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ABSTRACT 

Though machine learning (ML) can be applied to a wide spectrum 

of applications, it has been hardly used and evaluated in the 

context of conventional data processing tasks. Such conventional 

data processing tasks are characterized by a set of calculations that 

follow strict rules, such as in accounting or banking applications. 

This paper quantitatively evaluates how software which is 

automatically generated by ML methods and tools compares to 

software programmed by hand. The assessment of poker hands 

according to Texas Hold'em rules is a representative example for 

conventional data processing tasks, because of the various 

exceptions how to assess and compare hands. For some hand 

values, the rank (two, three, ... king, ace) of the cards is relevant 

and the suit (club, diamond, heart, spade) irrelevant, and vice 

versa. This paper shows how an accuracy of 100% can be 

achieved for assessing poker hands according to Texas Hold'em 

rules, with a small set of labeled training data compared to the 

number of possible hands. We also evaluate quantitatively the 

effect of the labeling quality on accuracy.  

CCS Concepts 

• Software and its engineering → Software creation and 

management → Software development techniques → 

Automatic programming. 
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1. INTRODUCTION 
The essence of supervised Machine learning (ML) is that data 

write programs. Instead of describing in pain-staking detail how 

to process input data to obtain correct results (see Figure 1a), 

examples of correct results (so-called labeled data) are used for 

neural network (NN) training. The adjusted weights and other 

parameters of the particular NN represent then the 'program' 

which delivers hopefully the correct results, not only for the 

training data but for all possible input data. Figure 1b illustrates 

this inverted world view where the program results from (labeled) 

data. As the training of a NN is automated, this schematic 

representation of data write programs illustrates how NNs deliver 

the vision of automated programming. 

One typical application of the supervised ML approach is in 

image processing, which touches several different domains, such 

as the medical diagnosis of Magnetic Resonance Imaging (MRI), 

the natural language description of images, or autonomous 

driving. It turned out that the classical way of programming image 

processing (Figure 1a) is significantly inferior to NNs (Figure 1b) 

so that since a few years image processing relies only on NNs. 

 

 
Figure 1. (a) Conventional programming paradigm versus  

(b) ML—data write programs. 

 

Sometimes it is argued that ML is adequate for tasks such as 

object recognition, which are straight-forward for biological NNs, 

in particular, human brains, but not for conventional computing 

tasks, such as calculations. Though humans usually have no 

problem recognizing objects in images, most humans would 

struggle, for example, to compute the exact result of complicated 

calculations, let's say the multiplication of two 6 digit numbers, 

without extra help (calculator, or paper and pen). Conventional 

programming, that is, expressing in a programming language the 

details how input should be processed to obtain the expected 

results, is regarded as adequate means for most data processing 

tasks, if the algorithms, processing rules/constraints and 

calculations are straight-forward and known. One reason is that 

data processing is required to be 100.0% correct, not just close to 

100 percent.  

Both the source code for generating the labeled data as well as the 

Colaboratory [1] notebooks used in the evaluation are available 

for download [2]. 

2. TEXAS HOLD'EM HAND VALUES 
Texas Hold'em [3] is a popular variant of the poker card game 

with exactly defined rules. The card deck consists of 52 cards: 13 

cards of each suit (club, diamond, heart, spade). A hand in Texas 

Hold'em consists of five cards. Thus, if one draws a hand out of 
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the 52 cards, overall 2,598,960 (almost 2.6 million) possible 

hands can be drawn. No card is put back once it is drawn, thus we 

calculate 5-permutations of 52 as 52 x 51 x 50 x 49 x 48 / (5 x 4 x 

3 x 2 x 1). 

A hand has exactly one out of ten values: high card, one pair, two 

pairs, three of a kind, straight, flush, full house, poker, straight 

flush, and royal flush. For some values, only the card suit is 

relevant. For example, a hand is a straight, if the ranks (two, three, 

four, five, six, seven, eight, nine, ten, jack, queen, king, ace) are in 

ascending order and adjacent. So a hand with a seven, eight, nine, 

ten and jack card is an example of a straight (= has the value 

'straight') independent of the cards's suits. In case of a straight, the 

ace (which is usually the highest rank) might also count as rank 

one. Thus, ace, two, three, four, five is also a straight. 

A hand is a flush if all five cards are of the same suit. The rank of 

each of the cards is irrelevant, except for the assessment whether 

the flush is a straight flush or royal flush. A hand is a straight 

flush, if it is a flush and a straight. A hand is a royal flush if it is a 

straight flush with the ace as highest card, that is, the cards in the 

hand have all the same suit and the ranks ten, jack, queen, king, 

ace. A hand has the value ‘quads’ if it has four cards of the same 

rank. A hand has the value 'three of a kind' if the hand contains 

three cards of the same rank. A hand has the value 'one pair' if the 

hand contains two cards of the same rank. A full house is a hand 

with a pair and three of a kind. Two pairs is the value of a hand 

with two pairs. All hands other than the ones described above 

have the value high card. 

3. HAND ASSESSMENT  
Various implementations of Texas Hold'em hands are available on 

the web. A dataset consisting of approximately one million 

labeled hands is available in the UCI Machine Learning 

Repository as Poker Hand Data Set [4]. The application of neural 

networks on this dataset has been investigated in [5, 6]. For our 

purpose, as we try to meaningfully investigate generalization 

properties of different models, we choose a smaller dataset with a 

total of 4 thousand poker hands. Furthermore, the extremely 

uneven distribution of hand values was ignored by generating an 

equal amount of hands for each value but could lead to interesting 

research in the future. The test set also is evenly distributed 

among the values, with a total of 240k poker hands.  

To give some insight into the task at hand, we briefly introduce 

our implementation of the hand assessment. We define a two-

dimensional array as core data structure for representing the five 

cards of a hand. This kind of array allows an elegant and lean 

implementation. Figure 2 exemplifies the hand representation by 

means of a hand that has two pairs. For the sake of readability, we 

omit the zeros in the array.  

 

 
Figure 2. Representation of a sample hand (two pairs). 

A one in the suit rows/rank columns indicates a particular card. 

For example, the diamond king is represented by the 1 in the 

second row D (for diamond) and column K (for king). The gray 

cells contain the sums of the rows and columns. The column sum 

is relevant for assessing hand values for which the rank is the 

decisive criterion. In the sample hand in Figure 2, the two 2s, 

marked with a red circle, indicate the hand value of two pairs. A 

poker, for example, would have a 4 in one of the column sum 

cells, a three of a kind a 3, and a full house a 3 and a 2. Whereas a 

flush has a 5 in one of the four row sum cells. 

We call the 2-dimensional Java array cardsCalculator. For 

detecting a Flush or Quads, one simply has to look for a 5 in the 

rightmost column or a 4 in the lowest row respectively. More 

challenging is an elegant implementation of method isStraight(). 

Basically, it has to check whether five consecutive 1s are in the 

column sum row. Additionally, we have to consider the special 

case that an ace is used with rank value one. Figure 3 shows the 

implementation of isStraight(). 

 

 
Figure 3. Java method isStraight(). 

 

Finally, method assessHand() calls the various methods in the 

appropriate order to determine a hand's value. Figure 4 shows 

method assessHand(). 

 

 
Figure 4. Java method assessHand(). 

The method assessHand() is also a private method, which the 

Hand constructor calls. The returned hand value is stored in an 

instance variable that has a getter method. 

JUnit tests round out the Java implementation consisting of the 

classes Hand, Card, and Deck as well as the enumerations Suit, 

Rank and HandVal. This Java implementation is also used for 

generating labeled data for an ML-based hand assessment. 

3.1 Input Formats 
As this problem is a playground for testing different methods 

rather than an actual application, we try different input formats 

that can lower or increase its complexity, especially in two ways: 

using an input format that is invariant to the permutation of the 

five hand cards, as is the problem itself, will reduce the number of 

possible inputs by a factor of 5!=120 while significantly reducing 

the complexity for the neural network to learn. Also, we can 



introduce an encoding that explicitly takes into account the suits 

and ranks of each card, also reducing the complexity of the task. 

The single cards are represented in two ways: Once, simply as a 

one-hot encoded vector with 52 bits, and once with a separate 

encoding for rank and suit, giving a vector of length 4+13=17. By 

using all five cards separately as input, giving a total input 

dimension of 5x52 or 5x17 respectively, we ignore permutation 

invariance. We can introduce it directly into our encoding by 

summing up the vectors of the five individual cards in either one 

of the representations above. In the first case, this leads to 52 bits, 

of which 5 will be 1 and the rest 0. In the second case, we will 

basically get the lowest row and rightmost column from Figure 2, 

which should be particularly easy to learn for the network. 

As for the input, the encoding of the target can also be varied. The 

most straightforward representation is a one-hot encoding of the 

ten possible values, as described above. This introduces some 

problems regarding the extreme imbalance in the distribution of 

hands. Out of the 2,598,600 hands, only 4 are royal flush and 36 

are straight flush, not even enough to create a proper training and 

test set. We can instead evaluate a hand by all values it could 

possibly be asserted, not just by the highest. A full house for 

example also classifies as a pair, two pairs and threes. A straight 

flush is both straight and flush, eliminating the need to explicitly 

represent it in our target labels. Also, we no longer take into 

account the royal flush explicitly, as it would be covered as the 

straight flush with the highest possible tiebreakers. As any hand is 

at least high card, this value can also be ignored and we are left 

with 7 bits representing the values from pair to four of a kind, 

straight flush now identified by straight + flush. Besides 

alleviating the problem of extreme imbalance, this further 

introduces additional information for most labels, making training 

slightly more sample efficient. Unless otherwise specified, the 

following experiments use a training set of 2400 hands, 300 for 

each of the eight values that have to be treated explicitly.  

3.2 Overparameterization 
In all the experiments that will be laid out in the following 

sections, the benefits of extreme overparameterization to the 

generalization error were clearly notable. For a training set of 

2400 hands, a very small network, for example of two dense 

layers with 32 units each and ReLU activation followed by the 

output layer, is sufficient to obtain 100% training accuracy. 

However, the generalization properties of such a network are 

relatively poor, giving approximately 65% test accuracy. It has 

been shown empirically that overparameterized networks, that is 

networks with many more degrees of freedom than necessary to 

achieve zero error on the training set, often lead to much better 

generalization [7, 8]. While not yet completely understood, this 

phenomenon seems to be particularly strong when combined with 

the ReLU activation function [9].  

For the problem of poker hand assessment, we tried to take 

advantage of this improvement in generalization in several ways 

starting from the three-layer network mentioned above. Adding 

more layers did not improve the generalization error in any of the 

experiments, while making the hidden layers wider, that is adding 

more units, did. The most effectively generalizing network we 

discovered during our experiments had three hidden layers with 

upwards of 2000 units each, and approximately 9 million 

parameters in total. Further increasing the number of hidden units 

did not notably improve generalization and the same results were 

true for each input format and number of training data.  

Figure 5 illustrates the improvement through overparameterization 

for a three-layer network with 2.4k labeled training hands. Each 

data point represents the average of several runs to somewhat 

account for random initialization and, importantly, each of those 

networks gave zero training error. The input format in this case 

were 52 bits specifying the presence of a given card, thus 

including permutation invariance but not the explicit split into suit 

and rank. For all the widths tested in Figure 5, both increasing or 

decreasing the number of layers deteriorated the test results.  

We use Tensorflow [10] for all experiments throughout this work 

and optimize the models with the Adam Optimizer [11]. We did 

not notice any improvement in generalization by switching to 

stochastic gradient descent, as is sometimes found in different 

problems [12].  

While adding more dense layers to the model deteriorated the 

problem, we further found that we could stack many more 

convolutional layers [13]. To this end, we first tried to represent 

the input data as an image with 5 rows and 17 columns and apply 

the convolutions, which works surprisingly well despite the 

neither translational invariant or covariant input. A dense layer 

followed by reshaping the features into a two-dimensional map 

worked even better and close to the overparameterized dense 

network. This could even be improved slightly by instead 

reshaping into a three-dimensional feature map and consequently 

using 3D-convolutions. While the very wide dense layers did end 

up with the best generalization, this could be an interesting 

approach for more complicated problems that require deeper 

networks. 

 

 
Figure 5. Test error depending on the degree of 

overparameterization. 

3.3 Rank and Suit Encoding 
The explicit encoding of rank and suit allows for a more easily 

processable representation of the cards, significantly decreasing 

the test error when trained with an equal amount of training data. 

The assumption that this representation would be easier to learn 

was confirmed throughout all of our experiments, with the 17 bit 

representation consistently outperforming the 52 bit representation.  

Instead of using an integer between 0 and 51 for representing a 

card, bits that one-hot encode both suit and rank are introduced: 

four bits for a card's suit, and 13 bits for a card's rank, thus, 

overall 17 bits. For a specific card, all bits are initialized with 0. 

For the suit we define the order CDHS. Depending on the card's 

suit, the corresponding bit is set to 1. For example, a spade would 

be represented by 0001, a diamond by 0100. In an analogous way 

the rank of a card is represented in the 13 bits for the rank. If the 

card has rank 2, the first bit of the 13 bits is set to one, for rank 3 

the second bit, and so on. For example, a card with suit diamond 

and rank ace would be represented by the following 17 bits: 0100 

0000000000001 (for better readability we intentionally added a 



space after the four bits representing the suit). This representation 

has also been used in [6].  

3.4 Permutation Invariance 
Introducing an input representation that explicitly takes into 

account invariance to permutations of the five hand cards makes 

the problem significantly easier to learn. The most straightforward 

way to introduce invariance with respect to permutations of the 

five cards is to sum up their encoding vectors. This works for 

single card representations introduced, resulting in one vector of 

length 52 or 17 respectively that represents the complete hand. 

Note that for the case where suit and rank are encoded separately, 

this sum directly gives the rightmost column and lowest row of 

the table in Figure 2, making this representation presumably 

particularly easy to learn.  

As expected, the performance of a neural network increases 

drastically with such an invariant representation. However, we can 

also introduce permutation invariance in another way, namely by 

randomly permuting the cards in the input to an otherwise not 

permutation invariant network. This is in some ways similar to 

data augmentation, for example in image recognition, where 

random rotations of the input are supposed to train networks 

somewhat invariant to rotations. One might expect this to be 

harder to learn than having the permutation invariance explicitly 

encoded by a simple sum. In all of our experiments, except where 

the training set was sufficiently large to achieve almost zero test 

error, this second method of training outperformed the one with 

the permutation invariant hand representation. Table 1 

summarizes these results.  

 

Table 1. Test accuracy for both single card representations (52 

and 17 bits), with or without permutation invariant input and 

with number of training data n. 

 n=800 n=1600 n=2400 

52 bits, 

summed 

63.7 ± 0.5% 86.9 ± 1.5% 96.8 ± 0.2% 

52 bits, not 

summed 

70.7 ± 1.4% 95.5 ± 0.2% 98.0 ± 0.05% 

17 bits, 

summed 

92.1 ± 0.4% 99.0 ± 0.2% 99.9 ± 0.02% 

17 bits, not 

summed 

97.4 ± 0.4% 99.6 ± 0.1% 99.7 ± 0.02% 

 

We also note that the networks that were trained on permutations 

of the non-summed hand representations do not arrive at an 

actually permutation invariant solution. When presented with all 

120 permutations of a single hand, the logits in the output layer 

vary significantly, their relative standard deviation over these 120 

permutations usually being in the range from 10-20%.  

3.5 Achieving 100% Test Accuracy 
Since we have the luxury of an arbitrarily large test set at our 

disposal for this problem, we can furthermore test for the minimal 

training set to achieve practically 100% test accuracy. As 

expected, this depends on the input representation and the kind of 

neural network used. Overparameterization is crucial, as we could 

not achieve it with small networks at all. When training data is 

abundant, we notice that the summed-up permutation invariant 

representation begins to outperform the other one that trains on 

permuted data. We therefore compare the summed-up versions of 

the 52 bit and 17 bit representations introduced above. The 

difference in the effectiveness of both representations becomes 

clear as the 17 bit only needs approximately 500 training samples 

per class, a total 4000, while the 52 bit representation needs 

approximately triple that number on our very large (240k hands) 

test set.  

3.6 Resilience Regarding Labeling Errors 
The Texas Hold'em case study provides a test bed for evaluating 

the impact of the labeling quality on the results based on the 

results from the previous section. Our Java program for assessing 

hands is used for generating the labeled data. So, assuming that 

the tested Java program is correct, all generated labeled data are 

correct. Another Java program processes a labeled data text file 

and changes a specified percentage of the labels so that they 

become wrong labels. To constrain the incorrectness, a label can 

only become better or worse by one degree compared to the 

correct label. For example, a hand value of 'one pair' can either 

become 'two pairs' or 'high card'. Table 2 shows the results if 1% 

and if 3% of the labels are not correct by deviating by one degree 

from the correct label.  

Table 2. Impact of labeling quality on classification results 

Correctness 

of labels 

Accuracy of 

classification 

100% 100% 

99% 99.53% 

97% 99.25% 

4. HAND COMPARISON 
The comparison of two Texas Hold'em hands is straight-forward 

if the hands are different: high card < one pair < two pairs < three 

of a kind < straight < flush < full house < poker < straight flush < 

royal flush. If the hand values are equal, the comparison becomes 

more complex, but is clearly defined by rules. For example, Peter 

Norvig, vividly explains these rules in a video [14]. We do not go 

into all the details but exemplify the rules for the hand value 'full 

house': a full house is a three-of-a-kind and a pair. If two hands 

have the hand value 'full house', the ranks decide which hand has 

a higher value. First, the ranks of the three-of-a-kind cards are 

compared. The one hand with the three-of-a-kind of a higher rank 

wins. Note the special case in the following example: a hand 

might have a pair of aces and three queens. But the other hand 

with a pair of 10s and three queens wins. So it is not sufficient to 

compare the hands by comparing their card ranks sorted in 

descending order. Instead, the sorting requires the additional 

context of 'three-of-a-kind' and 'pair' in case of the 'full-house'. 

The provided Java code represents all the implementation details 

of the comparison rules. It uses array lists that store the ranks of 

tie-breakers (in the example above, a king rank would be in the 

tie-breaker list of the one hand and a queen rank would be in the 

tie-breaker list of the other hand) to decide based according to 

Texas Hold'em rules whether two hands are indeed equal (that is 

not possible for 'full-house' hands as only four cards exist for each 

rank) or which of the two hands has a higher value than the other 

one. 

To evaluate the suitability of ML for this more complex data 

processing task, we harness the one of the training sets used above, 

specifically the one with 8k hands, in the following way: one 

random line represents the first hand, another one the second hand. 



Then we use the Java program to get the comparison result: –1 

(value of first hand < value of second hand), 0 (value of first hand 

= value of second hand), 1 (value of first hand > value of second 

hand). As we might expect the network to first do some operation 

on the single hands before comparing them, we use a siamese 

network similar to the ones used before and fuse the two 

encodings again by two certainly overparameterized Dense layers. 

The error of our model will obviously depend on the number of 

pairs of hands that we generate from our original one-hand dataset. 

Figure 6 illustrates the test error over number of hand pairs 

generated for our model. 

 

 
Figure 6. Test error depending on the number of generated 

hand pairs. 

5. BEST HAND OUT OF 7 CARDS 
At the end of a Texas Hold'em poker round, each player in the so 

called showdown has to determine the best hand out of 7 cards, 

the 2 the player has in the pocket (not known to the others) and 

the 5 cards on the table. Thus, a player has to find the best hand 

out of overall 21 hands.  

For this task, the input for the network consists of 7 cards with a 

bitwise representation as described in section 5. The label for each 

set consisting of 7 cards is the hand value of the best hand. First 

we generate a dataset of 8,000 7-card hands, equally distributed 

among the possible values. As the problem is close to the 5-card 

hands, this method also performs surprisingly well. Depending on 

the input representation, we can even use the same network that 

classified 5 card hands to 7 card hands. To this end, we have to 

use a summed up representation in order to maintain the same 

input dimensions. Furthermore, there would be some ambiguity in 

the 17 bit summed up representation: a 7 card hand could allow to 

form both a flush and a straight, while not allowing to form a 

straight flush. This would not be detectable in the summed up 17 

bit representations. Therefore, we use the 52 bit representation in 

this experiment and find that a model with practically 0% test 

error on the five card test set produces only 0.2% error on the 7 

card set without requiring further training. 

6. CONCLUSIONS 
To sum up, this paper presents a quantitative evaluation of the 

application of machine learning to what might be called 

conventional data processing tasks. For us it is surprising how 

important overparameterization is in the solution of this task. Also, 

the underperformance of a specifically permutation invariant 

neural network, one that summed up the individual card 

representations, when compared to introducing permutations in 

the training set was surprising. While only true in our case for 

smaller datasets, it could also have implications for ongoing 

efforts to encapsulate different types of invariances into the 

network structure itself in order to reduce the need for more 

conventional data augmentation. Several aspects would be 

interesting for further investigations, for example: How can 

labeled data sets be further minimized? Which other neural 

network types are suitable for the Texas Hold'em tasks? Can the 

results presented in this paper be generalized and applied to other 

conventional data processing tasks? Answers to the above 

research questions might push the start-of-the-art in automatic 

programming significantly forward. An economic perspective 

poses the question whether data labeling, or conventional 

programming is more effective and efficient. As no real-world 

program is 100% correct, a quantitative and qualitative 

comparison of the quality, robustness and maintainability of 

human-written programs and those generated by ML means would 

be a research direction that could be further pursued. 
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