbiComm so that devices of this
type can be used in a ubiqituous computing world
simulation. The screenshot in Figure 5 is already based
on an extended UbiComm framework that offers a fax
device in the Edit menu.

Device Integration—Step 1. Figure 6 shows
how the rule interpreter component of the active
cookbook presents the recipe used to integrate a fax
device into UbiComm. The first step requires the
definition of two subclasses of the UbiComm classes
Application and Document and the overriding of method
DoMakeDocuments in the Application subclass. Instead
of having to define the corresponding C++ header and
implementation files, the user (= programmer who
adapts the UbiComm framework) simply provides the
class names in the tree editor shown in Figure 6. The
tree editor opens after a click on the Define Addtl
Classes button in the recipe.

100 Pree, et al.: Active Guidance of Framework Development

Figure 7. Activation of a resource editor in an active
recipe.

Device Integration—Steps 2 and 3. The Edit
menu (see Figure 5) has to be extended in order to
provide an additional menu item that corresponds to the
additional device type. For example, in case of the fax
device, we define the menu item Add Fax Device. For
accomplishing this task the active recipe provides a
resource editor which opens after pressing the Define
Addtl Menu Item button (see Figure 7).

In Step 3 the user has to define what happens if the
newly defined menu item is selected. Instead of having
to know which specific method to override, the user
only has to provide the program code fragment that
generates an instance of the particular device subclass.
In case of integrating a fax device, this would be the
statement return new FaxDevice(...).

The active guidance often depends on the context.
For example, if the tool activated in step 2 or 3
recognizes that a pen device should be integrated, the
recipe itself would change and offer an additional step 3a
where tablet-specific parameters can be specified.

Device Integration—Step 4. Finally, the
undo/redo mechanism of a ubiqituous computing world
simulation can be adjusted in step 4. Depending on the
user’s preference, one-level or unlimited-level undo is
specified by connecting the corresponding components
as shown in Figure 8. Without tool support the user

Figure 8. Activation of a configuration editor in an
active recipe.

would have to override a specific method where the
particular command processor is instantiated.

Code Generation. On completion of these
adaptation steps, the corresponding C++ classes are
generated, compiled and linked with the original
UbiComm framework. This is done automatically by
the active cookbook based on the information
accumulated in the working memory while processing a
recipe. The adapted UbiComm simulation now offers
fax machines as an additional device type (see Figure 5).

4.3 Recipe for Adapting the Message
Forwarding Policy

The corresponding active recipe offers a data flow editor
for specifying the individual message forwarding policy.
For example, in Figure 9 the forwarding policy is
specified for a particular person as follows: if an e-mail
arrives for this person, it is forwarded to all other
members of the group this person belongs to and to a
person named Wolfgang. A voice message is forwarded
to all people in the room where the addressee currently
is.

After specification or redefinition of the forwarding
policy for a person, the corresponding class can be
generated simply by activating the Generate Class
button in the recipe. UbiComm is designed so that an

Pree, et al.: Active Guidance of Framework Development 101

Figure 9. Activation of a data flow editor in an active
recipe.

instance of a newly generated information policy class
can be integrated dynamically into a running ubiqituous
computing world simulation. So individual forwarding
policies can be changed at run time.

4.4 Recipe for Creating a New Device
The creation of a device with specific functionality
constitutes an example of a framework modification
which was not anticipated. Thus structural relations
underly the recipe that actively guides through this
development process. The active guidance is again based
on an informal relation.

Remember that a structural relation models the
interaction of (several) framework components.
According to the plugs offered by a structural relation,
components have to be associated with it. A structural
relation contains the code that implements a particular
interaction. When a component is associated with a
structural relation as will be demonstrated below,
relation-specific interaction code is conceptually added
to that component.

It depends on the implementation underlying a
structural relation whether the code is added via
inheritance mechanisms or by generating methods and
code for associated components. A programmer working
with structural relations does not see these
implementation details.

Note that the use of structural relations does not
affect an application framework’s structure, i.e., its
class hierarchy and interaction already defined in its
components. Thus structural relations extend existing

Figure 10. The AutoReply Relation.

application frameworks and enhance their flexibility
without having to change their design and
implementation. They can also be used later during
framework redesign to incorporate the interaction
originally added by structural relations directly in the
framework.

Take a coffee machine as an example of a device with
new functionality. Persons living in an ubiqituous
computing environment should be able to ask a coffee
machine device via email regarding its fill state. When a
coffee machine receives an email it automatically
returns its fill state wrapping the answer in an email
and returning it to the sender.

The recipe presented to the active cookbook user is
analogous to the one shown in Figure 6. The first step
in the realm of constructing a new device is the
specification of its iconic representation by means of a
bitmap editor. When code is generated, the recipe takes
care to attach the bitmap to the class according to the
conventions predefined in the UbiComm framework.

The next steps in the recipe rely on structural
relations. The recipe offers an appropriate construction
tool (see Figure 10) in order to work with them. The
left-hand-side panes of the construction editor list the
structural relations defined for UbiComm (lower pane)
and those UbiComm components (upper pane) that are
involved in these structural relations. The AutoReply
relation (shown in the right-hand-side pane) cooperates
with two components, a device and a message token.
The structural relation itself is represented by an oval;
the plugs (which are placeholders for components) by
two rectangles.

The AutoReply relation models the following
functionality: It receives a message, determines its type
and sender, generates a response message, and replies to
the sender. This does not specify the response message

102 Pree, et al.: Active Guidance of Framework Development

Figure 11. Specification of methods.

or when it will be sent. This has to be adjusted when
AutoReply is reused. However, the code to realize the
functionality described above is contained in the form of
methods in the relation itself and will be inserted into
the participating components, i.e., the new coffee
machine device. Thus the new class can be constructed
easily. It significantly extends the UbiComm Device
class.

The active cookbook user now drags the Device
component from the Components panel into the
construction panel and connects the component labeled
noname (see Figure 11) with the plug of AutoReply.
This means that the new component is associated with
the AutoReply relation. The same has to be done with
an EMailMsgToken component and the corresponding
plug.

The AutoReply relation defines the class structure of
the associated components, i.e., method names, and
most of their implementation. What remains to be done
is to specify what is not modeled in the relation or what
should differ from the interaction defined in AutoReply.
As mentioned above, we just have to specify the reply
and time for when a coffee machine receives an email.

Relations can be constructed from other relations or
components. At the lowest granularity, however, basic
or atomic relations are ultimately implemented directly
in the framework. They can be clustered and grouped in
hierarchies. This is illustrated in Figure 12 for the
AutoReply relation, which is built from a Send and a
Process relation. Relations consist of a (still) schematic
body and contain ports for components to interact with.
In the current implementation, ports require type
conformance.

To sum up, the concept of relations offers sufficient
help and tutoring, but it still leaves enough freedom.
By separating the interaction code between classes in

Figure 12. The Internal Structure of the AutoReply
Relation.

relations, it becomes possible to (re)use it in the
modeling and design process. This permits the reuse of
interactions without changing the class hierarchy of a
complex framework.

The new framework component coffee machine can
be integrated into the running application by following
the steps of the recipe explained in Section 4.2. Figure
5 shows a ubiqituous computing world simulation with
coffee machines.

5 . Summary and Outlook

An active cookbook helps to automate software devel-
opment based on application frameworks. The presented
prototype illustrates that such a tool is well suited to
efficiently specifying certain aspects of framework
adaptations. Some of the visual manipulation editors
offered by the active cookbook prototype should be
usable by non-programmers. To fill the gap in between,
programming expertise is required. This is corroborated
by the sample adaptations of UbiComm.

Future research and hands-on experience with the
active cookbook prototype will reveal pros and cons of
the presented approach. Research is especially necessary
to define generic editors that can be integrated into
active cookbooks for several different domains. It would
be a tedious task to implement specific yet similar
editors for numerous active cookbooks. For example, a
generic data flow editor seems to be a good candidate.
Also, tree editing will be required in active cookbooks
independent of the underlying domain.

Pree, et al.: Active Guidance of Framework Development 103

References

1 . Fukunaga A, Pree W, Kimura T (1993) Functions as
Data Objects in a Data Flow Based Visual Language.
ACM Computer Science Conference, Indianapolis

2 . Gamma E (1992) Objektorientierte Software-
Entwicklung am Beispiel von ET++: Design-Muster,
Klassenbibliothek, Werkzeuge. Doctoral Thesis,
University of Zürich, 1991; published by Springer-
Verlag

3 . Gamma E, et al. (1993) Design Patterns: Abstraction
and Reuse of Object-Oriented Design. In Proceedings
of the ECOOP’93 Conference, Kaiserslautern,
Germany; published by Springer Verlag

4 . Gamma E, et al. (1995) Design Patterns—Elements of
Reusable Object-Oriented Software. Reading, Massa-
chusetts: Addison-Wesley

5 . Garlan D, Shaw M (1993) An Introduction to Software
Architecture. In Advances in Software Engineering and
Knowledge Engineering, I (Ambriola V, Tortora G,
Eds.) World Scientific Publishing Company

6 . Hayes-Roth F (1985) Rule-Based Systems. Communi-
cations of the ACM, Vol. 28

7 . Krasner GE, Pope ST (1988) A Cookbook for Using
the Model-View-Controller User Interface Paradigm in
Smalltalk-80. Journal of Object-Oriented Program-
ming, 1(3)

8 . Myers W (1995) Taligent’s CommonPoint: The
Promise of Objects. IEEE Computer, 28(3)

9 . Pirklbauer K, Plösch R, Weinreich R (April 1994)
Object-Oriented Process Control Software. Journal of
Object-Oriented Programming

10. Pree W (1994) Metapatterns: a Means for Capturing
the Essentials of OO Design. In Proceedings of the
ECOOP’94 Conference, Bologna, Italy; published by
Springer-Verlag

11. Pree W (1995) Design Patterns for Object-Oriented
Software Development. Reading, Massachusetts:
Addison-Wesley/ACM Press

12. Terveen L, Selfridge P (1994) Intelligent Assistance
for Software Construction: A Case Study. The Ninth
Knowledge-Based Software Engineering Conference,
Monterey, CA

13. Weinand A (1992) Objektorientierter Entwurf und
Implementierung portabler Fensterumgebungen am
Beispiel des Application-Frameworks ET++. Doctoral
Thesis, University of Zürich, 1991; published by
Springer-Verlag

14. Weinand A, Gamma E, Marty R (1988) ET++ — An
object-oriented Application Framework in C++. In
OOPSLA’88, Special Issue of SIGPLAN Notices,
23(11)

15. Weinand A, Gamma E, Marty R (1989) Design and
Implementation of ET++, a Seamless Object-Oriented
Application Framework. Structured Programming,
10(2), Springer-Verlag

16. Weiser M (Sept. 1991) The Computer for the 21st
Century. Scientific American

17. Wilson DA, Rosenstein LS, Shafer D (1990)
Programming with MacApp. Reading, Massachusetts:
Addison-Wesley

18. Wirfs-Brock RJ, Johnson RE (1990) Surveying
Current Research in Object-Oriented Design.
Communications of the ACM, 33(9)

