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Abstract-Test automation systems used for developing 
combustion engines comprise hardware components and 
software functionality they depend on. Such systems usually 
perform similar tasks; they comprise similar hardware and 
execute similar software. Regarding their details, however, 
literally no two systems are exactly the same. In order to support 
such variations, the automation system has to be customized 
accordingly. Without a tools that properly supports both, 
customization as well as standardization of functionality, 
customization can be time consuming and error-prone. In this 
paper we describe a modeling driven approach that is based on 
components with hard- and software view that allows defining 
standard functionality for physical hardware. We show how this 
way most of the automation system’s standard functionality can 
be generated automatically, while still allowing to add custom 
functionality. 

I. DOMAIN INTRODUCTION 

The modeling approach we describe here was developed 
together with our industry partner, a leading provider of a 
specific kind of automation systems, mainly used in the 
automotive industry during development of combustion 
engines. Such systems by and large comprise similar 
components, such as (a) the engine to be tested, (b) one or 
more dynamometers for generating load, (c) a shaft for 
connecting the engine to test with the dynamometer, (d) 
devices for providing fuel, water and oil, (e) I/O devices for 
gathering measurement data and controlling the hardware, 
and (f) various measurement devices, for example for 
analyzing exhaust gases. The control PC (g) finally executes 
the automation system software, controlling the actuators 
according to a test procedure and recording measurement 
data. Fig. 1 schematically shows a typical example. 

 

 
Fig. 1. A typical engine test system. It shows the basic hardware components 
usually found in a system used during development of combustion engines. 

 
Many aspects of the automation system software need to be 

configured according to the demands of a test procedure. For 
example, the parameters of PID controllers for the cooling 

water supply, the maximum engine speed and the action to be 
performed if the threshold is exceeded, or the error reaction in 
case the shaft breaks. A typical test system can have 10,000 
configuration parameters with 120,000 values. Most of these 
parameters are static during a run of the test procedure. Our 
research was initiated because of our partner’s limited tool 
support for this kind of configuration tasks, which is largely 
based on configuration files. Parameter values can therefore 
be checked by the automation system software only during 
start-up. Getting a system running is thus an error prone 
process that can take up to weeks, even for experienced 
personnel. 

Our proposal is to raise the level of abstraction from 
configuration files to models of the test system. In order to 
sufficiently represent the automation system, we clearly have 
to model the software functionality executed by the 
automation system. But we also have to model relevant parts 
of the hardware. For example, the wiring between I/O devices 
and sensors is relevant for tracing a signal used in software 
functions back to its sensor and measurement location. Other 
physical components such as the shaft or transmission are 
relevant, since their physical properties have an influence on 
the software functionality, e.g. the inertias of all rotating 
components are necessary for the engine speed controller. 

Fig. 2 shows how our modeling approach fits into the 
existing automation system; it indicates that we model both, 
hard- and software of the automation system, and generate 
configuration files compatible with the current automation 
system software. We do not modify the existing system. 

 

 
Fig. 2. Configuration through model driven engineering. Configuration files 
are not created by hand anymore, but generated from the model file instead. 

 
Although literally no two deployed systems are exactly the 

same, they usually still have a similar structure: instead of a 
shaft connecting an engine to the dynamometer directly, there 
may be a transmission added in between; or instead of one 
single dynamometer, there may be a differential gear with 
two dynamometers. Similarly, the functionality executed by 



the automation system is largely the same for each test 
system, for example: (1) torque and speed of an engine must 
be controlled, (2) the shaft must be monitored for breakage, 
or (3) the cooling water temperature must be controlled. 

In order to illustrate these common functionalities and 
highlight our specific modeling approach, we focus on the 
shaft between the engine and the dynamometer. Despite its 
simplicity, the shaft is actually a safety critical component: it 
has to withstand mechanical forces that can break it. A break 
can cause severe damage to the system and may injure 
personnel. The automation system software must therefore 
continually check that the shaft is intact and shut down the 
system immediately if a breakage is detected. The basic idea 
is to monitor the speed at both ends of the shaft. A large 
difference between the two speeds thus signals a breakage. A 
small difference, however, must be allowed since, however 
rigid the shaft seems, it acts as a torsion spring. 

Other parts of the test system, such as the dynamometer 
require much more elaborate functionality and even for the 
shaft additional functionality can be required. For example, 
wires in proximity of the shaft are used for additional break 
detection: if the shaft breaks, it will tear apart some of these 
wires and interrupt their electrical signals, or it will cause 
short-cuts among other wires. In order not to get lost in 
technical details, we thus stick to the simple shaft example 
throughout the paper. For an introduction to functionality 
required for engine testing, we refer to Martyr and Plint [1]. 

A great deal of the software functionality is common 
among test systems. Obviously, instead of manually defining 
the functionality each time from scratch, it should be defined 
by experts only once. Such standard functionality should be 
stored in a library for reuse in multiple systems. Following 
our example, the library may contain different break detection 
functions. If a shaft is used in a test system, the corresponding 
functions would be added, thus eliminating much of the 
routine work and reducing the chances of making errors. 

II. EXISTING MODELING APPROACHES 

Since we need to model both, hard- and software of a test 
system, we first have to take a look at available modeling 
languages. Generic languages such as the systems modeling 
language (SysML) [2] allow modeling hard- and software, 
but its generality is both, its strength and its weakness. For 
example, our targeted users should not be confronted with 
unnecessary diagram types such as a use case diagram or a 
package diagram. On the other hand, users should be 
provided domain-specific modeling language concepts, 
including electrical wiring. While in SysML electrical wiring 
of a system could be modeled in the internal block diagram, 
the notation does not have built-in semantics e.g. of plug 
compatibility, and tools could thus not guide users very well. 

Modeling environments with a smaller, dedicated scope 
usually come with more concrete semantics. Functionality 
executed by the automation system software can be 
represented by dataflow programming languages such as 
MATLAB/Simulink [3], and Hardware can be modeled using 

computer aided design (CAD) systems, such as EPLAN [4] 
for the electrical wiring. Using multiple modeling languages 
for hard- and software does not seem to be practical, though. 
For example, tracing back an input to a software function to 
the sensor via I/O devices, electrical cables and plugs would 
involve multiple models from different tools. 

In certain cases, models in different languages can be 
synchronized programmatically, using integration platforms. 
GeneralStore [5] is one such platform supporting integration 
of different software specific models, such as structural 
information in the Unified Modeling Language (UML) [6] 
and control rules in MATLAB/Simulink through 
transforming models in specific metamodels to and from a 
shared, generic metamodel. GeneralStore, however, focuses 
on embedded electronics and to our knowledge does not 
support CAD systems. Even if hard- and software models 
could be integrated, users still had to work with multiple 
different tools, disrupting the workflow. 

Föderal [7] follows similar goals as we but has a wider 
focus on special purpose machinery. In this context, machines 
are designed specifically for a customer but still share some 
similarities. Where traditionally whole CAD drawings or 
programmable logic controller (PLC) programs were copied 
from existing projects and adapted to fit the new machine, the 
new approach is to identify smaller generic building blocks 
that can be parameterized and assembled to create new 
machines. Mind8 [8] is a tool that can then be used to 
generate the CAD drawings or PLC programs from these 
building blocks. Users finally work on these generated 
artifacts using the original tools to define custom features not 
yet anticipated in the building blocks. As with the 
GeneralStore approach, we think that using independent tools 
for hardware and software aspects disrupts the workflow. 

Modeling hard- and software of a test automation system, 
however, is not sufficient for our approach. We also need to 
express dependencies among certain hardware components 
and corresponding software functionality. In product line 
engineering (PLE) [9], there is the concept of a feature model 
which describes choices that can be made for a family of 
similar products. Each product of the family is represented by 
a distinct selection of features. Features may not be selected 
arbitrarily, but they can depend on the selection of other 
features. The kind of products created with this approach 
typically comprises source-code (e.g. for creating the 
software for a range of similar mobile phones) or UML 
models [10]. The feature model thus defines the scope of a 
family of similar products. 

We could think of applying PLE in our domain, too, for 
example, by making the break detection a feature that is 
mandatory if a shaft is used. In contrast to the clearly defined 
scope of product families in PLE, our domain requires much 
more flexibility, i.e. we think that it is impossible to define a 
single feature model describing all possible types of test 
automation systems with reasonable effort. PLE tools such as 
DOPLER [11] thus split up one big feature model into 
multiple smaller parts that they hope are easier to manage. 



A major problem with PLE, however, is the insufficient 
integration of feature modeling and selection with the actual 
modeling environment:  products are usually created only by 
making selections within the feature models, and the 
generated product is not manually modified afterwards. If, for 
example, a model of a test automation system is generated, 
users must not manually delete certain mandatory model 
elements. Since feature modeling is done outside the 
modeling environment, the modeling environment has no 
notion of a mandatory feature to prevent this, though. 

So, in order to provide an appropriate basis for modeling 
test automation systems, we provide a modeling environment 
with a notion of physical hardware and software functionality 
executed by an automation system. We also support declaring 
parts of the model mandatory in order to represent domain 
expert’s knowledge, e.g. for typical software functionality 
associated with certain hardware components. The rest of the 
paper present our own modeling approach and briefly 
sketches how it fits into the process of generating 
configuration parameters for a concrete automation system. 

III. THE INTEGRATED MODELING APPROACH 

In the section I, we showed that engine test systems share 
many commonalities regarding their hard- and software. 
Models of such systems can thus benefit from libraries of 
reusable, predefined template components. We also saw that 
hardware components such as a shaft often require standard 
functionality executed by the automation system. In order to 
further simplify the creation of models and free the users 
from having to manually associate the hardware and software 
aspects each time again, our approach introduces the concept 
of a component with views for hardware aspects and required 
software aspects. When a model of the system’s hardware is 
created from predefined components, the model of the 
system’s software is to a large extent created automatically. 
This section uses the simple shaft break detection example to 
illustrate the principle behind our modeling approach. 

A. The Hardware View 
In our approach, the hardware view is quite straight-

forward. Components are represented by rounded rectangles 
with small boxes representing the ports, such as electrical 
plugs or flanges. Fig. 3 shows an example of a shaft. These 
components are used to create models similar to fig. 1. 
 

 
Fig. 3. Shaft hardware view: interface. A shaft is a simple hardware 
component with flanges at both ends, represented as ports. 

 
The ports of a component define (part of) its interface. As 

the term interface suggests, there can also be an 
implementation, i.e. a component can be composed from sub-
components. Such a composition can be represented using 
additional diagrams. A shaft, however, is a simple component 
so it does not need to describe further details. Interfaces of 

other physical components comprising a test system such as 
the engine and the dynamometer are defined analogously. 

Components can intuitively be connected to other 
components through compatible ports, for example a flange 
can be connected to exactly one other flange, and an electrical 
plug can be connected to other electrical plugs. Fig. 4 shows 
part of a test system, following the example in fig. 1. The 
interfaces of both, the engine and dynamometer comprise 
additional ports not shown here, including electrical wires 
and plugs, e.g. for various sensors or electronic control units, 
and pipes and fittings, e.g. for fuel supply and exhaust gases. 

In order to reduce complexity of the diagrams, the 
graphical representation can be adjusted by the users to show 
only part of the component’s interface definition, changing 
the shape, or freely placing its ports. 

 

 
Fig. 4. Part of the test system hardware view: implementation. Engine, shaft 
and dynamometer are connected through their flanges. 

 
In general, a component such as the shaft in fig. 3 is a self-

contained unit that can be managed independently in a 
library, i.e. its interface does not contain connections to the 
engine or dynamometer. Such a component can serve as a 
template: copies of the template can be used as sub-
components within other components. For example, the shaft 
in fig. 4 is a copy that just happens to have the same name as 
the shaft template in the library, i.e. they are distinct entities. 
Besides copying from a template, components can be created 
from scratch. We postpone templates until later. 

B. The Software View 
For describing software functionality associated with a 

hardware component, we use the dataflow notation similar to 
MATLAB/Simulink, i.e. boxes usually represent functions 
and ports represent input and output signals, and connections 
between these ports represent the flow of signals. Fig. 5 a) 
shows an example of the shaft break detection as described in 
the introduction. The example contains a delta function 
computing the difference between two speed signals, and a 
reaction function that triggers an emergency stop of the 
system in case the difference exceeds a certain limit. The 
threshold, as well as the kind of reaction are properties of the 
reaction function; we skip properties in this paper. 

 

 
Fig. 5. Break detection software view: implementation a) and interface b). 
The functionality uses two speeds, as well as a delta and a reaction function. 

 
The rounded blocks are not functions; instead, they 

represent required input signals, analogously to subsystem 
ports in MATLAB/Simulink that have to be provided by 



some other source. The break detection model makes no 
assumptions about their origin. According to fig. 1, in a 
typical system the shaft directly connects an engine and a 
dynamometer. Both components usually have a speed sensor 
attached, so these signals can be used as inputs for the break 
detection. If, however, the shaft is connected to the 
dynamometer through an optional transmission, the 
dynamometer signal value would have to be adjusted 
accordingly. By defining the left and right speed signals as 
required, the break detection can be defined independent of 
the context where it will be used eventually. 

Analogously to the hardware view, we also distinguish 
between interface and implementation in the software view: 
where in the hardware view the interface is defined by 
electrical plugs, flanges, or fittings, the interface in the 
software view is defined by the required input and output 
signals. A rounded block in the implementation diagram such 
as shown in fig. 5 a) and the port with the same name in the 
interface as shown in fig. 5 b) represent the same signal. 

A function can be composed from other more elementary 
functions. These elementary functions eventually correspond 
to software executed by the automation system in real-time, 
i.e. in order to be able to transform a model, the targeted 
automation system must provide a matching implementation 
for each of the required functions. For example, in our case 
the automation system must know how to execute a delta 
function, and a reaction function. The automation system, 
however, does not need to have an implementation for 
composite functions such as the shaft break functionality.  

Not all functions are consumers of signals such as the break 
detection. The engine, and the dynamometer components, for 
example, both come with a sensor to measure their speed. 
Fig. 6 shows part of the software functionality associated with 
the engine. It produces a crank speed output signal, as shown 
in the interface definition b). The implementation model a) 
shows the origin of the signal. It is produced by a specific 
kind of element that represents the physical phenomenon, 
acquired by a sensor and an I/O device. The engine’s 
software functionality makes no assumptions about how this 
physical phenomenon is acquired, besides that it comes 
through some I/O functionality. The example also shows an 
additional reaction function, to express that the automation 
system has to monitor the speed of the engine and shut down 
the system in case the engine’s maximum speed is exceeded. 

 

 
Fig. 6. Engine function’s software view implementation a) and interface b). 
The implementation introduces the crank speed signal through a specific kind 
of model element representing I/O. 

 
A signal defined by a function’s implementation model can 

thus be made available to the outside through its interface, 

and at the same time the signal can be used internally for 
functionality associated with the engine function. The 
functionality associated with the dynamometer is analogous 
and thus is skipped here 

C. Integrating Hardware and Software Views 
The key to our modeling approach is not the graphical 

syntax used for the hard- and software aspects. It is also not 
the rich semantics of the language, although notions for 
sensors, plugs, and flanges, or software functions certainly 
are important for providing an intuitive modeling 
environment. More important is how we associate required 
standard software functionality for hardware components. 

Continuing with the shaft example, fig. 7 picks up the 
interface definition of the shaft from fig. 3 and the break 
detection from fig. 5: a) and b) both are different views on the 
same model element, i.e. there is only one model element 
called shaft in the library. We thus use the term component 
for both, the hardware component, as well as its associated 
required software functionality. 

 

 
Fig. 7. Shaft hardware a) and software b) view. Both views together define 
the interface of a shaft component. 

 
The hardware aspect of a shaft interface comprises the 

flanges, while the software aspect comprises the required 
speed signals and a model describing how the break detection 
is done in terms of more elementary software functions 
provided by the automation system software. 

Obviously, a shaft is a simple mechanical component that 
can certainly not execute any software, yet we define 
software functionality with its model. Note that the software 
implementation model does not say where the functions are 
actually executed. In an automation system with multiple 
execution nodes, the delta function may be executed on 
another node than the reaction function. It is the model 
transformation system’s task to find a suitable distribution. 

 Other components that are part of a test system such as the 
engine and the dynamometer are defined analogously to the 
shaft. The definition of a component such as the shaft 
containing both, hard- and required software functionality, is 
where the main advantage of our approach lies: since the 
shaft comes with required software functionality predefined, a 
user cannot forget it. 

Note that the naming “Left Flange” / ”Left Speed” and 
“Right Flange” / “Right Speed” suggests a semantic relation 
between the ports in the hardware and software views, but in 
general such a direct relation does not always exist. 

Not all model elements need hard- and software aspects, 
the delta and reaction functions, for example, both represent 
pure software functionality. Considering the software 
functionality of the test system itself, the model from fig. 4 



has to be extended accordingly. Fig. 8 shows part of the test 
system’s software model containing the engine, the shaft, and 
the dynamometer components: these components may not 
only be used in the hardware model, but, since components 
also have a software view, they can be used in the test 
system’s software model. This means that in general the 
software functionality can be implemented in terms of 
elementary or composite functions, as well as software 
interfaces of sub-components. 

 

a) b) 
Fig. 8. A useful test system software view variant a) and a faulty variant b). 
The user of the predefined model elements decides how to connect them. 

 
The example shows that two variants that are possible: just 

as users decide to connect the engine’s flange to the shaft’s 
left crank flange, and the shaft’s right flange to the 
dynamometer’s rotor flange, they decide how to connect the 
components in the software model. They, however, only have 
to make connections between the interfaces of the 
components, for example from the engine’s crank speed 
output signal to the shaft’s left speed input signal. 

Users usually do not have to care about the implementation 
models of engine, dynamometer and shaft anymore, since 
they were already defined beforehand by the respective 
domain experts. Users describing a test system could, for 
example, not forget the break detection or how to implement 
it correctly, since it is automatically included in the model 
and the modeling environment checks that its required signals 
are connected. All they have to do is to provide all input 
signals with compatible output signals. As fig. 8 b) suggests, 
users may still erroneously choose to connect the 
dynamometer’s rotor speed to both of the shaft’s input 
signals. This way, however, the break detection would not 
work anymore, since in our case, its implementation assumes 
to be provided with two different speed signals. The 
implementation model is thus also the ultimate 
documentation of the functionality that helps users in 
understanding the functionality of an element by zooming in. 

D. Ensuring Mandatory Model Elements via Template/Usage 
In section II we stated that our modeling environment must 

support defining parts of the model, such as the break 
detection mandatory, i.e. users must not be able to remove 
such functionality. We do this by virtue of our modeling 
language’s implementation which has a special built-in 
relation between a component that serves as a template and its 
usages. This way our modeling environment provides 
flexibility similar to prototypical programming languages 
such as SELF [12] but with a more restricted semantics [13]. 

A component such as the shaft in fig. 7 defines certain 
structural features such as the flanges, or input signals. Since 

it is used as the template for the shaft in the test system model 
shown in fig. 4, and fig. 8, the modeling languages semantics 
prevents a user from arbitrarily changing the structural 
features in the usage; a shaft used within a test system model 
still has a left and a right flange. The semantics of templates 
and usages, however, allows for adding new ports, e.g. 
additional input or output signals. The semantics of this 
relation also includes the subcomponents: subcomponents 
defined by the template cannot be removed or changed at the 
usage, only new subcomponents can be added. For example, 
the shaft component usage in fig. 8 may include additional 
functions used for checking the maximum speed. 

Besides structural features, the relation between templates 
and its usages has an effect on properties, too. For example, a 
shaft usually has a maximum rotational speed it can tolerate. 
The shaft template, however, might specify only that there is 
a maximum speed, and only at its usage a concrete value is 
provided. 

E. The Configuration Process 
The modeling language presented here supports integrated 

modeling of hardware- and software aspects. While this is a 
powerful feature on its own, the ultimate goal of our effort is 
to improve the process of configuring the automation system. 
To this end, the language offers a substantial potential by 
mitigating multiple sources of error. Fig. 9 illustrates how this 
is expected to influence the configuration process, in 
comparison to a conventional modeling approach with 
separate hard- and software models. 

 

 
Fig. 9. Automation system configuration process. Compared to the a) 
conventional process with independent hard- and software models, our b) 
improved process with an integrated hard-/software model mitigates multiple 
sources or errors. 

 
Let us assume that we start with the physical test 

automation system already built. In the conventional 
approach, the configuration process starts with modeling 
hardware components of the system, such as the engine and 
the shaft. Each of these hardware components typically 
requires that the automation system provides some 
functionality so that the component can be operated safely.  
As a consequence, we have to create a software model that 
contains the corresponding functions. These functions, such 
the shaft break detection, now have to be adjusted to match 



the hardware characteristics. In our case, the break detection’s 
threshold depends on the type of shaft used. The person 
preparing the model needs to know all these 
interdependencies between hardware and software, otherwise 
errors are inevitable.  

This is where our approach shows its strengths: since for 
hardware elements the required software functionality is 
already defined and adjusted accordingly, the error-prone 
modeling steps can be skipped. In some situations one still 
has to adjust the software model, but on most occasions the 
predefined models are sufficient. 

Once all elements representing hardware and software are 
added to the model, the modeling environment can validate 
the model and assist in detecting errors, for example by 
reporting missing connections. Here our approach also aids 
the user, since many connections are already predefined, and 
so it is less likely that a connection is missing. 

IV. MODEL TRANSFORMATION 

The ultimate goal of our modeling approach is generating 
configuration data for existing automation system software. 
In our concrete case, this software uses configuration files. 
Entries in the configuration files directly represent a function 
executed by the software. For example, for each reaction 
entry, the software instantiates a corresponding function 
during startup of the system. This corresponding reaction 
function is then continuously executed in real-time. 

The question now is how we can make use of the test 
system model to derive this configuration data. Actually, we 
promised that our modeling approach would free the users 
from dealing with this kind of low-level legacy aspects. The 
transformation thus must work automatically for each test 
system model that the users create, i.e. the transformation 
rules are defined only once and can be applied to different 
models. Remember that our modeling environment allows 
creating arbitrary models. It is thus unlikely that we could 
define a generic, global transformation rule that fits all 
possible models. Instead, transformation is split into smaller 
rules, each associated with a component. As shown in fig. 10 
in addition to the hard- and software views, a component such 
as the shaft also includes a third aspect: the transformation 
rules for supported automation systems. The transformation 
rules are however not accessible to the end users. 

 

 
Fig. 10. The shaft complete shaft component.. A component can in general 
comprise a) hardware, b) required software, and c) transformation rules 
describing how the actual configuration data is created. 

V. IMPLEMENTATION STATUS AND FUTURE WORK 

The approach described in this paper is already 
implemented in a modeling environment and at a state where 
it can be used by end users. Developers at our industry 

partner’s office are now making the environment production 
ready. Meanwhile, domain experts of our industry partner use 
this environment to define a library of components necessary 
for describing the first concrete engine test automation system 
of one of their customers. Hand-in-hand with the components, 
transformation rules are defined. The library contains trivial 
model elements such as predefined electrical plugs, as well as 
complex model elements describing measurement devices. 
Experience so far shows that it is not always obvious which 
functionality should be associated with certain hardware 
component and that the design often requires multiple 
iterations. Certain aspects of the modeling environment, 
however, are still not finished yet, especially regarding I/O 
systems or model validation. 

The relation between a template and its usages described in 
section III.D ensures that e.g. software functionality 
associated with a hardware component can not be removed. 
In terms of product line engineering, the relation thus allows 
describing mandatory features of a component. Sometimes, 
however, this behavior is too strict: instead, a component 
such as the shaft may come with multiple variants of possible 
break detection functions, from which the user may choose 
one, multiple, or none. We are thus planning to incorporate 
support for variability into our modeling environment [14] 
that respects the language’s semantics. 
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