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Abstract— This paper describes features and applications of 

a simulation framework for software-in-the-loop testing of real-

time embedded control applications. The Validator tool 

performs time-functional simulation of control software and its 

execution platform in closed-loop with Simulink plant models. 

It is based on a discrete event simulator which executes the 

application software on a host platform and simulates the 

passage of time according to execution times of application code 

and communication times pertaining to a given embedded 

target. The Validator also simulates functional behavior of 

operating system services and hardware components at a level 

of abstraction that enables capturing significant timing aspects 

without executing detailed hardware models. We present use 

cases where the Validator is employed for evaluating 

integration of new control functions in existing systems, model 

refinement, and regression testing of automotive control 

software. 

I. INTRODUCTION 

State-of-the-art validation of real-time properties of 
embedded software is performed by extensive testing 
involving hardware in the loop. Simulation is mainly used 
for testing functional properties of applications represented 
as software or as higher level executable models. The costs 
of hardware in the loop testing, plus the increased 
complexity of distributed embedded applications make the 
case for shifting the main load of real-time testing towards 
software in the loop setups. Clearly, to simulate the real-time 
behavior of an embedded application, one needs to simulate 
also the functionality and timing of the execution platform 
(hardware and operating system), sensors, actuators, and the 
physical plant under control. An important challenge in this 
case is finding the right level of abstraction, which 
determines the modeling effort, the properties that can be 
tested as well as the efficiency of the simulation. 

This paper describes how the Validator tool suite [1] is 
employed for simulation-based verification of timing-related 
properties of control software. The Validator is a software-
in-the-loop simulator, where the application code is executed 
on a host computer and the passage of time is simulated 
according to execution and communication times related to a 
given execution platform. This timing information can be 
obtained by static techniques involving program analysis or 
by methods based on measurements. The Validator also 
simulates functional behavior of operating system services 
and hardware components at a level of abstraction that 
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enables capturing significant timing aspects without 
executing detailed hardware models. The tool achieves co-
simulation with Simulink plant models based on time 
synchronization protocols. 

In this paper, we present aspects of the underlying 
simulation technology of the Validator, with particular focus 
on the implementation of the state store/restore feature. Then 
we describe illustrative use cases for the Validator, centered 
on verification of real time properties of automotive control 
systems. 

II. THE VALIDATOR TOOL SUITE 

A. Simulation Technology 

The top level components of a Validator model are actors 
in the Ptolemy II sense [2]. Ptolemy II is a software 
framework for modeling, simulation, and design of 
concurrent, real-time, embedded systems. In Ptolemy II, the 
behavior of an actor is defined by implementing a 
programming interface, which can be used by a simulation 
director to execute the actor according to specific rules. 

During simulation, an actor experiences a number of 
iterations, where an iteration generally consists of three 
successive actions: prefire, fire and postfire. Each action is 
represented by a method in the actor interface. The main 
functionality of an actor is encoded in the fire method, where 
the actor reads inputs and produces outputs. The actor 
interface also contains methods for initialization of the 
model, called preinitialize and initialize, which are called 
before the first iteration of the simulation, as well as a 
finalize method wrapup, executed after the last iteration. 

The Validator is implemented in C according to the 
actor-based design principles, and employing a discrete-
event simulation director. The main components of a 
Validator model are depicted in Fig. 1 and described next. 
Application actors represent software functions mapped to 
platform tasks and interrupt service routines (ISRs). 
Operating system actors perform the functions of an OSEK 
operating system. Hardware actors model functionality and 
timing of common hardware parts such as interrupt 
controllers, timers, bus controllers, hardware sensors and 
hardware actuators. The plant actor represents the physical 
system under control, including sensors and actuators. The 
actor implements a protocol for handshake time 
synchronization with Simulink. For continuous-time 
Simulink models, this has the effect of zero-order holders 

for the interface signals. 
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Figure 1.  Architecture of the Validator model 

To simulate a software application mapped to a target 

platform, a model with the above structure needs to be built 

(only models of uni-processor systems are considered here). 

The modeling process involves the following steps: (1) 

Execution time analysis of the application code, which is 

done with existing program analysis tools such as AbsInt's 

aiT tool [3]. (2) Instrumentation of the code with execution 

time information. (3) Instrumentation with execution control 

statements, to enable the simulator engine to control 

execution of the application code (e.g., to switch execution 

between application tasks). (4) Generation of the task and 

ISR actors from the system configuration files (e.g., OIL 

files in the case of OSEK). (5) Generation of the Validator 

interface code. These steps are mostly automated by a tool 

set that achieves a fast modeling process based on 

information about the hardware/software architecture. 

B. Enhanced actor interface for state store/restore 

A Validator simulation can be started from a previously 
saved state. To support this feature, the actor execution 
interface was enhanced with two more methods: suspend and 
resume. The suspend method must be executed before saving 
the program state, as well as at the end of the simulation 
before the wrapup method. The resume method must be 
executed once after the initialize method as well as upon 
every resumption of execution from a saved program state.  
The suspend method should bring the actor to a state which 
can be stored and then restored by the resume method. 

For example, consider an actor with the following 
behavior: at the beginning of a simulation, the actor should 
allocate memory for a buffer and open an empty file for 
writing. At each iteration, the actor stores its inputs in the 
buffer. When the buffer is full, the actor writes its contents to 
the file. The file is closed at the end of the simulation. With 
the classical Ptolemy actor interface, memory allocation and 
file creation is done in the initialize method. Also, memory 
de-allocation and closing the file is done in the wrapup 
method. It would be difficult to save/restore the state of each 
actor and of the simulation engine using only these methods. 
In the above example this would require that the initialize 
method should test if the simulation starts from time zero 
(then it should create an empty file, which would delete any 
previous instance of the file), or if the simulation is being 

resumed from a previously saved state (then it should open 
the file for appending). Moreover, explicit functions should 
be added to the discrete event simulation engine to 
save/restore its state (e.g., its event queue). Using 
suspend/resume methods in the actor interface greatly 
simplifies this task, enabling methods which require no 
explicit code to save the simulator state. In the above 
example, the initialize method allocates memory, opens the 
file for (over)writing and then closes the file. The resume 
method opens the file for appending. The suspend method 
closes the file and the wrapup method de-allocates the 
memory.  

This model provides a clear separation between the states 
that must be initialized only once (e.g., memory allocation) 
and the states that must be re-initialized at every resume 
point. The Validator employs two different mechanisms to 
store/restore the simulation state: 

1) Checkpointing the entire simulation program. The 
Validator employs the dmtcp checkpointer [4] to save the 
entire program state of the simulator. The checkpointer can 
later load the saved state and resume the program execution. 
To save the state and exit, the Validator calls a checkpointer 
function. When the program is resumed, it continues 
execution from the return point of that function. 
Checkpointing is useful for running large number of tests 
from the same initial condition. Using a checkpointer has 
some disadvantages such as: a checkpointed program can be 
resumed only on the same host system, and currently such a 
program cannot be resumed under a debugger. This has 
motivated the next approach.  

2) The faster-than-real-time simulation achieved by the 
Validator enables running open-loop simulations from stored 
inputs as a way to reach a specified initial state. Once the 
initial state is reached, the Validator connects to the plant 
simulator and continues with a closed-loop simulation. This 
approach offers the advantages of complete portability and  
ability to debug the entire simulation (both the open-loop 
and the closed-loop parts). 

The suspend/resume methods of most actors are 
independent of the save/restore mechanism, which is visible 
only to the simulation director and to the plant actor. The 
related part of the director is given in Fig. 2 (in pseudo-
code).  

 

Figure 2.  Implementation of suspend/resume in the DE director 

if (suspend_requested OR stop_requested){ 

call suspend() on all actors; 

if (stop_requested){ 

  break from the main event loop; 

     // this will jump to the wrapup phase 
} 

else { //suspend was requested, stop was not 
if (checkpointing_required){ 

   call checkpointing function;  

// program will resume at this point 
} 

call resume() on all actors; 

} 

} 

} // continue with processing the event queue  



  

The plant actor connects to a plant simulator in the 
resume method, through an interface implemented by a 
connector object (shown by a rounded rectangle in Fig. 1). If 
needed, the connector is configured to save all its data traffic 
(application inputs and outputs) to the file system. The fire 
method uses the connector to send and receive plant signal 
values until the connection is closed by the plant simulator or 
by reaching the end of the file with stored inputs. In this 
case, the plant actor asks for simulation to be suspended. The 
suspend method checks if the simulation needs to be 
(possibly later) resumed. If so, it replaces the current plant 
connector with a TCP/IP connector and returns. Otherwise, it 
requests a simulation stop. The first connector object is 
created and configured in the initialize method (at simulation 
time zero). It can be either a TCP/IP one or a file-based 
connector. This design allows for combinations between the 
two state save/restore mechanisms. For example, one can use 
an input file to reach a specified initial state and then one can 
save that state by checkpointing. 

I. USE CASES 

To demonstrate significant use cases for the Validator, 
we have assembled a demo application consisting of several 
common automotive controllers. This system is described 
next. 

A.  Example of an Automotive Control System 

The vehicle control system used for illustrating some of 
the Validator features includes controllers for: engine idle 
speed (ISC), spark angle (SAC), fuel rate (FRC), automatic 
gear shift (GSC), cruise (CRC), and main throttle (THC). 
Most of these controllers, as well as the models of the 
corresponding vehicle and engine parts, have been adapted 
from individual Matlab/Simulink demonstration models [5]. 
Also, their triggering conditions have been preserved. The 
closed-loop Simulink model is shown in Fig. 3.  

 

Figure 3.  A vehicle control system used for illustrating Validator 

applications 

The vehicle subsystem is a continuous-time model. The 
controllers are discrete-time, with sampling periods as 
follows: GSC – 0.04s, CRC – 0.01s, THC – 0.005s, FRC – 
0.01s. The ISC and SAC are triggered every 180 degrees of 
crank angle. The THC generates the throttle signal, which is 
a control output representing the opening angle of the 
throttle valve. Note that the THC can disable the operation 
of the ISC (e.g., when setting the throttle according to the 
cruise control or acceleration pedal). Such control systems 
are typically developed by control engineers.  

An implementation on an embedded computational 
platform is normally performed by software engineers and 
entails many design decisions, some of which may affect 
control performance. In this section we describe several uses 
cases illustrating how the Validator can be employed in 
evaluating such decisions. In these examples, various 
implementation versions are tested against the Simulink 
controller models in the classical block-box regression 
testing setup, where different versions of the same system are 
executed (simulated) with the same inputs and their outputs 
are compared. For a given test input, we consider that a 
software version A is closer to the original Simulink 
controller model than another version B if the outputs of A 
are closer (trajectory-wise) to the model’s outputs than the 
outputs of B. While the Validator can be used in more 
elaborated white-box testing setups (where internal state 
variables can be recorded and compared) [6], black-box 
testing was sufficient for the purpose of illustrating the 
Validator applications in this paper. 

B. Integration of Software Functions 

When a new control function is added to an existing 
software system, its control performance may be affected by 
the platform specific configuration and by the place in the 
software where the function is added. More precisely, errors 
may occur due to the way a concurrent model component is 
placed into a specific sequence of executions, which is 
influenced by execution times and prioritization of tasks on 
the platform. To illustrate this situation, let us consider an 
implementation of the above control system on an OSEK 
operating system with three time-triggered tasks: task_1ms, 
task_5ms, and task_10ms, as well as one task triggered by 
the 180° crank angle event, called task_CA180. Assume that 
FRC is included in task_1ms, GSC is included in task_10ms 
(being executed every 4th invocation of the task), THC and 
ISC are called from task_5ms, and SAC is included in 
task_CA180. Also, the OSEK tasks are prioritized according 
to the rate monotonic policy for the periodic tasks, where 
longer periods have lower priority. The priority of 
task_CA180 is highest. Given this configuration, a decision 
has to be made regarding the inclusion of the CRC function. 
As its sampling period is 10ms, the most natural choice is the 
10ms task. Let us call this configuration (A). The behavior of 
the control software in this case is tested against the 
reference model as shown in Fig. 4. Here, the Simulink 
model is executed in parallel with the Validator model of the 
software and platform. The “Controller Software” subsystem 
is linked to an S-function that connects to a Validator 
interface as shown in Fig. 1.  



  

 

Figure 4.  Simulink model for testing integration of software functions 

In one of the tested scenarios, the vehicle is accelerated 
until time 50 (all times in this example are expressed in 
seconds), when the acceleration pedal is released and the 
cruise controller is set. At time 60 the vehicle enters an 
uphill section of the road, which levels again at time 70.  

A snapshot of the throttle output signal is displayed in 
Fig. 5. One can observe a deviation of the CRC throttle 
output from the reference signal. This difference does not 
occur when the software system is simulated with classical 
software-in-the-loop configuration, i.e., with no execution 
times for the software tasks. It follows that its cause must be 
related to execution times. Several options for placing the 
CRC function in the OSEK tasks have been tested. As the 
controller is not active before time 50, its placement has no 
impact on the system state before that time. Consequently, 
most of the tests were done by starting closed-loop 
simulations from the state of the system at time 50, using 
stored inputs to initialized the program state as described in 
Section II.B. These inputs were obtained by simulating the 
system with option (A) until time 50. This took about 110 
seconds on a quad-core host PC with Windows 7 (64-bit), 
1.73GHz, and 4GB of RAM, running Matlab R2010a. The 
Validator application was run on a Ubuntu10.10 virtual 
machine on the same host system. The initialization phase in 
subsequent simulations took about 3 seconds. 

A configuration (B) where no significant throttle 
deviation occurs is the one where the CRC function is 
included at the beginning of the 5ms task (and called every 
second invocation of the task). Note that the CRC is 
executed at different moments in time and with different 
priorities in the two configurations. This can be seen from 
the task execution signals in Fig. 6, where integer numbers 
on the y axis represent the tasks in their inactive states: 2 for 
task_10ms, 3 and 4 correspond to task_5ms and task_1ms, 
respectively. A value of 0.4 added to the task number 
indicates a preempted state, and an added value of 0.6 shows 
that the task is in execution. One can see that the difference 
in execution moments of the two cases is relatively small 
(less than 1ms). 
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Figure 5.  Throttle signals from a simulation of the model in Fig. 4 

C. Refinement of software and plant model 

The Validator enables verification of properties related to 

sensing and actuating by enabling one to compare the 

behavior of a system where signals from the plant model are 

directly connected to software variables, with the behavior of 

the system containing more refined models of platform 

and/or plant which may include sensor/actuator components. 

For example, the setup in Fig. 7 has been employed to 

evaluate the more realistic case where the engine speed and 

position are computed in the application software from a 

pulse signal generated by a teethed crank wheel model. The 

control output in this case is compared with the more ideal 

situation where the engine speed (Ne) and crank position 

(CA180) are passed directly to the software, as well as with 

the reference model-based behavior. Thus, two Validator 

instances run as concurrent processes on the host computer 

with two versions V1 and V2 of the application software, 

connected with two corresponding Simulink S-functions as 

shown in Fig. 7. 
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Figure 6.  Task execution states and execution of the CRC function 



  

 

 

Figure 7.  Testing a crank wheel sensor model 

In the version V2 of the control system, the engine speed 
and position are calculated by measuring the time intervals 
between consecutive 10° crank angle events, which also 
allows for detecting the missing tooth of the crank wheel. 
When testing this system, an error was observed in the 
throttle output at idle speed, as shown in Fig. 8. As the V1 
behavior is very close to the model-based signal, the V2 
implementation was debugged by executing both V1 and V2 
in parallel under the gdb debugger, going step by step in 
both versions and comparing signal values. The debugging 
user interface of the Eclipse CDT plugin enables smooth 
switching between the two parallel sessions, which use 
essentially the same view. The error was discovered in the 
timing: in the V2 case, the THC and ISC start operation after 
the crank synchronization phase, whereas in V1 (and in the 
model) they start at time zero. Thus, the first integration 
interval used by the ISC is smaller in the V2 case. By 
changing the start time of THC and ISC back to zero in V2, 
one obtains a throttle signals closer to the reference: the 
signal V2* in Fig. 8.  This difference will disappear with the 
introduction of a corresponding start-up phase in the model. 

D. Regression testing for timing properties 

The Validator has been employed to verify timing 
properties of a large industrial legacy software system for 
engine control, henceforth called the ECS. Its ability to 
capture software execution times in simulation made it 
especially suitable in testing timing-related changes in the 
ECS. To improve the timing predictability of the application, 
the ECS has been re-engineered to satisfy timing 
specifications expressed in the Timing Definition Language 
(TDL) [7]. 
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Figure 8.  Testing a crank wheel sensor model 

TDL is based on the Logical Execution Time model, 
where a fixed execution time (LET) is associated to an 
application function, and a runtime system ensures that the 
LET is observed during the operation of the system. Thus, 
the LET of a periodically executed function specifies the 
start and end time instants of every execution, effectively 
fixing the time interval between the moment when inputs are 
read and the moment where outputs are made available to the 
other functions in the software system. When this behavior is 
imposed on a legacy control software which has been 
developed based on shortest response time considerations, it 
is likely to introduce delays in data transfer, leading to 
possible degradation of control quality. Thus, it is necessary 
to assess various tradeoffs between additional resources 
required by a TDL implementation and the resulted behavior 
of the control system.  

Two methods of implementing the TDL requirements 
have been tested. In variant (A), an important requirement 
was to ensure that minimal changes are done in the legacy 
code [8]. Thus, the hardware/OS configurations were not 
changed and no original source code line was modified. TDL 
was implemented only by adding functions and variables to 
the application at the top level. In variant (B), the original 
code was modified at specific lines down to low level 
functions and a TDL-dedicated timer with associated 
interrupt and ISR was added. This implementation had the 
advantages of enabling significant flexibility in choosing 
LETs, thereby enabling shorter delays, while requiring more 
resources and more intrusive changes in the legacy 
application.  

The Validator was employed to test the two versions 
against each other and the original ECS in a setup similar to 
the one in Fig. 7 (without the crank wheel model). In Fig. 9, 
one can see an example of the consequences on the system 
outputs of the reduced delays achieved by approach B. 
Within the time window shown in the figure, there are six 
time instants at which the update in B is closer to the original 
value. One of them is at time 2.163s. There is also one time 
instant at which the situation is reversed: at 2.241s. 
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Figure 9.  One output signal from three software versions 

One can employ the Validator’s advanced debugging 
features to understand the causes of such exceptions. The 
Validator enables system-level debugging: the hardware and 
OS models together with the instrumented application code 
form a C program that can be debugged with any available C 
debugger. The plant model can be executed in parallel under 
the Simulink debugger. The Validator allows traversing 
preemption points during forward and reverse debugging [1]. 
Note that debugging in the Validator can be live, i.e., the 
application code can be debugged during closed-loop 
simulations. This is in contrast to simulation techniques 
aimed specifically at improving debugging, where the 
application code is executed according to timed traces 
recorded from actual executions on the hardware (so-called 
time machines). 

II. CONCLUSION 

The Validator is related to other tools for supporting co-
design of control systems and their real-time 
implementations – see [9] for a survey. The unique place of 
the Validator in this landscape is given by several key 
factors, as follows: 

(1) It is an independent simulator written in C, based 
on actor-oriented principles rooted in Ptolemy II. Thus, it 
can interact with different plant simulation tools such as 
Matlab/Simulink and Modelica. Moreover, it provides 
significant flexibility for running simulations. For 
instance, the save/restore feature presented in Section II.A 
can be hardly achieved (for large C applications) with 
similar tools based on Matlab/Simulink such as TrueTime 
[10] and AIDA [11]. 

(2) The Validator is integrated with the Eclipse IDE, 
tapping into the power of the Eclipse’s CDT (C 
Development Tool) plugin. This provides a specialized 
environment familiar to the software developer, for tasks 
such as testing and debugging. Moreover, this enables 
rapid development of custom program analysis and 
instrumentation tools based on CDT, as well as custom 
graphical user interfaces (GUIs) based on Eclipse’s GEF 
(Graphical Editing Framework) plugin. Such a GUI is 
already provided in the tool suite. Validator simulations 

can also be configured and launched from Simulink plant 
models via a dedicated GUI component. 

(3) The Validator specifies a fixed granularity for 
execution time information, that is, the basic block of 
source code. The Validator comes with companion tools 
for automatically extracting this information from other 
tools such as the AbsInt’s aiT [3] (which works at the 
binary level), and instrumenting the source code 
accordingly. In contrast, tools such as TrueTime [10] and 
the Ptolemy Multitasking Domain [12] set this granularity 
at the task level or require the user to manually specify it.  

In the Validator, the simulation accuracy depends on the 
employed execution time estimates. Obtaining precise 
execution times of software on today’s embedded processors 
is a notoriously difficult problem and further research is 
needed to advance along this direction. Nevertheless, using 
estimates obtained with commercially available tools, the 
Validator has already proved useful in early evaluation of 
control software both in model-based development processes 
and in legacy software re-engineering. 
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