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Abstract—The Logical Execution Time (LET) paradigm has
recently been recognized as a promising candidate to facilitate
the migration to multi-core architectures in automotive real-
time software systems. We outline several findings regarding
the application of the LET paradigm that corroborate this
perception. Our work in this respect deals with LET for legacy
systems and LET in the context of model-based development (e.g.,
in MATLAB/Simulink). Furthermore, we present open issues and
highlight implications on the development process when using
LET as a synchronization mechanism.

I. INTRODUCTION

Since its initial introduction in the Giotto project [1] almost
two decades ago, several research groups have been working
on the Logical Execution Time (LET) paradigm which has by
now been the foundation for several programming languages
and run-time systems [2]. While the promised advantages,
such as time- and value-determinism, do sound desirable for
safety-critical real-time systems, the approach has long been
met with skepticism. Also, with a few exceptions (e.g., [3],
[4]), industry has been reluctant in the trial, let alone the
adoption of LET. With the emergence of multi-core archi-
tectures in automotive system this seems to change as LET
could play a key role for obtaining predictable behavior when
parallelizing control software. As a consequence, it recently
experienced an increase in attention from both academia and
industry (e.g., [5]). Amongst other benefits, LET shall provide
deterministic inter-task communication across multiple cores
on automotive multi-core architectures. Central questions that
need to be dealt with involve, for example, how to reconcile
performance-dominated requirements of control systems with
the additional memory and computational costs that come with
LET, how to apply this primarily top-down and correct-by-
construction approach to legacy systems that may not satisfy
all the initial assumptions, and also how and where to best
introduce the LET concept in a development process that is
no longer centered around code but on models specified, e.g.,
in MATLAB/Simulink. This abstract presents two active lines
of work in our group dealing with these questions: (1) LET
applied to legacy automotive systems including multi-core
architectures, and (2) LET in the context of a model-based
development with simulation in MATLAB/Simulink.

II. LET FOR LEGACY SYSTEMS

A substantial amount of legacy code is used in many
embedded system domains, in particular in the automotive
industry. When carried over to a new hardware platform,
data consistency issues arise and provisions must be made

to maintain proper behavior along cause-effect chains. Our
first work on applying LET to an industrial engine controller
reaches back to 2010 [3], where the imposed restriction
of limiting code changes to top-level functions, lead to a
considerable increase in memory requirements (both RAM and
ROM). Abandoning this restriction leads to a drastic reduction
in run-time and memory overhead [6]. Both dimensions of
overhead are largely dependent on the particular application
and are depending also on the degree of freedom for choosing
the exact LET [7], especially for multi-core targets. There is
an enormous potential for optimizations when migrating to
multi-cores using LET. Naturally, different optimizations are
difficult to harmonize. For example, a strategy that reduces
buffers and leads to less total run-time overhead could still
lead to bulky and unacceptable copy-operations at a particular
LET boundary. Also, the question is how far optimality of
a certain setting (in whichever respect) impacts extensibility
or changeability of the software and the potential validation
effort that goes along with it. In [8], we propose a transfor-
mation process from single-core legacy software to LET-based
versions that can be safely run on a multi-core. It is a process
that can be applied incrementally and that is centered around
a static buffer requirement analysis, which can be applied at
different levels of abstraction. The most abstract level deter-
mines a minimal set of buffers for a given LET specification
that is independent of the underlying platform configuration
(including task priorities, scheduling, and function-to-core
mapping). Being a minimal upper bound, this set can be further
reduced in more refined abstraction layers where restrictions
and details are incorporated into the analysis. For example,
we describe an optimal buffering strategy w.r.t. the number of
required buffers for a known multi-core platform configuration
under fixed-priority preemptive scheduling.

At run-time, automotive applications change functionality
to adapt computational demands according to the crank angle
in order to avoid system overload, for example, at high engine
speeds. This variation in physical execution times must be
reflected also in the logical timing domain, e.g. using a multi-
modal specification (as already supported by Giotto). So far,
to the best of our knowledge, support for multiple modes in
the context of LET and multi-core has not been addressed. It
is unclear how this will increase the complexity of the analysis
and the run-time system that ensures the LET semantics, and
it is also unclear what the exact semantics should even be in
the case of a mode switch and how this goes together with
AUTOSAR modes.



III. LET IN MODEL-BASED DEVELOPMENT

Model-based design has become an established development
approach in the field of embedded real-time systems. Clearly,
LET should be an established fixture already in the modeling
and simulation phase of the development. The predominant
environment for modeling and simulating automotive control
systems is MATLAB/Simulink, which is based on the sy-
nchronous block diagram (SBD) formalism. Being built on
the synchronous reactive programming paradigm, SBD is also
suited to realize LET behavior. However as we outlined in [9],
in the presence of cyclic data-dependencies as found between
AUTOSAR runnables, for example, care must be taken to
comply with limitations implied by the simulation engine such
that a valid execution order of the blocks can be found. In [10],
we present a Simulink implementation of a run-time system
(E-machine) for a multi-mode multi-rate LET specification
involving potentially cyclic data dependencies. The simulated
control algorithms may be implemented as Simulink/Stateflow
blocks or in the programming language C.

Originating from a purely control-engineering oriented
view, since at least the introduction of AUTOSAR support,
Simulink models realign to more and more software-centric
perspectives. It is not clear how a clean transition from
platform-independent to platform-dependent models that sup-
port push-button code generation can be achieved. In any case,
for obtaining highly optimized code with a minimal number
of additional LET buffer variables, for example, the code
generation for a particular runnable must not be considered
in isolation. Timing and data-flow dependencies of the whole
application must be taken into account.

The need for considering data-flow dependencies is not only
an issue of optimization. In a classic LET-based specification,
the LET interval of an individual task (or function) was mainly
driven by physical requirements (expressed in the period) and
inevitably by properties of the hardware/system (implied by
worst-case execution/reaction times). Since in the multi-core
setting LET is used as a synchronization mechanism, LET
intervals must be harmonized across multiple cores and thus
cannot be decided individually on task/function-level. This
has implications on the whole development process (and also
on the mode-switch issue discussed in the previous section).
Despite this, the development process might benefit from using
LET as a design contract between control and embedded
software engineers as outlined in [11].

In the standard LET model, where a task’s LET equals the
period, end-to-end latencies are a major concern. However,
when the LET is contained in the period, this issue is consi-

derably relaxed [12].

An open issue, for example, is robustness w.r.t. the impact
of a model change (e.g., adding a new data-dependency) on
the generated code and how the attempt to minimize code
changes relates to the resulting run-time efficiency.

IV. CONCLUSION

This abstract touched on aspects of LET related to its

application to automotive software systems, especially for a
single- to multi-core migration. We hereby covered legacy and

model-based applications and gave examples of open issues in
this respect.
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