
A Component based Approach for Modeling Expert
Knowledge in Engine Testing Automation Systems

Gerd Dauenhauer, Thomas Aschauer, Wolfgang Pree

University of Salzburg, C. Doppler Laboratory Embedded Software Systems
Jakob-Haringer-Str. 2

5020 Salzburg, Austria
{firstname.lastname}@cs.uni-salzburg.at

Abstract-Test automation systems used for developing
combustion engines comprise hardware components and
software functionality they depend on. Such systems usually
perform similar tasks; they comprise similar hardware and
execute similar software. Regarding their details, however,
literally no two systems are exactly the same. In order to support
such variations, the automation system has to be customized
accordingly. Without a tools that properly supports both,
customization as well as standardization of functionality,
customization can be time consuming and error-prone. In this
paper we describe a modeling driven approach that is based on
components with hard- and software view that allows defining
standard functionality for physical hardware. We show how this
way most of the automation system’s standard functionality can
be generated automatically, while still allowing to add custom
functionality.

I. DOMAIN INTRODUCTION

The modeling approach we describe here was developed
together with our industry partner, a leading provider of a
specific kind of automation systems, mainly used in the
automotive industry during development of combustion
engines. Such systems by and large comprise similar
components, such as (a) the engine to be tested, (b) one or
more dynamometers for generating load, (c) a shaft for
connecting the engine to test with the dynamometer, (d)
devices for providing fuel, water and oil, (e) I/O devices for
gathering measurement data and controlling the hardware,
and (f) various measurement devices, for example for
analyzing exhaust gases. The control PC (g) finally executes
the automation system software, controlling the actuators
according to a test procedure and recording measurement
data. Fig. 1 schematically shows a typical example.

Fig. 1. A typical engine test system. It shows the basic hardware components
usually found in a system used during development of combustion engines.

Many aspects of the automation system software need to be

configured according to the demands of a test procedure. For
example, the parameters of PID controllers for the cooling

water supply, the maximum engine speed and the action to be
performed if the threshold is exceeded, or the error reaction in
case the shaft breaks. A typical test system can have 10,000
configuration parameters with 120,000 values. Most of these
parameters are static during a run of the test procedure. Our
research was initiated because of our partner’s limited tool
support for this kind of configuration tasks, which is largely
based on configuration files. Parameter values can therefore
be checked by the automation system software only during
start-up. Getting a system running is thus an error prone
process that can take up to weeks, even for experienced
personnel.

Our proposal is to raise the level of abstraction from
configuration files to models of the test system. In order to
sufficiently represent the automation system, we clearly have
to model the software functionality executed by the
automation system. But we also have to model relevant parts
of the hardware. For example, the wiring between I/O devices
and sensors is relevant for tracing a signal used in software
functions back to its sensor and measurement location. Other
physical components such as the shaft or transmission are
relevant, since their physical properties have an influence on
the software functionality, e.g. the inertias of all rotating
components are necessary for the engine speed controller.

Fig. 2 shows how our modeling approach fits into the
existing automation system; it indicates that we model both,
hard- and software of the automation system, and generate
configuration files compatible with the current automation
system software. We do not modify the existing system.

Fig. 2. Configuration through model driven engineering. Configuration files
are not created by hand anymore, but generated from the model file instead.

Although literally no two deployed systems are exactly the

same, they usually still have a similar structure: instead of a
shaft connecting an engine to the dynamometer directly, there
may be a transmission added in between; or instead of one
single dynamometer, there may be a differential gear with
two dynamometers. Similarly, the functionality executed by

the automation system is largely the same for each test
system, for example: (1) torque and speed of an engine must
be controlled, (2) the shaft must be monitored for breakage,
or (3) the cooling water temperature must be controlled.

In order to illustrate these common functionalities and
highlight our specific modeling approach, we focus on the
shaft between the engine and the dynamometer. Despite its
simplicity, the shaft is actually a safety critical component: it
has to withstand mechanical forces that can break it. A break
can cause severe damage to the system and may injure
personnel. The automation system software must therefore
continually check that the shaft is intact and shut down the
system immediately if a breakage is detected. The basic idea
is to monitor the speed at both ends of the shaft. A large
difference between the two speeds thus signals a breakage. A
small difference, however, must be allowed since, however
rigid the shaft seems, it acts as a torsion spring.

Other parts of the test system, such as the dynamometer
require much more elaborate functionality and even for the
shaft additional functionality can be required. For example,
wires in proximity of the shaft are used for additional break
detection: if the shaft breaks, it will tear apart some of these
wires and interrupt their electrical signals, or it will cause
short-cuts among other wires. In order not to get lost in
technical details, we thus stick to the simple shaft example
throughout the paper. For an introduction to functionality
required for engine testing, we refer to Martyr and Plint [1].

A great deal of the software functionality is common
among test systems. Obviously, instead of manually defining
the functionality each time from scratch, it should be defined
by experts only once. Such standard functionality should be
stored in a library for reuse in multiple systems. Following
our example, the library may contain different break detection
functions. If a shaft is used in a test system, the corresponding
functions would be added, thus eliminating much of the
routine work and reducing the chances of making errors.

II. EXISTING MODELING APPROACHES

Since we need to model both, hard- and software of a test
system, we first have to take a look at available modeling
languages. Generic languages such as the systems modeling
language (SysML) [2] allow modeling hard- and software,
but its generality is both, its strength and its weakness. For
example, our targeted users should not be confronted with
unnecessary diagram types such as a use case diagram or a
package diagram. On the other hand, users should be
provided domain-specific modeling language concepts,
including electrical wiring. While in SysML electrical wiring
of a system could be modeled in the internal block diagram,
the notation does not have built-in semantics e.g. of plug
compatibility, and tools could thus not guide users very well.

Modeling environments with a smaller, dedicated scope
usually come with more concrete semantics. Functionality
executed by the automation system software can be
represented by dataflow programming languages such as
MATLAB/Simulink [3], and Hardware can be modeled using

computer aided design (CAD) systems, such as EPLAN [4]
for the electrical wiring. Using multiple modeling languages
for hard- and software does not seem to be practical, though.
For example, tracing back an input to a software function to
the sensor via I/O devices, electrical cables and plugs would
involve multiple models from different tools.

In certain cases, models in different languages can be
synchronized programmatically, using integration platforms.
GeneralStore [5] is one such platform supporting integration
of different software specific models, such as structural
information in the Unified Modeling Language (UML) [6]
and control rules in MATLAB/Simulink through
transforming models in specific metamodels to and from a
shared, generic metamodel. GeneralStore, however, focuses
on embedded electronics and to our knowledge does not
support CAD systems. Even if hard- and software models
could be integrated, users still had to work with multiple
different tools, disrupting the workflow.

Föderal [7] follows similar goals as we but has a wider
focus on special purpose machinery. In this context, machines
are designed specifically for a customer but still share some
similarities. Where traditionally whole CAD drawings or
programmable logic controller (PLC) programs were copied
from existing projects and adapted to fit the new machine, the
new approach is to identify smaller generic building blocks
that can be parameterized and assembled to create new
machines. Mind8 [8] is a tool that can then be used to
generate the CAD drawings or PLC programs from these
building blocks. Users finally work on these generated
artifacts using the original tools to define custom features not
yet anticipated in the building blocks. As with the
GeneralStore approach, we think that using independent tools
for hardware and software aspects disrupts the workflow.

Modeling hard- and software of a test automation system,
however, is not sufficient for our approach. We also need to
express dependencies among certain hardware components
and corresponding software functionality. In product line
engineering (PLE) [9], there is the concept of a feature model
which describes choices that can be made for a family of
similar products. Each product of the family is represented by
a distinct selection of features. Features may not be selected
arbitrarily, but they can depend on the selection of other
features. The kind of products created with this approach
typically comprises source-code (e.g. for creating the
software for a range of similar mobile phones) or UML
models [10]. The feature model thus defines the scope of a
family of similar products.

We could think of applying PLE in our domain, too, for
example, by making the break detection a feature that is
mandatory if a shaft is used. In contrast to the clearly defined
scope of product families in PLE, our domain requires much
more flexibility, i.e. we think that it is impossible to define a
single feature model describing all possible types of test
automation systems with reasonable effort. PLE tools such as
DOPLER [11] thus split up one big feature model into
multiple smaller parts that they hope are easier to manage.

A major problem with PLE, however, is the insufficient
integration of feature modeling and selection with the actual
modeling environment: products are usually created only by
making selections within the feature models, and the
generated product is not manually modified afterwards. If, for
example, a model of a test automation system is generated,
users must not manually delete certain mandatory model
elements. Since feature modeling is done outside the
modeling environment, the modeling environment has no
notion of a mandatory feature to prevent this, though.

So, in order to provide an appropriate basis for modeling
test automation systems, we provide a modeling environment
with a notion of physical hardware and software functionality
executed by an automation system. We also support declaring
parts of the model mandatory in order to represent domain
expert’s knowledge, e.g. for typical software functionality
associated with certain hardware components. The rest of the
paper present our own modeling approach and briefly
sketches how it fits into the process of generating
configuration parameters for a concrete automation system.

III. THE INTEGRATED MODELING APPROACH

In the section I, we showed that engine test systems share
many commonalities regarding their hard- and software.
Models of such systems can thus benefit from libraries of
reusable, predefined template components. We also saw that
hardware components such as a shaft often require standard
functionality executed by the automation system. In order to
further simplify the creation of models and free the users
from having to manually associate the hardware and software
aspects each time again, our approach introduces the concept
of a component with views for hardware aspects and required
software aspects. When a model of the system’s hardware is
created from predefined components, the model of the
system’s software is to a large extent created automatically.
This section uses the simple shaft break detection example to
illustrate the principle behind our modeling approach.

A. The Hardware View
In our approach, the hardware view is quite straight-

forward. Components are represented by rounded rectangles
with small boxes representing the ports, such as electrical
plugs or flanges. Fig. 3 shows an example of a shaft. These
components are used to create models similar to fig. 1.

Fig. 3. Shaft hardware view: interface. A shaft is a simple hardware
component with flanges at both ends, represented as ports.

The ports of a component define (part of) its interface. As

the term interface suggests, there can also be an
implementation, i.e. a component can be composed from sub-
components. Such a composition can be represented using
additional diagrams. A shaft, however, is a simple component
so it does not need to describe further details. Interfaces of

other physical components comprising a test system such as
the engine and the dynamometer are defined analogously.

Components can intuitively be connected to other
components through compatible ports, for example a flange
can be connected to exactly one other flange, and an electrical
plug can be connected to other electrical plugs. Fig. 4 shows
part of a test system, following the example in fig. 1. The
interfaces of both, the engine and dynamometer comprise
additional ports not shown here, including electrical wires
and plugs, e.g. for various sensors or electronic control units,
and pipes and fittings, e.g. for fuel supply and exhaust gases.

In order to reduce complexity of the diagrams, the
graphical representation can be adjusted by the users to show
only part of the component’s interface definition, changing
the shape, or freely placing its ports.

Fig. 4. Part of the test system hardware view: implementation. Engine, shaft
and dynamometer are connected through their flanges.

In general, a component such as the shaft in fig. 3 is a self-

contained unit that can be managed independently in a
library, i.e. its interface does not contain connections to the
engine or dynamometer. Such a component can serve as a
template: copies of the template can be used as sub-
components within other components. For example, the shaft
in fig. 4 is a copy that just happens to have the same name as
the shaft template in the library, i.e. they are distinct entities.
Besides copying from a template, components can be created
from scratch. We postpone templates until later.

B. The Software View
For describing software functionality associated with a

hardware component, we use the dataflow notation similar to
MATLAB/Simulink, i.e. boxes usually represent functions
and ports represent input and output signals, and connections
between these ports represent the flow of signals. Fig. 5 a)
shows an example of the shaft break detection as described in
the introduction. The example contains a delta function
computing the difference between two speed signals, and a
reaction function that triggers an emergency stop of the
system in case the difference exceeds a certain limit. The
threshold, as well as the kind of reaction are properties of the
reaction function; we skip properties in this paper.

Fig. 5. Break detection software view: implementation a) and interface b).
The functionality uses two speeds, as well as a delta and a reaction function.

The rounded blocks are not functions; instead, they

represent required input signals, analogously to subsystem
ports in MATLAB/Simulink that have to be provided by

some other source. The break detection model makes no
assumptions about their origin. According to fig. 1, in a
typical system the shaft directly connects an engine and a
dynamometer. Both components usually have a speed sensor
attached, so these signals can be used as inputs for the break
detection. If, however, the shaft is connected to the
dynamometer through an optional transmission, the
dynamometer signal value would have to be adjusted
accordingly. By defining the left and right speed signals as
required, the break detection can be defined independent of
the context where it will be used eventually.

Analogously to the hardware view, we also distinguish
between interface and implementation in the software view:
where in the hardware view the interface is defined by
electrical plugs, flanges, or fittings, the interface in the
software view is defined by the required input and output
signals. A rounded block in the implementation diagram such
as shown in fig. 5 a) and the port with the same name in the
interface as shown in fig. 5 b) represent the same signal.

A function can be composed from other more elementary
functions. These elementary functions eventually correspond
to software executed by the automation system in real-time,
i.e. in order to be able to transform a model, the targeted
automation system must provide a matching implementation
for each of the required functions. For example, in our case
the automation system must know how to execute a delta
function, and a reaction function. The automation system,
however, does not need to have an implementation for
composite functions such as the shaft break functionality.

Not all functions are consumers of signals such as the break
detection. The engine, and the dynamometer components, for
example, both come with a sensor to measure their speed.
Fig. 6 shows part of the software functionality associated with
the engine. It produces a crank speed output signal, as shown
in the interface definition b). The implementation model a)
shows the origin of the signal. It is produced by a specific
kind of element that represents the physical phenomenon,
acquired by a sensor and an I/O device. The engine’s
software functionality makes no assumptions about how this
physical phenomenon is acquired, besides that it comes
through some I/O functionality. The example also shows an
additional reaction function, to express that the automation
system has to monitor the speed of the engine and shut down
the system in case the engine’s maximum speed is exceeded.

Fig. 6. Engine function’s software view implementation a) and interface b).
The implementation introduces the crank speed signal through a specific kind
of model element representing I/O.

A signal defined by a function’s implementation model can

thus be made available to the outside through its interface,

and at the same time the signal can be used internally for
functionality associated with the engine function. The
functionality associated with the dynamometer is analogous
and thus is skipped here

C. Integrating Hardware and Software Views
The key to our modeling approach is not the graphical

syntax used for the hard- and software aspects. It is also not
the rich semantics of the language, although notions for
sensors, plugs, and flanges, or software functions certainly
are important for providing an intuitive modeling
environment. More important is how we associate required
standard software functionality for hardware components.

Continuing with the shaft example, fig. 7 picks up the
interface definition of the shaft from fig. 3 and the break
detection from fig. 5: a) and b) both are different views on the
same model element, i.e. there is only one model element
called shaft in the library. We thus use the term component
for both, the hardware component, as well as its associated
required software functionality.

Fig. 7. Shaft hardware a) and software b) view. Both views together define
the interface of a shaft component.

The hardware aspect of a shaft interface comprises the

flanges, while the software aspect comprises the required
speed signals and a model describing how the break detection
is done in terms of more elementary software functions
provided by the automation system software.

Obviously, a shaft is a simple mechanical component that
can certainly not execute any software, yet we define
software functionality with its model. Note that the software
implementation model does not say where the functions are
actually executed. In an automation system with multiple
execution nodes, the delta function may be executed on
another node than the reaction function. It is the model
transformation system’s task to find a suitable distribution.

 Other components that are part of a test system such as the
engine and the dynamometer are defined analogously to the
shaft. The definition of a component such as the shaft
containing both, hard- and required software functionality, is
where the main advantage of our approach lies: since the
shaft comes with required software functionality predefined, a
user cannot forget it.

Note that the naming “Left Flange” / ”Left Speed” and
“Right Flange” / “Right Speed” suggests a semantic relation
between the ports in the hardware and software views, but in
general such a direct relation does not always exist.

Not all model elements need hard- and software aspects,
the delta and reaction functions, for example, both represent
pure software functionality. Considering the software
functionality of the test system itself, the model from fig. 4

has to be extended accordingly. Fig. 8 shows part of the test
system’s software model containing the engine, the shaft, and
the dynamometer components: these components may not
only be used in the hardware model, but, since components
also have a software view, they can be used in the test
system’s software model. This means that in general the
software functionality can be implemented in terms of
elementary or composite functions, as well as software
interfaces of sub-components.

a) b)
Fig. 8. A useful test system software view variant a) and a faulty variant b).
The user of the predefined model elements decides how to connect them.

The example shows that two variants that are possible: just

as users decide to connect the engine’s flange to the shaft’s
left crank flange, and the shaft’s right flange to the
dynamometer’s rotor flange, they decide how to connect the
components in the software model. They, however, only have
to make connections between the interfaces of the
components, for example from the engine’s crank speed
output signal to the shaft’s left speed input signal.

Users usually do not have to care about the implementation
models of engine, dynamometer and shaft anymore, since
they were already defined beforehand by the respective
domain experts. Users describing a test system could, for
example, not forget the break detection or how to implement
it correctly, since it is automatically included in the model
and the modeling environment checks that its required signals
are connected. All they have to do is to provide all input
signals with compatible output signals. As fig. 8 b) suggests,
users may still erroneously choose to connect the
dynamometer’s rotor speed to both of the shaft’s input
signals. This way, however, the break detection would not
work anymore, since in our case, its implementation assumes
to be provided with two different speed signals. The
implementation model is thus also the ultimate
documentation of the functionality that helps users in
understanding the functionality of an element by zooming in.

D. Ensuring Mandatory Model Elements via Template/Usage
In section II we stated that our modeling environment must

support defining parts of the model, such as the break
detection mandatory, i.e. users must not be able to remove
such functionality. We do this by virtue of our modeling
language’s implementation which has a special built-in
relation between a component that serves as a template and its
usages. This way our modeling environment provides
flexibility similar to prototypical programming languages
such as SELF [12] but with a more restricted semantics [13].

A component such as the shaft in fig. 7 defines certain
structural features such as the flanges, or input signals. Since

it is used as the template for the shaft in the test system model
shown in fig. 4, and fig. 8, the modeling languages semantics
prevents a user from arbitrarily changing the structural
features in the usage; a shaft used within a test system model
still has a left and a right flange. The semantics of templates
and usages, however, allows for adding new ports, e.g.
additional input or output signals. The semantics of this
relation also includes the subcomponents: subcomponents
defined by the template cannot be removed or changed at the
usage, only new subcomponents can be added. For example,
the shaft component usage in fig. 8 may include additional
functions used for checking the maximum speed.

Besides structural features, the relation between templates
and its usages has an effect on properties, too. For example, a
shaft usually has a maximum rotational speed it can tolerate.
The shaft template, however, might specify only that there is
a maximum speed, and only at its usage a concrete value is
provided.

E. The Configuration Process
The modeling language presented here supports integrated

modeling of hardware- and software aspects. While this is a
powerful feature on its own, the ultimate goal of our effort is
to improve the process of configuring the automation system.
To this end, the language offers a substantial potential by
mitigating multiple sources of error. Fig. 9 illustrates how this
is expected to influence the configuration process, in
comparison to a conventional modeling approach with
separate hard- and software models.

Fig. 9. Automation system configuration process. Compared to the a)
conventional process with independent hard- and software models, our b)
improved process with an integrated hard-/software model mitigates multiple
sources or errors.

Let us assume that we start with the physical test

automation system already built. In the conventional
approach, the configuration process starts with modeling
hardware components of the system, such as the engine and
the shaft. Each of these hardware components typically
requires that the automation system provides some
functionality so that the component can be operated safely.
As a consequence, we have to create a software model that
contains the corresponding functions. These functions, such
the shaft break detection, now have to be adjusted to match

the hardware characteristics. In our case, the break detection’s
threshold depends on the type of shaft used. The person
preparing the model needs to know all these
interdependencies between hardware and software, otherwise
errors are inevitable.

This is where our approach shows its strengths: since for
hardware elements the required software functionality is
already defined and adjusted accordingly, the error-prone
modeling steps can be skipped. In some situations one still
has to adjust the software model, but on most occasions the
predefined models are sufficient.

Once all elements representing hardware and software are
added to the model, the modeling environment can validate
the model and assist in detecting errors, for example by
reporting missing connections. Here our approach also aids
the user, since many connections are already predefined, and
so it is less likely that a connection is missing.

IV. MODEL TRANSFORMATION

The ultimate goal of our modeling approach is generating
configuration data for existing automation system software.
In our concrete case, this software uses configuration files.
Entries in the configuration files directly represent a function
executed by the software. For example, for each reaction
entry, the software instantiates a corresponding function
during startup of the system. This corresponding reaction
function is then continuously executed in real-time.

The question now is how we can make use of the test
system model to derive this configuration data. Actually, we
promised that our modeling approach would free the users
from dealing with this kind of low-level legacy aspects. The
transformation thus must work automatically for each test
system model that the users create, i.e. the transformation
rules are defined only once and can be applied to different
models. Remember that our modeling environment allows
creating arbitrary models. It is thus unlikely that we could
define a generic, global transformation rule that fits all
possible models. Instead, transformation is split into smaller
rules, each associated with a component. As shown in fig. 10
in addition to the hard- and software views, a component such
as the shaft also includes a third aspect: the transformation
rules for supported automation systems. The transformation
rules are however not accessible to the end users.

Fig. 10. The shaft complete shaft component.. A component can in general
comprise a) hardware, b) required software, and c) transformation rules
describing how the actual configuration data is created.

V. IMPLEMENTATION STATUS AND FUTURE WORK

The approach described in this paper is already
implemented in a modeling environment and at a state where
it can be used by end users. Developers at our industry

partner’s office are now making the environment production
ready. Meanwhile, domain experts of our industry partner use
this environment to define a library of components necessary
for describing the first concrete engine test automation system
of one of their customers. Hand-in-hand with the components,
transformation rules are defined. The library contains trivial
model elements such as predefined electrical plugs, as well as
complex model elements describing measurement devices.
Experience so far shows that it is not always obvious which
functionality should be associated with certain hardware
component and that the design often requires multiple
iterations. Certain aspects of the modeling environment,
however, are still not finished yet, especially regarding I/O
systems or model validation.

The relation between a template and its usages described in
section III.D ensures that e.g. software functionality
associated with a hardware component can not be removed.
In terms of product line engineering, the relation thus allows
describing mandatory features of a component. Sometimes,
however, this behavior is too strict: instead, a component
such as the shaft may come with multiple variants of possible
break detection functions, from which the user may choose
one, multiple, or none. We are thus planning to incorporate
support for variability into our modeling environment [14]
that respects the language’s semantics.

REFERENCES
[1] A. J. Martyr, and M. A. Plint, Engine Testing: Theory and Practice,

Butterworth Heinemann, June 2007
[2] T. Weilkiens, Systems Engineering with SysML/UML: Modeling,

Analysis, Design, Morgan Kaufmann, February 2008
[3] The MathWorks™, MATLAB®/Simulink®,

http://www.mathworks.com/products/simulink/
[4] EPLAN Software & Service GmbH & Co. KG, EPLAN,

http://www.eplan.com/
[5] C. Reichmann, M. Kühl, P. Graf, and K. D. Müller-Glaser,

“GeneralStore - A CASE-Tool Integration Platform Enabling Model
Level Coupling of Heterogeneous Designs for Embedded Electronic
Systems”, Proceedings of the 11th IEEE International Conference and
Workshop on Engineering of Computer-Based Systems, pp. 225-232,
IEEE Computer Society, May 2004

[6] OMG Unified Modeling Language™ (OMG UML), Superstructure,
OMG, February 2009

[7] The Föderal Initiative, http://www.foederal.org/
[8] Mind8 GmbH & Co. KG, Mind8, http://www.mind8.com/
[9] D. M. Weiss, and C.-T. R. Lai, Software Product-Line Engineering: A

Family-Based Software Development Process, Addison-Wesley
Professional, August 1999

[10] H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures, Addison-Wesley, July
2004

[11] D. Dhungana, P. Grünbacher, and R Rabiser, “DecisionKing: A
Flexible and Extensible Tool for Integrated Variability Modeling”,
Proceedings of the 1st International Workshop on Variability Modelling
of Software-intensive Systems, pp. 119-127, Kindai Kagaku Sha,
January 2007

[12] D. Ungar, and R. B. Smith, “Self: The power of simplicity”, SIGPLAN
Notices, vol. 22(12), pp. 227-242, ACM, December 1987

[13] T. Aschauer, G. Dauenhauer, and W. Pree, “Multi-Level Modeling for
Industrial Automation Systems”, Proceedings of the 35th EUROMICRO
Conference on Software Engineering and Advanced Applications, pp.
490-496, IEEE Computer Society, August 2009

[14] G. Dauenhauer, T. Aschauer, W. Pree, “Variability in Automation
System Models”, Formal Foundations of Reuse and Domain
Engineering, pp. 115-125, Springer Verlag, September 2009

