
An Asynchronous Java Interface to MATLAB

Andreas Naderlinger Josef Templ Stefan Resmerita Wolfgang Pree

C. Doppler Laboratory Embedded Software Systems

University of Salzburg

Jakob-Haringer-Str. 2, 5020 Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

ABSTRACT
MATLAB, an interactive environment for numerical and
symbolic computation, supports a number of interfaces to
foreign programming languages including Java. However,
there is no appropriate support for calling back MATLAB
functions from within the Java Virtual Machine integrated
with MATLAB. This paper presents such an interface which
is based exclusively on documented and portable mecha-
nisms supplied by Java and MATLAB. Our approach is
based on asynchronous communication between Java threads
and MATLAB and follows the producer/consumer pattern.
We also present performance measurements and discuss the
impact of an optimization for calling MATLAB functions
that return a result value back to Java.

Categories and Subject Descriptors
D.2.12 [Interoperability]

General Terms
Algorithms, Languages

Keywords
MATLAB, Simulink, Java, asynchronous, interface

1. INTRODUCTION
MATLAB from The MathWorks [9] is an extensible and

interactive computing environment based on a high-level
programming language called M. M is a compact, dynami-
cally typed, interpreted language designed for scientific com-
putations. While it is well suited for performing matrix op-
erations, plotting graphs, and so forth, it is not a general-
purpose programming language such as C or Java. For
high performance computations or for providing full fledged
graphical user interface components, for example, one has to
combine MATLAB with a more e±cient and flexible general
purpose programming language.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Figure 1: Two-way synchronization between a
MATLAB/Simulink model and a Java component.

During the course of implementing a tool chain for deter-
ministic and portable real-time systems, we extended MAT-
LAB/Simulink with a graphical editor for describing the
real-time behavior of a system [5]. This editor (Figure 1)
is written in Java and supposed to be integrated seamlessly
with Simulink. Thus, changes within a Simulink model must
be reflected by the editor and vice versa. For the first di-
rection, Simulink allows the installation of so-called call-
back functions, which are executed on certain changes in the
Simulink model. It is possible to call a Java method from a
callback function. For the opposite direction, the Java editor
needs to initiate the evaluation of MATLAB code. Note that
although Simulink is usually operated interactively, most
tasks can also be performed via an API represented as a set
of M functions. In addition to this two-way synchronization,
the editor also needs to transform the Simulink model such
that the specified properties are considered during a simula-
tion run. This transformation consists of hundreds or even
thousands of elementary operations. Since the core of our
tool chain was programmed in Java anyway and MATLAB
supports the integration of Java, it was a natural choice to
implement this MATLAB/Simulink extension in Java.

In the subsequent sections we outline MATLAB’s capabil-
ities to integrate foreign programming languages in general
and Java in particular. We shall see that one important sce-
nario is currently not supported. There is no appropriate
support for calling back M functions from within the Java
VM integrated with MATLAB. Section 3 then presents a
solution for this case. Finally, we evaluate and compare the
performance of the presented approach and discuss the eÆect
of an optimization for calls that return a value.

2. MATLAB PROGRAMMING MODEL
AND FOREIGN LANGUAGES

MATLAB is a single-threaded system. Although recent
releases (∏ 2007a) support multi-threaded execution for a
number of built-in functions (linear algebra functions for
example), the overall environment is still single threaded.
Also, there is no supported implementation of calling a single
session of MATLAB in separate threads [9].

MATLAB has a long tradition in providing interfaces for
calling functions written in C, C++, or Fortran and to call
back MATLAB functions from those external programs. For
that purpose, MATLAB provides a compiler which produces
so-called MEX files (MEX=Matlab EXecutable). A MEX
file is represented by a shared library (e.g., a .dll under
Windows or a .so under Linux) that is dynamically loaded
into the MATLAB process. The functions provided by a
MEX file are executed by MATLAB on its single thread
and can be used in an M script just like other M-functions.
Calling back to MATLAB is well supported by means of
the MEX API as long as the call originates from the single
MATLAB thread and not from another thread (see below).

Integration with a language such as Java (or C#) that
requires its own virtual machine is more di±cult and is
not handled via the MEX mechanism. The basic complica-
tion comes from the fact that Java provides its own threads
of control, for example the so-called AWT thread, which
handles the graphical user interface and user interactions.
Whenever a graphical Java component is added to MAT-
LAB, there are at least two active threads.

Stand-alone applications written in C or Fortran may use
the MATLAB Engine interface to communicate with a re-
mote MATLAB process for calling mathematical routines,
for example, or for using MATLAB as back-end for an ap-
plication specific user interface.

2.1 MATLAB and Java
Since version 5.3 (R11) MATLAB includes a Java Virtual

Machine (JVM) which is started together with MATLAB.
MATLAB’s graphical user interface is (at least partially)
based on Java and there exists a configuration file for defin-
ing the Java class path. This class path can be extended in
order to include application specific Java classes. In addi-
tion, Java support has been integrated in M and it is also
possible to integrate MATLAB in a stand alone JVM as
explained in more detail below.

2.1.1 Calling Java from MATLAB
M provides built-in support for execution of Java methods,

instantiation of Java objects, access to fields, catching ex-
ceptions, and more. Data type conversion of method param-
eters passed from M to Java and of primitive types passed
from Java to M is done implicitly. Conversion of arrays and
strings passed from Java to M must be done explicitly by
means of conversion functions.

2.1.2 Calling MATLAB from Java
A subset of MATLAB’s functionality may be integrated

into a stand-alone JVM by means of tools provided with
MATLAB (MATLAB Compiler and MATLAB Builder JA).
In this case, a full MATLAB installation and license is not
required; only Java and an additional set of shared libraries
is used. Also the open-source framework JStatCom [3] sup-
ports this approach by the JMatlab/Link plug-in.

Alternatively, the Java Native Interface (JNI) [8] could be
used for accessing the C API of the MATLAB Engine from
a stand-alone JVM. Java applications may thereby start up
a new MATLAB engine, execute MATLAB commands, or
exchange data [2]. The open-source project JMatLink [4]
provides an appropriate Java API.

It should be noted that the approaches described in this
subsection serve only to integrate MATLAB or a subset
thereof into a stand-alone Java application. It is not possible
to use them for the JVM integrated with MATLAB.

2.1.3 Calling back MATLAB from Java
It turned out that there is no documented and supported

interface available for calling back an M function from the
JVM integrated with MATLAB. There are, however, some
undocumented ways, which are discussed in section 5. Since
none of them worked for us, we decided to create our own
interface, which is described in the subsequent section.

3. AN ASYNCHRONOUS JAVA INTERFACE
TO MATLAB

This section presents an approach that is purely based
on Java and documented MATLAB functionality. The core
idea is that we don’t try to initiate the execution of M
functions from Java directly. Instead, we build on MAT-
LAB’s capability to call Java and introduce a periodic asyn-
chronous MATLAB service that executes an M function on
behalf of Java. For the interaction between Java and MAT-
LAB, we apply the producer/consumer pattern. One or more
Java threads produce requests that are put into a queue
from where they are consumed and executed by the peri-
odic MATLAB service. Conceptually, this resembles the
principle used by Java’s Abstract Window Toolkit (AWT)
for executing every request in the event dispatch thread since
it also relies on thread confinement [1]. In our case, requests
are not handled by a Java thread but by a periodically exe-
cuted M function within the single-threaded MATLAB en-
vironment. Figure 2 depicts the communication mechanism
between Java and MATLAB. The approach presented be-
low is platform independent and requires surprisingly little
code. Therefore, we are able to present the complete Java
and M source code in this paper instead of indicating the
functionality with pseudo code only.

Our approach has been developed for and used in the TDL
tool chain [6] and was tested for MATLAB R14-SP3, 2006a,
2008a, and 2009b on a Windows platform, and for MATLAB
2008a on a Linux platform. As we rely only on documented
MATLAB features and pure Java, we expect it to work also
under MacOS and under future MATLAB versions.

Thread-Safe
Java
Queue

Java
Producer

Thread

MATLAB
Consumer

Function

insert

remove

Java
Producer

Thread

insert
& wait

... notify

evaluate...

(1)
(2)

(3)

(4)

Figure 2: Schematic overview of the Java/MATLAB
communication

3.1 The Core of the Interface (Java Class)
Listing 1 shows the core of the Java/MATLAB interface,

namely the class Matlab. For the Java side of the inter-
face, this class provides two methods for executing MAT-
LAB commands:

• a non-blocking method without a return value: feval

• a blocking method with a return value: blockingFeval

Both methods take the name of the M function to be
evaluated as the first parameter followed by an arbitrary
number of arguments. They may be used for evaluating an
expression such as:

Object x =

asyncjmi . Matlab . b lock ingFeva l (”eva l c ” , ”1+1”) ;

or to call a Simulink API function such as:

asyncjmi . Matlab . f e v a l (”add block ” ,

”bu i l t°in /Constant ” ,

”un t i t l e d /c1 ”) ;

Each request is encapsulated in a MatlabCall object mc

(see subsection 3.2) and added to the FIFO queue mcQueue.
While feval returns immediately, blockingFeval causes the
producer thread to wait on the object mc until the result is
available. We use a thread-safe queue implementation be-
cause (1) the dequeue operation is invoked by a separate
(consumer) thread and (2) this also allows multiple Java
threads to add queue entries concurrently without any fur-
ther synchronization requirements.

Listing 1: Java: class Matlab
package asyncjmi ;

import java . u t i l . Queue ;

import java . u t i l . concurrent . ConcurrentLinkedQueue ;

public c lass Matlab {

private stat ic f ina l Queue<MatlabCall> mcQueue

= new ConcurrentLinkedQueue<MatlabCall >() ;

public stat ic void f e v a l (S t r ing cmd ,

Object . . . a rgs) {
mcQueue . add (new MatlabCall (cmd , args , fa l se)) ;

}

public stat ic Object b lock ingFeva l (S t r ing cmd ,

Object . . . a rgs) throws Inter ruptedExcept ion {
MatlabCall mc =

new MatlabCall (cmd , args , true) ;

synchronized (mc) {
mcQueue . add (mc) ;

mc . wait () ;

}
i f (mc . errorMsg != null) {

throw new RuntimeException (mc . errorMsg) ;

}
return mc. r e s u l t ;

}

public stat ic MatlabCall getNextCal l () {
return mcQueue . p o l l () ;

}

//put inner c l a s s MatlabCall here
}

The MATLAB side of the interface is the dequeue oper-
ation getNextCall(), which is also provided by the class
Matlab. It removes and returns the next MatlabCall object
or null if there is none.

It should be noted that the line mcQueue.add(mc); must
be within the synchronized(mc) statement and not in front
of it. Otherwise the following situation might occur. The
MATLAB service accesses the mc object before the producer
thread is waiting on mc for the result. The result is passed
back before the producer thread is waiting for it and no
thread is notified. The subsequent wait(); would then
be infinite because the notification has occurred before. If
the line mcQueue.add(mc); is within the synchronized(mc)

statement, passing back the result is delayed until the pro-
ducer thread waits for it because passing back the result
is also a synchronized operation on mc. For the details of
passing back the result and the required synchronization see
subsection 3.2.

3.2 Representing a MATLAB call (Java Class)
The class MatlabCall is shown in Listing 2. We expressed

it as a nested class because this allowed us to keep its inter-
nals private. An instance of this class is used for

• encapsulating a request, which consists of a function
name (cmd), its arguments (args), and a flag (hasResult)
indicating if it is a blocking call or not,

• encapsulating the corresponding result, which consists
of an object (result) (if it represents a blocking call)
and a possible error message (error),

• synchronization between the Java producer threads and
the MATLAB consumer thread.

Listing 2: Java: inner class MatlabCall
public stat ic c lass MatlabCall {

public f ina l St r ing cmd ;

public f ina l Object [] a rgs ;

public f ina l boolean hasResult ;

private Object r e s u l t ;

private St r ing errorMsg ;

private MatlabCall (S t r ing cmd , Object [] args ,

boolean hasResult) {
this . cmd = cmd ;

this . a rgs = args ;

this . hasResult = hasResult ;

}

public synchronized void
handleResult (Object r e s u l t) {

this . r e s u l t = r e s u l t ;

this . n o t i f y () ;

}

public synchronized void
handleError (S t r ing errorMsg) {

i f (hasResult) {
this . errorMsg = errorMsg ;

this . n o t i f y () ;

} else {
System . e r r . p r i n t l n (errorMsg) ;

}
}

}

Whenever a return value of a blocking call is available in
MATLAB, handleResult() passes the return value back to
Java and notifies the waiting producer thread.

In case of an error message returned by the executed
MATLAB function, handleError() either passes the error
message back to the waiting producer thread (if it was a
blocking call) or outputs the error message to the MATLAB
console by means of writing to the Java error stream, which
is displayed on the MATLAB console window. As a trivial
change, one might consider to introduce a special exception
class instead of using a Java RuntimeException.

Both handleResult() and handleError() are only called
from the MATLAB service and serve only to pass back the
results from MATLAB to Java.

3.3 Consumer (M Function)
Listing 3 shows the corresponding consumer part, which is

implemented as an M function called handleMatlabCalls.
It is registered as a callback function of a periodic timer.
Such a callback function must match a certain signature,
which explains the two unused function parameters obj and
event. Timers have been introduced in MATLAB release
13 (version 6.5) released in the year 2002.

The function works oÆ MatlabCall objects in the queue
and executes the requests by invoking the built-in feval

function of MATLAB with the function name and the op-
tional arguments as parameters. For accessing the mcQueue

and for dealing with the queue’s elements, this function uses
the Java support included with MATLAB’s M scripts. The
first line, for example, gets the next queue element and the
second line checks if it is null. For this test, it is required to
use a special built-in function (isempty()) because M does
not support Java’s notion of null directly.

For blocking calls, in other words calls that need a return
value, the result of the evaluation is passed back to the Mat-

labCall object by calling handleResult(). The handleRe-

sult method (see Listing 2) also notifies the thread which
invoked blockingFeval and which is therefore waiting for
the result. Both, the arguments of the MatlabCall object
and the return value are subject to the data type conversion
between MATLAB and Java.

Listing 3: MATLAB: function handleMatlabCalls
function handleMatlabCal ls (obj , event)

mc = asyncjmi . Matlab . getNextCal l () ;

while (˜ isempty (mc))

try
cmd = char (mc . cmd) ;

args = c e l l (mc . args) ;

i f (mc . hasResult)

r e s u l t = f e v a l (cmd , args { : }) ;

mc . handleResult (r e s u l t) ;

else
f e v a l (cmd , args { : }) ;

end
catch

try
mc. handleError (l a s t e r r) ;

catch
d i sp l ay (l a s t e r r) ;

end
end
mc = asyncjmi . Matlab . getNextCal l () ;

end
end

Listing 4: Timer initialization
t = timer (’ TimerFcn ’ , @handleMatlabCalls ,

’ ExecutionMode ’ , ’ f ixedSpac ing ’ ,

’ Period ’ , 0 . 1) ;

s t a r t (t) ;

Exceptions that occur during the execution are caught
and the error message (lasterr) is passed back by calling
handleError(). The implementation of the error handling
strategy is encapsulated in the class MatlabCall (see sub-
section 3.2).

3.4 Consumer Initialization (M Function)
The initialization code of the timer is listed in Listing 4.

The timer is set up to execute the function handleMatlab-

Calls (parameter pair ’TimerFcn’, @handleMatlabCalls).
The timer period is set to 100 milliseconds (parameter pair
’Period’, 0.1), which was a reasonable value for our require-
ments. Of course, this interval could be made smaller, but
this would unnecessarily increase the CPU load even in the
common case that there is nothing to process. The fixedSpac-
ing option (parameter pair ’ExecutionMode’, ’fixedSpac-
ing’) ensures that this is the minimum time between fin-
ishing one execution and starting the next one.

As MATLAB is a single threaded system, the timer func-
tion is executed from the main MATLAB thread. This
implies that blocking calls must not be initiated from the
MATLAB thread. Otherwise a deadlock would occur. This
is because the blocking call will execute a wait for the re-
sult value, and this wait will block the MATLAB thread
itself. Consequently, the timer function will not be called to
handle the request and to notify the waiting thread. This
fundamental restriction can also be found in alternative ap-
proaches such as JMI (see section 5).

In order to ensure MATLAB’s reactivity in case a Java
component produces massive amounts of calls, a limit for
the while loop in Listing 3 may be introduced and/or the
timer interval may need to be adapted.

The timer may be initialized on MATLAB start as part
of the file startup.m, for example, or as soon as some cus-
tomized Simulink library is loaded, which implies that the
library’s PreLoadFcn callback function is executed. The
LoadFcn callback of any block can also be used to initial-
ize the timer, e.g. when loading an existing Simulink model.

3.5 Optimization for Blocking Calls
Without further provisions, executing a sequence of block-

ing calls from a single Java thread may suÆer from poor per-
formance. More precisely, the performance depends on the
priority of the Java thread that issues the calls. After the
timer function has evaluated the blocking call, it invokes the
handleResult method of the MatlabCall object, which no-
tifies the waiting Java thread. Depending on the priority of
the notified thread and Java’s scheduling behavior, several
scenarios are possible.

If the priority of the notified thread is lower than the prior-
ity of MATLAB’s main thread (in current releases Thread.-
NORM_PRIORITY), the notified thread will in many cases not
resume immediately, but the MATLAB thread will continue
and poll the queue before the producer thread is able to add
the next entry. This would result in terminating the timer
loop right after executing the first call and consequently ap-
proximates the worst case behavior of executing only one
call per timer invocation.

Listing 5: Optimization in class Matlab
// (1)
import java . u t i l . concurrent . BlockingQueue ;

import java . u t i l . concurrent . LinkedBlockingQueue ;

. . .

private stat ic f ina l
BlockingQueue<MatlabCall> mcQueue

= new LinkedBlockingQueue<MatlabCall >() ;

. . .

// (2)
public stat ic MatlabCall

getNextCallWait () throws Inter ruptedExcept ion {
return mcQueue . p o l l (1 , TimeUnit .MILLISECONDS) ;

}
}

Listing 6: Optimization in handleMatlabCalls
. . .

%(3)
mc = asyncjmi . Matlab . getNextCallWait () ;

end
end

If the priority of the notified thread is higher than the
priority of MATLAB’s main thread, the notified thread may
resume execution immediately and will add the next entry
to the queue before the timer polls it. This would result in
approximating the best case behavior of executing all calls
within one timer invocation.

If the priority of the notified thread is the same as the
priority of MATLAB’s main thread, the behavior will be
somewhere in between the above cases.

In order to be independent of the thread priority we use
a bounded wait within the timer’s while loop and notify the
waiting MATLAB thread upon adding an entry to the queue.
The MATLAB thread needs to wait only for a short amount
of time (one millisecond, for example) for this optimization
to work smoothly.

The bounded wait mechanism may be implemented by
polling the queue and, if the queue is empty, by calling the
appropriate wait(timeout) method provided by the Java
class Object and polling the queue again after the wait. In
addition the waiting thread must be notified upon adding an
element to the queue. Fortunately, this functionality is al-
ready provided by the Java interface BlockingQueue and its
thread-safe implementation in the class LinkedBlocking-

Queue. So we (1) change mcQueue to BlockingQueue, (2)
as a small performance optimization we add a new polling
method getNextCallWait which avoids the passing of pa-
rameters in the M function, and (3) in handleMatlabCalls

inside the while loop we replace the call to getNextCall()

by getNextCallWait(). For completeness, the modified and
additional code is shown in Listing 5 and Listing 6.

non-blocking calls [ms]
add block evalc

asyncjmi MC M asyncjmi MC M
1 0.38 0.18 0.19 0.46 0.17 0.07

10 2 0.62 1 3 1 0.63

100 22 6 11 26 8 6

1,000 332 161 197 257 76 56

10,000 16,353 13,879 14,058 2,587 750 569

Table 1: Performance comparison: non-blocking

4. PERFORMANCE EVALUATION
Table 1 and Table 2 show a performance comparison be-

tween the undocumented JMI (see section 5) and the pre-
sented asyncjmi approach together with the results for plain
M code executed from the MATLAB console window as a
baseline. The JMI variant has been used via a simplified in-
terface named MatlabControl (MC) (see section 5). It should
be noted that by means of some experimentation we were
able to use the interface for carrying out some of the bench-
marks. We were, however, not able to use it as a general
purpose interface because it showed unexpected behavior in
a number of situations (deadlocks and null pointer excep-
tions, for example) and it even failed for some of the bench-
mark tests. We have also tried to access JMI directly, but
the problems have been the same.

We diÆerentiate between a call to MATLAB (evalc(’1+1’)),
which evaluates an expression represented as a string, and a
call to Simulink (add_block), which adds a graphical rectan-
gular block to a simulation model. In each case, the MAT-
LAB call is executed 1, 10, 100, 1000, and 10,000 times re-
spectively. All tests were run 10 times and the presented val-
ues represent an average time consumption in milliseconds.
For MatlabControl we use the blocking blockingFeval and
the non-blocking feval.

All tests were run in MATLAB 2006a from Java’s AWT
thread on a Windows XP computer featuring an Intel Core
2 Duo processor with 2 GHz and 2 GB of RAM memory.

As can be seen from the evalc column, which does not in-
volve any complex internal data structures, both approaches
scale linearly with the number of invocations. Thus, the
overhead per call is constant. For the add_block command,
the non-linear behavior is caused by Simulink for creating
and managing 10,000 blocks within a simulation model.

In the case of non-blocking calls, the MatlabControl in-
terface is about three times faster than our approach. For
blocking calls the diÆerence is about a factor of two, but
there are tests were the MatlabControl approach fails.

Note that starting and ending a time measurement was
also executed as MATLAB calls (tic and toc). Thus, the
measurements do not include the variable time span up to
the timer invocation which executes the first MATLAB call.
In other words, we measured only the overhead regarding the
throughput (or CPU load), not the latency. This is justified
because the latency of 100 ms is hardly perceptible by the
user. The limiting factor is the throughput, not the latency.

For a large sequence of blocking calls the latency intro-
duced by the periodic timer is of course perceptible by the
user unless the optimization described above is used. Table 3
compares the optimized and the un-optimized case for 1000
blocking calls of evalc(’1+1’). It also shows the number
of timer invocations required to process these calls.

blocking calls [ms]
add block evalc

asyncjmi MC M asyncjmi MC M
1 0.28 - 0.19 0.78 0.44 0.07

10 3 - 1 4 3 0.63

100 28 - 11 35 18 6

1,000 387 - 197 316 147 56

10,000 17,150 - 14,058 3,233 - 569

Table 2: Performance comparison: blocking

1000 asyncjmi blocking calls
un-optimized optimized

thread priority 3 5 7 3 7

timer invocations 95 17 13 1 1

time [ms] 10,361 2,014 1,613 316 316

Table 3: Performance comparison between the un-
optimized and optimized blocking calls

5. RELATED WORK
This section outlines the existing approaches as far as they

are known to us and discusses their shortcomings.
Java MATLAB Interface (JMI). The jmi.jar library
that comes with MATLAB is a collection of Java interfaces
and classes. It supports the usage of MATLAB from Java
and also allows MATLAB commands to be executed from
Java. It has been included in MATLAB since the bundling
of Java with MATLAB in release 5.3 about ten years ago.
However, the JMI API is still undocumented, not supported
by The MathWorks and likely to change in future releases.
We have done a lot of experimentation with JMI before we
decided to create our own interface. Without a proper docu-
mentation we were not able to use it successfully. Since JMI
is based on native code, it is not possible to infer the missing
documentation from a look at the decompiled source code.
We encountered many deadlocks and null pointer exceptions
in particular for calls that return a result value. Neverthe-
less, various projects, such as MatlabControl [11] and the
MATLAB integration of TinyOS [10] build on JMI. As can
be seen from the performance evaluations, JMI provides an
e±cient interface if it works. JMI shares with our approach
that it is not possible to call back MATLAB from Java if the
call originates from the main MATLAB thread. In JMI this
limitation also applies for calls that do not return a result
value.
MatlabControl. MatlabControl [11] provides a thin wrap-
per over JMI (see above) with the intention to make JMI
easier to use and for providing an indirection that allows
for compensating changes in JMI without invalidating client
code. MatlabControl thereby inherits all the problems of
JMI and we were not able to use it successfully, in particular
for calls that return a result value. The runtime overhead of
the wrapper classes introduced by MatlabControl are negli-
gible and the performance figures of JMI and MatlabControl
can be regard as equivalent.
C-based MEX interface. An approach that immediately
comes to one’s mind is to use the C-based MEX interface in
combination with the Java Native Interface (JNI). However,
it turned out that this mechanism is highly unstable and
continuously causes MATLAB to crash and shut down non-
deterministically. This mechanism only works well if the ini-
tiator of the call is the main MATLAB thread itself. We are
not aware of any explicit synchronization mechanism pro-
vided by MATLAB’s C-based MEX interface. Thus, calling
back to MATLAB from Java’s AWT thread, for example, is
not possible with this approach.
MATLAB Event Handler. In a private communication,
the author of [7] pointed us to yet another form of interac-
tion between MATLAB and Java. By means of employing
the undocumented callbackproperties of MATLAB handles,
it is possible to register an event handler that calls a MAT-
LAB function on the main MATLAB thread when a spe-

cific Java method is executed, for example, on the AWT
thread. This approach, like ours, is based on asynchronous
communication but does not need a periodic timer. Since
the underlying mechanism is not o±cially supported by The
MathWorks and only communicated via experts from the
service hotline after a number of requests, we did not want
to base our production code on it. Those experts from The
MathWorks support team also issued a warning that it will
be very tricky to pass back the result of a MATLAB func-
tion to Java. Also, the JMI interface does not rely on this
mechanism, which increases our doubts in its usefulness.

6. SUMMARY AND CONCLUSIONS
We have presented a portable, compact, and su±ciently

e±cient approach for calling back MATLAB functions from
within the Java Virtual Machine integrated with MATLAB.
This closes an important gap for integrating fully fledged
Java components into MATLAB.

Our approach is based on asynchronous communication
following the producer/consumer pattern and relies exclu-
sively on pure Java and documented and portable mecha-
nisms provided by MATLAB. It has been tested and used
successfully on a variety of MATLAB versions and it can
be expected that it works independent of the underlying
operating system for all MATLAB releases ∏ 13 (version
6.5) introduced in the year 2002. A simple optimization sig-
nificantly improves the e±ciency of blocking MATLAB calls
even if the priority of the producer thread is smaller or equal
to the priority of the main MATLAB thread.

Acknowledgments
We would like to thank Gerald Stieglbauer for sharing his
experience regarding MATLAB and Java with us. His work
provided a valuable starting point for our approach because
he has ruled out various dead-end approaches. He also iden-
tified some core problems with the C based MEX interface
and the threading issues involved.

7. REFERENCES
[1] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes,

and D. Lea. Java Concurrency in Practice.
Addison-Wesley Professional, 2006.

[2] A. Klimke. How to access MATLAB from Java.
Technical report, University of Stuttgart, 2003.

[3] M. Krätzig. JStatCom. www.jstatcom.com, 2008.
[4] S. Müller. JMatLink connect MATLAB and Java.

http://jmatlink.sourceforge.net, 2005.
[5] A. Naderlinger, W. Pree, and J. Templ. Visual

modeling of real-time behavior. Symposium on
Automotive/Avionics Systems Engineering, 2009.

[6] preeTEC. www.preeTEC.com, 2010.
[7] G. Stieglbauer. Model-based Development of Embedded

Control Software with TDL and Simulink. PhD thesis,
University of Salzburg, 2007.

[8] Sun Microsystems. Java Native Interface 6.0
specification. http://java.sun.com/javase/6/docs/
technotes/guides/jni, 2006.

[9] The MathWorks. www.mathworks.com, 2009.
[10] TinyOS Alliance. TinyOS. www.tinyos.net, 2009.
[11] K. Whitehouse. MatlabControl. www.cs.virginia.

edu/~whitehouse/matlab/JavaMatlab.html, 2009.

