
An Infrared Spectrometer for Process Monitoring II,
Chemometry and Automatization

Peter M. Hintenaus
C. Doppler Laboratory

Embedded Software Systems
Universität Salzburg

Jakob Haringer Straße 2
5020 Salzburg, Austria

Email: peter.hintenaus@cs.uni-salzburg.at

Wolfgang Märzinger
RECENDT GmbH
Hafenstraße 47-51
4020 Linz, Austria

Email: wolfgang.maerzinger@recendt.at

Helmut Pöll
EEVG Entsorgungs- und

Energieverwertungs GmbH
Fabriksplatz 1

4662 Steyrermühl, Austria

Abstract—We describe a hard and software architecture for
process control applications in the chemical, pharamceutical and
food industries based on spectroscopic measurements. We argue
for the tight integration of the spectrometer itself, the data
analysis software and the measurement automatization to achieve
situation awareness and predictible real-time behavior and to be
able to handle complicated sampling situations, while keeping
the programming effort for an individual installation low.

I. INTRODUCTION

Infrared spectroscopic methods find widespread use in ana-
lytical chemistry. When monitoring processes a chemist knows
the substances contained in the samples, but the concentrations
of the individual substances are unknown. For performing an
analysis infrared light is passed through a sampling station
where the light interacts with the sample being analyzed.
This interaction results in the absorption of some specific
wavelengths of the infrared light depending on the chemical
composition of the analyte. The spectrum of the light that has
passed the analyte is evaluated by a so-called chemometric
model which produces the concentrations. Analytic chemists
derive chemometric models from the spectra of controlled
experiments using statistical methods such as partial least
square regression, see e.g. [1].

In [2] we describe a Fourier transform infrared spectrom-
eter, see e.g. [3], for process monitoring applications. This
spectrometer can easily be adopted to different measurement
tasks, by configuring the tradeoff between resolution on the
one hand, and the time required for taking a single spectrum
on the other. The number of spectra averaged to produce a
single measurement is also configurable. The signal to noise
ratio of this instrument is 20000 for a resolution of 3cm�1

and a measurement time of 1 second.
In this paper we first describe the requirements for autom-

atized measurement systems for process control. Next we dis-
cuss the architecture of our system and its main components,
the chemometry engine and the measurment automatization.
A case study rounds out this work.

II. REQUIREMENTS FOR AUTOMATIZED MEASURMENT
SYSTEMS

Devices used for automated measurements in process ap-
plications have to operate unattended for prolonged periodes
of time. When compared to a lab environment, where a
human operator is available for handling of the samples, data
entry and similar tasks, operating measurent equipement in
a process setting for routine measurements poses additional
requirements:

A. Situation Awareness
Both the measurement system itself and the data analysis

software have to be aware of the state their environment is in.
Consider an installation with several sampling stations, which
are scanned by an optical multiplexer. For each sampling
station the spectrometer will have to switch its signal condi-
tioning amplifiers to a different gain, in order to accomodate
for different lighting situations. The data analysis software
on the other hand will have to use different procedures for
computing the analysis.

B. Complex Sampling Procedures
Contamination of the sampling station is a problem in many

applications. Provisions for the automatic initiation of periodic
cleaning operations have to be taken. When measuring pow-
dery substances samples might have to be extracted by some
extraction mechanism from the process. Both the spectrometer
and the data analysis software have to be synchronized with
the sample extraction.

C. High Speed with Predictable Timing
Quality control applications in the pharamceutical and food

industries for example demand for the evaluation of up to 10
individual objects per second. An evaluation typically consists
of detecting the presence of an object, taking one or more
spectra of this object, running a chemometric procedure and
accepting or rejecting the object depending on the outcome of
the chemometric analysis. The time allowed for one evaluation
is fixed by the design of the mechanical apparatus performing
the actual acceptance or rejection. Although missing some

objects might be inevitable, this deadline can only be missed
very rarely, in order to avoid having to reject a large number
of objects that have not been evaluated.

III. ARCHITECTURE

The hardware of our instrument includes two signal pro-
cessing clusters consisting of two ADSP-21161 digital sig-
nal processors [4] each and an ARM-9 [5]. The ARM-9
is responsible for passing data to and from the two DSP
clusters, for communicating with the outside world using
LAN and for the interface to the production process. It runs
the LINUX operating system. One of the DSP clusters is
dedicated to computing spectra, the other is used for executing
chemometric models.

The software consists of three main parts, the computation
of interferograms and spectra, a measurement automatization
component and the chemometry engine. The automatization
component is responsible for controlling the operation of the
device. It receives the spectra produced by the spectrometer,
it passes these along to the chemometry engine to receive
the analysis results in turn and it interacts with the produc-
tion process. The chemometry engine executes user-defined
chemometric procedures under the control of the automatiza-
tion component. A chemometric program can contain several
prcedures.

A. Computing Interferograms and Spectra

A Fourier transform spectrometer consists of a Michelson
interferometer (Figure 1) with one moving mirror, a detector
and the electronics for driving the mirror and for processing
the signal gathered by the detector. A beam of light enters
the interferometer from below, to be split at the beamsplitter
into two halfs, one directed at the fixed mirror, the other at the
moving mirror. These two halfs are reflected at their respective
mirrors and recombine at the beamsplitter. One part of the
recombined beam is reflected towards the the detector, the
other back into the source. The intensity of the beam reflected
towards the detector depends on the displacement d = |a�b| of
the moving mirror and the spectrum S of the incomming beam.
For d = 0 all light is reflected towards the detector and none
back to the source. The interferogram I that is reflected into
the detector when the moving mirror travels at constant speed
is basically the Fourier integral of S. By applying the inverse
Fourier transform to a sampled version of I the Spectrum is
computed.

Fixed Mirror
�
�
�
�

Beamsplitter

Moving Mirror⇤
�a �
⇥⇥ �

b
⇤ �
6?

Detector

Fig. 1. Michelson Interferometer

In our device the mirror is driven sinusodually by a voice
coil, therefore the signal the detector produces is modulated
by the speed of the mirror. We demodulate this signal by using
the interferogram produced by a laserbeam, which is coupled
into the interferometer in parallel with the light we want to
analyze.

B. The Chemometry Engine

The chemometry engine is a stack machine, see e.g. [6],
combined with a memory for data that shall be preserved
between procedure invocations. A single entry on the stack
or in the memory can hold either a scalar or a vector. When
a chemometric procedure is invoked by the automatization
component, the parameters are passed on the stack. Upon
completion, a procedure passes back zero or more results, and
the stack is flushed. The engine is programmed in an assembly-
like language, which is interpreted at run-time. To keep the
overhead due to the interpretation of the individual instructions
low, the instruction set has been designed to be as high-
level as possible. As conditional execution has been moved
into individual instructions themselves, the chemometric pro-
cedures represent straight-line programs only. Error-checking
is performed at run-time. For preprocessing spectral data the
engine offers instructions such as computing absorbance and
transmission, filtering including differentiation, correction of
the offset and the slope, computing various versions of normed
spectra, and computing a multiplicative scatter correction.
The arithmetic instructions operate on any combination of
scalars and vectors as long this combination is mathematically
justified. Additional instructions for manipulating vectors are
provided.

Currently the chemometry engine is optimized for the
evaluation of chemometric models derived by multivariate
statistical methods. By adding a few instructions it can be
extended to also cover models based on e.g. neural networks.

Invoking a chemometric procedure with a spectrum consist-
ing of 2000 points takes about 3ms. The execution times of
digital signal processors we use is very predictable, so well-
defined real-time behavior is provided.

C. Measurement Automatization

Most sensors used in factory automatization exhibit negli-
gible delay between the time a measurement was taken, and
the time the result is available to the rest of the system.
This is not true when working with spectral information. In
its fastest mode of operation (80 spectra per second) our
device exhibits a delay of about 60mS between the time a
measurement was taken and the availability of the spectrum
based on this measurement. For high-speed applications this
timing behavior precludes a purely time-triggered approach for
handling the spectral data, as offered by commercially avail-
able programmable logic controllers. Moreover, the volume of
data contained in a single spectrum is huge, when compared to
what factory automatization systems have to handle. To cope
with these problems we designed a programming language
called STAMPED [7] that supports timestamps explicitly for

describing temporal relations. To provide a compact repre-
sentation of the automatization program that can be handled
easily with existing tools (e.g. version management, difference
listers, editors) STAMPED is purely textual.

The main unit of execution in STAMPED is a task. A task
can either be invoked periodically or, in contrast to many other
automatization languages, as a reaction to an event. Tasks
communicate using shared variables. The access to shared
variables is guaranteed to be atomic regardless of type. No
other synchronization for tasks is provided.

The description of subsystems that can interface with
STAMPED are called components. A component variable can
produce events for triggering task invocations, it may contain
an object dictionary for sharing data with the STAMPED pro-
gram, and procedure definitions for the procedures that can be
called from STAMPED. Components in our STAMPED sys-
tem are a spectrometer, a datastore for archiving measurement
data and a CANopen field bus [8] for communicating with
devices like digital and analog in- and outputs, motordrives
and the like. Components like the spectrometer that require
special hardware allow only one instance of the component
which must have a specific name. This constraint is checked
during start-up of a STAMPED program. Other components
like the datastore can be instantiated several times.

An event may have variables associated with it, which
are updated with new data everytime the event fires. These
variables are inherited by the task that reacts to the event
in the form of local variables. Besides integer and floating-
point, STAMPED supports binary large objects (BLOBs) for
moving data of variable length between component variables.
The memory for these binary large objects is reclaimed
automatically once the memory cannot be referenced anymore
by using a reference counting scheme. Arrays and records of
arbitrary complexity are also possible. When compared with
IEC 61131 structured text [9], STAMPED allows for several
tasks in one program, moreover it adds event-triggered tasks,
components and binary large objects.

COMPONENT Spectrometer

EVENT SpectrumAvailable

TIMESTAMP mStart, mEnd;

FLOAT loWN, hiWN;

BLOB Spectrum

END;

PROCEDURE setIrGain(INTEGER gain);

PROCEDURE StopMeasure();

PROCEDURE StartMeasure();

END.

Fig. 2. A Component Definition

To provide a flavor of STAMPED we present two short sam-
ples. In figure 2 the component definition of Spectrometer
is shown. The event SpectrumAvailabe provides the time
the measurement was started and ended, the lowest and the
highest wavenumber in the spectral data and the data itself to

the task that serves it. Three procedures allow setting the gain
of the signal conditioning amplifier, stopping the measurement
process and starting it again.

PROGRAM

IMPORT Chemometry;

IMPORT Spectrometer

VAR

Chemometry ash;

Spectrometer FtIr;

FLOAT Concentration

TASK ChemicalAnalyst

ON FtIr.SpectrumAvailable

BEGIN

Concentration := ash.analyze(Spectrum)

END

...

Fig. 3. A STAMPED Program

In figure 3 the task ChemicalAnalyst is invoked ev-
erytime a new spectrum is available. It sends the spectrum to
the chemometric procedure analyze in the program ash.
The result is posted to the global variable Concentration
where other tasks can read it.

For describing a task’s operations, STAMPED supports
procedures, optionally with several return values, if-statements
and for-loops. While-loops have been omitted on purpose, as
their real-time behavior is hard to predict.

IV. ADVANTAGES OF TIGHT INTEGRATION

By integrating an automatization component into our spec-
trometer we achieve situation awareness. The application pro-
gram executed by the automatization component either con-
trols the state of the surounding of the measurement system, or
at least senses it. Therefore it can control the spectrometer and
invoke the correct chemometric procedures as required by the
situation at hand. For high-speed applications tight integration
provides for high analysis rates and short and predictable delay
times. When measuring the humidity of substrates made from
sucrose we were able to achive 80 measurements per second,
with a precission of less than 0.1% and a consistent delay
between the time the measurement was taken and the report
of the result via CANopen of less than 100mS, fast enough
for automated quality control of these substrates. Complex
sampling situations can be handled by the automatization
component, using fieldbus based remote peripheral devices.

V. CASE STUDY

Flyash resulting from incineration of residuals of paper
production in powerplants is used as additive by the cement
industry. For the additive to be acceptable the cloride content
has to be kept low. In [10] the effect of other additives on the
quality of concrete has been investigated. Initial laboratory

measurements, applied to samples of flyash, using a Bruker
Vertex 70 laboratory spectrometer suggested that the cloride
content can indeed be determined by spectroscopic methods.
First trials at the process showed that any sampling station that
is exposed to the ash-stream permanently will get clogged in a
short period of time. Therfore a sampling mechanism operated
by four pneumatic cylinders was constructed that periodically
extracts a sample of ash.

Fig. 4. Sampler: Spoon (left), Cleaning (middle) and Sampling (right)

Figure 4 shows part of the sampling station. Two cylinders
move a spoon first into the ash-stream, for filling it with ash,
then to the intermediate position, where the ash in the spoon is
leveled by the third cylinder, then to the measurment position,
where spectra are taken, and then back to the intermediate
position, where the forth cylinder empties the spoon using a
brush and a jet of air. The complete sampling procedure is
controlled by a STAMPED program consisting of about 400
lines of code.

For modelling the data fourteen samples with cloride con-
centrations from 0.18% to 0.45%, covering the range than is
expected during production, were prepared in the laboratory.
From the concentrations of the samples together with their
spectra, loading vectors were computed using the partial least
squares algorithm. The loadings were applied to the spectra
collected over a period of one month to predict the cloride
concentrations offline.

Fig. 5. Predictions and lab references for a 9-day run

The graph in figure 5 shows the predictions together with
the results of some laboratory measurements taken during an 9

day period starting on April 12th of 2010. About 30000 spectra
were taken during this period. On April 14th the sampling
mechanism got stuck and no samples where taken for a one-
day period. In table I we compare the chlorine concentration
of 18 samples determined by laboratory measurements, with
the predictions our system computed at the time the sample
was taken. The average error is 0.0048% (0.0011% without
sample 13), the variance is 0.00038 (0.00015). Although our
preliminary model has to be improved by incoporating more
laboratory measurements, the cloride content is prediced with
acceptable accuracy.

Sample Cl [%] Prediction [%] Error [%]
1 0.22 0.232 -0.012
2 0.24 0.243 -0.003
3 0.31 0.300 0.010
4 0.31 0.305 0.005
5 0.32 0.321 -0.001
6 0.33 0.335 -0.005
7 0.20 0.212 -0.012
8 0.20 0.207 -0.007
9 0.18 0.173 0.007

10 0.35 0.337 0.013
11 0.24 0.244 -0.004
12 0.45 0.437 0.013
13 0.44 0.373 0.067
14 0.37 0.361 0.009
15 0.35 0.350 0.000
16 0.35 0.345 0.005
17 0.33 0.304 0.026
18 0.28 0.306 -0.026

TABLE I
CHLORINE CONCENTRATIONS ACCORDING TO LABORATORY ANALYSIS

COMPARED WITH PREDICTED VALUES

VI. CONCLUSION

We have identified requirements for the application of soft-
computing methods for automated process control. We have
described our approach towards satisfying these requirements.
We have demonstrated a successful application of our system.
One big problem remains: when running data analysis proce-
dures without human supervision some measure of confidence
in the results shall be computed by the procedures themselves,
so that alarms can be raised automatically once the results
cannot be trusted anymore.

REFERENCES

[1] R. G. Brereton, Chemometrics: Data Analysis for the Laboratory and
Chemical Plant. John Wiley and Sons, Ltd., 2003.

[2] P. M. Hintenaus, G. Kvas, and W. Märzinger, “An infrared spectrometer
for process monitoring I, spectroscopy,” in Proceedings of the 33rd
Annual Conference of the IEEE Industrial Electronics Society (IECON).
IEEE, 2007.

[3] J. Kauppinen and J. Partanen, Fourier Transforms in Spectroscopy.
Wiley-VCH, 2001.

[4] ADSP-21161 SHARC Processor Hardware Reference, 4th ed., Analog
Devices, February 2005.

[5] NS9750B-A1 Hardware Reference, Digi International Inc., March 2008.
[6] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-

tative Approach, 3rd ed. Morgan Kaufmann publishers, 2003.
[7] P. M. Hintenaus, “Stamped language definition,” C. Doppler Laboratory

Embedded Software Systems, University of Salzburg, Tech. Rep., 2010,
to appear.

[8] CANopen application layer and communication profile, CAN in Autom-
atization, 2006, version 4.1.

[9] Programmable Controllers - Part 3: Programming Languages, 2nd ed.,
IEC.

[10] D. Traber, F. Jacobs, U. Mäder, and U. Eggenberger, “Einsatz von
Sekundärstoffen im Beton: technische und ökologische Anforderungen,”
Betonwerk und Fertigteil-Technik, November 2000.

