
Applying Machine Learning to a Conventional Data
Processing Task—A Quantitative Evaluation

Wolfgang Pree
University of Salzburg

Department of Computer Sciences
Jakob-Haringer-Str. 2, 5020 Salzburg, Austria/Europe

+43 662 8044 – 6488

Wolfgang.Pree@cs.uni-salzburg.at

Felix Hoerbinger
University of Salzburg

Department of Computer Sciences
Jakob-Haringer-Str. 2, 5020 Salzburg, Austria/Europe

+43 662 8044 – 6488

ABSTRACT

Though machine learning (ML) can be applied to a wide spectrum

of applications, it has been hardly used and evaluated in the

context of conventional data processing tasks. Such conventional

data processing tasks are characterized by a set of calculations that

follow strict rules, such as in accounting or banking applications.

This paper quantitatively evaluates how software which is

automatically generated by ML methods and tools compares to

software programmed by hand. The assessment of poker hands

according to Texas Hold'em rules is a representative example for

conventional data processing tasks, because of the various

exceptions how to assess and compare hands. For some hand

values, the rank (two, three, ... king, ace) of the cards is relevant

and the suit (club, diamond, heart, spade) irrelevant, and vice

versa. This paper shows how an accuracy of 100% can be

achieved for assessing poker hands according to Texas Hold'em

rules, with a small set of labeled training data compared to the

number of possible hands. We also evaluate quantitatively the

effect of the labeling quality on accuracy.

CCS Concepts

• Software and its engineering → Software creation and

management → Software development techniques →

Automatic programming.

Keywords

Machine learning; supervised learning; neural networks;

convolutional neural networks; feed-forward neural networks;

data labeling; labeling quality; robustness.

1. INTRODUCTION
The essence of supervised Machine learning (ML) is that data

write programs. Instead of describing in pain-staking detail how

to process input data to obtain correct results (see Figure 1a),

examples of correct results (so-called labeled data) are used for

neural network (NN) training. The adjusted weights and other

parameters of the particular NN represent then the 'program'

which delivers hopefully the correct results, not only for the

training data but for all possible input data. Figure 1b illustrates

this inverted world view where the program results from (labeled)

data. As the training of a NN is automated, this schematic

representation of data write programs illustrates how NNs deliver

the vision of automated programming.

One typical application of the supervised ML approach is in

image processing, which touches several different domains, such

as the medical diagnosis of Magnetic Resonance Imaging (MRI),

the natural language description of images, or autonomous

driving. It turned out that the classical way of programming image

processing (Figure 1a) is significantly inferior to NNs (Figure 1b)

so that since a few years image processing relies only on NNs.

Figure 1. (a) Conventional programming paradigm versus

(b) ML—data write programs.

Sometimes it is argued that ML is adequate for tasks such as

object recognition, which are straight-forward for biological NNs,

in particular, human brains, but not for conventional computing

tasks, such as calculations. Though humans usually have no

problem recognizing objects in images, most humans would

struggle, for example, to compute the exact result of complicated

calculations, let's say the multiplication of two 6 digit numbers,

without extra help (calculator, or paper and pen). Conventional

programming, that is, expressing in a programming language the

details how input should be processed to obtain the expected

results, is regarded as adequate means for most data processing

tasks, if the algorithms, processing rules/constraints and

calculations are straight-forward and known. One reason is that

data processing is required to be 100.0% correct, not just close to

100 percent.

Both the source code for generating the labeled data as well as the

Colaboratory [1] notebooks used in the evaluation are available

for download [2].

2. TEXAS HOLD'EM HAND VALUES
Texas Hold'em [3] is a popular variant of the poker card game

with exactly defined rules. The card deck consists of 52 cards: 13

cards of each suit (club, diamond, heart, spade). A hand in Texas

Hold'em consists of five cards. Thus, if one draws a hand out of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ICMLC 2020, February 15–17, 2020, Shenzhen, China

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7642-6/20/02…$15.00

DOI: https://doi.org/10.1145/3383972.3384042

the 52 cards, overall 2,598,960 (almost 2.6 million) possible

hands can be drawn. No card is put back once it is drawn, thus we

calculate 5-permutations of 52 as 52 x 51 x 50 x 49 x 48 / (5 x 4 x

3 x 2 x 1).

A hand has exactly one out of ten values: high card, one pair, two

pairs, three of a kind, straight, flush, full house, poker, straight

flush, and royal flush. For some values, only the card suit is

relevant. For example, a hand is a straight, if the ranks (two, three,

four, five, six, seven, eight, nine, ten, jack, queen, king, ace) are in

ascending order and adjacent. So a hand with a seven, eight, nine,

ten and jack card is an example of a straight (= has the value

'straight') independent of the cards's suits. In case of a straight, the

ace (which is usually the highest rank) might also count as rank

one. Thus, ace, two, three, four, five is also a straight.

A hand is a flush if all five cards are of the same suit. The rank of

each of the cards is irrelevant, except for the assessment whether

the flush is a straight flush or royal flush. A hand is a straight

flush, if it is a flush and a straight. A hand is a royal flush if it is a

straight flush with the ace as highest card, that is, the cards in the

hand have all the same suit and the ranks ten, jack, queen, king,

ace. A hand has the value ‘quads’ if it has four cards of the same

rank. A hand has the value 'three of a kind' if the hand contains

three cards of the same rank. A hand has the value 'one pair' if the

hand contains two cards of the same rank. A full house is a hand

with a pair and three of a kind. Two pairs is the value of a hand

with two pairs. All hands other than the ones described above

have the value high card.

3. HAND ASSESSMENT
Various implementations of Texas Hold'em hands are available on

the web. A dataset consisting of approximately one million

labeled hands is available in the UCI Machine Learning

Repository as Poker Hand Data Set [4]. The application of neural

networks on this dataset has been investigated in [5, 6]. For our

purpose, as we try to meaningfully investigate generalization

properties of different models, we choose a smaller dataset with a

total of 4 thousand poker hands. Furthermore, the extremely

uneven distribution of hand values was ignored by generating an

equal amount of hands for each value but could lead to interesting

research in the future. The test set also is evenly distributed

among the values, with a total of 240k poker hands.

To give some insight into the task at hand, we briefly introduce

our implementation of the hand assessment. We define a two-

dimensional array as core data structure for representing the five

cards of a hand. This kind of array allows an elegant and lean

implementation. Figure 2 exemplifies the hand representation by

means of a hand that has two pairs. For the sake of readability, we

omit the zeros in the array.

Figure 2. Representation of a sample hand (two pairs).

A one in the suit rows/rank columns indicates a particular card.

For example, the diamond king is represented by the 1 in the

second row D (for diamond) and column K (for king). The gray

cells contain the sums of the rows and columns. The column sum

is relevant for assessing hand values for which the rank is the

decisive criterion. In the sample hand in Figure 2, the two 2s,

marked with a red circle, indicate the hand value of two pairs. A

poker, for example, would have a 4 in one of the column sum

cells, a three of a kind a 3, and a full house a 3 and a 2. Whereas a

flush has a 5 in one of the four row sum cells.

We call the 2-dimensional Java array cardsCalculator. For

detecting a Flush or Quads, one simply has to look for a 5 in the

rightmost column or a 4 in the lowest row respectively. More

challenging is an elegant implementation of method isStraight().

Basically, it has to check whether five consecutive 1s are in the

column sum row. Additionally, we have to consider the special

case that an ace is used with rank value one. Figure 3 shows the

implementation of isStraight().

Figure 3. Java method isStraight().

Finally, method assessHand() calls the various methods in the

appropriate order to determine a hand's value. Figure 4 shows

method assessHand().

Figure 4. Java method assessHand().

The method assessHand() is also a private method, which the

Hand constructor calls. The returned hand value is stored in an

instance variable that has a getter method.

JUnit tests round out the Java implementation consisting of the

classes Hand, Card, and Deck as well as the enumerations Suit,

Rank and HandVal. This Java implementation is also used for

generating labeled data for an ML-based hand assessment.

3.1 Input Formats
As this problem is a playground for testing different methods

rather than an actual application, we try different input formats

that can lower or increase its complexity, especially in two ways:

using an input format that is invariant to the permutation of the

five hand cards, as is the problem itself, will reduce the number of

possible inputs by a factor of 5!=120 while significantly reducing

the complexity for the neural network to learn. Also, we can

introduce an encoding that explicitly takes into account the suits

and ranks of each card, also reducing the complexity of the task.

The single cards are represented in two ways: Once, simply as a

one-hot encoded vector with 52 bits, and once with a separate

encoding for rank and suit, giving a vector of length 4+13=17. By

using all five cards separately as input, giving a total input

dimension of 5x52 or 5x17 respectively, we ignore permutation

invariance. We can introduce it directly into our encoding by

summing up the vectors of the five individual cards in either one

of the representations above. In the first case, this leads to 52 bits,

of which 5 will be 1 and the rest 0. In the second case, we will

basically get the lowest row and rightmost column from Figure 2,

which should be particularly easy to learn for the network.

As for the input, the encoding of the target can also be varied. The

most straightforward representation is a one-hot encoding of the

ten possible values, as described above. This introduces some

problems regarding the extreme imbalance in the distribution of

hands. Out of the 2,598,600 hands, only 4 are royal flush and 36

are straight flush, not even enough to create a proper training and

test set. We can instead evaluate a hand by all values it could

possibly be asserted, not just by the highest. A full house for

example also classifies as a pair, two pairs and threes. A straight

flush is both straight and flush, eliminating the need to explicitly

represent it in our target labels. Also, we no longer take into

account the royal flush explicitly, as it would be covered as the

straight flush with the highest possible tiebreakers. As any hand is

at least high card, this value can also be ignored and we are left

with 7 bits representing the values from pair to four of a kind,

straight flush now identified by straight + flush. Besides

alleviating the problem of extreme imbalance, this further

introduces additional information for most labels, making training

slightly more sample efficient. Unless otherwise specified, the

following experiments use a training set of 2400 hands, 300 for

each of the eight values that have to be treated explicitly.

3.2 Overparameterization
In all the experiments that will be laid out in the following

sections, the benefits of extreme overparameterization to the

generalization error were clearly notable. For a training set of

2400 hands, a very small network, for example of two dense

layers with 32 units each and ReLU activation followed by the

output layer, is sufficient to obtain 100% training accuracy.

However, the generalization properties of such a network are

relatively poor, giving approximately 65% test accuracy. It has

been shown empirically that overparameterized networks, that is

networks with many more degrees of freedom than necessary to

achieve zero error on the training set, often lead to much better

generalization [7, 8]. While not yet completely understood, this

phenomenon seems to be particularly strong when combined with

the ReLU activation function [9].

For the problem of poker hand assessment, we tried to take

advantage of this improvement in generalization in several ways

starting from the three-layer network mentioned above. Adding

more layers did not improve the generalization error in any of the

experiments, while making the hidden layers wider, that is adding

more units, did. The most effectively generalizing network we

discovered during our experiments had three hidden layers with

upwards of 2000 units each, and approximately 9 million

parameters in total. Further increasing the number of hidden units

did not notably improve generalization and the same results were

true for each input format and number of training data.

Figure 5 illustrates the improvement through overparameterization

for a three-layer network with 2.4k labeled training hands. Each

data point represents the average of several runs to somewhat

account for random initialization and, importantly, each of those

networks gave zero training error. The input format in this case

were 52 bits specifying the presence of a given card, thus

including permutation invariance but not the explicit split into suit

and rank. For all the widths tested in Figure 5, both increasing or

decreasing the number of layers deteriorated the test results.

We use Tensorflow [10] for all experiments throughout this work

and optimize the models with the Adam Optimizer [11]. We did

not notice any improvement in generalization by switching to

stochastic gradient descent, as is sometimes found in different

problems [12].

While adding more dense layers to the model deteriorated the

problem, we further found that we could stack many more

convolutional layers [13]. To this end, we first tried to represent

the input data as an image with 5 rows and 17 columns and apply

the convolutions, which works surprisingly well despite the

neither translational invariant or covariant input. A dense layer

followed by reshaping the features into a two-dimensional map

worked even better and close to the overparameterized dense

network. This could even be improved slightly by instead

reshaping into a three-dimensional feature map and consequently

using 3D-convolutions. While the very wide dense layers did end

up with the best generalization, this could be an interesting

approach for more complicated problems that require deeper

networks.

Figure 5. Test error depending on the degree of

overparameterization.

3.3 Rank and Suit Encoding
The explicit encoding of rank and suit allows for a more easily

processable representation of the cards, significantly decreasing

the test error when trained with an equal amount of training data.

The assumption that this representation would be easier to learn

was confirmed throughout all of our experiments, with the 17 bit

representation consistently outperforming the 52 bit representation.

Instead of using an integer between 0 and 51 for representing a

card, bits that one-hot encode both suit and rank are introduced:

four bits for a card's suit, and 13 bits for a card's rank, thus,

overall 17 bits. For a specific card, all bits are initialized with 0.

For the suit we define the order CDHS. Depending on the card's

suit, the corresponding bit is set to 1. For example, a spade would

be represented by 0001, a diamond by 0100. In an analogous way

the rank of a card is represented in the 13 bits for the rank. If the

card has rank 2, the first bit of the 13 bits is set to one, for rank 3

the second bit, and so on. For example, a card with suit diamond

and rank ace would be represented by the following 17 bits: 0100

0000000000001 (for better readability we intentionally added a

space after the four bits representing the suit). This representation

has also been used in [6].

3.4 Permutation Invariance
Introducing an input representation that explicitly takes into

account invariance to permutations of the five hand cards makes

the problem significantly easier to learn. The most straightforward

way to introduce invariance with respect to permutations of the

five cards is to sum up their encoding vectors. This works for

single card representations introduced, resulting in one vector of

length 52 or 17 respectively that represents the complete hand.

Note that for the case where suit and rank are encoded separately,

this sum directly gives the rightmost column and lowest row of

the table in Figure 2, making this representation presumably

particularly easy to learn.

As expected, the performance of a neural network increases

drastically with such an invariant representation. However, we can

also introduce permutation invariance in another way, namely by

randomly permuting the cards in the input to an otherwise not

permutation invariant network. This is in some ways similar to

data augmentation, for example in image recognition, where

random rotations of the input are supposed to train networks

somewhat invariant to rotations. One might expect this to be

harder to learn than having the permutation invariance explicitly

encoded by a simple sum. In all of our experiments, except where

the training set was sufficiently large to achieve almost zero test

error, this second method of training outperformed the one with

the permutation invariant hand representation. Table 1

summarizes these results.

Table 1. Test accuracy for both single card representations (52

and 17 bits), with or without permutation invariant input and

with number of training data n.

 n=800 n=1600 n=2400

52 bits,

summed

63.7 ± 0.5% 86.9 ± 1.5% 96.8 ± 0.2%

52 bits, not

summed

70.7 ± 1.4% 95.5 ± 0.2% 98.0 ± 0.05%

17 bits,

summed

92.1 ± 0.4% 99.0 ± 0.2% 99.9 ± 0.02%

17 bits, not

summed

97.4 ± 0.4% 99.6 ± 0.1% 99.7 ± 0.02%

We also note that the networks that were trained on permutations

of the non-summed hand representations do not arrive at an

actually permutation invariant solution. When presented with all

120 permutations of a single hand, the logits in the output layer

vary significantly, their relative standard deviation over these 120

permutations usually being in the range from 10-20%.

3.5 Achieving 100% Test Accuracy
Since we have the luxury of an arbitrarily large test set at our

disposal for this problem, we can furthermore test for the minimal

training set to achieve practically 100% test accuracy. As

expected, this depends on the input representation and the kind of

neural network used. Overparameterization is crucial, as we could

not achieve it with small networks at all. When training data is

abundant, we notice that the summed-up permutation invariant

representation begins to outperform the other one that trains on

permuted data. We therefore compare the summed-up versions of

the 52 bit and 17 bit representations introduced above. The

difference in the effectiveness of both representations becomes

clear as the 17 bit only needs approximately 500 training samples

per class, a total 4000, while the 52 bit representation needs

approximately triple that number on our very large (240k hands)

test set.

3.6 Resilience Regarding Labeling Errors
The Texas Hold'em case study provides a test bed for evaluating

the impact of the labeling quality on the results based on the

results from the previous section. Our Java program for assessing

hands is used for generating the labeled data. So, assuming that

the tested Java program is correct, all generated labeled data are

correct. Another Java program processes a labeled data text file

and changes a specified percentage of the labels so that they

become wrong labels. To constrain the incorrectness, a label can

only become better or worse by one degree compared to the

correct label. For example, a hand value of 'one pair' can either

become 'two pairs' or 'high card'. Table 2 shows the results if 1%

and if 3% of the labels are not correct by deviating by one degree

from the correct label.

Table 2. Impact of labeling quality on classification results

Correctness

of labels

Accuracy of

classification

100% 100%

99% 99.53%

97% 99.25%

4. HAND COMPARISON
The comparison of two Texas Hold'em hands is straight-forward

if the hands are different: high card < one pair < two pairs < three

of a kind < straight < flush < full house < poker < straight flush <

royal flush. If the hand values are equal, the comparison becomes

more complex, but is clearly defined by rules. For example, Peter

Norvig, vividly explains these rules in a video [14]. We do not go

into all the details but exemplify the rules for the hand value 'full

house': a full house is a three-of-a-kind and a pair. If two hands

have the hand value 'full house', the ranks decide which hand has

a higher value. First, the ranks of the three-of-a-kind cards are

compared. The one hand with the three-of-a-kind of a higher rank

wins. Note the special case in the following example: a hand

might have a pair of aces and three queens. But the other hand

with a pair of 10s and three queens wins. So it is not sufficient to

compare the hands by comparing their card ranks sorted in

descending order. Instead, the sorting requires the additional

context of 'three-of-a-kind' and 'pair' in case of the 'full-house'.

The provided Java code represents all the implementation details

of the comparison rules. It uses array lists that store the ranks of

tie-breakers (in the example above, a king rank would be in the

tie-breaker list of the one hand and a queen rank would be in the

tie-breaker list of the other hand) to decide based according to

Texas Hold'em rules whether two hands are indeed equal (that is

not possible for 'full-house' hands as only four cards exist for each

rank) or which of the two hands has a higher value than the other

one.

To evaluate the suitability of ML for this more complex data

processing task, we harness the one of the training sets used above,

specifically the one with 8k hands, in the following way: one

random line represents the first hand, another one the second hand.

Then we use the Java program to get the comparison result: –1

(value of first hand < value of second hand), 0 (value of first hand

= value of second hand), 1 (value of first hand > value of second

hand). As we might expect the network to first do some operation

on the single hands before comparing them, we use a siamese

network similar to the ones used before and fuse the two

encodings again by two certainly overparameterized Dense layers.

The error of our model will obviously depend on the number of

pairs of hands that we generate from our original one-hand dataset.

Figure 6 illustrates the test error over number of hand pairs

generated for our model.

Figure 6. Test error depending on the number of generated

hand pairs.

5. BEST HAND OUT OF 7 CARDS
At the end of a Texas Hold'em poker round, each player in the so

called showdown has to determine the best hand out of 7 cards,

the 2 the player has in the pocket (not known to the others) and

the 5 cards on the table. Thus, a player has to find the best hand

out of overall 21 hands.

For this task, the input for the network consists of 7 cards with a

bitwise representation as described in section 5. The label for each

set consisting of 7 cards is the hand value of the best hand. First

we generate a dataset of 8,000 7-card hands, equally distributed

among the possible values. As the problem is close to the 5-card

hands, this method also performs surprisingly well. Depending on

the input representation, we can even use the same network that

classified 5 card hands to 7 card hands. To this end, we have to

use a summed up representation in order to maintain the same

input dimensions. Furthermore, there would be some ambiguity in

the 17 bit summed up representation: a 7 card hand could allow to

form both a flush and a straight, while not allowing to form a

straight flush. This would not be detectable in the summed up 17

bit representations. Therefore, we use the 52 bit representation in

this experiment and find that a model with practically 0% test

error on the five card test set produces only 0.2% error on the 7

card set without requiring further training.

6. CONCLUSIONS
To sum up, this paper presents a quantitative evaluation of the

application of machine learning to what might be called

conventional data processing tasks. For us it is surprising how

important overparameterization is in the solution of this task. Also,

the underperformance of a specifically permutation invariant

neural network, one that summed up the individual card

representations, when compared to introducing permutations in

the training set was surprising. While only true in our case for

smaller datasets, it could also have implications for ongoing

efforts to encapsulate different types of invariances into the

network structure itself in order to reduce the need for more

conventional data augmentation. Several aspects would be

interesting for further investigations, for example: How can

labeled data sets be further minimized? Which other neural

network types are suitable for the Texas Hold'em tasks? Can the

results presented in this paper be generalized and applied to other

conventional data processing tasks? Answers to the above

research questions might push the start-of-the-art in automatic

programming significantly forward. An economic perspective

poses the question whether data labeling, or conventional

programming is more effective and efficient. As no real-world

program is 100% correct, a quantitative and qualitative

comparison of the quality, robustness and maintainability of

human-written programs and those generated by ML means would

be a research direction that could be further pursued.

7. REFERENCES
[1] Google Colaboratory (Cloud-based Jupyter notebooks).

DOI= https://colab.research.google.com/

[2] Colaboratory notebooks used in this project: DOI=

https://drive.google.com/drive/folders/1UkubXx2QBua7rxiV

RJLgRnRSCYj5l0Q6?usp=sharing

[3] Texas Hold'em. DOI=

https://en.wikipedia.org/wiki/Texas_hold_%27em

[4] Dua, D. and Graff, C. (2019). UCI Machine Learning

Repository [http://archive.ics.uci.edu/ml]. Irvine, CA:

University of California, School of Information and

Computer Science.

[5] Gautam, B., Kaviarasan, S., Veena, D. 2016. NN-based

Poker Hand Classification and Game Playing. 29th

Conference on Neural Information Processing Systems

(NIPS 2016), Barcelona, Spain.

[6] Jabin, S. 2016. Poker hand classification. In Proceedings of

the International Conference on Computing, Communication

and Automation ICCCA 2016.

[7] Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., & Srebro,

N. (2018). Towards understanding the role of over-

parametrization in generalization of neural networks. arXiv

preprint arXiv:1805.12076.

[8] Greenwood, M., & Oxspring, R. (2001). The Applicability

Of ‘Occam’s Razor’ to Neural Network Architecture.

Undergraduate Coursework, Department of Computer

Science, The University of Sheffield, UK.

[9] Brutzkus, A., & Globerson, A. (2018). Why do Larger

Models Generalize Better? A Theoretical Perspective via the

XOR Problem. arXiv preprint arXiv:1810.03037.

[10] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., ... & Kudlur, M. (2016). Tensorflow: A system for large-

scale machine learning. In 12th Symposium on Operating

Systems Design and Implementation (pp. 265-283).

[11] Kingma, D. P., & Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980.

[12] Keskar, N. S., & Socher, R. (2017). Improving generalization

performance by switching from adam to sgd. arXiv preprint

arXiv:1712.07628.

[13] LeCun, Y., & Bengio, Y. (1995). Convolutional networks for

images, speech, and time series. The handbook of brain

theory and neural networks, 3361(10), 1995.

[14] Norvig, P. Wild West Poker—Texas Hold'em hand

comparison (part of a Udacity course on the Design of

computer programs). DOI=

https://www.youtube.com/watch?v=4bpc2A3gIuc.

https://drive.google.com/drive/folders/1UkubXx2QBua7rxiVRJLgRnRSCYj5l0Q6?usp=sharing
https://drive.google.com/drive/folders/1UkubXx2QBua7rxiVRJLgRnRSCYj5l0Q6?usp=sharing

