



Abstract— This paper describes features and applications of

a simulation framework for software-in-the-loop testing of real-

time embedded control applications. The Validator tool

performs time-functional simulation of control software and its

execution platform in closed-loop with Simulink plant models.

It is based on a discrete event simulator which executes the

application software on a host platform and simulates the

passage of time according to execution times of application code

and communication times pertaining to a given embedded

target. The Validator also simulates functional behavior of

operating system services and hardware components at a level

of abstraction that enables capturing significant timing aspects

without executing detailed hardware models. We present use

cases where the Validator is employed for evaluating

integration of new control functions in existing systems, model

refinement, and regression testing of automotive control

software.

I. INTRODUCTION

State-of-the-art validation of real-time properties of
embedded software is performed by extensive testing
involving hardware in the loop. Simulation is mainly used
for testing functional properties of applications represented
as software or as higher level executable models. The costs
of hardware in the loop testing, plus the increased
complexity of distributed embedded applications make the
case for shifting the main load of real-time testing towards
software in the loop setups. Clearly, to simulate the real-time
behavior of an embedded application, one needs to simulate
also the functionality and timing of the execution platform
(hardware and operating system), sensors, actuators, and the
physical plant under control. An important challenge in this
case is finding the right level of abstraction, which
determines the modeling effort, the properties that can be
tested as well as the efficiency of the simulation.

This paper describes how the Validator tool suite [1] is
employed for simulation-based verification of timing-related
properties of control software. The Validator is a software-
in-the-loop simulator, where the application code is executed
on a host computer and the passage of time is simulated
according to execution and communication times related to a
given execution platform. This timing information can be
obtained by static techniques involving program analysis or
by methods based on measurements. The Validator also
simulates functional behavior of operating system services
and hardware components at a level of abstraction that

Stefan Resmerita and Wolfgang Pree are with the Software & Systems

Research Center, University of Salburg, Jakob-Haringer-Str. 2, A-5020

Salzburg, Austria. E-mail: firstname.lastname@cs.uni-salzburg.at.

enables capturing significant timing aspects without
executing detailed hardware models. The tool achieves co-
simulation with Simulink plant models based on time
synchronization protocols.

In this paper, we present aspects of the underlying
simulation technology of the Validator, with particular focus
on the implementation of the state store/restore feature. Then
we describe illustrative use cases for the Validator, centered
on verification of real time properties of automotive control
systems.

II. THE VALIDATOR TOOL SUITE

A. Simulation Technology

The top level components of a Validator model are actors
in the Ptolemy II sense [2]. Ptolemy II is a software
framework for modeling, simulation, and design of
concurrent, real-time, embedded systems. In Ptolemy II, the
behavior of an actor is defined by implementing a
programming interface, which can be used by a simulation
director to execute the actor according to specific rules.

During simulation, an actor experiences a number of
iterations, where an iteration generally consists of three
successive actions: prefire, fire and postfire. Each action is
represented by a method in the actor interface. The main
functionality of an actor is encoded in the fire method, where
the actor reads inputs and produces outputs. The actor
interface also contains methods for initialization of the
model, called preinitialize and initialize, which are called
before the first iteration of the simulation, as well as a
finalize method wrapup, executed after the last iteration.

The Validator is implemented in C according to the
actor-based design principles, and employing a discrete-
event simulation director. The main components of a
Validator model are depicted in Fig. 1 and described next.
Application actors represent software functions mapped to
platform tasks and interrupt service routines (ISRs).
Operating system actors perform the functions of an OSEK
operating system. Hardware actors model functionality and
timing of common hardware parts such as interrupt
controllers, timers, bus controllers, hardware sensors and
hardware actuators. The plant actor represents the physical
system under control, including sensors and actuators. The
actor implements a protocol for handshake time
synchronization with Simulink. For continuous-time
Simulink models, this has the effect of zero-order holders

for the interface signals.

Verification of embedded control systems by simulation and

program execution control

Stefan Resmerita and Wolfgang Pree

Figure 1. Architecture of the Validator model

To simulate a software application mapped to a target

platform, a model with the above structure needs to be built

(only models of uni-processor systems are considered here).

The modeling process involves the following steps: (1)

Execution time analysis of the application code, which is

done with existing program analysis tools such as AbsInt's

aiT tool [3]. (2) Instrumentation of the code with execution

time information. (3) Instrumentation with execution control

statements, to enable the simulator engine to control

execution of the application code (e.g., to switch execution

between application tasks). (4) Generation of the task and

ISR actors from the system configuration files (e.g., OIL

files in the case of OSEK). (5) Generation of the Validator

interface code. These steps are mostly automated by a tool

set that achieves a fast modeling process based on

information about the hardware/software architecture.

B. Enhanced actor interface for state store/restore

A Validator simulation can be started from a previously
saved state. To support this feature, the actor execution
interface was enhanced with two more methods: suspend and
resume. The suspend method must be executed before saving
the program state, as well as at the end of the simulation
before the wrapup method. The resume method must be
executed once after the initialize method as well as upon
every resumption of execution from a saved program state.
The suspend method should bring the actor to a state which
can be stored and then restored by the resume method.

For example, consider an actor with the following
behavior: at the beginning of a simulation, the actor should
allocate memory for a buffer and open an empty file for
writing. At each iteration, the actor stores its inputs in the
buffer. When the buffer is full, the actor writes its contents to
the file. The file is closed at the end of the simulation. With
the classical Ptolemy actor interface, memory allocation and
file creation is done in the initialize method. Also, memory
de-allocation and closing the file is done in the wrapup
method. It would be difficult to save/restore the state of each
actor and of the simulation engine using only these methods.
In the above example this would require that the initialize
method should test if the simulation starts from time zero
(then it should create an empty file, which would delete any
previous instance of the file), or if the simulation is being

resumed from a previously saved state (then it should open
the file for appending). Moreover, explicit functions should
be added to the discrete event simulation engine to
save/restore its state (e.g., its event queue). Using
suspend/resume methods in the actor interface greatly
simplifies this task, enabling methods which require no
explicit code to save the simulator state. In the above
example, the initialize method allocates memory, opens the
file for (over)writing and then closes the file. The resume
method opens the file for appending. The suspend method
closes the file and the wrapup method de-allocates the
memory.

This model provides a clear separation between the states
that must be initialized only once (e.g., memory allocation)
and the states that must be re-initialized at every resume
point. The Validator employs two different mechanisms to
store/restore the simulation state:

1) Checkpointing the entire simulation program. The
Validator employs the dmtcp checkpointer [4] to save the
entire program state of the simulator. The checkpointer can
later load the saved state and resume the program execution.
To save the state and exit, the Validator calls a checkpointer
function. When the program is resumed, it continues
execution from the return point of that function.
Checkpointing is useful for running large number of tests
from the same initial condition. Using a checkpointer has
some disadvantages such as: a checkpointed program can be
resumed only on the same host system, and currently such a
program cannot be resumed under a debugger. This has
motivated the next approach.

2) The faster-than-real-time simulation achieved by the
Validator enables running open-loop simulations from stored
inputs as a way to reach a specified initial state. Once the
initial state is reached, the Validator connects to the plant
simulator and continues with a closed-loop simulation. This
approach offers the advantages of complete portability and
ability to debug the entire simulation (both the open-loop
and the closed-loop parts).

The suspend/resume methods of most actors are
independent of the save/restore mechanism, which is visible
only to the simulation director and to the plant actor. The
related part of the director is given in Fig. 2 (in pseudo-
code).

Figure 2. Implementation of suspend/resume in the DE director

if (suspend_requested OR stop_requested){

call suspend() on all actors;

if (stop_requested){

 break from the main event loop;

 // this will jump to the wrapup phase
}

else { //suspend was requested, stop was not
if (checkpointing_required){

 call checkpointing function;

// program will resume at this point
}

call resume() on all actors;

}

}

} // continue with processing the event queue

The plant actor connects to a plant simulator in the
resume method, through an interface implemented by a
connector object (shown by a rounded rectangle in Fig. 1). If
needed, the connector is configured to save all its data traffic
(application inputs and outputs) to the file system. The fire
method uses the connector to send and receive plant signal
values until the connection is closed by the plant simulator or
by reaching the end of the file with stored inputs. In this
case, the plant actor asks for simulation to be suspended. The
suspend method checks if the simulation needs to be
(possibly later) resumed. If so, it replaces the current plant
connector with a TCP/IP connector and returns. Otherwise, it
requests a simulation stop. The first connector object is
created and configured in the initialize method (at simulation
time zero). It can be either a TCP/IP one or a file-based
connector. This design allows for combinations between the
two state save/restore mechanisms. For example, one can use
an input file to reach a specified initial state and then one can
save that state by checkpointing.

I. USE CASES

To demonstrate significant use cases for the Validator,
we have assembled a demo application consisting of several
common automotive controllers. This system is described
next.

A. Example of an Automotive Control System

The vehicle control system used for illustrating some of
the Validator features includes controllers for: engine idle
speed (ISC), spark angle (SAC), fuel rate (FRC), automatic
gear shift (GSC), cruise (CRC), and main throttle (THC).
Most of these controllers, as well as the models of the
corresponding vehicle and engine parts, have been adapted
from individual Matlab/Simulink demonstration models [5].
Also, their triggering conditions have been preserved. The
closed-loop Simulink model is shown in Fig. 3.

Figure 3. A vehicle control system used for illustrating Validator

applications

The vehicle subsystem is a continuous-time model. The
controllers are discrete-time, with sampling periods as
follows: GSC – 0.04s, CRC – 0.01s, THC – 0.005s, FRC –
0.01s. The ISC and SAC are triggered every 180 degrees of
crank angle. The THC generates the throttle signal, which is
a control output representing the opening angle of the
throttle valve. Note that the THC can disable the operation
of the ISC (e.g., when setting the throttle according to the
cruise control or acceleration pedal). Such control systems
are typically developed by control engineers.

An implementation on an embedded computational
platform is normally performed by software engineers and
entails many design decisions, some of which may affect
control performance. In this section we describe several uses
cases illustrating how the Validator can be employed in
evaluating such decisions. In these examples, various
implementation versions are tested against the Simulink
controller models in the classical block-box regression
testing setup, where different versions of the same system are
executed (simulated) with the same inputs and their outputs
are compared. For a given test input, we consider that a
software version A is closer to the original Simulink
controller model than another version B if the outputs of A
are closer (trajectory-wise) to the model’s outputs than the
outputs of B. While the Validator can be used in more
elaborated white-box testing setups (where internal state
variables can be recorded and compared) [6], black-box
testing was sufficient for the purpose of illustrating the
Validator applications in this paper.

B. Integration of Software Functions

When a new control function is added to an existing
software system, its control performance may be affected by
the platform specific configuration and by the place in the
software where the function is added. More precisely, errors
may occur due to the way a concurrent model component is
placed into a specific sequence of executions, which is
influenced by execution times and prioritization of tasks on
the platform. To illustrate this situation, let us consider an
implementation of the above control system on an OSEK
operating system with three time-triggered tasks: task_1ms,
task_5ms, and task_10ms, as well as one task triggered by
the 180° crank angle event, called task_CA180. Assume that
FRC is included in task_1ms, GSC is included in task_10ms
(being executed every 4th invocation of the task), THC and
ISC are called from task_5ms, and SAC is included in
task_CA180. Also, the OSEK tasks are prioritized according
to the rate monotonic policy for the periodic tasks, where
longer periods have lower priority. The priority of
task_CA180 is highest. Given this configuration, a decision
has to be made regarding the inclusion of the CRC function.
As its sampling period is 10ms, the most natural choice is the
10ms task. Let us call this configuration (A). The behavior of
the control software in this case is tested against the
reference model as shown in Fig. 4. Here, the Simulink
model is executed in parallel with the Validator model of the
software and platform. The “Controller Software” subsystem
is linked to an S-function that connects to a Validator
interface as shown in Fig. 1.

Figure 4. Simulink model for testing integration of software functions

In one of the tested scenarios, the vehicle is accelerated
until time 50 (all times in this example are expressed in
seconds), when the acceleration pedal is released and the
cruise controller is set. At time 60 the vehicle enters an
uphill section of the road, which levels again at time 70.

A snapshot of the throttle output signal is displayed in
Fig. 5. One can observe a deviation of the CRC throttle
output from the reference signal. This difference does not
occur when the software system is simulated with classical
software-in-the-loop configuration, i.e., with no execution
times for the software tasks. It follows that its cause must be
related to execution times. Several options for placing the
CRC function in the OSEK tasks have been tested. As the
controller is not active before time 50, its placement has no
impact on the system state before that time. Consequently,
most of the tests were done by starting closed-loop
simulations from the state of the system at time 50, using
stored inputs to initialized the program state as described in
Section II.B. These inputs were obtained by simulating the
system with option (A) until time 50. This took about 110
seconds on a quad-core host PC with Windows 7 (64-bit),
1.73GHz, and 4GB of RAM, running Matlab R2010a. The
Validator application was run on a Ubuntu10.10 virtual
machine on the same host system. The initialization phase in
subsequent simulations took about 3 seconds.

A configuration (B) where no significant throttle
deviation occurs is the one where the CRC function is
included at the beginning of the 5ms task (and called every
second invocation of the task). Note that the CRC is
executed at different moments in time and with different
priorities in the two configurations. This can be seen from
the task execution signals in Fig. 6, where integer numbers
on the y axis represent the tasks in their inactive states: 2 for
task_10ms, 3 and 4 correspond to task_5ms and task_1ms,
respectively. A value of 0.4 added to the task number
indicates a preempted state, and an added value of 0.6 shows
that the task is in execution. One can see that the difference
in execution moments of the two cases is relatively small
(less than 1ms).

55 60 65 70 75
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

time(s)

an
g
le

(d
eg

)

throttle_model

throttle_software_(A)

Figure 5. Throttle signals from a simulation of the model in Fig. 4

C. Refinement of software and plant model

The Validator enables verification of properties related to

sensing and actuating by enabling one to compare the

behavior of a system where signals from the plant model are

directly connected to software variables, with the behavior of

the system containing more refined models of platform

and/or plant which may include sensor/actuator components.

For example, the setup in Fig. 7 has been employed to

evaluate the more realistic case where the engine speed and

position are computed in the application software from a

pulse signal generated by a teethed crank wheel model. The

control output in this case is compared with the more ideal

situation where the engine speed (Ne) and crank position

(CA180) are passed directly to the software, as well as with

the reference model-based behavior. Thus, two Validator

instances run as concurrent processes on the host computer

with two versions V1 and V2 of the application software,

connected with two corresponding Simulink S-functions as

shown in Fig. 7.

55.015 55.02 55.025 55.03 55.035 55.04(s)
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Case (A): CRC function in the 10 ms task

55.015 55.02 55.025 55.03 55.035 55.04(s)
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Case (B): CRC function in the 5ms task

CRC

CRC

Figure 6. Task execution states and execution of the CRC function

Figure 7. Testing a crank wheel sensor model

In the version V2 of the control system, the engine speed
and position are calculated by measuring the time intervals
between consecutive 10° crank angle events, which also
allows for detecting the missing tooth of the crank wheel.
When testing this system, an error was observed in the
throttle output at idle speed, as shown in Fig. 8. As the V1
behavior is very close to the model-based signal, the V2
implementation was debugged by executing both V1 and V2
in parallel under the gdb debugger, going step by step in
both versions and comparing signal values. The debugging
user interface of the Eclipse CDT plugin enables smooth
switching between the two parallel sessions, which use
essentially the same view. The error was discovered in the
timing: in the V2 case, the THC and ISC start operation after
the crank synchronization phase, whereas in V1 (and in the
model) they start at time zero. Thus, the first integration
interval used by the ISC is smaller in the V2 case. By
changing the start time of THC and ISC back to zero in V2,
one obtains a throttle signals closer to the reference: the
signal V2* in Fig. 8. This difference will disappear with the
introduction of a corresponding start-up phase in the model.

D. Regression testing for timing properties

The Validator has been employed to verify timing
properties of a large industrial legacy software system for
engine control, henceforth called the ECS. Its ability to
capture software execution times in simulation made it
especially suitable in testing timing-related changes in the
ECS. To improve the timing predictability of the application,
the ECS has been re-engineered to satisfy timing
specifications expressed in the Timing Definition Language
(TDL) [7].

0 1 2 3 4 5 6 7 8 9 10
2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

time(s)

a
n
g
le

(d
e
g
)

throttle_model

throttle_V1

throttle_V2

throttle_V2*

Figure 8. Testing a crank wheel sensor model

TDL is based on the Logical Execution Time model,
where a fixed execution time (LET) is associated to an
application function, and a runtime system ensures that the
LET is observed during the operation of the system. Thus,
the LET of a periodically executed function specifies the
start and end time instants of every execution, effectively
fixing the time interval between the moment when inputs are
read and the moment where outputs are made available to the
other functions in the software system. When this behavior is
imposed on a legacy control software which has been
developed based on shortest response time considerations, it
is likely to introduce delays in data transfer, leading to
possible degradation of control quality. Thus, it is necessary
to assess various tradeoffs between additional resources
required by a TDL implementation and the resulted behavior
of the control system.

Two methods of implementing the TDL requirements
have been tested. In variant (A), an important requirement
was to ensure that minimal changes are done in the legacy
code [8]. Thus, the hardware/OS configurations were not
changed and no original source code line was modified. TDL
was implemented only by adding functions and variables to
the application at the top level. In variant (B), the original
code was modified at specific lines down to low level
functions and a TDL-dedicated timer with associated
interrupt and ISR was added. This implementation had the
advantages of enabling significant flexibility in choosing
LETs, thereby enabling shorter delays, while requiring more
resources and more intrusive changes in the legacy
application.

The Validator was employed to test the two versions
against each other and the original ECS in a setup similar to
the one in Fig. 7 (without the crank wheel model). In Fig. 9,
one can see an example of the consequences on the system
outputs of the reduced delays achieved by approach B.
Within the time window shown in the figure, there are six
time instants at which the update in B is closer to the original
value. One of them is at time 2.163s. There is also one time
instant at which the situation is reversed: at 2.241s.

2.15 2.163 2.2 2.241 2.25 2.3
380

400

420

440

460

480

500

time[s]

out1_ECS_original

out1_ECSwTDL_A

out1_ECSwTDL_B

Figure 9. One output signal from three software versions

One can employ the Validator’s advanced debugging
features to understand the causes of such exceptions. The
Validator enables system-level debugging: the hardware and
OS models together with the instrumented application code
form a C program that can be debugged with any available C
debugger. The plant model can be executed in parallel under
the Simulink debugger. The Validator allows traversing
preemption points during forward and reverse debugging [1].
Note that debugging in the Validator can be live, i.e., the
application code can be debugged during closed-loop
simulations. This is in contrast to simulation techniques
aimed specifically at improving debugging, where the
application code is executed according to timed traces
recorded from actual executions on the hardware (so-called
time machines).

II. CONCLUSION

The Validator is related to other tools for supporting co-
design of control systems and their real-time
implementations – see [9] for a survey. The unique place of
the Validator in this landscape is given by several key
factors, as follows:

(1) It is an independent simulator written in C, based
on actor-oriented principles rooted in Ptolemy II. Thus, it
can interact with different plant simulation tools such as
Matlab/Simulink and Modelica. Moreover, it provides
significant flexibility for running simulations. For
instance, the save/restore feature presented in Section II.A
can be hardly achieved (for large C applications) with
similar tools based on Matlab/Simulink such as TrueTime
[10] and AIDA [11].

(2) The Validator is integrated with the Eclipse IDE,
tapping into the power of the Eclipse’s CDT (C
Development Tool) plugin. This provides a specialized
environment familiar to the software developer, for tasks
such as testing and debugging. Moreover, this enables
rapid development of custom program analysis and
instrumentation tools based on CDT, as well as custom
graphical user interfaces (GUIs) based on Eclipse’s GEF
(Graphical Editing Framework) plugin. Such a GUI is
already provided in the tool suite. Validator simulations

can also be configured and launched from Simulink plant
models via a dedicated GUI component.

(3) The Validator specifies a fixed granularity for
execution time information, that is, the basic block of
source code. The Validator comes with companion tools
for automatically extracting this information from other
tools such as the AbsInt’s aiT [3] (which works at the
binary level), and instrumenting the source code
accordingly. In contrast, tools such as TrueTime [10] and
the Ptolemy Multitasking Domain [12] set this granularity
at the task level or require the user to manually specify it.

In the Validator, the simulation accuracy depends on the
employed execution time estimates. Obtaining precise
execution times of software on today’s embedded processors
is a notoriously difficult problem and further research is
needed to advance along this direction. Nevertheless, using
estimates obtained with commercially available tools, the
Validator has already proved useful in early evaluation of
control software both in model-based development processes
and in legacy software re-engineering.

REFERENCES

[1] S. Resmerita, P.Derler, W.Pree, and K.Butts, “The Validator tool

suite: filling the gap between conventional soft-ware-in-the-loop and

hardware-in-the-loop simulation environments,” in Real-time

Simulation Technologies: Principles, Methodologies, and

Applications, K.Popovici, P.J. Mosterman, Eds., CRC Press, to

appear, 2012.

[2] C. Brooks, E.A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng,

Heterogeneous concurrent modeling and design in Java (Volume 1:

Introduction to Ptolemy II), EECS Department, University of

California, Berkeley, UCB/EECS-2007-7, 2007.

[3] Absint. aiT worst-case execution time analyzers.

http://www.absint.com/ait/, 2011.

[4] J. Ansel, K. Aryay, and G. Coopermany, “DMTCP: Transparent

checkpointing for cluster computations and the desktop”, in Proc.

The 2009 IEEE International Symposium on Parallel & Distributed

Processing, Washington DC, 2009, pp. 1-12.

[5] MathWorks®. Matlab® 7.10 and Simulink® 7.5 (R2010a).

http://www.mathworks.com/products/simulink/, 2010.

[6] T. Xie and D. Notkin, “Checking Inside the Black Box: Regression

Testing By Comparing Value Spectra”, IEEE Transactions on

Software Engineering, Vol. 31, No. 10, pp. 869-883, October 2005.

[7] J.Templ et. al. “Modeling and simulation of timing behavior with the

Timing Definition Language (TDL)”, in Real-time Simulation

Technologies: Principles, Methodologies, and Applications,

K.Popovici, P.J. Mosterman, Eds., CRC Press, to appear, 2012.

[8] S. Resmerita, et. al, “Migration of Legacy Software Towards Correct-

by-Construction Timing Behavior”, in Proc. Monterey Workshops

2010, R. Calinescu and E. Jackson,Eds., LNCS 6662, 2011, pp. 55–

76.

[9] M. Törngren, D. Henriksson, K.-E. Årzen, A. Cervin and Z.

Hanzalek, “Tool supporting the co-design of control systems and their

real-time implementation: current status and future directions”, in

Proc. 2006 IEEE Conference on Computer Aided Control Systems

Design,2006, pp.1173-1180.

[10] A. Cervin, et. al , "Control loop timing analysis using TrueTime and

Jitterbug," in Proc. 2006 IEEE Computer-Aided Control Systems

Design Symposium, 2006, pp.1194-1199.

[11] O. Redell, J. El-Khoury, and M. Törngren, “The AIDA tool-set for

design and implementation analysis of distributed real-time control

systems”, Journal of Microprocessors and Microsystems, 28:4, pp.

163-182, 2004.

[12] J. Liu and E. Lee, “Timed multitasking for real-time embedded

software”, IEEE Control Systems Magazine, 23:65–75, 2002.

