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Abstract.  It is often assumed—and current reports from
research and industry confirm this assumption—that a
prototyping-oriented development methodology can
ameliorate some of the weaknesses of the life cycle-
oriented development approach.

Specialists have not arrived at a consensus on what
methods and tools are necessary for supporting
prototyping-oriented software development. Based on the
results of a several year long research project, this paper
explains the authors’ concept of prototyping in the area
of software development and what tools are necessary to
support it.
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1 . Drawbacks of the Conventional
Software Design Methodology

When people are confronted with the need to solve a
complex task, they attempt to systematically
decompose the process of solving the problem, i.e., to
define an approach model. Such an approach model
regulates the chronological sequence of the solving
process. It decomposes the solving process into
distinct steps that are intended to make a stepwise
planning, decision and implementation possible.

We apply this basic idea from the field of systems
engineering to the design process for software

products. Analogous to other types of projects,
software projects are thus subdivided into individual
project phases. The phases and their chronological
sequence are collectively termed the software life cycle,
which has become a classical term in the field of
computer science.

Software design using the life cycle paradigm is
based on the principle of top-down decomposition of
so-called black boxes, i.e., stepwise refinement (see
Figure 1).

The prerequisites for the individual phases are well-
defined inputs (usually in the form of documents).
These inputs are processed in the respective phases
with methods and tools availed by software
engineering [18], and the results are passed on to the
next phase.

The phases are clearly defined, and a given phase is
terminated only when its outcome is validated and
verified.

One characteristic of the software life cycle
paradigm is that during the analysis and specification
phases the system is described from the outside, i.e.,
in terms of what the system is to achieve. How the
system is to achieve the requirements is left open.

The system itself is viewed as a black box whose
outward effect is precisely defined and whose internal
structure remains hidden. During the system design
phase the procedure is analogous in that one specifies
the components into which the system is to be
decomposed, what the components must do, and how
they must work together. When the process is
completed, i.e., the interfaces of all the system
components are defined, the designers need only tend to
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Figure 1.  Stepwise refinement according to the life
cycle paradigm (see [30]).

component specifications in order to achieve the design
of the algorithmic structure of the system components.
The process supports a successive reduction in
complexity of both the design process and the product
itself. The algorithms are then translated into a
programming language and tested individually. The
decomposition is followed by a synthesis of system
components.

Studies have shown that the software life cycle
paradigm is the most widespread software development
methodology used today and that it has in general
proven to be useful. Practice, however, shows the
limits and the drawbacks of this paradigm.

The model is based on the (false) assumption that
(as a rule) the development process is linear and
iterations between phases occur only as exceptions.
Such iterations are included in the description of the
life cycle-oriented development methodology, but it is
unclear when and according to what criteria the
iterations take place.

Strict application of this development method
requires that one phase can only be begun after the
preceding phase is completed, that is, when the
respective intermediate products are available. In

reality, however, a complete specification or a suitable
system architecture can seldom be produced straight
off. Usually the later phases have a strong impact on
the earlier ones.

The strict separation of the individual phases is an
unacceptable idealization. In reality the activities of the
phases overlap and interaction between phases is much
more complex than exhibited in the paradigm.

The strictly sequential approach leads to tangible
products or components being available only at a late
stage. Yet experience shows that the validation process
is insufficient without experiments close to reality.
Furthermore, modifications requested by the client can
only be expressed relatively late, and integrating them
at that stage can lead to substantial overhead.

In short, the life cycle-oriented software devel-
opment paradigm has proven itself in the field and
serves as an established basis for an engineering
methodology, although with serious drawbacks. It
describes a sequence of activities and the nature of the
intermediate products (results of phases). The activities
established in this paradigm are certainly necessary—
although perhaps not sufficient—and cannot be
circumvented by any other ingenious methodology.

The use of this methodology in practice has taught
us that we cannot achieve the goal of system
development completely independently of the type of
solution chosen. But exactly that is assumed in the life
cycle paradigm. In order to allow us to escape this
problem, the mutual effects of what the goal is and
how to get to it must be given more consideration.
The strict sequential proceeding, the manner in which
the prescribed activities are performed, and the nature
of the intermediate products form the weak points of
this methodology and leave room for improvement.

It is often assumed—and current reports from
research and industry confirm this assumption—that a
prototyping-oriented development methodology can
ameliorate some of the weaknesses of the life cycle-
oriented development approach.

2 . The Prototyping-Oriented Software
Development Methodology

Reports on software projects in which prototypes were
constructed in order to clarify user requirements and
design problems have been appearing in the literature
for more than a decade. An analysis reveals that there is
no consensus on the terms prototype and prototyping.
The same is true of what is known as prototyping-
oriented design methods.

There is obvious agreement that software prototypes
must be operational. Whether this operationality must
be direct or simulated is the subject of controversy.
The experts are nearly unanimous that software
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prototypes—in contrast to other prototypes, e.g., in
the realm of hardware—must be realized quickly and
cheaply. Some writers advocate the design of real
prototypes in the sense of templates that have all the
relevant characteristics of the planned product and are
then used as the specification for the actual product
development process—prototyping in the classical
sense. Others believe that software prototyping is a
bottom-up process: a few (simple) basic functions are
implemented quickly, tested by the user, and improved;
then additional user requirements are implemented, and
the cycle continues until the product is finished.

Since there is no generally accepted definition of
prototype and prototyping, we first need to establish
what we mean by the terms.

Bernhard Boar [5] has defined prototyping as a
specific strategy for performing requirements defini-
tions wherein user needs are extracted, presented, and
successively refined by building a working model of
the ultimate system quickly and in its working
context.

A useful definition is given by Connell and Shafer
[7]: “A software prototype is a dynamic visual model
providing a communication tool for customer and
developer that is far more effective than either narrative
prose or static visual models for portraying
functionality. It has been described as:

• functional after a minimal amount of effort
• a means for providing users of a proposed

application with a physical representation of key
parts of the system before system implementation

• flexible modifications require minimal effort
• not necessarily representative of a complete

system.”

This definition is deliberately general. Its purpose is to
establish that experimenting with models is very
useful in the development of large software systems
and that the general proceeding should be similar to
that of development in other technical areas. For
further definitions see [9] and [12].

2.1 The Prototyping-Oriented Software Life
Cycle

A prototyping-oriented development paradigm is not
radically different from a purely phase-oriented one.
Furthermore, the two are to be viewed more as
complementary than as alternative. The new aspects are
that this model is explicitly not linear but iterative and
that it specifies where and how this iteration is not just
possible but necessary. The modified life cycle
paradigm is shown in Figure 2 (see also [2]).

The prototyping-oriented development methodology
(as  we see it)  differs  mostly  from  the  conventional
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Figure 2.  Prototyping-Oriented Software Life Cycle.

development methodology in its activities and the
results produced in the individual phases. Although the
distinction of phases is maintained, problem analysis
and specification overlap a great deal, and design,
implementation and testing very much blend into one
another (see Figure 2). The phases are thus no longer
phases of a continuous development. We therefore no
longer speak of phases in the sense of the classical
software life cycle. Instead we refer to activities which
can no longer be clearly separated as was customary.

First a prototype is created (in a tool-supported
manner) based on the results of preliminary activities.
This prototype permits experimentation that reflects
the user’s application of the product in order to
evaluate whether the user’s requirements have been
met. In an environment close to reality, the software
developer and the user can test whether the system
model has errors, whether it is what the user had in
mind, and whether modifications are necessary.

This leads to another significant difference between
the two approaches. In the conventional model
implementation is carried out as late as possible and
only after all the details of the specification and design
processes have been clarified. In the prototyping-
oriented model implemention of a prototype is carried
out as soon as possible. Experience shows that it is
more likely to achieve the goal if the requirements
specification and system architecture are developed
stepwise, based on a model that permits the dynamic
representation of system behavior, i.e., based on an
executable prototype and not merely on static
descriptions.

In this way the risk of a bad decision is reduced.
Even more, the learning effect that is achieved by
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experimenting with the results of the phases presents a
new dimension in quality assurance.

Whether the various prototypes (for user interfaces,
system architecture, or individual components) are
throw-away or reusable is not important for the general
methodology. The goals are risk reduction, quality
assurance and learning from experimentation. With
respect to the expensive production process, a reusable
prototype is desirable; i.e., an evolutionary develop-
ment strategy would be best. The quality of the
prototyping tools is the primary factor in determining
whether this is possible.

3 . Tools for the Production of
Prototypes

Prototypes must be produced quickly and cheaply. The
reason that the idea of prototyping arose so late is that
tools for the efficient production of prototypes are
difficult to produce and thus were not available in
sufficient quality and number. The tools used are
central to both the prototype production process and to
the modification and extension process. Typical classes
of prototyping tools are discussed below (see also [20],
[19]).

Generators
Generator tools generally consist of two components:
an editor with which specifications are written and a
compiler/interpreter/run-time system for checking the
syntactic correctness of the specifications and
transforming them into an operational system.

The software (or prototype) developer only has to
specify what has to be done; he is not concerned with
the realization.

There are different methods to specify the behaviour
of the prototype abstractly, for instance declarative
languages (e.g., the user interface specification
language, UISL, described in [15]), attributed
grammars (examples in [22]), and graphic
specifications (e.g., the dynamic interface creation
environment, DICE, described in [21]).

Typical examples of the generators that can be
employed for prototyping include user interface
generators, generators for lexical and syntax analyzers,
and generators for information systems.

Generators are particularly suitable as prototyping
tools because they permit specification on a high
abstraction level, rapid implementation, and fast and
simple modification.

The drawback of generators is often their lack of
flexibility—prototypes that cannot be described in the
specification language cannot be generated, even if
they are very similar to describable prototypes—and in

the usually unsatisfactory efficiency of the generated
code.

Ordinary module and procedure libraries are suitable
for prototyping only to a limited extent because
modules and procedures represent an abstraction level
that is too low. Even the smallest adaptation has to be
made at the code level, and the software engineer still
has to develop large parts of the application himself.

Generic applications are a significant step forward.
A generic application has the standard I/0 behavior of
an application, e.g., for managing windows, lists,
input/output masks and graphical objects. In order to
produce a specialized prototype for an application, the
generic application is extended with application-
specific parts. The positions where extensions can be
made (hooks) are predetermined by the generic
application.

Modern implementations of generic applications are
based on object-oriented programming languages.
These are known as Application Frameworks (e.g.,
MacApp [28], ET++ [27], Application Kit [17], and
Smallkit [25]). Compared to implementations with
conventional languages, they have the advantage that
extensibility is not limited to those parts that were
foreseen. The inheritance mechanism of object-oriented
languages makes significant extensions of generic
applications easily possible.

Application frameworks are thus tools that support
above all evolutionary prototyping. The production of
prototypes is more difficult than with generators, for
parts of the prototype have to be written by the
developer. However, this is greatly simplified by
powerful building blocks and the flexibility of object-
oriented languages.

Architecture Simulators
The result of the design process is the system
architecture, i.e., a specification of all necessary
system components and their interrelationships.
Architecture simulators are tools that permit the
verification of the mutual effects among specified
components before they are realized. A tool to support
architecture verification must offer the following
functions:

• simulation of the information flow between system
components

• linking the architecture design with user interface
prototypes

• display of current system state and selection of the
next system state

• automatic logging of state transitions during
simulation

• automatic playback of already executed simulations
• support of an incremental implementation process
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The development of tools for architecture prototyping
is in its infancy. A possible approach is described in
Section 4.

Database Management Systems and Fourth
Generation Systems
The production of prototypes for information systems
requires

• tools for (interactive) describing database schemata
• tools for generating a database
• tools for testing a database
• tools for modelling a convenient user interface

Graphic-oriented tools for defining the schemata are
most suitable for prototyping. The database must be
generated directly from the schemata definition by
means of a generator.

Data definition languages (DDLs) are less
comfortable than graphical schemata editors, but they
are nonetheless suitable as prototyping tools. The
expressive power of DDLs matches and sometimes
exceeds that of graphical schemata editors. Often a
normal text editor is used for the creation of schemata
specifications. This has the serious drawback that
structural errors are detected only when the database is
generated. Interactive database languages are also
suitable for prototyping. They lend themselves to both
the data definition and the formulation of data
manipulations.

Fourth generation systems are important tools for
the production of prototypes of information systems.
They usually integrate a schemata editor, a user
interface generator and an application generator,
permitting the definition of database schemata and user
interfaces and the generation of applications as well as
the creation and deletion of relations and associative
queries.

Programming Languages for Prototyping
Complete prototypes can seldom be produced
exclusively with generators and reusable software.
Highly complex parts still need to be written by hand.

The choice of a programming language can have a
significant impact on the effort invested in production
of a system component and on its modifiability and
structuredness. Problem-specific programming lan-
guages—such as APL for mathematical-statistical
problems, Snobol for string processing tasks, or Lisp
in the area of symbolic programming—permit simpler
and more rapid implementation of algorithms in the
application area for which the language was conceived
than is possible in other languages. Such an
implementation of a system component usually does

not achieve the efficiency and structuredness that are
expected of the ultimate software product. However,
other quality requirements are placed on prototypes.

The most important characteristics that a
programming language should possess in order to be
employed for prototyping are:

• interpretation instead of compilation
• abstraction concepts that permit the construction of

reusable components and easy extensibility
• imbedding in a development environment

4 . Topos—A Toolset for Prototyping-
Oriented Software Development1

The preceding sections made a number of statements
about the prototyping-oriented software development
methodology and explained what kinds of tools can be
employed for the production of prototypes. Based on a
scenario for prototyping-oriented incremental software
development, which is built on fundamental method-
ological considerations, this section presents a concept
for a prototyping-oriented software development
environment and discusses its implementation.

4.1 Basic Concepts
Software can be developed with algorithmic languages
or with high level prototyping tools. It is obvious that
the abstraction level on which a software system is
realized has a profound influence on the required
development effort and on the (system) architecture of
the resulting application. With an increasing
abstraction level, the programmer is less bothered with
the design and implementation of an application. In the
ideal case he just specifies what functionality it should
provide, while the knowledge about the design and
implementation is coded in the tools used to execute
the high level formalisms.

Development at a high abstraction level is more
economical than in an algorithmic language.
Experience has shown that the amount of code which
has to be written as well as the development costs can
be reduced by several orders of magnitude.

Unfortunately there are few formalisms and tools for
developing entire software systems on a high
abstraction level, and their application areas are limited
because software systems written for the same
application area usually differ in a myriad of details
which cannot be standardized and captured by a tool.

1  This project was a cooperation between the
University of Linz, the University of Zürich and Siemens
Munich.
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Because of this shortcoming, many formalisms and
tools were fashioned which make it possible to develop
standardizable parts of an application on a high
abstraction level (high level parts) and to connect them
with other parts written in a third generation language
(low level parts). Depending on how much of the final
application can be written on a high abstraction level,
these formalisms and tools can help to pronouncedly
speed up the development process.

Software systems developed with such formalisms
and tools have a hybrid architecture; i.e., they consist
of parts written in different formalisms. For this
reason they are called hybrid software systems (see also
[3]). For an example of a hybrid architecture see Figure
3.

Today two paradigms are applied to the practical
development of software systems with hybrid
architectures. Under the first, the conventional
sequential paradigm, the high level formalisms and
tools are utilized to speed up the design and
implementation. Under the second, the evolutionary
prototyping paradigm, the high level formalisms and
tools are used to develop reusable prototypes in an
iterative process. During this process the evolving
prototypes are discussed with the client, thus helping
to determine the requirements. If the prototypes cover
only parts of the final application (which is usually
the case), the other parts are developed conventionally
and integrated with the reusable prototypes.

The combination of prototyping and the conven-
tional sequential paradigm is well established and
frequently used in practical projects. This approach is
successful in building hybrid software systems where
the conventionally developed part is not too complex.

During the development of novel complex hybrid
sytems in the Topos project, it became more and more
obvious that the prototyping approach was helpful
during specification, but that methods and tools were
missing to support the subsequent realization process.
Because of their novelty and complexity, many low
level parts were implemented by following the

exploratory programming paradigm. Some of the
changes applied to them also implied changes of the
reusable prototypes. The resulting realization process
therefore consisted of a dynamic evolution of
application parts written in an algorithmic language
and reusable high level prototypes.

This parallel evolution of high and low level parts
proved tedious for the following three reasons:

1) The manual management of complex hybrid
software systems is tiresome and error-prone.

2) It is difficult to determine if a planned architecture
consisting of different reusable high level
prototypes as well as reused and customized
conventionally developed building blocks will
work properly.

3) It becomes expensive to change prototypes once
they are integrated with the conventional parts
because the reintegration is time consuming and
error-prone.

An approach consisting of prototyping and exploratory
programming would have alleviated these problems,
but unfortunately there were neither methods nor tools
allowing for a combination of the two paradigms.

Because of these problems and the “obvious”
solution, the goal of a subproject of Topos
increasingly became to study the integration of
prototyping and exploratory programming. The results
are prototyping-oriented incremental software
development, a paradigm, as well as methods and
tools which were developed to support it.

Figure 4 shows a general representation of a
prototyping-oriented incremental software development
process. It consists of three cyclical processes. The
novelty is that two processes (prototyping a n d
exploratory programming) are integrated as
subprocesses into one cyclical prototyping-oriented
incremental software development process (the third
cyclical process).

The paradigm is very flexible and suited to
describing almost every kind of software development
process. The conventional sequential paradigm as well
as prototyping and exploratory programming are
special cases thereof, whereby some of the cyclical
processes are carried out only once or omitted
completely. While the subsumption of various time-
tested paradigms under a new one proves its
orthogonality and generality, the cases which were not
considered by the old paradigms but can be be mastered
by applying the new one give it its relevance. These
new cases include, but are not limited to, the use of
exploratory programming during prototyping and the
evolution of reusable prototypes during the final
implementation of the application.
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Figure 4.  The prototyping-oriented incremental software development process.

There are two cases in which exploratory programming
is important during prototyping. First, high level
prototypes occasionally have to be enhanced with
chunks of algorithmic language code because they do
not provide enough functionality themselves. Second,
feasibility risks and possible performance problems
sometimes require the realization of low level
application parts in order to ensure that a system can
be built as specified with the high level prototypes.

The second case considered by the prototyping-
oriented incremental paradigm is that many prototypes
which were built as illustrations for the customer
evolve during the subsequent realization. This can
happen because the prototypes were partly mock-ups,
because they were functionally incomplete, because the
requirements change, and for many other reasons.

It is obvious that in all of these cases management,
integration, and validation problems arise unless
adequate tool support is available. Unfortunately
almost no such tool support exists. There are excellent
prototyping tools and programming environments, but
the required combination of these tools has not yet
been accomplished.

Two approaches could be taken in order to build
adequate tools. The first is to develop an integrated
tool set consisting of prototyping tools and a
programming environment for exploratory
programming. The second is to build a tool serving to
connect different existing prototyping tools with a
programming environment.

Comparing the two approaches, it can be seen that
successfully taking the first approach results in a
comfortable, integrated tool which can be used to
develop applications for a well defined application area.

The second approach mentioned above results in a
more loosely coupled extensible tool kit providing less
comfort but facilitating the development of a wider
range of applications. This approach was taken in the
Topos project.

A tool for prototyping-oriented incremental software
development has to support prototyping and
exploratory programming effectively. Furthermore it
has to provide features for the management of complex
hybrid software systems, for the validation of hybrid
system architectures, and for fast execution of a hybrid
software system under development after changes were
applied to any part of it (i.e., short edit/run cycles).

4.2 The Structure of Topos
The considerations that led to Figure 2 (prototyping-
oriented software life cycle) and Figure 4 (prototyping-
oriented incremental software development process)
make it clear that we need tools that support 1) the
requirements analysis and specification phases by
enabling the construction of user interfaces, and 2)
architecture verification by permitting the realization of
prototypes of system architectures and their execution
together with the user interfaces prototypes. In addition
we need tools for the management of generated compo-
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nents (prototypes, documents, modules, etc.) and tools
that support incremental implementation.

The coarse structure of Topos thus takes the form
shown in Figure 5.

We discuss only the tools that relate directly to
prototyping, i.e., UICT (User Interface Construction
Tool) and SCT (System Construction Tool). A
description of CMS (the Component Management
System) can be found in [24].

4.3 The User Interface Construction Tool
(UICT)

UICT is a tool that supports exploratory and
evolutionary prototyping and enables the easy
construction of prototypes for dialog-oriented software
systems. The user interfaces of such systems can be
described in terms of finite automata defined by a set of
states and possible state transitions. From the
viewpoint of the user these states are defined by
graphical representations on the communication
medium, i.e., the screen or printed output, and by their
associated functionality. A state transition is invoked
by the reaction of the user to a particular state and/or
by the system itself. Each software system has a set of
special states: the initial state and final states, e.g., the
“stop state” or various error states.

UICT permits a flexible configuration of the
graphical representations and the simulation of state
transitions. The user interfaces supported by UICT
meet the most modern requirements. Such user
interfaces presuppose high resolution graphic monitors
with a mouse and are based on user interfaces such as
those of Sun workstations and Macintosh computers.
The design concepts can be transferred to other
machines that have similar characteristics.

The most important elements are environments

consisting of windows, subwindows, pop-up menus,
dialog boxes and lists.

Every user interface is associated with one window
in which, from the user’s point of view, the
application runs. The position and form of the window
must be defined.

Subwindows as well as the remaining area must be
definable in such an (application) window. The
subwindows are usually of various types and sizes.
The type of a window determines its form and its basic
functional behavior. Within these limits, however, a
free definition of the functionality should be
guaranteed. This functionality is determined more
exactly by specification of behavior on user input. On
the one hand, the temporary changes in the behavior of
an interface must be specifiable, e.g., that a pop-up
menu or a dialog box is to appear on the screen when a
text or a graphical symbol is to be selected, etc. On
the other hand, state transitions need to be specified,
e.g., that a new text, another list or a picture is to be
displayed when the number and type of subwindows is
to change, etc. In addition it must be possible to define
procedures that are invoked on the occurrence of certain
events.

The graphical representation of the state of an
application window, i.e., the displayed subwindows
and the remaining area, combined with the
functionality that is defined for the window as a whole
is termed the window’s environment. In the sense of
finite automata every window has a particular
environment that is to be displayed first, the start
environment. The functional properties of the start
environment’s subwindows determine to which other
environments the user can make a transition. An
interface can thus be perceived as a directed graph of
environments.
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Figure 6.  Supported interface: environment Main, menu MainBorrower, environment Search,
sheet ParamSearch.

We distinguish five types of subwindows:

• Text Editor subwindow
• Graphics Editor subwindow
• ListMenu subwindow: a static or dynamic menu with

a scrollable list of entries, one of which can be
selected at a time. Depending on the specification of
the environment, this can cause a different list to be
displayed, a procedure to be called, etc.

• MaskButton subwindow: a subwindow containing
input/output masks with fields for editing text, push
buttons, slide controllers, etc.

These four types cover the standard types of interactions
of most applications. To keep the system open to
prototyping of even more sophisticated user interfaces, we
provide another type:

• Empty subwindow: a universal subwindow whose
functionality is managed by user-supplied code.

The left side of Figure 6 shows an environment
consisting of a single subwindow of type Empty
subwindow. In reaction to the right mouse button being
pressed, a pop-up menu (borrower menu) is displayed. If
the line “search book” is selected, the environment Search
is displayed. The right side of Figure 6 shows this
environment. It consists of two List-Menu subwindows
(“Authors” and “Subjects”) and a Text Editor subwindow.

When the right mouse button is pressed, a dialog box
(“Set additional parameters”) is displayed.

The coarse structure of UICT and its interaction with
the Component Management System and the System
Construction Tool are shown in Figure 8.

UICT is a generator system in the sense of Section 3
and includes the tools DICE, UI Translator, UI Interpreter
and M2/C Code Generator.

To allow UICT to be experimentally verified as
quickly as possibly, the overhead of implementing DICE
(Dynamic Interface Creation Environment) was initially
postponed. Instead, an easily implemented specification
language, UISL (User Interface Specification Language),
was defined. Figure 7 shows the UISL-Code for
describing the prototype illustrated in Figure 6. The goal
of the design of UISL was to provide a simple, compact
and extensible formalism with a high abstraction level
and high documentation value, allowing UICT to be
applied productively even without a graphical editor such
as DICE.

To check the syntactic correctness of a prototype
specification formulated in UISL, a Translator was
developed. This tool stores syntactically correct
specifications as UI Tables.

In order to be able to experiment with the prototype of
a user interface, the UI Tables can be processed by the UI
Interpreter. If the functionality of the created user interface
elements does not suffice, the prototype description can
be augmented with procedure invocations.
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APPLICATION LibInfoSystem:

WINDOW
  TITLE (" Library Information System");
  POS (0, 100);
  EXT (920, 650);
  ICONFILE (Icons/LIS.icon);
END WINDOW;

ENVIRONMENT Start: START;
  SUBWINDOWS (LStart, EmStart);
END Start;
...
ENVIRONMENT Search:
  SUBWINDOWS (AuthorsSearch, SubjectsSearch,

ParmSearch, ResultsSearch, EditSearch);
...
SUBWINDOW MainBorrower: LISTMENU;
  STARTLIST (MainBorrower);
  EXT (EXTEND, 18);
  MENUBUTTONACTION (MENU (MainBorrower));
END MainBorrower;
...
SUBWINDOW AuthorsSearch: LISTMENU;
  STARTLIST (AuthorsSearch);
  EXT (460, 140);
  MENUBUTTONACTION (MENU (Search));
END AuthorsSearch;
...
MENU MainBorrower:
  MENUPAGE
    TITLE ("Borrower Commands");
    ("list borrowed copies",
       SWITCHENVIRONMENT (BorrowedBorrower)),
    ("search book", SWITCHENVIRONMENT
(Search)),
    ("restart", SWITCHENVIRONMENT (Start)),
    ("quit", QUIT);
  END MENUPAGE;
END MainBorrower;
...
SHEET ParmSearch:
  TITLE ("Set additional parameters");
  STRINGINPUT (RETURNONCRT, TITLE ("More
      Authors"), FORMAT(40));
  STRINGINPUT (RETURNONCRT, TITLE ("More
      Subjects"), FORMAT(40));
  SELECTION (TITLE ("Type"), "Any", "Book",
...)
  SELECTION (TITLE ("Language"), "English",
...)
  INTEGERINPUT (RETURNONCRT, TITLE
("Published
      After 19.."), FORMAT(2));
  STRINGINPUT (RETURNONCRT, TITLE ("Code"),
      FORMAT(8));
END ParmSearch;
...
LIST AuthorsSearch:
  TITLE ("Authors");
  ("Aho A.V."), ("Carlson E.D."), ("Clocksin
M.F."), ("Cox B.J."), ...;
END AuthorsSearch;
...
END LibInfoSystem.

Figure 7.  UISL-code to generate the interfaces of Figure 6.

The M2/C Code Generator makes it possible to not just
simulate procedure invocations, but, in the event of an
implementation (in Modula-2 or C) to actually execute
them. Thus a UICT prototype can be transformed in an
evolutionary manner into the complete application.

UICT was developed on Sun Workstations and ported
to Siemens PC 16-20 machines. Modula-2 was the
implementation language. In order to be able to use the
program components that were already implemented in C
(particularly the Window Management System), a
Modula-2 layer was wrapped around each C component.
A Modula-2 environment that permitted the invocation of
C programs was used for this purpose.

UICT is implemented so that various window systems
and hardware can be used as its base. For this purpose, a
virtual window management system was defined that had
previously been implemented with the Siemens
S/Windows System. A description of the implementation
can be found in [15].

Dynamic Interface Creation Environment
(DICE)
With DICE one can define a user interface by using solely
graphical means, thus abandoning any textual input, and
lifting restrictions of UISL:

• the interface can consist of any number of windows
• more interface items (see Figure 9) are provided

When the “Edit Window”  button in DICE’s Control
Panel is pressed (see Figure 9), an empty window is
opened. To insert user interface elements, one has to
choose the proper element in the control panel and mark
the position where the item is to be placed in the
window.

Besides the usual interface elements (Buttons, Text
Fields, Popup Items and scrollable Subwindows, as
shown in Figure 9) there are two elements for grouping
interface items—Cluster and Expander. They allow a
comfortable specification of the window layout and of the
behavior of the contained elements if a window is resized.

DICE provides undoable editing functions as known
from state-of-the-art WYSIWYG editors: moving and
resizing of the elements, cut/copy/paste between windows
and different DICE prototypes, etc. The attributes of
interface elements are defined in specific attribute sheets.

Since the behavior of a user interface is above all
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determined by its dynamics, it is not enough just to
describe screen layouts. DICE offers the following

possibilities to portray the dynamic behavior of the user
interface prototype:

Key

Tools

Documents

UI Translator

UI Interpreter

System Construction Tool

Component 
Management

System

Data Base

UI Prototyp
(Objectprogram)

UI Specification in UISL
(declarative language)

M2-Program C-Program

UI Table

Text Editor

C++ Compiler

DICE

ET++ class extensions
(= C++ program)

M2/C Code Gen.

M2 Compiler C Compiler

Figure 8.  UICT system overview.
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Figure 9.  DICE’s Control Panel.

• Without programming: Certain messages are
assigned to each user interface element (e.g., the
messages “Open” and “Close” to a window, the
messages “Enable”, “Disable” and “SetText(...)” to
a text field, etc.). From each interface element that
can be activated (Buttons and Menu items), any
number of such predefined messages to other
elements can be specified by using a special tool,
the Message Editor. When the prototype is tested
and an interface element has been activated, the
messages specified for that element are sent to their
receivers. The execution of these messages effects
the corresponding change in the user interface.
Thus rudimentary dynamics can be realized without
programming effort.

• With object-oriented programming: For a specified
prototype, C++ classes (ET++ subclasses—see
[27]) can be generated. These classes can be
enhanced with special functionality in an object-
oriented way. This kind of code generation
separates changes in the user interface from coded
functionality as far as possible.

• With conventional programming: A protocol was
developed that allows the prototype to be connected
with other UNIX processes using the UNIX
Interprocess Communication mechanism. Special
functionality of the user interface can thus be
enhanced with conventional programming.

4.4 The System Construction Tool
SCT (see [3, 4]) was developed to support a software
development process as depicted in Figure 4. The
following goals were pursued in implementing SCT:

1) development of a comfortable exploratory pro-
gramming environment for a programming
language with strong type checking

2) extension of exploratory programming towards
exploratory designing

3) support of various programming paradigms2 (e.g.,
modular, object-oriented, functional, and logic
programming)

4) support of the prototyping-oriented incremental
paradigm by providing a mechanism for execution
of hybrid software systems consisting of Modula-2
code and high level parts written in other
formalisms

2 A discussion of the advantages of implementing
software systems in various programming paradigms is
beyond the scope of this article. Such discussions can be
found in [14] and [15].

The first goal was attained by developing an
interpretive programming environment for Modula-2
which provides most of the standard functionality
known from exploratory programming environments
such as Smalltalk-80. In order to provide satisfying
execution speed during exploratory programming, a
hybrid execution mechanism was realized allowing for
interpretation of modules currently being implemented
and for direct execution of implemented and tested
modules.

To achieve the second goal a further execution
mechanism, the Simulator, was added to the hybrid
execution system. The Simulator makes it possible to
verify a system architecture before all the
corresponding software components are completely
implemented or after changes to the architecture of an
existing application were planned. This is done by
simulating the control and data flow through the newly
designed module interfaces while all existing parts of
the application under development are interpreted or
directly executed.

The third and the fourth goals were fulfilled by
realizing a flexible mechanism to add other execution
tools to SCT’s hybrid execution system. Using this
mechanism, a developer can easily add other inter-
pretive execution tools in order to execute hybrid
software systems written in various programming
languages and high level formalisms.

After adding a Prolog interpreter, for example, it is
possible to execute hybrid software systems consisting
of parts written in Prolog and Modula-2. Another
typical example is the integration of the interpreter of
the User Interface Construction Tool with the hybrid
execution mechanism of SCT.

We chose the following approach to present the
individual components of SCT: First, the concept of
hybrid execution of hybrid software systems is
explained. Then the individual components of SCT are
described, beginning with the Configuration Manager,
which is the base of all other components.

The Concept of Hybrid Execution of Hybrid
Software Systems
Hybrid execution of a software system means
executing different components of a software system in
different ways. Hybrid execution is no new concept,
and many available tools provide hybrid execution
mechanisms which combine interpretive and direct
execution. Good examples are Lisp and Prolog
development environments, e.g., [29], [16], as well as
Saber-C [13], [23], [14]. Hybrid execution by
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transparent integration of interpretation and direct
execution results in fast execution and a comfortable
development environment.

SCT goes one step further by providing simulation
as an execution mode to complement interpretation and
direct execution. While interpretation allows for short
turnaround times during implementation and direct
execution provides run-time efficiency, simulation
makes it possible to dynamically validate a system
architecture before all the corresponding components
are completely implemented. This is done by
simulating the control and data flow through newly
designed modules for which only the interfaces exist.

Hybrid software systems are software systems
consisting of parts written in different formalisms
(languages). Three groups of tools supporting the
development of such software systems can be
distinguished today:

• Tools belonging to the first group provide a code
generator which takes the description of a high
level part as input and produces code in an
algorithmic language. This code is then integrated
manually with the other application parts. (For
examples see [11], [8].)

• Tools in the second category provide an interpretive
development environment for one high level
formalism and a procedural interface allowing the
connection of application parts developed in an
algorithmic language with the interpreted high
level parts. These tools require that the compiled
application parts be linked to the execution tool.
(For examples see [15] and [26].)

• Tools belonging to the third group provide various
cooperating interpretive execution tools, one of
them usually being an interpreter for an algorith-
mic language. (For examples see [1] and [10].)

Under the prototyping-oriented incremental paradigm
high and low level parts dynamically evolve in
parallel. In order to manage such an evolution process,
it is important that the software system under
development be immediately reexecutable after changes
were applied to either high or low level parts.

This requirement can only be met by tools
belonging to the third group, while the tools of the
first and second group require several generation,
compilation and integration steps before reexecution.

SCT belongs to the third group. The difference
between SCT and other tools of this group is that the
set of cooperating interpretive execution tools is not
predefined or otherwise restricted.

The Configuration Manager
In order to facilitate the management of complex

hybrid software systems during their development, a
configuration manager, CM, was written which
handles all information required to evolve hybrid
software systems in the context of hybrid execution.

The following kinds of information are handled by
CM:
• documents containing information about a software

system (Modula-2 code, input formalisms for any
kind of added execution tool, and any kind of
documentation)

• attributes for classifying these documents
• paths indicating the location of the documents in

the UNIX directory tree
• object code libraries needed to execute the software

system
• information about added execution tools

While documents managed by CM are regular UNIX
files, all unnecessary details about the file system are
hidden from the user and the documents are presented in
the form of a list.

Instead of ordering the documents in a directory tree,
attributes are assigned to the documents. Every
document can be described by any number of attributes
and every attribute can be assigned to any number of
documents. Based on these attributes, various kinds of
selection mechanisms can be applied to obtain a list
with a subset of the managed documents.

The advantage of the attribute-based organization
over a directory tree is that documents can be organized
in more than two dimensions and that it is possible to
search the dimension best suited to finding the required
documents. Projects, for example, can be logically
organized into overlapping subprojects using
attributes, which is obviously not possible with a
directory tree.

While the developer works without bothering about
the underlying file system, CM needs information to
find the documents. For this reason it maintains an
ordered list of paths. When system, user or project data
is loaded into CM, every document is located by
sequentially searching all directories indicated in the
path list until a file with the name of the document is
found.

UNIX applications frequently use functions provided
by object code libraries. In order to execute such
applications, CM manages an ordered list of object
code libraries and files which are linked to SCT like
the object code for directly executable modules.

Other execution tools (e.g., UICT) can be connected
as server processes or they can be linked directly to
SCT. CM provides several services that are beyond
mere organization of other documents (e.g.,
documentation and input documents for added
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execution tools).
When SCT is started, the configuration manager is

the first tool which is activated, as depicted in Figure

10. The scrollable list at the right side displays all
attributes, and the scrollable list in the middle all
documents defined on system and user level.

Figure 10.  The Configuration Manager’s user interface.

The buttons on the left side serve to enter global
commands which do not affect a selected module or
attribute, and the buttons below the scrollable lists
serve to select modules and attributes as well as to
issue commands referring to selected documents.

The Implementor
An Implementor serves to edit and browse one module
and to execute software systems which have this mod-
ule as their root. Any number of implementors may be

active. The only restriction is that only one
Implementor can be used to start an execution.
Implementors are created in the Configuration Manger
by pressing the Edit or Execute buttons.

Figure 11 shows the user interface of an
Implementor. It consists of a line of push buttons
serving to control analysis, execution and debugging
along the top and a comfortable text editor at the
bottom.
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Figure 11.  Overview of an Implementor’s user interface.

Figure 12.  Browsers displaying the procedure call chain (left) and refined global run-time data (right).

Analysis and Execution. The Implementor carries out a
threefold analysis of modules: it checks their
syntactical correctness, extracts data which can be used

for browsing them, and prepares them for execution.
Before a module can be executed, the implemen-

tation parts of all interpretable modules from which
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something is imported have to be analyzed because a
procedure imported from one of them could be called.
Furthermore, if a developer wants to use the browsing
tools to get information about implementation parts of
directly executable modules, their implementation
parts have to be analyzed, too.

The execution of interpretable and directly
executable modules can be triggered by pressing the
execute button. Execution monitoring is supported by
the possibility to set breakpoints and by stepwise
execution.

To support exploratory programming, the Browser
tools make it possible to get various information
about the program system (e.g., the procedure call
chain, complex data structures, import/export depen-
dencies, constants, etc.) and to edit the run-time data
(see Figure 12).

The Simulator
The Simulator can be used to execute software systems
which are designed but not implemented, i.e, for which
only the definition modules are written. Such an
execution mode is useful to validate (prototype) system
architectures by playing with realistic scenarios. These
scenarios can be stored in history files and replayed

after a change to the system architecture was applied in
order to revalidate it. The Simulator’s user interface is
shown in Figure 13.

From a very abstract point of view, the Simulator
provides only two features. First, it makes it possible
to start an execution by manually calling any
procedure currently known to SCT. Second, it allows
for execution of simulable procedures.

In order to simulate a software system, two
prerequisites have to be fulfilled. First, it must be
possible to simulate a procedure call. In the Simulator
this is done by selecting the procedure to be called in
the Procedures subwindow, instantiating its local data
with the Activate command, editing the input data and
dispatching the call with the Execute command.
Second, it must be possible to return from a simulated
procedure call. In the Simulator this is done by issuing
the Return command in the Procedure Call Chain
subwindow.

Simulation is supported by interrupting the
execution as soon as a simulable procedure is called.
During such an interrupt the Simulator displays the
parameters of the simulated procedure, the currently
active procedure call chain, and the names of all
procedures  which  were already  called from the current

Figure 13.  The Simulator’s user interface.

procedure in the course of the simulation. During the
simulation of a procedure it is possible to simulate

procedure calls carried out by it (by applying the
Simulator’s first feature), to browse and edit its local
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data, and to return from it.
All activities related to the current simulation and/or

testing activities are logged by the Simulator. At the
end of a simulation this information can be saved in a
history file, which makes it possible to replay the
simulation later.

The Simulator supports a developer in carrying out
many different tasks during software development.

The Simulator’s procedure call mechanism can be
used to test modules and application parts of any degree
of completion. In order to test a module, the developer
calls its interface procedures repeatedly with different
kinds of input parameters and he checks the output
parameters for correctness. All test cases for a module
can then be stored in a history file and replayed after the
module was changed. In the replay mode the Simulator
compares the expected with the effective output
parameters, making it possible to retest modules
without much effort.

During testing the Workspace Manager tool described
in the next section comes in handy because the complex
data structures which are sometimes needed as test data
can be managed and do not have to be reconstructed for
every test run.

Another possible application of the Simulator is the
experimentation with system libraries, reusable code,
and interpretive high level tools. This kind of
experimentation is especially important during
exploratory programming and the development of hybrid
software systems. The Simulator supports such
experimentation in two ways. First, it enables a
developer to test any single feature immediately with
the procedure call mechanism. Second, it supports him
in connecting libraries, interpretive execution tools and
any other kind of existing code by simulating the
connecting parts without the need to write a single
statement.

The user interface of the Simulator, depicted in
Figure 13, consists of three groups of push buttons
aligned along the top and six subwindows filling the
rest of the window.

The three subwindows aligned along the left side
serve to browse through modules, the procedures defined
in them and the parameters of these procedures. The
Modules subwindow contains a list of all currently
available modules. If a module is selected, a list of all
procedures defined in this module is displayed in the
Procedures subwindow. Finally, the selection of a
procedure results in the displaying of its interface in the
Parameters subwindow.

The three subwindows aligned along the right side
serve to display data related to the current execution.
The Local Data subwindow shows the parameters of the
currently simulated procedure. The Called Procedures
subwindow displays a list of all procedures which have

already been called from the current procedure during the
current simulation. The Procedure Call Chain
subwindow displays the list of the currently active
simulated and interpreted procedures.

The Workspace Manager
Using SCT, it is possible to execute parts of an
application, to provide them with input parameters and
to inspect the output parameters. Furthermore, it is
possible to edit complex data structures during a break
of an active execution and to manipulate complex data
structures with Copy and Paste commands. In such an
environment it would be useful to have some kind of
workspace into which data structures can be stored
(pasted) if the developer is interested in keeping them
after the current execution is terminated. The Workspace
Manager provides such a workspace.

Most interpretive programming environments
provide only one global workspace where all global data
is stored. This is all a developer needs if he uses the
workspace to store output parameters of application
parts for later use. Besides one global workspace, SCT
also provides one workspace for every simulated
module. These workspaces are used to simulate the
global data of the corresponding modules, and they can
be accessed from the simulator.

The user interface of the workspace manager is very
similar to the user interface of the Browser. We do not
include an illustration.

Adding Other Execution Tools
In order to integrate interpretive execution tools into a
hybrid execution mechanism, four prerequisites have to
be fulfilled:

1) The formalism executed by the interpretive
execution tool has to provide some mechanism to
define the cooperation with other formalisms.

2) The interpretive execution tool has to be an open
system. This means that it has to provide an
interface which can be used to receive requests for
certain services from other tools. In addition many
interpretive execution tools have an interface which
allows them to request certain services from other
execution tools.

3) The interfaces of the various tools must match
semantically and the formalisms in which they are
formulated must be compatible so that meaningful
synchronization and an exchange of data is possible.

4) A common platform has to exist which makes it
possible to integrate the interfaces provided by the
different tools and the tools themselves.

SCT’s hybrid Modula-2 execution system is a common
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platform for integrating any kind of interpretive
execution tools running under UNIX.

In order to integrate an interpretive execution tool
into SCT’s hybrid execution system, its interface for
communicating with other tools has to be added to the
current application. This interface enables other tools
and low level application parts to send requests to the
newly added tool using the hybrid procedure call
mechanism. If a request has to be dynamically bound,
this can be achieved by using SCT’s ProcCall-
Dispatcher interface, which provides dynamic binding.

Implementation.  Topos was implemented on
Sun Workstations using Modula-2, C and C++ as
implementation languages. The user interface was built
with ET++, an object-oriented application framework
implemented in C++. A description of the most
interesting implementation aspects can be found in [4].

5 . Conclusions and Future Directions

We have been using UICT since spring 1987 and SCT
since fall 1989 in various projects at our institute. In
this time we developed several small to medium-sized
prototypes. Both tools have also been applied in pilot
projects by Siemens Munich AG.

The feasibility and usefulness of hybrid execution and
incremental development of hybrid software systems
was verified by integrating SCT with UICT, a Prolog
interpreter, and a relational database system. With the
resulting hybrid development environment we were able
to develop prototypes of impressive functionality in a
few days.

We are currently doing research work in the area of
the synthesis of object-oriented programming and a
prototyping-oriented development approach. As such,
the extension of Topos with tools that support object-
oriented programming is underway.
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