
Data Consistency Testing in Automotive Multi-Core
Applications

- towards systematic requirement elicitation
Ralph Mader
Lucian Bara

Vitesco Technologies GmbH,
P.O. Box 100943

D-93009 Regensburg
Germany

Email:ralph.mader@continental-corporation.com
Email:lucian.2.bara@continental-corporation.com

Stefan Resmerita
Anton Poelzleitner

Wolfgang Pree
University of Salzburg and Chrona.com

Jakob-Haringer-Str. 2
5020 Salzburg

Austria
Email: stefan.resmerita@cs.uni-salzburg.at
Email: anton.poelzleitner@cs.uni-salzburg.at

Email: wolfgang.pree@chrona.com

Abstract—Today multi-core micro-controllers are widely used
in automotive applications. Increased performance requirements
and the need for speed up increasingly require the distribution
of software across cores. Independent of what type of software is
used, legacy or AUTOSAR-Classic [1], ensuring data consistency
is fundamental for the proper execution of the functionality.
For performance reasons data consistency shall not be over-
specified, which could result in a too high CPU load and memory
allocation due to a massive usage of semaphores. For this
purpose, AUTOSAR-Classic provides the possibility to specify
consistency requirements for optimizations. But how can the
crucial consistency requirements be identified? Today this is
mainly done by a design review of the software module with
respect to its input variables. In this paper we propose a method
which allows the identification of consistency requirements for a
module in a formal way. It is based on the identification of so-
called problematic access patterns for the input data which are
then enforced in the Software In the Loop (SIL) in a dynamic
stress test. The results of the module are checked against the
expected test vectors. In case such problematic access patterns
create a violation of data consistency, that is, a deviation from the
expected test result, the generation of a corresponding consistency
requirement is indicated to the developer. The method can be
integrated into an existing test environment for model based
development.

Index Terms—multi-core, real-time system, AUTOSAR, auto-
motive, embedded software, data consistency, verification

I. MULTI CORE SOFTWARE FOR AUTOMOTIVE
APPLICATIONS

A. Where Multi-Core is in use

Since 2015 multi-core micro-controllers are state-of-the-art
in various Electronic Controll Units (ECUs) in the automotive
domain such as the powertrain domain: engine management-,
inverter-, transmission- and domain-controllers are equipped
with controllers with up to four cores. The motivation to use
multi-core micro-controllers is manifold:

1) like a single core controller, just due to the additional
flash and RAM memory

2) for safety reasons, where a second core is used to control
the first one in a lockstep mode

3) as integration platform, to reduce the number of con-
trolled units in the vehicle, combining loosely coupled
applications

4) for performance reasons, when one core is not sufficient
to perform all needed calculations of one application in
time

While in the first two use cases no inter-core communication
has to be considered the demand increases for the latter two.
Engine management systems [2] are a good example for
category 4, where a complete application has to be distributed
across three or more cores. The coupling of functionality in
this application is quite high such that a significant amount of
data has to be transferred in a consistent manner. [3].

B. Legacy and AUTOSAR-Classic Code as basis for distribu-
tion

The software which is used varies significantly. For products
which have been in place for a long time, a significant amount
of legacy code had to be migrated to the multi-core ECUs.
Even the migration to AUTOSAR-Classic did not solve every
multi-core issue especially in use case 4, if the distribution
of software by components is not sufficient to satisfy the
performance demand [4]. In any case a consistent data transfer
is required. Therefore we had to adapt the software platform
for the different categories (see Figure 1). The main difference
compared to a standard AUTOSAR-Classic architecture is the
so called ”Multi Core Layer” for an efficient protection of data
with respect to consistency.

C. Project versus Platform Development of Software

When developing software, the aspects of reuse in different
projects have to be considered. While making one project
multi-core-capable one would freeze the core distribution and

Figure 1. AUTOSAR-Classic based Software Architecture in Powertrain
Applications with Multi Core Layer to ensure data consistency. OEM -
Original Equipment Manufacturer. CDD - Complex Device Driver. RTE -
Runtime Environment

verify every data transfer. Additional means are required for a
software module which shall be integrated in different projects
with different core distributions (see Figure 2).
As a software component and the corresponding runnable
entities have to be developed in a way that independent of the
allocation to a core in the system, the data can be protected if
required but allows still freedom to optimize if the protection
is not needed, e.g. due to non-concurrent scheduling of the
tasks.
As a consequence we have taken the decision to describe
requirements for the integration, especially for data consis-
tency, from the consumer perspective assuming always a worst
case scenario, that is all data are produced on different cores.
The code has been migrated in a way that all accesses to
global shared data is done via Get-Set-methods. The default
implementation of the Get-Set-methods, which allows the
compilation of the module in any environment, is patched in
the context of a multi-core project with the appropriate access
implementation either to buffered data, to ensure consistency,
or to global shared data, in case no protection is required.
The calculation of needed buffers and the access modification
is performed by a tool developed Continental internally [3].
A similar approach has been applied to AUTOSAR-Classic
code. In this case the access to data is done as well via Get-
Set-methods which hold as implementation RTE iRead and
iWrite implementations. With the help of the so called RTE
plug-in concept in AUTOSAR-Classic [5] it is also possible to
adapt the access to consistency buffers according to the same
algorithm as for the legacy code.

II. DATA CONSISTENCY

A. Stability and Coherency

Data consistency is divided in two categories, as follows.
Data stability over time: if a consumer accesses an atomic
variable multiple times in a sequence it is expected that the
same value is always read. If such data is produced in another
context (a high priority task or a task on another core) this
cannot be guaranteed in every case.
Data coherency: a set of two or more atomic data which are

Figure 2. Deriving projects with different Core partitioning out of a generic
platform

expected to have a certain relationship to each other. One
example could be a measurement value and a corresponding
flag which indicates the quality of the measurement value.

Figure 3. How two scalar data can become incoherent!

Figure 3 shows that the consumer runnable 1 on core 1
accesses variables 1 and 2 and expects a certain relationship
between them, which is satisfied, when they have values 10
and 42. Other value combinations might lead to a malfunction.
The producer of variable 1 and 2 is executed on core 2 which
interferes with the read access of runnable 1 and it might
happen that runnable 1 receives an incoherent set of data.

B. Means to ensure Data Consistency

To ensure data consistency, we have several means to
guarantee this in any case:

1) buffering for stability
2) buffering for coherency
3) exclusiveness of access by scheduling

To guarantee stability for atomic data, it is sufficient to create
a copy of the content in a buffer memory and let the consumer
access the buffered data.
To ensure coherency of atomic data, in addition to the con-
sumer access to buffered data, one has to buffer on producer

side as well and take precautions to ensure an atomic update
of the consistent set e.g., by the use of semaphores. In Figure

Figure 4. Left: Implementation of stability and coherency by usage of
consistency buffers. Right: Implementation via the LET paradigm

4 the sequence of runnables in a task is shown on the left
side. The arrows indicate buffer copy positions for filling and
flushing of consistency buffers. The dotted lines symbolize
data accesses. Depending on the need for stability or coherency
the data is accessed either in the buffer or in the global shared
memory. [4].
Another way to ensure stability and coherency is the execution
of runnables in a controlled way. In this case, interference
in the data access is prohibited by scheduling and synchro-
nization points where needed, see Figure 4 right side. The
paradigm of Logical Execution Time (LET) [6] is one example
for this mechanism.

C. Impact on performance and memory size

In a mid-sized engine management project (3MB code and
parameter, 250kByte data) today one can find around 400
consistency requirements. Two thirds of them are addressing
coherency of scalar data, the rest data stability. Ensuring data
consistency requires various resources of the micro controller,
such as RAM memory for consistency buffers, program mem-
ory and run-time for the copy routines. Furthermore, blocking
times are caused by semaphores or synchronization points.
In the mentioned example project almost percent of the data
project distributed on three cores. The implemented consis-
tency buffers use around 11 KBytes of RAM and the fill and
flush routines need around 7 percent of CPU-load to route
almost 7500 accesses to buffered data instead to the globally
shared data. These correspond to 12 per cent of the total
amount of data accesses statically counted.
These figures consider already optimizations, which could be
performed due to the knowledge of the consistency require-
ments of the modules. Without this knowledge, the amount
of resources would have to be more than duplicated with a
significant performance drawback. Therefore the specification
of consistency requirements is necessary to allow this opti-
mization.

D. Specification of Consistency Requirements

With this situation in mind, several exchange formats for
automotive embedded software foresee the description of data
consistency requirements.

In AUTOSAR-Classic V4.2.2 [1] onward one can specify for
a software component ConsistencyNeeds for stability of data
for a RunableEntityGroup(s) and or coherency for DataProto-
typeGroup(s). It is also possible to use the inverted logic and
specify for which RunnableEntyGroup(s) stability of data is
not required or for what DataPrototypeGroup(s) coherency is
not needed.
ASAM MDX 1.3.0 and higher provides tags in the SW
collection and in AMALTHEA in APP4MC 0.7.2 and higher
uses DataCoherencyGroup to define these requirements [7]. In
context of the engine management project mentioned in 1 con-
sistency specification is done in almost all cases on consumer
side. The consumer module specifies those requirements for
stability or coherency towards its input data. In seldom cases
the specification happens on producer side.
Besides the pure technical possibility to describe the require-
ment, the elicitation of the requirement is more important,
especially in a domain, like power-train, where a large portion
of the control software is developed by mechanical engineers.

III. HOW TO IDENTIFY CONSISTENCY REQUIREMENTS

A. Today’s approach
In our current process, identification of consistency require-

ments happens when a software module is designed, via a
so-called design object review, which can be considered as a
module test. The quality of requirements, their completeness
and necessity, depend on the awareness and experience of the
function developer and reviewer with respect to the problem
of data consistency. As most of the function developers in
power-train have a background in mechanical engineering,
they tend to over-specify in order to be on the ”safe” side.
Over-specification of such requirements could lead to:

• Rejection of requirements:
The Multi-Core-Layer mentioned in figure 1 can only
provide coherency if data is produced in the same task.
If one would require coherency for all input variables
of a runnable entity, this will most likely be rejected, as
such variables are usually produced in different execution
contexts and therefore cannot be provided in a coherent
way.

• Functional misbehavior:
Stability could lead to unexpectedly long response times.
One could think of a handshake-flag with the intention
to trigger as fast as possible an activity of a runnable in
another context. If this flag would be buffered for stability
the changed value would reach the consumer with one
calculation cycle delay.

• Increased resource consumption:
Every established consistency buffer needs RAM, ROM
and Runtime for the buffer management.

To overcome these weaknesses we were searching for a formal
method to elicit consistency requirements and complement
the module test by that approach. This would support the
platform aspect and result in a systematically tested module
with respect to data consistency, the necessary requirements,
and an increase in quality.

B. Adversarial Consistency Testing

The execution of a component is triggered by some event
(trigger) and takes place within a time interval bounded by
a given worst-case execution time (WCET). Components are
executed concurrently as if each of them were mapped to a
dedicated processing unit (no preemption). In every execution,
a component reads data from input variables and writes data
to output variables. A variable represents a data container on
which atomic read and write operations are performed. The
scope of consistency requirements is one component, called
Module Under Test (MUT) and a group of its input variables
C, called a consistency set. We confine our attention to the
case where all data in C is produced by one component, called
Provider (PRV). A run of the application is represented by two
concurrent sequences of MUT and PRV executions.

The stability and coherency conditions considered in this
paper refer to the time instant in a MUT execution when
the first read to a C variable is performed. Let C̃ denote the
snapshot of C at such an instant. We are interested in:

• Stability: All values read from variables in C must be
drawn from C̃.

• Coherency: All values in C̃ are produced in the same
execution of the provider, i.e., C̃ is also the snapshot of
C at the termination instant of a provider execution.

We propose a test-based approach, where MUT code frag-
ments are executed interleaved with PRV code fragments, in
order to force occurrences of consistency violations, and also
to propagate their effect on MUT outputs. If an input variable
is involved in no violation, or if all violations involving the
variable have no significant effect on the outputs, then the
variable need not be buffered.

This is a type of adversarial scheduling that seeks to
maximize occurrences of violations by manipulating execution
times of code fragments to achieve ”bad” interleaving of MUT
and PRV executions. To this end, we employ the Validator
simulator [8], where execution of application software is
interleaved with simulation of a virtual platform model. The
control flow jumps from application to virtual platform via
instrumentation inserted just before variable accesses in the
source code, at places called access points. At an access point,
execution control is transferred to the platform simulation,
together with the execution time budget associated to the
fragment of code executed from the previous access point.
This time value is calculated during execution by dedicated
instrumentation. The platform simulates, among other things,
the consumption of the time budget on a virtual CPU core.
Thereafter, the execution switches back to the application
(where the variable is accessed in the next step), and proceeds
until the next access point is reached. In the case of consistency
testing, the application comprises one MUT task and one PRV
task per consistency set, the access points refer to MUT input
variables, and the virtual platform model contains a two-core
CPU: one for the MUT task and one for the PRV task(s).

In a standard SIL simulation, henceforth called a nominal
run, a software component is executed as a unit in zero time

at the moment when it is triggered. In a Validator-controlled
run, an execution starts at the trigger time and may take a non-
zero amount of (simulated) time, up to the specified WCET
value. There are two manipulation policies, one for stability
violations and the other targeted to coherency violations. The
protocols are formally specified as timed automata that are
composed with the existing Validator models of platform
and task execution [9], and implemented as state machines
which are executed in the access point instrumentation. The
executable models are presented in the next section. Since
the formal models cannot be detailed here for space reasons,
we describe them informally below and then illustrate their
workings by means of an example.

In the stability run, the MUT always performs the first
access to a variable of a consistency set. Thereafter, when
execution reaches another variable whose value has stayed
unchanged since the first access, the MUT posts a message
representing a request to modify the variable and waits for an
answer. The PRV tries to satisfy such a request by executing
until either it writes to the variable, or it terminates. If (when)
the write happens, the PRV sends a positive answer to the
MUT and goes (back) into the waiting state. Consequently, the
MUT resumes execution. If the PRV write does not happen,
the PRV terminates not before deciding whether to send a
negative answer to the MUT or to leave the request to be
handled by the next PRV execution. Waiting is always limited
in time by the WCET deadline: if a component is waiting when
its WCET expires, it wakes up and executes (instantaneously)
until termination. The coherency run is similar, with the main
difference that the MUT waits before the first access to the
consistency set.

Example:
Consider a MUT with 5 input variables a, b, c, d, e, and two
outputs o1, o2. All input values are produced by the same
provider module PRV. The inputs are grouped in two con-
sistency sets: C0 = {a, c, e} and C1 = {b, d}. Both MUT
and PRV are triggered periodically, with MUT’s period =
4ms and WCET = 2ms, and PRV’s period = 3ms, offset =
0.5ms, and WCET = 1ms. We confine our attention to the
first hyperperiod, consisting of 3 MUT executions and 4 PRV
executions.

In a nominal run, the (read) access sequences in the three
MUT executions are (c, a, b) at simulation time 0.0, (d, b, e, c)
at time 4.0, and (e, c, d, b) at time 8.0. Also, the write
sequences in the four PRV executions are (a, d, c) at time
0.5, (e, b) at times 3.5 and 6.5, and (c, e, d, b) at time 9.5.
The various test runs are illustrated in Figures 5 and 6 and
explained in the sequel. In these figures, empty rectangles rep-
resent WCETs, filled rectangles represent (non-zero) execution
times, and thick bars represent zero-time executions. Variable
accesses are shown in each execution as untimed sequences,
spread horizontally such that one can see the interleaving of
reads in the MUT with writes in the PRV. Note that scaling
of the time axis is non-uniform (to accommodate the various
interleavings). The nominal run is depicted in Figure 5(i). The

first stability run is illustrated in Figure 5(ii) and described
next in timestamp order.

(i)

(ii)

(iii)

(iv)

Legend: , = MUT execution. , = PRV execution. = WCET.

cab dbec ecdb

adc eb eb cedb

c ab d bec e cd b

a dc eb eb c edb

acb acd be ac ed b

adc eb eb ce db

ac b ac dbe ace db

adc eb eb ced b

t
0 0.5 1.5 2 3.5 4 4.5 6 6.5 7.5 8 9.5 10 10.5

Figure 5. Testing runs with read/write accesses: nominal (i), stability (ii:
unbuffered , iii: a, c buffered) and coherency (iv: a, c buffered)

0.0: MUT reads c, then waits before reading a.
0.5: PRV writes to a and waits (before writing d). MUT

proceeds, reads a and b and terminates (at simulation
time 0.5). A stability violation involving variables (c, a)
from C0 is reported.

1.5: As the PRV’s WCET expires, PRV resumes and executes
until termination (writing d and c).

3.5: PRV is triggered and waits before accessing e.
4.0: MUT reads d, then waits. PRV wakes up and writes to

e, then to b (which satisfies the MUT’s request), and
terminates. MUT resumes, reading b, e, c, and terminates.
Stability violation: (d, b).

6.5: PRV waits until its WCET expires (at 7.5), when it
executes completely.

8.0: MUT reads e, then waits before c.
9.5: PRV writes c then waits before e. MUT resumes and reads

c, d, then waits for b to be changed. PRV wakes up and
updates e, d, b, sends a positive answer and terminates.
Stability violations: (d, b) and (e, c).

Note that the variables whose modifications caused the loss
of stability are a, c from C0, and b from C1. Assume that a
decision is made to buffer a and c in the MUT, while the
case of b is not yet decided. Thus, the user marks a and c as
”protected” in the MUT. Consequently, the tool automatically
modifies the software by including an atomic section to be
executed at the trigger time of the MUT in order to fill the
buffers, and redirecting the read accesses in the MUT to use
the buffers. The buffer-fill section is not subject to execution
switching: no waiting is done before or inside this section.

In the stability test with the new settings, shown in Figure
5(iii), every MUT execution always starts with the atomic
buffer-fill section for variables a and c. The MUT execution

at time 0.0 goes through without any waiting. In the executions
triggered at 0.5 and 6.5, the PRV waits until its WCET expires,
without achieving any violation. As for the other executions:
3.5: PRV waits before accessing e.
4.0: MUT fills a and c buffers, reads d, then waits before b.

PRV wakes up and writes to e, b, then sends a positive
answer to the MUT and terminates. MUT resumes ex-
ecution, reads b, e, and terminates. Stability violations :
(d, b), (c, e), (a, e).

8.0: MUT reads a, c, then waits before e.
9.5: PRV updates c, e, then waits. MUT resumes and reads

e, d, then waits before b. PRV updates d, b, and termi-
nates. MUT reads b and terminates. Stability violations:
(d, b), (c, e) and (a, e).

The consistency testing tool complements the list of
achieved violations with output analysis results, obtained by
comparing MUT outputs with reference signals from the
nominal run. This enables the user to perform impact analysis
and/or root cause analysis, and to factor the results in the
decision making process. To illustrate this part in our example,
we consider next that certain code fragments are executed as
shown in Listings 1 to 4. For a run of the application, let
M1,M2,M3, . . . denote the sequence of MUT executions,
and P 1, P 2, P 3, . . . denote the sequence of PRV executions.
We assume that outputs o1, o2 are updated in executions M2

and M3 as shown in Listing 1, and Listing 2. The code
fragments in Listings 1 and 2 sit on alternative execution paths
of the MUT, one being exercised in M2 and the other one
in M3. For PRV executions, we limit our attention to how
variables e and b are set in executions P 2, P 3 - as shown by
Listing 3, and in execution P 4 - see Listing 4.

Listing 1. Original MUT fragment
executed in M2

tmp1 = d ;
i f (b > 0) {

o1 = tmp1 ;
}

tmp2 = e ;
o2 = c ;

Listing 2. Original MUT fragment
executed in M3

i f (e > 0) {
o2 = c ;
}

o1 = d ;
tmp3 = b ;

Listing 3. PRV fragment executed
in P 2 and in P 3

e = 1 ;
b = 1 ;

Listing 4. PRV fragment executed
in P 4

e = 0 ;
b = 0 ;

For these execution paths, one can determine that the output
values in the previous stability run (Figure 5(iii), with a and c
buffered) are the same as in the nominal run: Note first that the
violations involving a have no effect as the value read from
a is never used in M2 and M3. Also, the values of b, c, d, e
read in M2 in the stability test are the same as the one read
in the nominal run (i.e., those produced by P 1 and P 2). In
contrast, the value read from e in M3 is different than the
one in the nominal run, (it is written by P 4 instead of P 3).
According to Listings 2 and 4, this has the effect that o2 is not

updated, so its value is the same as the one set in M2. In the
nominal run, M3 updates the output with the very same value.
Thus, violation (d, b) has no effect at all, while violation (c, e)
changes the execution path but not the output value.

In conclusion, it is sufficient to buffer only variables a and c
to achieve relevant data stability. If coherency of input values is
ensured at the start of every MUT execution, then consistency
is obtained (with the reduced buffering).

Consider next the coherency requirement. Note that some
stability violations are also coherency violations - for example,
(c, e) from the previous run has c produced in P 1 and e
in P 4. To enforce further coherency violations, a dedicated
protocol is employed: The MUT execution is paused before
the first access to a consistency set, when the message to
modify the involved variable is sent. The corresponding run
(with variables a and c buffered in the MUT) is depicted
in Figure 5(iv). We describe next only the last MUT and
PRV executions, as they are the only ones that result in new
(coherency) violations.
8.0: MUT reads a, c, e, then waits before d.
9.5: PRV updates c, e, d, then waits. MUT resumes, reads d, b,

and terminates. Coherency violation: (d, b).
10.5: End of WCET for the PRV, which writes b and terminates.

Notice that coherency violation (d, b) in run (iv) is quite
different than stability violation (d, b) in run (iii). While the
latter has no effect on MUT outputs, the former affects output
o1, which is updated in run (iv) with the value of d produced
in P 4 rather than the one provided by P 1, as in the nominal
run. Consequently, variable d is configured as ”protected” in
the MUT. The tests are now repeated with a, c, and d buffered
in the MUT, with the two runs depicted in Figure 6.

(v)

(vi)

acd b acd be acd e b

adc eb eb ce db

acdb acdbe acdeb

adc eb eb cedb

t
0 0.5 1.5 2 3.5 4 4.5 6 6.5 7.5 8 9.5 10 10.5

Figure 6. Further runs for stability (v) and coherency (vi) with a, c, and d
buffered

In the stability test (Figure 6(v)) the first MUT execution
waits before accessing b until time 0.5, when the PRV executes
completely without creating any violation. In M2, the MUT
waits before b, and we get violations (d, b) and (c, e). The
same violations are incurred in M3. As in run (iii), these
stability violations change nothing in the MUT outputs as com-
pared to the nominal run, hence no new buffering requirement
is generated. In the coherency run (Figure 6(vi)), no waiting
is done in the MUT, as a, c, and d are read at the trigger time
and the accesses to b and e are not first accesses to consistency
sets. Hence, no further coherency violation is obtained.

In conclusion, variables b and e do not need buffering. Note
that the ability to (automatically) compare outputs with the

standard SIL simulation is crucial for the practical application
of this approach. The result of output checking can form the
basis of an exception (no buffering despite violations), and/or
it can guide a root cause analysis on the software.

We proceed next to formally describe the stability and
coherency requirements considered in this paper. Let ts denote
the start time of an execution and te the termination time. The
following assumptions are made to simplify the presentation
and without loss of generality: MUT executions are sequential:
ts(M

i) > te(M
i−1), exactly one PRV updates a MUT input

variable, PRV executions are sequential: ts(P j) > te(P
j−1),

and all input variables are read in a MUT execution.
Let C be a consistency set (group of input variables): C =

(q1, . . . , qn). We use q(t) to denote the value of variable q at
time t. We refer to the sequence of read accesses to variables
in C in execution M i as Readi(C) = (ri1, . . . , r

i
m) where rk

is the k − th read performed in program order: rk = (qk, tk)
represents the accessed variable qk ∈ C and the time of access.

The stability property requires that the values read in the
MUT from the variables in C are drawn from the snapshot of
C at the time of the first access to C:

Definition 1: The stability property is satisfied in MUT
execution M i if the read sequence Readi(C) is such that

qik(t
i
k) = qik(t

i
1), k = 2,m

Under this stability requirement, a sufficient condition for
consistency is that the data in C is coherent at the time instants
ti1, i = 1, 2 . . ., with coherency criteria specified separately.

For the case when all values in C are produced by the
same component PRV, we consider the following coherency
condition. Let us first denote by Writej(C) = (wj

q1 , . . . , w
j
qn)

the list of values written to the variables in C during the
execution P j . Even if a variable is not actually accessed
in writing, its (constant) value during P j is still listed in
Writej(C).

Definition 2: The coherency property is satisfied in MUT
execution M i if the read sequence Readi(C) is such that

∃P j with ts(P
j) < te(M

i) and qik(t
i
k) = wj

qk
, k = 1,m

A stability violation in execution M i is a pair (ri1, r
i
k)

with qik(t
i
k) 6= qik(t

i
1), representing the fact that the value of

variable qik was changed between the time ti1 of the first read
access to C and the time tik when the variable qik is read in
execution M i. Note that if the violation involves the same
variable (qik = qi1) then this is clearly a consistency violation,
since stability of atomic data is compromised. A stability
violation involving distinct variables may or may not be also a
consistency violation, depending on coherency considerations.
However, the decision to issue a buffering requirement can be
made also in the lack of coherency information, by comparing
the simulation outputs with those from the nominal run. If
significant differences are observed and traced back to the
stability violation, then this is sufficient motive to request
buffering of the involved variables. If a violation does not have

a significant effect on the outputs, then no buffering request
is made, regardless of coherency.

A coherency violation occurs in execution M i if values of
at least two members of Readi(C) are produced in different
provider executions: ∃k, l ∈ 1, ...,m s.t.

qik(t
i
k) = wh

qk
and qil(t

i
l) = wg

ql
for some h, g ∈ N , h 6= g

C. Modeling and design of the scheduling protocol

The scheduling protocol is defined by means of MUT and
PRV timed automata according to the standard task execution
model, where a task can be in one of the following states:
suspended, in execution, waiting, or preempted. This model
is also employed in the Validator simulator [9], which is
the target execution environment for the scheduling protocol.
Since the Validator was implemented in C, this was also the
target implementation language for the protocol. The end result
was a tool developed in a model-based design process briefly
presented below. We include also description of executable
models with the aim to complete here the presentation of the
scheduling protocol.

The initial specification expressed as timed automata was
first translated into actors in the Modal Model domain in
Ptolemy II modeling and simulation environment [10]. This
enabled quick prototyping and validation by simulation. Thus,
the actors are run within a top-level Ptolemy II test model with
test cases (manually created) that provide inputs consisting
of MUT and PRV executions specified as access sequences,
trigger times and WCETs (no actual functionality is included).
The detected violations are then checked against expected
ones.

To verify the Validator-integrated C implementation, a new
actor was added to the Ptolemy test model, enabling co-
simulation with the Validator. The model is shown in Figure
7. The VALIDATOR COMM actor ensures that the Validator
simulation (executed as a separate process/thread) is done in
lockstep with the MUT and PRV controller actors in Ptolemy,
on the same test inputs. The CT BACKEND actor implements
conditions and actions invoked from the transitions of the
MUT and PRV modal models, as well as verification of
violations reported by the Validator run against the ones
detected by the MUT CONTROLLER actor. By including
randomization in the actors that generate the test inputs for
MUT (MUT TRIGG and MUT accSeq) and for the PRV
(PRV TRIGG and PRV accSeq), the Ptolemy model essen-
tially generates test cases and verifies them online, recording
only the failed ones.

The top-level state machine of the MUT controller actor
for stability testing is shown in Figure 8. The modal models
described in the sequel have been simplified for the purpose of
presentation clarity. The actual transition conditions (guards)
and actions (in Ptolemy II syntax) are hidden, only their
descriptive text annotations being shown on the transitions.
The guards that enable/disable transitions are written between
square brackets (a missing guard means the transition is always
enabled). Due to space concerns we do not include here the

Figure 7. Implementation testing model in Ptolemy II

meaning of graphical annotations on the transitions, which can
be found in [11].

The initial state is suspended (S). A MUT execution is
triggered when the input port trg contains a Ptolemy data
token; then the transition from state S to state E (execution)
is taken and protected MUT variables are buffered. State E
contains a refinement actor that is initialized with the access
sequence specified in the token removed from trg. The E
refinement actor simply visits the sequence elements in turn
until the end of the sequence, when the ”Execution terminated”
guard enables the transition to the suspended state. A sequence
element specifies the access type (read/write) and the variable
involved. When an element is visited, one of the three access
transitions outgoing from E is enabled. The most interesting
one is the transition to state W (waiting), representing the fact
that the next execution step is a read access to a MUT input
variable where waiting may be needed. The refinement of state
W is shown in Figure 9.

Figure 8. MUT state machine (top level)

From the initial state, a check is made whether this is a first
access to a consistency set or not.

- If yes, then the transition to the final state is taken, which
in turn enables the top-level transition from W to E, which
records the access and its timestamp. Then E continues with
the next element of the access sequence.

- Otherwise (i.e., second access), the local state chages to
”check4PRV” and a look-ahead is performed to determine
whether a PRV is/will be executed until the current WCET

Figure 9. Refinement of state W: processing of read access

window of the MUT expires. If so, then the transition to state
”Wait4PRV” is taken and a token (representing a modification
message) is sent on the ”request2PRV” output port (connected
to the PRV controller as seen in Figure7). If (when) an answer
from the PRV is received - as a token on the input port
”from PRV” - the answer is processed and if it is positive,
then a violation is recorded. Note that most of the conditions
and actions on the transitions are implemented as methods
of the top-level actor CT BACKEND, responsible also with
bookkeeping and reporting. If no answer comes before the
WCET expires, the lowermost transition is taken and all the
remaining accesses in the current execution are marked to be
ignored.

Figure 10. Provider model

The PRV controller model is shown in Figure 10. A MUT
message comes as a token on the input port upReq, containing
the involved variable v and a deadline for the request, which
is the expiration time of the MUT’s WCET. A token received
in the suspended state is simply stored to be processed in the
next execution. The refinement of state E is the same as for the
MUT , where a sequence element represents a write access.
If no request is present when PRV is triggered, then the PRV
goes into the state W (waiting for request). Otherwise, if the
accessed variable is different than the requested one (v), then
the access is timestamped. Upon writing to v, a positive answer
is sent (as a token on the toMUT port) and the state switches
to W . The PRV goes from the waiting state into the execution

state when a new request is received, or when its WCET
expires. In the latter case, all further accesses are ignored
(only the dotted transition in state E will be enabled). The
four transitions from E to S represent alternative conditions
and corresponding actions at the execution termination of the
PRV (denoted by ET in the figure). From top to bottom: A
positive reply is sent to the MUT if the last access before
termination satisfies the request. Nothing is done if no request
is present when termination occurs. If a request is pending
when the PRV terminates, and if the time of the next PRV
trigger falls after the request’s deadline, then the request cannot
be satisfied (negative answer to MUT). Otherwise, the request
is left pending in the hope that it may be satisfied in the next
execution.

D. Application and consistency testing workflow

We consider a Simulink SIL model where the MUT and
possibly PRV software are included as an S-function, to which
we associate a specification of consistency sets and (worst-
case) execution times. The model may contain only the MUT,
in which case a generic PRV code is generated by the tool
chain, such that a PRV task samples the system inputs in
an order specified in the configuration. Based on the initial
consistency specification, a Validator build tool configures
the virtual platform, generates PRV source code if needed,
then instruments all the source code at the access spots and
builds an executable (see Figure 11). Furthermore, the tool
also generates an S-function that replaces the (standard) SIL
S-function in the Simulink model. Upon starting a simulation,
the Validator executable is launched as a separate process,
performing co-simulation in lockstep with the Simulink model,
recording all the inputs and the outputs on the file system. Af-
ter the co-simulation ends, the Validator program may continue
to perform batch simulations for combinations of alternative
consistency sets and execution times, using always the same
input values, as recorded from the initial co-simulation. Two
such runs are performed: one for stability violations and the
other for coherency violations. All outputs are checked against
reference signals from the standard SIL simulation, and all
results are aggregated and presented to the user at the end of
the two runs.

Validator
Simulator and

Virtual Platform

Instrumented
module and
producer tasks

Module
source code

Consistency
specification
and execution
times (XML) Platform

configuration

System
I/O

(Plant)

Access point
Instrumentation

Consistency
stress test
report

Code generation
Producer

tasks

Reference
outputs

Figure 11. Testing workflow

IV. CASE STUDY

A. Example control function

In this section we describe the application of the test on
a typical module of a power-train control function, which
can be seen in Figure 12. The picture shows one part of a
bigger functionality. The function selects, based on the two
discrete inputs variables ExternalFuelSupplyRequest, in short
ExtReq, and BalancingFuelSupplyRequest, in short BalReq,
either the contiguous input variables ExternalFuelSupplySet-
point, in short ExtSetp, or BalancingFuelSupplySetpoint, in
short BalSetp, as the output variable FuelSupplySetpoint.

Figure 12. Typical example of a power-train control function

This function is called time periodic, every 10ms. The input
values are produced in the so-called segment task for every
combustion cycle of the four stroke engine. Thus, the period
of this task will change according to the engine speed and
number of cylinders. For a four cylinder engine at 6000rpm
the calculation period will be 5ms, while at 4000rpm it will
be 7.5ms. For the consistency testing we have to assume that
this task might be executed concurrently on another core than
the 10ms function of the module under test.
The expected behaviour of the output is a coherent switch
between ExtSetp and BalSetp values, according to the setting
of the request flags ExtReq and BalReq, with the former having
priority on the latter when both flags are set and a default value
being used when no flag is set.

B. Test for coherency of scalar variables

In the absence of a software provider for the MUT inputs,
the tool automatically generates provider tasks that simply
sample the input signals from the Simulink model. The user
can configure a PRV task to be triggered by a plant signal, by
a random pulse with settable minimum and maximum widths,
or by a change in the inputs.

After running the stability and coherency tests, the user is
presented with a summary report of violations as well as with
output comparison plots. An example of consumer-stability
results for the entire module is given in Figure 13 (for one
execution time scenario), where one can see that the inputs
shown in Figure 12 are all involved in violations, while another
variable in the same consistency set is not. Two other variables
(different consistency set) are marked yellow, meaning they
have not been accessed during simulation.

Figure 13. Summary of the data consistency test for the example module

As a trigger signal for the segment task was not available in
the plant model, the tool was configured to generate the PRV
trigger at every change in the inputs ExtReq and BalReq. An
output plot example for a coherency run is shown in Figure
14(top). The red signal is the nominal output and the blue one
is the output of the manipulated run. The middle and bottom
plots depict the external and balancing inputs, respectively.
The nominal behavior is as follows: until time 2.84s, the output
switches between the value of ExtSetp (when ExtReq is set)
and a default value of 20 (when ExtReq is reset). After 2.84s,
when BalReq is set, the output switches between ExtSetp
(when ExtReq is set) and the value of BalSetp (when ExtReq
is reset). Note that ExtReq has a rising edge at time 2.85s. In
the manipulated run, every time one of the request signals is
set, the output drops to zero for 10ms, with an accumulated
effect between 2.84s - 2.86s. This illegal behavior is a result
of forced coherency violations. For example, at time 2.6s, both
MUT and PRV are triggered and: (1) the MUT waits for the
PRV to modify ExtReq; (2) PRV sets ExtReq and then waits
before setting the new value of ExtSetp; (3) MUT proceeds
to read the old value of ExtSetp (zero) and, since ExtReq is
set, it updates the output with that value; (4) PRV updates
ExtSetp with the new value. The next MUT execution comes
after 10ms and puts the new value into the output. Similarly,
at time 2.84s the MUT will update its output with the previous
value of BalSetp (zero) instead of the most recent one. This is
repeated in the next execution at 2.85s due to the ExtReq input
that has priority, thus yielding the 20ms interval of incorrect
output.

C. Effort considerations

The stress test in the SIL for the above use case was run
on an INTEL i7 running at 2.7 GHz with 32GB RAM. The
preparation of the SIL environment needs about one hour, one-
time time effort. Executing one test case takes in the range
of 12 seconds for a simple model up to 3.5 min time for a
complex one. Most of the models we see in our application
would need 1 minute test execution time. In average we see 5
test cases per module. Finally the evaluation of the test results
needs less than 30 minutes. Typically a module is reused in the

Figure 14. Output signal comparison (top), and corresponding inputs

same version in 10 projects. The total time for the consistency
stress test for one module with a platform coverage under these
conditions is expected to take 140 minutes (60 minutes plus 1
minute multiplied by 5 test cases multiplied by 10 projects and
30 minutes of evaluation of test reports.) In case of changes,
the set-up time can be neglected, therefore mainly half an hour
report evaluation is needed.

V. RELATED WORK

The general problem of data consistency in real-time sys-
tems has been addressed quite extensively at the system design
level, with approaches ranging from real-time data bases to
schedule synthesis. Buffer optimization is a main concern
in scheduling of dataflow graphs, see e.g. [12], [13]. Here
we have the same objective but in a different setting, as the
function developer has no control over scheduling.

The approach presented in this paper can be regarded as
a type of cooperative scheduling, where a task voluntarily
relinquishes execution control at chosen steps in its execution.
While cooperative scheduling has been employed to avoid
failures in multithreaded programs (see, e.g., [14]), here it is
used for the opposite purpose. We also mention the tool Sym-
biosis [15], which creates failing multithreaded schedules to
(re)create bugs in a multithreaded program. Another example
of related bug detection tool is AVIO [16].

Testing of concurrent programs is a related and extensively
studied area. An comprehensive survey in this respect is
provided in [17], which groups the existing results in sev-
eral categories: reachability, structural, model-based, mutation-
based, slicing-based, formal methods, random testing, and
search-based testing. For example, the work in [18] deals with
unit testing of multithreading code by enforcing schedules for
multithreaded tests. An example of random testing approach
that seeks to create race conditions with high probability
is given in [19]. Our proposal is a combination of model-
based, slicing-based, formal methods and search-based testing
for elicitation of data consistency requirements in real-time
multicore applications.

VI. SUMMARY AND OUTLOOK

This method has been applied with success on several
modules of an engine management system. With this we are
able to support the function developer with an automatized
stress test for the identification of consistency requirements,
which will improve the quality of those requirements, as today
those are strongly depending on the knowledge of the function
developer concerning data consistency. Vitesco Technologies
intends to integrate this method seamlessly into the existing
MIL, SIL and PIL test chain.

REFERENCES

[1] AUTOSAR-Consortium, in http://www.autosar.org, Rev 4.2.2.
[2] U. Margull, M. Niemetz, and G. Wirrer, “Quirks and challenges in

the design and verification of efficient, high-load real-time software
systems,” in Proceedings of the 5th Embedded Real Time Software and
Systems Conference (ERTSS), 2010.

[3] D. Claraz, F. Grimal, T. Ledier, R. Mader, and G. Wirrer, “Introducing
multi-core at automotive engine systems,” in ERTS2, 2014.

[4] R. Mader, A. Graf, G. Winkler, and D. Claraz, “Autosar based multicore
software implementation for powertrain applications,” in SAE Worldcon-
ference, 2015.

[5] R. Sieber, “Applying autosar in a powertrain dynamic architecture using
multicore ecus,” in Embedded Multi Core Conference (EMCC), 2016.

[6] S. Resmerita, A. Naderlinger, and S. Lukesch, “Efficient realization
of logical execution times in legacy embedded software,” in MEM-
OCODE17 Vienna, 2017.

[7] D. Claraz, R. Mader, T. Flämig, and L. Michel, “Shared sw development
in multicore automotive context,” Proceedings- ERTS 2016, vol. 1, 2016.

[8] S. Resmerita and W. Pree, “Verification of embedded control systems by
simulation and program execution control,” in 2012 American Control
Conference (ACC), June 2012, pp. 3581–3586.

[9] S. Resmerita, P. Derler, and E. A. Lee, “Modeling and simulation of
legacy embedded systems,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2010-38, Apr 2010.

[10] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs,
Y. Xiong, and S. Neuendorffer, “Taming heterogeneity - the ptolemy
approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[11] E. A. Lee, “Finite state machines and modal models in ptolemy
ii,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-151, Nov 2009.

[12] S. Kang, D. Kang, H. Yang, and S. Ha, “Real-time co-scheduling of
multiple dataflow graphs on multi-processor systems,” in 53nd Design
Automation Conference (DAC), June 2016, pp. 1–6.

[13] N. Pontisso, P. Quèinnec, and G. Padiou, “Analysis of distributed multi-
periodic systems to achieve consistent data matching,” in 10th Annual
International Conference on New Technologies of Distributed Systems
(NOTERE), May 2010, pp. 81–88.

[14] B. Lucia and L. Ceze, “Cooperative empirical failure avoidance for
multithreaded programs,” in 18th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’13. New York, NY, USA: ACM, 2013, pp. 39–50.

[15] N. Machado, D. Quinta, B. Lucia, and L. Rodrigues, “Concurrency
debugging with differential schedule projections,” ACM Trans. Softw.
Eng. Methodol., vol. 25, no. 2, pp. 14:1–14:37, Apr. 2016.

[16] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “Avio: Detecting atomicity
violations via access interleaving invariants,” in 12th International
Conference on Architectural Support for Programming Languages and
Operating Systems. New York, NY, USA: ACM, 2006, pp. 37–48.

[17] V. Arora, R. Bhatia, and M. Singh, “A systematic review of approaches
for testing concurrent programs,” Concurr. Comput. : Pract. Exper.,
vol. 28, no. 5, pp. 1572–1611, Apr. 2016.

[18] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and D. Marinov,
“Improved multithreaded unit testing,” in 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software
Engineering. New York, NY, USA: ACM, 2011, pp. 223–233.

[19] K. Sen, “Race directed random testing of concurrent programs,” in 29th
ACM SIGPLAN Conference on Programming Language Design and
Implementation. New York, NY, USA: ACM, 2008, pp. 11–21.

	Multi Core Software for Automotive Applications
	Where Multi-Core is in use
	Legacy and AUTOSAR-Classic Code as basis for distribution
	Project versus Platform Development of Software

	Data Consistency
	Stability and Coherency
	Means to ensure Data Consistency
	Impact on performance and memory size
	Specification of Consistency Requirements

	How to identify Consistency Requirements
	Today's approach
	Adversarial Consistency Testing
	Modeling and design of the scheduling protocol
	Application and consistency testing workflow

	Case Study
	Example control function
	Test for coherency of scalar variables
	Effort considerations

	Related Work
	Summary and Outlook
	References

