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ABSTRACT
Automotive architectures today consist of up to 100 elec-
tronic control units (ECUs) that communicate via one or
more FlexRay and CAN buses. Multiple control applica-
tions – like cruise control, brake control, etc. – are specified
as Simulink/Stateflow models, from which code is generated
and mapped onto the different ECUs. In addition, schedul-
ing policies and parameters, both for the ECUs and the
buses, need to be specified. Code generation/optimization
from the Simulink/Stateflow models, task partitioning and
mapping decisions, as well as the parameters chosen for the
schedulers – all of these impact the execution times and
timing behaviour of the control tasks and control messages.
These in turn affect control performance, such as stability
and steady-/transient-state behaviour. This paper discusses
different aspects of this multi-layered design flow and the
associated research challenges. The emphasis is on model-
based code generation, analysis, testing and verification of
control software for automotive architectures, as well as on
architecture or platform configuration to ensure that the re-
quired control performance requirements are satisfied.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]:
Real-time and embedded systems

General Terms
Algorithms, Design, Performance

Keywords
Automotive Control Systems, Model-based code generation,
Model-based testing and verification

1. INTRODUCTION
Modern automotive architectures support a large number

of control functions, some of the more common ones being
(a) the engine control unit, which includes electronic throttle
Control and transmission control, (b) the body control sub-
system, which includes climate control, locking, and mirror

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0714-7/11/10 ...$10.00.

control, (c) chassis control, which involves stability control,
and (d) safety functions like adaptive cruise control, lane
keeping, lane centering and lane departure warning. Most of
these functions are closed loop control algorithms involving
one or more feedback control loops around the plant being
controlled, along with appropriate sensor and actuator se-
tups. As can be seen from the above list of examples, the
control features are diverse in nature, and they also differ
in terms of functionality and criticality. The body control
functions are discrete and reactive, the safety and power-
train control functions are continuous, hard real-time appli-
cations, while the telematics applications are discrete and
soft real-time in nature.

A feedback control system aims to achieve the desired be-
havior of a dynamical system by applying appropriate inputs
to the system. Currently, automotive control functions are
implemented in software organized in a federated architec-
ture. Such architectures follow the principle of one function
per ECU (Electronic Control Unit), leading to a simple de-
velopmental model, wherein multiple suppliers deliver inde-
pendent ECUs with distinct functions and the OEMs assem-
ble and interconnect the ECUs using one or multiple buses.
It is simpler to develop a system using this architecture but
it results in too many ECUs in an architecture, leading to
higher cost, vehicle weight and poor efficiency. An emerging
alternative architecture paradigm, called the integrated ar-
chitecture involves multiple functions being integrated into
a single ECU and a single function may be distributed over
multiple ECUs. The emerging Autosar standard [2] sup-
ports such an architecture that helps both the OEMs and
the suppliers. An example of such a setup is shown in
Fig. 1(a), where the ECUs have dedicated connections to
sensors or actuators. In such setups, the response time of
a task on an ECU depends on the operating system (OS)
running on the ECU, where common automotive OSs are
can either be preemptive (e.g., OSEK, OSEKTime) or non-
preemptive (e.g., eCos). Similarly, the transmission time
of a message over a bus depends on the arbitration policy
implemented on the bus. Bus arbitration policies also can
either be time-triggered (e.g., the static segment of FlexRay)
or event-triggered (e.g., the dynamic segment of FlexRay, or
CAN). Fig. 1(b) shows an example schedule and its impact
on the timing and performance of control loops running on
the architecture, i.e., sensor-to-actuator delay values.

Such distributed architectures result in a significant reduc-
tion in cost and a better utilization of hardware resources.
The development process starts from high level models usu-
ally specified using the Simulink/Stateflow. Next, the model



is incrementally refined down to software models and then
to implementations on execution platforms. A refined model
may introduce new behavior that is not accounted for in
higher level models specified in the Simulink/Stateflow frame-
work, due to abstraction of execution and communication
times. Section 2 discusses various features of such model-
based software development, current practices and research
challenges. For safety-critical control applications such as
those found in the automotive domain, preservation of func-
tional and timing properties is crucial when generating soft-
ware from models. Hence, the timing properties of the soft-
ware model must be guaranteed to be the same as in the
higher level models through the methodology used to gener-
ate the code and that used to deploy the code on the plat-
form (consisting of the architecture, OS, etc). In Section 3,
we present a survey on currently available tool suites, chal-
lenges and opportunities in the area of validation of auto-
motive control software. What comes next is the testing
and verification of the generated software models. Test-
ing and validation of automotive control systems are chal-
lenging because (a) the control algorithms invariably involve
many non-linear computations, (b) in an integrated archi-
tecture, components in different ECUs communicate, which
may incur non-deterministic and variable delays in message
transmission. Section 4 presents current state-of-the-art in
testing and verification of automotive control software. Fi-
nally, when the control software is implemented on a plat-
form, there is a need to verify whether the control functions
meet high level constraints and requirements such as per-
formance and stability. Moreover, certain inherent proper-
ties of control functions may be utilized to direct the plat-
form design process and choose platform parameters. Hence,
the control algorithms/laws and platform parameters may
be co-synthesized to meet certain high-level functional re-
quirements, which satisfying platform constraints like bus
bandwidth or those stemming from the bus protocol. Sec-
tion 5 describes common performance indexes for control
functions, how the platform parameters impact control per-
formance and current state-of-the-art on how they can be
jointly analyzed and co-designed.

2. MODEL-BASED SOFTWARE DEVELOP-
MENT

Software based functions not only determine the attrac-
tiveness, innovation, enhanced features, differentiation, and
speed of realization, but also the complexity and develop-
ment costs of today’s vehicles. With the growing amount
of software-based functions the complexity of their develop-
ment and maintenance in the vehicles also increases. This is
accompanied by significant risk of errors in the development
process, resulting in ever rising costs for coverage and debug-
ging both in the development phase and in the field of oper-
ation. To avoid these risks and the associated spiraling costs
for a fast time-to-market, cost-efficient design for an effec-
tive development processes (in the sense of optimal results)
is needed. This can be achieved through automating the
development process with the concepts and principles from
the mainstream systems and software engineering domains.
In the long term, a comprehensive modular system must be
based on an architectural model with high modularity, ab-
straction and an appropriate system for effective reuse. The
long-term goal is to develop flexible, reusable, and modular
system components, as well as function-oriented strategies.
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Figure 1: (a) Distributed automotive control appli-
cation (b) A scheduling example for all the tasks and
messages.

The software systems in vehicles have the following char-
acteristics, which make them challenging to design, analyze
and debug.

• Multiple, often conflicting and error-prone requirements

• Hard and soft real-time properties

• Stringent and high volume communications require-
ments

• Multi-functionality with complex dependencies between
functions

• Heterogeneity of the application domains

2.1 Approaches
As already mentioned, the growing share of software-based

functional features in modern vehicles requires a reorienta-
tion of the development process and development paradigms.

• System orientation emphasizes the concept of a sys-
tem, with its associated paradigm of system integration
based on an “architecture” as opposed to a view of a
system as an “assembly kit” to assemble largely inde-
pendent components.

• Functional orientation puts emphasis on the func-
tions of a system, in contrast to the subsystems (com-
ponents, parts) that perform these functions and their
interactions. This is in view of the increasingly dis-
tributed implementation of functions, as a result of
which explicit modeling of functions is essential. The
result is a strong emphasis on a systematic require-
ments engineering and architecture/function develop-
ment through consistent feature modeling.



• Systems engineering refers to a holistic approach
to the development of a system. The result is a strong
emphasis on requirements management, architecture
and the integration phase.

The systematic use of a range of methodological approaches
is a must: Consistent model-based development creates the
conditions for the required precision and the acquisition of
relevant system characteristics. The development of models
is often expensive and pays off only if the models are repeat-
edly and “consistently” used throughout the entire life cycle
of a vehicle. What is also important is reuse and product
line approaches in other projects as well.

A high level of automation in the development requires
the use of formal models and integrated product data mod-
els (artifacts and models in the form of back bones that
capture all relevant data and models of the systems and are
the basis for tool support). The tool support must cover all
the usual activities of product development such as model
and information collection, analysis (through simulation and
verification of properties), transformation, generation, con-
figuration and version control to support the project and its
management (tracking project progress).

2.2 Hierarchical Architecture
Model-based development generates artifacts for a com-

prehensive product data model (the so-called Back Bone)
and a durable system for version and configuration manage-
ment. An essential part of this development process is re-
quirements engineering that is based on a form of functional
hierarchy. In such a hierarchy, each function is recorded
along with its context that includes its messages, events, and
attributes to determine existing dependencies between func-
tions. The logic of each individual function is modeled at an
appropriate level of detail. The quality requirements of the
overall system and its sub-functions are collected in a stan-
dardized quality model, which includes risk and safety anal-
ysis and allows a comprehensive architecture review. This
evolution is based on predetermined and well-maintained ve-
hicle domain models. These models also capture function
hierarchy across projects. Through a comprehensive valida-
tion process, the quality of the documented requirements is
also ensured. This comprehensive architectural model con-
sists of a number of levels and views, which make the archi-
tecture tractable to manage. This requires a systematic ap-
proach for a comprehensive description of the architecture of
embedded software systems and the functionality provided
by them.

• Conceptual architecture is related to the functional
view and consists of usage level and function hierar-
chy. It is developed as a result of the requirements en-
gineering and the logical subsystem architecture that
describes the interaction logic between local subsys-
tems.

• Technical architecture consists of the software, i.e.,
the software architecture that describes the code archi-
tecture, the task architecture of executable and schedu-
lable units and the scheduling and runtime platform.
It also consists of the communication architecture in-
cluding bus scheduling, the platform hardware and the
mapping of the software tasks onto the hardware plat-
form.)

Having the above two levels decouples the specification or
requirements from the development. The goal is to enable
specification and high-level modeling of control algorithms,
as well as a verification of the application, irrespective of the
final technical architecture. Furthermore, the application-
independent components of the technical architecture (i.e.,
the hardware platform) may also be modeled, verified and
refined independent of the final application to be mapped
on the platform.

3. VALIDATION AND VERIFICATION OF
AUTOMOTIVE CONTROL SOFTWARE

Modern approaches to software design, such as the one de-
scribed above, and embedded systems design such as Model-
Driven Engineering (MDE) [34] and Platform-Based Design
(PBD) [43] advocate a top-down approach for application
development. Preservation of timing properties from higher
level models to the software level model necessitates the
methodologies and tools for obtaining correct-by-construction
software applications, where timing properties of the soft-
ware model are guaranteed to be the same as in the higher
level model. Examples in this respect are tools based on syn-
chronous languages [20] such as Scade [14] and tools based
on the logical execution time (LET) concept [22] such as the
Timing Definition Language (TDL) [36]. In this paper, the
latter is described in more detail.

3.1 Achieving correct-by-construction timing
behavior with TDL

TDL allows the LET-based specification of timing prop-
erties of hard real-time applications. The LET of a com-
putational unit, or task, represents a fixed logical duration
between the time instant when the task becomes ready for
execution and the instant when the execution finishes. A
task’s LET is specified at the model level, independently of
the task’s functionality. When deploying the model on a
platform, the LET specification is satisfied if the total phys-
ical execution time of the task is within the LET interval
for every task invocation, and an appropriate runtime sys-
tem ensures that task inputs are read at the beginning of the
LET interval (the release time) and task outputs are made
available at the end of the LET interval (the termination
time). This is illustrated in Fig. 2. Between release and
termination points, the output values are those calculated
in the previous execution. Default or specified initial values
are used in the first execution of a task.

Tasks can receive information from the environment via
sensors and act on the environment via actuators. A task has
input ports, output ports, and state ports. State ports keep
state information between different executions of the same
task. Tasks that are executed concurrently are grouped in
modes. In TDL, a mode is a set of periodically executed
activities: task invocations, actuator updates, and mode
switches. Such a mode activity has a specified execution
rate and may be carried out conditionally. The LET of a
task is expressed as the mode period divided by the fre-
quency of the task invocation. Note that the time steps of
all activities in a mode period can be statically determined.

Mode activities are carried out by a runtime system which
performs the following operations at every time step: a) Up-
date output ports of tasks whose LET end at the current
time step. At time 0, the ports are initialized rather than
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Figure 2: The Logical Execution Time (LET).

updated. b) Update actuators. c) Test for mode switches. If
a mode switch is enabled, switch to the target mode. d) Up-
date input ports of the tasks whose LET start at the current
time step. e) Trigger the execution of the tasks whose LETs
start at the current time step.

TDL provides a top level structuring unit called a module,
which groups sensors, actuators, tasks, and modes that be-
long together. The module concept serves multiple purposes:
1) a module provides a name space and an export/import
mechanism and thereby supports decomposition of large sys-
tems, 2) modules allow the parallel composition of real-time
applications, 3) modules serve as units of loading, that is, a
runtime system may support dynamic loading and unload-
ing of modules, and 4) modules are the natural choice as
unit of distribution because dataflow within a module (co-
hesion) will most probably be much larger than dataflow
across module boundaries (adhesion).

A commercially available tool suite deals with modeling
and deployment of TDL components [11]. TDL components
can be written directly in textual form (TDL source code) or
designed graphically by using the TDL:VisualCreator tool.
A TDL compiler is provided, which targets a real-time vir-
tual machine, called the TDL:E-Machine. To deploy the
TDL model on a platform, an implementation of TDL:E-
Machine is needed for the platform. The TDL:VisualDistri-
butor can be used to assign TDL modules to a single spec-
ified computational node or a distributed system of nodes.
Also, the TDL:Scheduler is employed to generate the nec-
essary node and communication schedules. The tools also
check for the schedulability of the system, based on provided
worst case execution times for the tasks, under the assump-
tion that the periodically time-triggered TDL tasks are the
only significant computations competing for the platform
resources. The TDL tools have been integrated in Mat-
lab/Simulink. Figure 3 depicts the commercial TDL tool
chain. TDL has also been experimentally integrated in the
modeling and simulation framework Ptolemy II [6, 39].

While the benefits of approaches such as MDE and PBD
are well-understood, their full adoption in the established
embedded systems industry is rather slow. One of the main
factors responsible for this is the large base of legacy appli-
cations, which have been traditionally developed at the pro-
gramming language level, are usually highly optimized and
thoroughly tested. In this substantial part of the embed-
ded system industry, model-driven engineering is employed
only partially: typically, for developing new functionality
up to the software model, which is then manually merged
with the existing legacy code. This poses new challenges to
top-down approaches such as TDL. Some examples in this
respect are: dealing with high-priority event-driven tasks,
usage of shared memory, and the requirement to minimize

changes to the legacy code. To achieve robust timing behav-
ior of legacy applications, TDL has been enhanced [39] and
the tool-suite has been expanded to deal with legacy tasks.
The approach presented in [38] entails a minimal instrumen-
tation of the original code combined with an automatically
generated runtime system, which ensures that the executions
of designated periodic computations in the legacy software
satisfy the logical execution time specifications of the TDL
model. Code instrumentation and delaying of task execu-
tion to obtain a certain behavior is also used in Wang et al.
[55]. In this approach the authors use code instrumentation
to generate deadlock free code for multi-core architectures.
Timed Petri nets are generated from (legacy) code by instru-
menting the code at points where locks to shared resources
are accessed in order to model blocking behavior of soft-
ware. A controller is synthesized from the code and used
at run-time to ensure deadlock-free behavior of the software
on multi-core platforms by delaying task executions which
would lead to deadlocks.

3.2 Verification and Validation of Legacy Au-
tomotive Software

Formal methods for V&V of control applications are usu-
ally employed at higher level models (e.g., Simulink/Stateflow,
timed automata, Petri nets). This motivates an increasing
effort for modeling legacy software at higher levels of ab-
straction.

There are various approaches that generate models from
legacy code, but only a few of them include the timing as-
pect in the modeling. Some software reverse engineering
methods find equivalent modeling constructs in a model-
ing language to reconstruct the same behavior as exhibited
by the software. An example is the work reported in [42],
where C programs are reverse engineered to Simulink mod-
els. In [49], a formal framework is described for building
timed models of real-time systems in order to verify func-
tional and timing correctness. Software and environment
models are considered to operate in different timing domains
which are carefully related at input and output operations.
A timed automaton of the software is created by annotat-
ing code with execution time information. The common
challenge that is facing both model-based V&V and legacy
software modeling is scalability. Other technical challenges
include floating point and non-linear mathematics, look-up
tables, logic with counters and timers [7] as well as indirect
referencing in the software (e.g., usage of pointers in C).

State-of-the-art validation of functional and timing prop-
erties of embedded software is performed by extensive test-
ing involving hardware in the loop(HiL). Software in the loop
(SiL) simulation is mainly used for testing functional prop-
erties of applications represented as software or as higher



Figure 3: The TDL tool chain with Simulink integration.

level executable models. The costs of HiL testing, plus the
increased complexity of distributed embedded applications
make the case for shifting the main load of timing-related
testing towards SiL setups. Clearly, to simulate the timing
behavior of an embedded application, one needs to simulate
also the functionality and timing of the execution platform
(hardware and operating system), sensors, actuators, and
the physical plant under control. An important challenge
in this case is finding the right level of abstraction, which
determines the modeling effort, the properties that can be
tested as well as the simulation speed.

Software in the Loop Validation for Automotive Con-
trol Software: In hardware-software co-simulation, the
processor can be modeled at the microarchitecture level,
which is the most accurate but also the slowest of possi-
ble solutions. Faster co-simulation tools avoid modeling the
processor in detail but implement a synchronization hand-
shake [33]. Some co-simulation environments also provide
a virtual operating system to emulate or simulate the tar-
get platform [40]. Some approaches employ instruction set
simulators (ISS) in order to obtain correct timing informa-
tion. However, ISS are slow because of the fine granularity
of the simulation. Performance issues are addressed for in-
stance with caching [29] and distributed simulation by ap-
plying distributed event-driven simulation techniques. Co-
simulation aims at validating functionality of hardware and
software components by simulating system parts that can
be described at different levels of abstraction. The chal-
lenge is in providing the right interface between these levels.
Co-simulation as a basis for co-design and system verifica-
tion can be done in various ways where typically a trade-
off between accuracy and performance has to be made [13].
Various commercial and academic co-simulation frameworks
have been proposed in literature; more detailed surveys can
be found in [13, 24, 5].

The Validator tool from Chrona [12] is based on a sys-
tematic way to instrument the application code with exe-
cution time information and execution control statements
which enables capturing real-time behaviors at a finer time
granularity than most of the currently available tools with
similar functionality. Validator can operate in closed loop
with plant models simulated by a different tool (such as
Matlab/Simulink).

Validator can also simulate preemption at the highest level
of abstraction that still allows for capturing the effect of
preemption on data values, avoiding at the same time the
slow, detailed simulation achieved by instruction set sim-
ulators. Validator enables advanced debugging and design
space exploration of the entire simulated system (software,
hardware configuration, plant). For example, it is possi-
ble to step through the execution of application code across
preemption points both in forward and reverse directions.
Validator also allows one to start a simulation from a pre-
viously saved state. Being implemented entirely in C, the
simulator can be easily interfaced/integrated with existing
simulation tools .

An example of Validator’s application is regression test-
ing. The objective is to compare the behaviors of an in-
dustrial engine control software (ECS) with a version that
had been re-engineered to achieve robust timing behavior
based on TDL. Validator was employed to simulate the two
embedded systems in parallel, with the original system in
control of the plant. The testing revealed several software
bugs in the interface between the application code and the
TDL runtime system. Simulation tools related to the Val-
idator are the Time Multitasking Ptolemy domain [30] and
TrueTime [10] in the academic area, as well as the commer-
cial tool ChronSim from INCHRON [25].

A prerequisite for validation of a control application run-
ning on an embedded platform is the availability of execu-
tion times of the software for the platform. This is a major
requirement and challenge in the case of automotive soft-
ware, where real-time properties are crucial for a correct
operation of the system. Various approaches have been pro-
posed for obtaining conservative estimates (worst-case exe-
cutions times). Techniques based on abstract interpretation
form the basis for commercial tools such as the aiT analyzer
from Absint [1], which relies on detailed processor models.
The Gametime tool [48] employs path analysis and game-
theoretic algorithms to estimate worst-case execution times
based on measurements on the target hardware. A survey
of techniques and tools for execution time estimation can
be found in [57]. Execution time estimation tools are being
integrated in larger modeling and simulation tool suites, as
in the case of Scade [15] and Chrona’s Validator.



4. MODEL BASED TESTING OF AUTOMO-
TIVE CONTROL SOFTWARE

At present the Simulink/Stateflow (SL/SF) modeling frame-
work is one of the de-facto industry standards for developing
automotive controllers. As described in the previous section,
various techniques (mostly based on simulation) are avail-
able for validating the design models against the require-
ments. Testing is also one of the primary means employed
for validating the controllers implemented in software. It
serves multiple purposes like revealing bugs, enhancing the
confidence in the implemented functionality and determin-
ing the control system’s performance. When the system
is safety-critical, then much more emphasis is given to the
quality of testing. By testing, in general, we mean (a) code
execution with respect to the test inputs and oracle match-
ing, and (b) model simulation. Model simulation is included
because it reveals the conformance of the model execution
with respect to the intentions of the controller requirements.

Testing requires a Test Infrastructure, which involves the
executable system under test (SUT), the system’s environ-
ment, a test suite (timed input-output sequences) and a Test
Bench which facilitates test execution, test result matching
and test coverage estimation. Testing of an automotive soft-
ware is quite extensive and a lot of time and efforts are spent
on it. A design model and the corresponding code – gener-
ated manually or by a code-generator – together is treated
as one unit. Unit testing means simulation of the design
model or the testing of individual features on a workstation.
Automotive control functions in general are subjected to a
wide variety of testing possibilities, like, Plant-in-loop test-
ing, HW-in-loop simulation and Vehicle level testing. The
Vehicle level testing involves integrating all the features and
domain functionality are tested on the vehicle with real ex-
ecution on the target hardware and software platforms.

The test bench is a platform that enables automatic or
manual testing of the Software Under Test (SUT). It pre-
pares the SUT for testing, implements test execution, gen-
erates test reports and measures test coverage. An SUT
does not run alone and requires supporting HW/SW which
are provided (actual or model) by the test bench. They
include extensive support for modeling the required plant
and environment and one then carries out plant-in-loop or
Hardware-in-loop (HIL) Testing. One example of such a test
bench is the HIL set up from dSPACE. Elaborate test scripts
are written which enable running and collecting of the test
results. They (a) initialize the SUT, (b) put the SUT in
the required context, (c) create test inputs, (d) pass the in-
puts to the SUT, (e) record SUT response, and (f) assign
verdicts.

A test suite is a finite collection of test cases, each of which
is a timed sequence of (input,output) pairs. It is a crucial
artifact in testing. The quality of the test suite determines
the extent of testing and directly influences the confidence
in the SUT. The computation of test suites is mostly manual
in practice and is considered one of the difficult steps. Due
to the finiteness of testing, the test suite is often incomplete
and its effectiveness is measured by some coverage criteria.

4.1 Recent Advances in Code-Based Testing
The classical testing techniques can be broadly classified

into two kinds: functionality or black box testing and code-
based or white box testing. In black box testing, the test

cases are generated based upon requirements. The test cases
are chosen so as to cover the functionality or input domain.
Equivalence partitioning, domain decomposition are some
of the well-known techniques for test case generation. Test
case generation is often manual as formal requirements are
absent. In code based testing or white box testing, the test
cases are generated based upon the code under test. The
tests are directed towards covering code elements such as
statement, conditions, and branches. Symbolic execution
and constraint solving are some of the common techniques
used for generating test cases. Code-based testing recently
attracted a lot of attention, thanks to the availability of
better constraint solvers. In the following, we will outline
some of these successful techniques.

Godefroid et al. in [17] discuss the DART (Directed Auto-
mated Random Testing) approach for testing of C programs.
The power of DART comes from a combination of random
inputs, constraint solving and directed coverage. Given a C
program, first a random input vector is supplied to execute
the program and the symbolic constraint associated with
the covered path is extracted. This symbolic constraint is
altered – a branch predicate is flipped – to obtain the path
constraint of a path adjacent to the earlier path. If this path
constraint can be solved, then we have the input vector for
the new path. Given a finite execution tree, by systemati-
cally altering the branch predicates, the DART approach can
cover all the paths in the tree. However, when the path con-
straints are non-linear or involves library function calls, the
above is not a straightforward task. The DART approach
uses concrete values from previous executions to address this
problem in some specific cases[17]. Concolic Testing [47] is
similar to DART but, in addition, it can deal with complex
C data structures like structures and pointers.

Majumdar and Sen [31] have extended the concolic test-
ing concept to cover deep targets in the state space of the
program. Initially concolic testing is applied, and when sat-
uration occurs in a region in the program state space as
regards to target coverage, a random input sequence takes
execution control to a different region. Concolic testing is
performed in the new region, and upon coverage saturation,
a new random sequence again takes control to another region
in the state space. This continues till adequate coverage is
achieved.

Mutation testing [26] is an emerging area in the field of
code-based testing. Faults are seeded into the original pro-
gram – which represents the mistakes that programmers are
likely to make – and the resulting program is called a mu-
tant. The quality of a test suite can be quantified by mea-
suring to what extent the test suite can distinguish the orig-
inal program from its (non-equivalent) mutants. It said that
mutation testing subsumes many other test coverage criteria
like MC/DC [35]

We will now discuss how the above techniques have been
adapted in model-based testing of automotive designs spec-
ified in Simulink/Stateflow.

4.2 Model-based Testing
A broad definition of model-based testing (MBT) is the

use of models in any step of the testing process. We classify
MBT into three kinds:

• Weak MBT: Use of models in measuring coverage of
testing over the model elements.



• Strong MBT: Models serve as the golden model for
computing the test results.

• Strongest MBT: Models help in generating test suites.
This is what is usually known under the name MBT.

We will focus on the strongest MBT in this paper and
assume that the models are for discrete and continuous con-
trollers expressed as SL/SF designs.

Note that the models of the environment and support-
ing HW/SW are provided by the Test bench module. Our
test cases are directed towards covering requirement models
and we assume that the requirements are properties of the
SUT and the generated test cases satisfy/falsify such prop-
erties. The SL/SF framework provides techniques like asser-
tion blocks which encode the properties at the requirement
level, and can be embedded within the SL/SF models. There
can be many test criteria in relation to the test case genera-
tion problem from SL/SF designs. The Structural coverage
test criteria specify coverage over various model elements
during model simulation. For a SL/SF model, such crite-
ria could be State Coverage, Transition Coverage, Simulink
Block Coverage and Condition Coverage. MC/DC (Modi-
fied Condition/Decision Coverage) [53] is also highly recom-
mended as per the automotive standard ISO 26262. The
coverage of the input domain is also another test criteria.

There are many test case generation techniques which de-
pend upon the models used. Some of the popular methods
are: (a) Random Test case generation, (b) Systematic model
exploration, (c) Symbolic execution and Constraint Solving,
and (d) test case generation using model checking. Random
test case generation is one of the widely used methods as it is
simple and quite effective in achieving reasonably high cov-
erage when all the paths in a model or program are equally
likely. Often models have paths that require specific input
sequences to be chosen. In such cases, the systematic explo-
ration technique is effective. This is also one of the classical
techniques, in which all paths up to some finite length are
enumerated, the symbolic constraints of the paths are col-
lected and the constraints are solved to identify the inputs.
One of the reasons why this method is very successful is
its dependence upon constraint solvers. This technique has
been very effective in protocol conformance testing where
the models are finite state machines.

With the emergence of powerful constraint solvers, recent
efforts have tried to combine random methods with system-
atic exploration techniques. DART and Hybrid concolic
testing, the two recent techniques for code based testing,
has been also applied to SL/SF model-based testing.

Model checking is a well-known technique for formal ver-
ification of finite state models. In model-checking, counter-
examples are generated when a given property is not satis-
fied by the model. Counter-examples can be considered as
test cases when the property is appropriately chosen. Given
a property that a certain state or transition or condition
is not reachable, the model checker can produce a counter-
example that actually reaches the state/transition yielding
a test case. The advantage of this approach is that design
verification as well as automatic test case generation (ATG)
can be performed together. The model size can be a limit-
ing factor in the performance of the model checker. For an
Automatic Test Case Generation (ATG) tool using model
checking, test criteria specification and model requirements
are additional inputs. The coverage goals like state, transi-

tion, and MC/DC over the SL/SF models can be translated
into equivalent formal models like SAL [51]. Counter exam-
ples generated by the model checker are turned into input
traces, which are in turn used to simulate the model to gen-
erate the output sequence and hence the test cases.

4.3 Tools for SL/SF Model based ATG
Many commercial tools have appeared in the market for

test case generation from SL/SF designs. Some of the promi-
nent tools are: Reactis from Reactis System Inc. [37], STB
from the TNI Software [41], BEACON Tester from Applied
Dynamics International [3] and T-VEC tester from the T-
VEC technologies [52]. All these tools, given a SL/SF design
model and a coverage goal over the model elements, gener-
ate test vectors meeting the coverage goal. These tools use
powerful random or constraint solving techniques or a com-
bination of both.

AutoMOTGen [16] uses model checking for test case gen-
eration from SL/SF models. SL/SF models are transformed
into a SAL [51] formal model. Next, based on a test criteria,
bounded model checking (BMC) is applied on the SAL model
to derive test cases from counter example traces. Simulink
Design Verifier (SDV) from the Mathworks uses model check-
ing for proving model properties of SL/SF models and to
generate model-based test cases. These tools face scalability
problems when a model is large or when the models involve
complicated non-linear constraints.

Redirect is another ATG tool [45, 44] which adapts DART
[17] and Hybrid Concolic testing [31] techniques for gener-
ating test cases from SL/SF models. When a constraint of
a certain target is non-linear, then Redirect uses a set of
heuristics depending on the pattern of the target to cover
the targets. Consider a constraint involving a non-linear
sub-constraint like f(x, y) > g(x), f and g being non-linear
functions. One heuristic could be to fix the value of x to
a constant, and then value of y can be either gradually in-
creased or decreased to cover the desired target. Redirect
handles the issue of scalability because, similar to hybrid
concolic testing, before a constraint solving or a heuristic
application, a random phase can be used. Experiments have
shown that the heuristics are able to cover deep non-linear
targets.

Mutation testing has also been applied to SL/SF mod-
els for the purpose of test case generation [21]. Finding
the difference between a Simulink model and its mutant has
been cast as a model checking problem, and test cases can
be obtained from the counter-example traces. The authors
have optimized this process by analysing the structure of the
Simulink models.

Alur et al. [28, 27] have presented an analysis technique
which combines numerical simulation with symbolic analysis
for input domain coverage of SL/SF models. Given a simu-
lation trace of a SL/SF model, using polyhedra based back-
ward symbolic analysis, a region of the initial state space
inducing equivalent behaviors in the model is identified. Fur-
ther simulation is carried out on the model, starting from
initial states outside of this region and the above step is re-
peated a finite number of times to have adequate coverage
over the initial states.

4.4 Issues and Challenges in Testing
There are many challenges in generating test cases from

SL/SF control designs some of which are listed below:



• Test cases being too long: It is sometimes the case
that a huge number of simulation cycles are needed to
cover a target deep in the state space. This happens
in particular when the model involves an integrator
block whose output has to attain a high value so that a
specific target is satisfied. This target may be too deep
for a model checker or the corresponding constraint
might be too large. Heuristics may cover such targets
but without any guarantee.

• Distributed control: In an integrated architecture,
components may be across multiple ECUs, connected
by buses like CAN, FlexRay and LIN. These networks
may cause message delays. It may be necessary to de-
compose a SL/SF model into component models and
the components going to multiple ECUs. In this case,
the blocking semantics of the original model may not
match the non-blocking semantics of the component
models. Therefore the test cases of the original mod-
els are in danger of being invalid when we use the dis-
tributed design.

• Testing of non-functional properties: In a dis-
tributed implementation, testing of non-functional prop-
erties like the timing properties is a challenge.

5. PERFORMANCE ANALYSIS OF AUTO-
MOTIVE CONTROL FUNCTIONS

Finally, in this section we discuss issues related to the per-
formance analysis of controllers when they are implemented
on a distributed automotive architecture. In general, a feed-
back control loop performs mainly three operations:

• Measure: The output of the dynamical system is mea-
sured by one or more measuring devices or sensors and
thus, the measured signals act as feedback signals.

• Compute: The feedback signals are compared with de-
sired output and necessary correction in the input sig-
nal is computed by the control algorithm.

• Actuate: The correction is incorporated by changing
the input signal or actuation.

In an ideal implementation, a feedback loop is executed in-
stantaneously and the resulting system behaves like a conti-
nuous-time system. However, performing these operations
continuously in any implementation platform requires infi-
nite computational power. Hence, in a digital implementa-
tion platform of such feedback loop, these operations are per-
formed only at discrete time intervals (sampling instants).
Naturally, the performance of the control functions depends
on the choice of sampling period.

Fig. 4 shows an execution sequence of a typical feedback
control loop. A control function is mainly partitioned into
three categories of tasks: Tm (measure), Tc (compute) and
Ta (actuate). In a distributed setup, the execution time of a
feedback loop consists of (i) finite execution time of the three
operations at the ECUs (es,ec,ea), (ii) the transmission time
of the messages over the communication medium (em1,em2),
(iii) the waiting time among various data-dependent tasks
and messages (ew) as shown in Fig. 4. The execution time
or sensor-to-actuator delay τ is the summation of all these
delay components (Fig. 5).

The sampling period of a control function decides how fre-
quently the tasks need to be executed and how many mes-
sages are transmitted over the bus. Intuitively, a shorter
sampling period implies more computational demand at the
ECUs and a higher bandwidth requirement from the buses.
Hence, the possibility of experiencing longer sensor-to-actuator
delay is higher in the case of shorter sampling periods.

5.1 Control Performance
Typically, a high level goal of such feedback control aims

to achieve desired behavior (i) fast, and (ii) accurately, while
stability of the loop must be maintained. The speed and
accuracy of the feedback control system quantify the perfor-
mance of the controller. There is a wide variety of notions
to quantify the performance of a control function. The per-
formance notions are broadly classified into two categories:
steady state and transient phase performance. An example
of a transient performance index is the settling time, i.e.,
how fast the system responds to some external disturbances.
One the other hand, a commonly used performance index at
steady state is the quadratic cost function which captures a
combination of tracking accuracy and input energy,

J =

∫ ∞

0

[u(t)2 + y(t)T y(t)]dt, (1)

where u(t) and y(t) are the system’s input and output re-
spectively. In both cases, the performance depends on (i) the
sampling period h, and (ii) the sensor-to-actuator delay τ .

Hence, an optimal implementation of a control function
often boils down to the problem of finding the optimal trade-
off between the sampling period and the resulting sensor-to-
actuator delay in the feedback loop.

5.2 Approaches
The various timing constraints coming from high-level spec-

ifications of control functions pose constraints on the schedul-
ing of the buses and the ECUs. Here, control/scheduling co-
design methods mainly focus on co-synthesis of the control
strategy and the scheduling parameters to deal with feed-
back delays, their variation and their impact on control per-
formance. The feedback delays in the control loop are dealt
with by designing appropriate control strategies following
research that originated from the Network Control System
(NCS) community [56]. In these approaches, the network
acts as a black box which injects feedback irregularities such
as delay and packet drops. The major difference between the
distributed setting in NCS and the automotive setups we are
discussing, is that the designer has sufficient handle over the
network parameters in our case. There has been some re-
search effort to jointly optimize control functions and their
implementation platform over the last decade [50, 9, 58, 54,
46, 23]. Here, a typical setup might consist of multiple con-
trol functions running on either multiple ECUs [50, 54, 46]
or on a single ECU [4, 9].

Most of the research in the direction of joint control/scheduling
optimization relies on the facts that (i) shorter period im-
proves the control performance, and (ii) a shorter sampling
period requires higher computational and communication re-
source usage [9, 46]. The overall goal is to choose sampling
periods of the control tasks such that (i) the control func-
tionalities are robust and provide desired performance, and
(ii) all the control and other tasks and messages are schedu-
lable, given the resource constraints.



Start: at Time = t
1. Tm: measure()                                    //ECU1: execution time es

2. Waiting time for bus access           // ew1

3. Transmit m1 // BUS: transmission time em1

4. Waiting time for ECU_3 access     // ew2

5. Tc: compute()                                    // ECU3: execution time ec

6. Waiting time for bus access          // ew3

7. Transmit m2 // BUS: transmission time em2

8. Waiting time for ECU_2 access     // ew4

9. Ta: actuate()                                      // ECU2: execution time ea

10. …
11. Other application…
12. …

End: At t= t+h, Jump: Start

Figure 4: Execution sequence of typical feedback control loops.

measure

actuate

compute

h= sampling period

= sensor-to-actuator delay

Figure 5: Timing in feedback control loops.

A number of recent research effirts focus on exploiting cer-
tain inherent properties of control loops for the co-synthesis
of control strategy and schedules. For example, the fact
that control loops are generally robust and a fraction of
messages may be allowed to miss their deadlines without
compromising with the high-level requirements (such as the
stability and performance) is utilized for control/scheduling
co-design [18]. For example, Fig. 6 shows the effect of feed-
back (packet) drop or deadline miss in a DC motor speed
control application in electric cars. The goal is to achieve a
speed reference of 50 units. The result shows the system be-
havior in the presence of certain packet drops. The system
behavior does not deteriorate much with up to 25% of the
feedback signals being dropped. Clearly, the control loop
is robust enough to accomodate certain irregularies. The
challenge is to quantify the amount of allowed irregularity
in the feedback loop to guarantee stability and meet the
desired performance of the loop.
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Figure 6: Robustness of a control loop.
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Figure 7: Sensitivity of control performance to sam-
pling period in transient and steady states.

Another key aspect of control functions is that their sensi-
tivity to feedback irregularities highly depend on the state of
the overall system. In particular, the performance deteriora-
tion due to feedback irregularities is prominent in a transient
phase compared to in the steady state. For example, Fig. 7
shows the output behavior of the DC motor speed control
with a higher sampling rate at the transient phases (result-
ing from external disturbances) and a much lower sampling
rate at the steady state. Therefore, by utilizing such multi-
rate sampling schemes it is possible to improve the band-
width utilization of buses and ECUs without compromizing
either the performance or the stability of the system. Some
of the recent research in this area utilizes similar ideas for
control/scheduler co-design [8, 32, 19].

6. CONCLUDING REMARKS
A large number of control functions run on modern auto-

motive architectures consisting of several ECUs and one or
more communication buses. The typical development stages
involved are (i) specifying high-level functional requirements
using the Simulink/Stateflow framework, (ii) automatically
generating code from Simulink/Stateflow, (iii) validating the
software models so that timing requirements at the high level
are met (iv) testing and verification of the software mod-
els implemented on a platform (v) performance analysis to
trigger suitable modifications through a control/platform co-
design. In this paper, we outlined the state-of-the-art in this
domain and discussed some of the challenges are yet to be
addressed.
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