Bringing Computer Science Students Closer to
Cyber-Physical Systems Design

Peter M. Hintenaus, Stefan Resmerita
Universitdt Salzburg, Jakob Haringer Strae 2, 5020 Salzburg, Austria, Email: firstname.lastname @cs.uni-salzburg.at

Abstract—We describe a graduate-level embedded systems
design course we have developed within the Computer Science
curriculum at the University of Salzburg for the past four years.
Our main rationale is to demonstrate the interplay between
computation and the physical world. We use several case studies
to highlight the art of designing cyber-physical systems.

I. INTRODUCTION

We report here on our efforts towards introducing an educa-
tional program for Embedded and Cyber-Physical Systems at
the Department of Computer Science, University of Salzburg.
We embark on the same path as [1]: introduce a graduate-
level course exploring a multitude of topics, then later branch
out multiple courses focused on individual topics and establish
their places in the department’s regular offering.

The course, titled “Real-Time Computing & Communica-
tion Systems”, aims to enlarge the horizon of CS graduates
by providing some of the main elements of embedded sys-
tem design, expose the CS students to embedded computing
by contrasting it with the familiar desktop ecosystem and
entice the students to follow specializations in this area. It
is presented from the viewpoint of a system architect. The
case studies are selected from the bottom of the embedded
hierarchy in order to implant the importance of the physical
environment into the mindset of the CS student. As this
course is not part of a comprehensive embedded systems
curriculum yet, we teach something-of-everything rather than
everything-of-something. Furthermore, the multidisciplinary
nature of embedded systems applications requires hardware
and software to be taught in the same courses (see the panel
discussion in [2]).

The course provides hands-on experience with industry-
level embedded systems. We believe that industrial applica-
tions serve better our goal of showing students the practical
importance of embedded systems. While the course focuses on
systems design concepts, it is important for students to under-
stand principles of physical hardware design and construction.
Based on the authors’ experience, as well as on the experience
reported in the literature (see e.g. [3]), this is best done in
the lab by observing and using prebuilt hardware. Moreover,
using hardware built in-house adds credibility and allows us
to go to any level of detail (up to the individual chip) when
explaining our design choices. Furthermore, students can see
that hardware design is doable and accessible which might
lead them to consider building hardware in their own projects.

Special emphasis is placed on understanding of the physical
environment in which the computational system is embedded.

In this course we address CS graduates with little or no expo-
sure to ’physics-driven” thinking. Students are trained to make
design decisions based on requirements expressed in terms
of physical behavior. This is similar to some Mechatronics
courses like the ones described in [4].

It highlights the usage of basic and advanced mathematical
concepts in practical applications: we try to describe the
behavior of components and systems mathematically using
the laws of physics, we emphasize frequency domain methods
both in the analog and digital worlds, and describe reason-
ably complex systems using ordinary differential equations.
While these notions are contained in the CS student’s math
background, they are rarely used in the mainstream CS ap-
plications. This course shows the practical meaning of such
notions to the CS student.

II. RELATED WORK

A comprehensive proposal for graduate-level curriculum in
embedded systems is given in [5]. Being focused on software
aspects, this proposal is especially amenable to CS and CE
(computer engineering) students. Our course complements the
CS student background in order to emphasize the Cyber-
Physical aspects, such as combinational and sequential cir-
cuits, simple processor architectures, modeling from physical
principles, the concepts of state and feedback in control,
sampling, discretization, interrupt-driven computing, time and
concurrency, field buses. The course shows how those various
bodies of knowledge contribute to the design of the embed-
ded systems showcased in the laboratory, devoting particular
attention to aspects of systems architecture and engineering.
The authors in [5] distinguish between two styles of education:
deductive, i.e. theory first then applications, and inductive with
applications motivating the relevant theory. We consider the
inductive style to be a good way to inspire students with an
engineering mindset.

The paper [6] reports on an educational objective similar
to ours. To address the CS student’s concern that embedded
systems are mostly hardware oriented the authors put em-
phasis on the software aspects of embedded computing and
deemphasize the hardware-related part by using standardized
platforms and real-time operating systems. We recognize this
concern and deal with it by employing prebuilt hardware with
simple software (no OS) focused on specialized applications,
but we also show the student that hardware construction is
accessible and affordable by using hardware built in-house,
and by describing the corresponding circuits.



The course presented in [7], [8] is addressed to CS, CE and
EE students at the undergraduate level. This is supported by
the textbook [9]. We share the author’s objective of providing
an introductory course with a broad scope. Since our course is
addressed to CS students only, we include aspects new to CS
students such as Signal Processing and leave out more familiar
topics like Operating Systems.

The course described in this paper shares similarities with
the topic of [1]. We start on the same kind of path towards an
embedded system curriculum: offering an advanced graduate
course with the objective to span regular graduate and then
undergraduate level courses. Moreover, we share the same
objective of bringing closer system theory (Physics) with
computer science (Programming) and computer engineering
(Hardware design). However, while [1] deals with advanced
methods for providing useful abstractions of the physical
environment to the system designer and employs a deductive
approach, our course is grounded on basic models (e.g.,
ordinary differential equations) and intuitive understanding of
physical phenomena and has an inductive educational style.

In [10] one can find a set of guidelines aiming at motivating
students to learn embedded systems. Our approach follows
some of them: hands-on training is emphasized, lectures
are strongly related to laboratory assignments, students learn
the importance of reading technical documentation and they
receive help to get started with each laboratory assignment.
In addition to these factors we encourage thinking based on
physical principles, we use hardware developed in-house, and
use laboratory applications that have a real-world purpose.

Various experiences with crafting educational programs in
embedded systems within existent curricula for CS, CE EE,
and ME students are reported in [11], [12]. Our situation
is different, due to the lack of engineering disciplines in
our university. Our approach to bringing students closer to
embedded systems employs the holistic viewpoint described in
[13], which is based on industrial practice. Thus, the teaching
is done in a project organized and problem oriented way, in
order to increase student motivation.

III. STUDENT BACKGROUND

The University of Salzburg does not have an engineering
school. Besides a rather new curriculum in engineering sci-
ences, run jointly with the Technical University of Munich,
Applied Computer Science is the only other technical course
of study that is offered. The Computer Science curriculum at
the bachelor level does not touch a single classical engineering
subject, nor includes it any classes in physics in particular. The
mathematics education covers some logic and automata theory,
discrete mathematics, linear algebra, analysis and statistics.
Students learn ordinary differential equations and Fourier
methods as part of the masters curriculum. Students taking our
class have a strong background in operating systems and good
programming skills. Their proficiency in the C-programming
language however, is only adequate. We have to cover logic
circuits and some aspects of computer architecture ourselves,
as these topics are taught in the first semester of the bachelor

curriculum and have been largely forgotten by the students in
their course of studies.

IV. LABS

The lab exercises are either ARM-7, ARM-Cortex or ADSP
Sharc based. The introductory laboratory sessions focus on
technology and skills. These are followed by more involved
case studies. In the beginning of a lab the students are
presented with an existing application, described in terms of
the desired physical behavior. An existing design is explained
in terms of the analog and digital electronics involved. In
the case studies, the software is also presented. The software
applications are interrupt-driven. In the introductory sessions,
the students have to write software from scratch in order to
achieve a certain behavior. In the case studies, they extend the
functionality of the system by making modifications in the
given source code. Several iterations are usually required to
complete the assignment. During these iterations the students
have to go through all the main aspects of the interaction be-
tween the physical environment and the computational system:
the physics of the environment and sensors, A/D conversion,
hardware platform, application software, D/A conversion, ac-
tuators and back to the environment.

V. CONTENT

The course consists of 10 class sessions lasting three hours
and 6 labs. Each class session covers a separate topic. We
teach the labs to groups of up to four students. We try to
guide each group just enough so that success is guaranteed.

We recommend the book on signals and systems by E. Lee
and P. Varaiya [14]. As a reference for engineering mathemat-
ics we mention the book by E. Kreyszig [15]. For physics we
recommend the book by Tippler [16], and, for the brave, [17].
The book by Horrowitz and Hill [18] albeit dated is still a very
readable reference for electronics, we mention the book by
Tietze, Schenk and Gamm [19]. Furthermore we recommend
the book edited by W. Kester [20] for details on A/D and
D/A conversion. We point the students to the application notes
provided by the semiconductor manufacturers.

A. Introduction to Electronics

We concentrate on the passive components resistor, capaci-
tor and inductor. We let the students reason about the behavior
of simple circuits by using the mathematical description of
the circuit’s components. Topics covered are conservation
of energy, Kirchhoff voltage and current law, Ohms law,
capacitor and inductor law, transient behavior of capacitors and
inductors, power dissipation and parasitic capacitance, ground
bounce, AC networks, RC and LC filters, resonant circuits,
measurement equipment. The lab consists of a series of small
exercises. For each exercise we state a small circuit diagram
composed of two or three components and an input. We ask
the students to model the behavior. Once they arrive at a
satisfactory answer, they put the theory to test by stimulating
a real circuit with the input waveform and observing its
response.



B. Micro Controllers, Digital Signal Processors

We present computer architecture from the standpoint of
an embedded systems designer. We mention short interrupt
latency as one of the major features of architectures for
embedded control. We point out the importance of the pe-
ripheral units, especially when it comes to producing exact
predictable timing behavior. We present event-triggered, time-
triggered and polling programming styles as means for react-
ing on external events. Topics covered are micro controllers,
DSP’s, interrupts, DMA, memory, communications, waveform
generation, data acquisition, support circuits, state machines,
interrupt service routines and DMA as threads of control, fixed
point arithmetic, tabulation techniques, Fast Fourier transform.
In the second lab the students design a framework for handling
several slaves on an SPI bus. The framework must be interrupt-
driven to support asynchronous transfers. The students have to
design a small state machine, which receives its inputs from
two sources, the SPI hardware on the one hand and the user
program on the other. Therefore, they have to design a locking
scheme to prevent races between the interrupt service routine
for the SPI hardware and the user program. They implement
the framework on a board that is populate with an ARM7, and
an SPI to 8-bit parallel-in, 8-bit parallel-out interface. This
interface is implemented using a programmable logic chip.

C. Programmable Logic

We introduce our students to logic design. We put special
emphasis on the temporal behavior of gates and flip-flops.
Instead of teaching minimization of combinatorial circuits, we
let our students design a small but useful peripheral circuit.
Students gain some understanding about the possibilities of
programmable logic, as a way of reducing the design risk
when designing logic, as a way of designing special purpose
peripherals not available off the shelf and as a possibility to
implement massively parallel architectures. We cover input
types, the six logic levels, output types, pull-up and pull-down
devices, logic gates, rise time, fall time, propagation delay,
timing of flip-flops, metastability, synchronous circuits, types
of programmable logic, hardware description languages. The
students design the SPI interface they took for granted in the
second lab. The students draw a schematic consisting of gates
and flip-flops, as in our experience this design-style is more
accessible to beginners. They use the same board as in the
second lab, but this time around the programmable logic chip
happens to be erased.

D. Analog Electronics

We cover those subjects, which we think are a necessity
when designing or understanding the architecture of a mixed-
signal system. Realistically we cannot expect our students to
design analog circuits, instead we concentrate on the properties
of analog building blocks like filters and data converters.
The topics are transistors, operational amplifiers, comperators,
sampling, aliasing, sampling in higher Nyquist bands, filters,
specification of anti-aliasing filters, A/D and D/A converter
architectures, signal to noise ratio.

E. Power Supplies

We emphasize the importance of power-efficiency in techni-
cal systems. Topics are linear regulators, switching regulators,
properties of some loads, pulse width modulation in power
electronics, PI control. In the fourth lab students write the
software for a semi-realistic system, a switching constant
current supply for a high-power LED. Under our guidance
the students first get the PWM unit to operate. They observe
that the current through the LED increases with temperature.
To control this potential runaway situation, they identify the
need for a closed-loop controller. Next they setup the analog to
digital converter for continuous sampling operation. To handle
the “conversion complete” interrupt they implement a PI
controller using fixed-point arithmetic and tune the controller’s
parameters empirically to optimize the response to a voltage
step at the supply. The circuit used is based on an ARM7
chip with integrated PWM unit, integrated A/D converter and
integrated timer, which can be used for triggering the converter
periodically. One output of the PWM unit actuates the switch
of a step-down regulator. The output of this regulator drives the
high-power LED via a current-sense network, which is wired
to an input of the analog to digital converter. In addition, a
temperature sensor for monitoring the temperature of the LED
and a potentiometer for setting the brightness are provided.

F. Electric Drives

We continue with control systems. Students shall appreciate
that the physics of the application and of the used devices
drives the architecture of the hardware and the software. They
shall get an idea about mathematical modeling of an inter-
esting technical system. We cover modeling of a permanent
magnet synchronous motor, field oriented and cascade control,
simulation of the system, generation of 3-phase waveforms,
sensor-less control, architecture of an inverter. Future students
will start with a ready-made model of a torque controller, from
which they will be able to automatically generate code for the
inverter’s processor. We will ask them to add a speed-control
loop in the model, tune it and verify its operation on the real
hardware. So far we have designed the power stage and a
test-bed with a torque sensor for motors with a power of up
to 100 W.

G. Lock-In Detection, Synchronous Rectification

Controlling power conversion is one of the applications of
deeply embedded systems, sensing and measuring is another
equally important one. The last classes deal with sensor
systems and the required signal processing techniques. We
introduce lock-in detection as the method for high-precision
measurements in the presence of noise. When presenting lock-
in methods for measuring several responses with a single
detector we gently lead our students into spectral methods.
We show the design of a sensor system, which is based on
multi frequency lock-in using three infrared LEDs as sources
and a photodiode as detector. Topics presented are single
channel lock-in detection, multi frequency lock-in detection,
orthogonal references, design of an optical sensor, avoiding



interference. In the fifth lab our students design and imple-
ment intensity control for the LEDs and gain control for the
detectors amplifier.

H. Radar

Besides being attractive continuous wave radar allows us
to apply Fourier methods to complex signals in a natural
way. We cover continuous wave (CW) Doppler and frequency
modulated CW radars. In the lab we operate the radar first
in frequency modulated CW mode. The students observe the
down-converted signals and their spectrum while the radar is
pointed across the courtyard of the computer science build-
ing. The down-converted signals are unintelligible, while the
spectrum shows clear peaks, which can be assigned to targets.
The students convert the radar to CW Doppler mode, and use
it to measure speed and direction.

L. Fourier Transform Infrared Spectroscopy

Finally we present an optical sensor system we have de-
veloped for on-line measurements in the e.g. chemical and
pharmaceutical industries. By explaining the optical principles
Fourier transform spectroscopy is based on, we once more
demonstrate the intra-disciplinary nature of embedded systems
design. More specifically, we cover the Michelson interferom-
eter and the hardware - software architecture of our system.

VI. STUDENT FEEDBACK

In the last class students were asked questions about the
course. Most mentioned the laboratory applications when
asked "What did you like most about the course?” We got
“All the labs were excellent” and At last, some ARM pro-
gramming!”. Students considered the course helpful (some
very helpful) to further their understanding of what it takes
to design an embedded computing system. The question ”Are
you considering advancing your knowledge in one or more of
the subjects touched upon by this course?” received several
straight “yes” answers, mentioning robotics and embedded
programming as subjects of interest. The main criticism was
the lack of lecture notes. These are the subject of a forthcom-
ing book.

VII. CONCLUSIONS

The course has attracted 12 to 18 students each year for
the past four years. We observe a shift towards embedded
hardware and software in recent diploma work. According to
the student feedback, using lecturer-developed, industry-level
systems has been a major motivation. For the lecturer striking
the right balance between supporting the students and letting
them work independently is challenging. The usual grading
system is not really adequate for this kind of course and
good alternatives are not readily available. We have graded
the students based on their preparedness and contributions in
the labs. We plan to extend this offering into a two-semester
course. Moreover, we consider introducing a course in logic
design in the bachelor curriculum. Teaching this course turns
out to be an endless journey: there is always one more case
study we’d love to do!

VIII. ACKNOWLEDGEMENTS

This work was partially supported by the Christian Doppler
Laboratory Embedded Software Systems.

REFERENCES

[11 A. L. Sangiovanni-Vincentelli and A. Pinto, “Embedded system
education: a new paradigm for engineering schools?” SIGBED
Rev., vol. 2, no. 4, pp. 5-14, Oct. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1121812.1121815

[2] P. Marwedel, D. Gajski, E. de Kock, H. De Man, M. Sami, and

I. Soderquist, “Embedded systems education: how to teach the required

skills?” in Hardware/Software Codesign and System Synthesis, 2004.

CODES + ISSS 2004. International Conference on, sept. 2004, pp. 254

— 255.

W. Wolf and J. Madsen, “Embedded systems education for the future,”

Proceedings of the IEEE, vol. 88, no. 1, pp. 23 -30, jan. 2000.

K. Craig, “Is anything really new in mechatronics education?” Robotics

Automation Magazine, IEEE, vol. 8, no. 2, pp. 12 —19, jun 2001.

P. Caspi, A. Sangiovanni-Vincentelli, L. Almeida, A. Benveniste,

B. Bouyssounouse, G. Buttazzo, I. Crnkovic, W. Damm, J. Engblom,

G. Folher, M. Garcia-Valls, H. Kopetz, Y. Lakhnech, F. Laroussinie,

L. Lavagno, G. Lipari, F. Maraninchi, P. Peti, J. d. 1. Puente, N. Scaife,

J. Sifakis, R. de Simone, M. Torngren, P. Verissimo, A. J. Wellings,

R. Wilhelm, T. Willemse, and W. Yi, “Guidelines for a graduate

curriculum on embedded software and systems,” ACM Trans. Embed.

Comput. Syst., vol. 4, no. 3, pp. 587-611, Aug. 2005. [Online].

Available: http://doi.acm.org/10.1145/1086519.1086526

[6] J. K. Muppala, “Bringing embedded software closer to computer

science students,” SIGBED Rev., vol. 4, no. 1, pp. 11-16, Jan. 2007.

[Online]. Available: http://doi.acm.org/10.1145/1217809.1217812

P. Marwedel, “Towards laying common grounds for embedded system

design education,” SIGBED Rev., vol. 2, no. 4, pp. 25-28, Oct. 2005.

[Online]. Available: http://doi.acm.org/10.1145/1121812.1121818

[8] ——, Embedded System Design, 2nd ed. Springer, 2011.

[9] P. Marwedel and M. Engel, “Embedded system design 2.0:
rationale behind a textbook revision,” in Proceedings of the 6th
Workshop on Embedded Systems Education, ser. WESE "11. New
York, NY, USA: ACM, 2011, pp. 9-16. [Online]. Available:
http://doi.acm.org/10.1145/2077370.2077372

[10] A. Salminen, J.-M. Vanhatupa, and H.-M. Jérvinen, “Framework for

embedded programming course,” in Proceedings of the 11th Koli
Calling International Conference on Computing Education Research,
ser. Koli Calling 11. New York, NY, USA: ACM, 2011, pp. 54-59.
[Online]. Available: http://doi.acm.org/10.1145/2094131.2094142

[11] J. Sztipanovits, G. Biswas, K. Frampton, A. Gokhale, L. Howard,

G. Karsai, T. J. Koo, X. Koutsoukos, and D. C. Schmidt, “Introducing

embedded software and systems education and advanced learning

technology in an engineering curricullum,” ACM Trans. Embed.

Comput. Syst., vol. 4, no. 3, pp. 549-568, Aug. 2005. [Online].

Available: http://doi.acm.org/10.1145/1086519.1086524

K. G. Ricks, D. J. Jackson, and W. A. Stapleton, “Incorporating

embedded programming skills into an ece curriculum,” SIGBED

Rev., vol. 4, no. 1, pp. 17-26, Jan. 2007. [Online]. Available:

http://doi.acm.org/10.1145/1217809.1217813

M. Grimheden and M. Torngren, “How should embedded systems be

taught?: experiences and snapshots from swedish higher engineering

education,” SIGBED Rev., vol. 2, no. 4, pp. 34-39, Oct. 2005. [Online].

Available: http://doi.acm.org/10.1145/1121812.1121820

[14] E. A. Lee and P. Varaiya, Structure and Interpretation of Signals and

Systems, 2nd ed., 2011. [Online]. Available: LeeVaraiya.org

[15] E. Kreyszig, Advanced Engineering Mathematics, 11th ed. New York,

NY, USA: John Wiley & Sons, Inc., 2011.

P. Tipler and R. Llewellyn, Modern Physics. W. H. Freeman, 2007.

R. Feynman, R. Leighton, M. Sands, and M. Gottlieb, The Feynman

lectures on physics. Basic Books, 2011.

[18] P. Horowitz and W. Hill, The Art of Electronics. University Press, 1999.

[19] U. Tietze, C. Schenk, and E. Gamm, Electronic Circuits: Handbook for

Design and Application. Springer, 2008.
[20] W. Kester, Ed., The Data Conversion Handbook.
vices/Newnes, 2004.

[3

[l

[4

=

[5

=

[7

—

[12]

[13]

[16]
[17]

Analog De-



