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Domain specific languages play an important role in model-
driven engineering of software-intensive industrial systems. A 
rich body of knowledge exists on the development of languages, 
modeling environments, and transformation systems. The under-
standing of architectural choices for combining these parts into a 
feasible solution, however, is not particularly deep. We report on 
an endeavor in the realm of a technology transfer process from 
academia to industry, where we encountered unexpected influ-
ences of the architecture on the modeling language. By examining 
the evolution of our language and its programming interface, we 
show that these influences mainly stemmed from practical consid-
erations; for identifying these early on, tight interaction between 
our research lab and the industrial partner was key. In addition, 
we share insights into the practice of cooperating with industry by 
presenting essential lessons we learned. 

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Domain-specific architectures – 
domain specific languages, model driven engineering. 

General Terms 
Design, Experimentation, Languages. 

Keywords 
Academic-Industry Cooperation, Domains Specific Language, 
Model Driven Engineering Architecture, Clabjects. 

1. INTRODUCTION 
Model-driven engineering (MDE) promises a substantial gain in 
productivity and quality for building large software-intensive 
systems. In many development endeavors, MDE is applied to 
cope with the increasing complexity and size of software inten-
sive systems. Domain specific modeling (DSM) can further en-
hance this gain by aligning the modeling language closely with 
the problem domain, enabling domain experts to express their 
solutions in terms of well-known concepts. A rich body of litera-
ture is available for the various aspects of DSM, in particular, the 
modeling language, the modeling environment, and the transfor-

mation or generation technology; see for example [1, 2]. Never-
theless, knowledge about the role of the architecture that puts 
these parts together into a working system is not particularly 
deep. For example, the fact that concepts of the modeling lan-
guage usually dictate the architectural choices for building the 
modeling environment seems reasonable at first glance. More-
over, when using an off-the-shelf language workbench, most ar-
chitectural choices usually have already been made for you. But 
what if architectural forces of the modeling environment influ-
ence the way the modeling language is constructed or its pro-
gramming interface is designed, in order to get a feasible solu-
tion? 

In this paper we report on a DSM endeavor that was con-
ducted in close cooperation between our research lab and an in-
dustrial partner over the last three years. The overall goal of this 
technology-transfer collaboration is to build a MDE-based prod-
uct for the configuration of automation systems in the domain of 
engine test facilities. In this realm we developed a domain spe-
cific language (DSL), a modeling environment, and a transforma-
tion engine. Initially, the development seemed to be quite 
straight-forward and the first research prototype successfully 
demonstrated the applicability of the DSL. Since the goal is to 
build a production-ready system, we needed to develop the proto-
type further. In this process we encountered that the chosen 
metamodeling framework did not meet the requirements of indus-
trial reality. Together with other shortcomings, this finding re-
sulted in a complete restart of the project, and it influenced the 
choice for a new metamodeling framework and its programming 
interface. 

In order to identify these issues and to show how we solved 
them technically, we examine the evolution of our modeling lan-
guage in its historical context. We will see that the evolution was 
not only driven by the domain’s mere complexity, but also by the 
interaction with other parts of the MDE architecture and practical 
considerations such as maintainability and understandability. In 
this respect, the close cooperation between academia and industry 
was invaluable. Nevertheless, this form of cooperation also has its 
pitfalls, in particular regarding interpersonal and communication 
factors.  We want to emphasize this fact by presenting some im-
portant lessons we had to learn. 

2. THE HISTORICAL PERSPECTIVE 
Initially, our research group set out to improve the state-of-
practice of configuring automation systems in the domain of en-
gine test facilities, which are used to run experiments on combus-
tion engines and to collect and record measured data. These facili-
ties are complex systems of systems comprising various “machin-
ery, instrumentation, and support services, housed in a building 
adapted or built for its purpose” [3]. The test facility automation 
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system plays an important role since it is responsible for safe 
conduction of an experiment by monitoring operation parameters 
in real-time, for controlling the defined sequence of test steps, and 
for managing the acquisition of data generated by various sensors 
and complex instruments. The functioning of the real-time auto-
mation system is tightly coupled with the actual setup of the 
physical test facility, since it has to ensure that all sensors, in-
struments, actuators, and facility services act safely in concert. 
Because of the dependence on the actual system setup, the auto-
mation system needs to be highly customizable and flexible for 
supporting a wide range of test facilities. This flexibility, how-
ever, comes at the cost of a great effort that is required to custom-
ize an automation system for a particular test facility setup. With-
out adequate software support, customization can be an error-
prone and time-consuming activity.  

Model-driven engineering was chosen to address these is-
sues. The basic idea is to build a model of the test facility, com-
prising both hardware and software. This model is then used to 
derive the corresponding configuration data for the automation 
system. Our goal was not to invent yet another MDE approach or 
to build yet another modeling tool, but to select adequate ideas 
and technologies, ideally proven in practice, and put them to work 
in a real product.  

2.1 Cooperation Setup 
There are various ways in which academic and industrial institu-
tions can team up, ranging from mere sponsorship models, to 
internship programs, to close collaboration. The process of tech-
nology transfer in general is divided into separate steps, and usu-
ally different parties are involved in these steps [4, 5]. Rombach 
and Achatz, for example, propose the following technology trans-
fer model: (1) basic research, (2) applied research, (3) prototype 
in vitro, (4) prototype in vivo, (5) industrial replication, and fi-
nally (6) roll out [5]. 

We use the model above to describe where our work fits in: 
In our case the collaboration was planned to incorporate steps 2 to 
4. Step 2 had to be carried out primarily at our research lab with 
frequent participation of the industry partner. For step 3 both par-
ties had to work in close cooperation, and step 4 needs to be per-
formed by the industrial partner with scientific support. So the 
cooperation was a close one. After one and a half years, the com-
pany even founded a separate, dedicated branch at our research 
site to immediately incorporate research results in the develop-
ment of its product. In retrospect, this was a critical factor for 
being able to judge the maturity and ramifications of our solu-
tions. More than once the devil was in the details, which are eas-
ily overlooked in a prototype implementation in a mere academic 
setting. As we will see in the following, the evolution of the mod-
eling language nicely exemplifies this observation. 

2.1.1 Research Institution 
Organizationally our research lab is part of the University of Salz-
burg. It is partially funded by the Christian Doppler Forschungs-
gesellschaft (CDG), a semi-governmental non-profit organization 
with the mission of easing access for Austrian companies to lead-
ing-edge research [6]. On this account the CDG funds applica-
tion-oriented basic research to bridge the gap between industry 
and academia by enabling knowledge and technology transfer. 

2.2 Phase One 
First of all the research team had to gain some knowledge about 
the problem domain of testing combustion engines. Several work-
shops and a short internship proved valuable for the researchers to 
get a grip on the concepts and peculiarities in that domain. We 
continued with an in-depth requirements analysis to clarify the 
long-term vision of the product to be built, and to understand the 
problems to be solved. The initial set of requirements was am-
biguous, contradictory, vague, and by no means complete. As we 
reported elsewhere [7] in detail, the requirements analysis was 
supported by paper-prototyping and by a mock-up prototype 
demonstrating essential application scenarios. 

It became clear quite early that is was not possible to just fix 
the old system used for customizing the automation system; it did 
not provide adequate abstractions, but burdened the domain ex-
perts to understand low-level implementation decisions of the 
automation systems software to be able to customize these sys-
tems correctly. Instead, we would provide a domain specific lan-
guage (DSL), and we also got a good understanding what the 
abstraction level should be so that the language would enable 
domain experts to model test facilities rapidly and concisely.  

Nevertheless, the choice for an underlying metamodeling 
framework for the DSL was rather unclear. Prevalent metamodel-
ing approaches based on the Meta Object Facility [8] or similar 
meta-metamodeling languages didn’t seem to match the expecta-
tions since they were too inflexible. For example, the domain 
experts kept telling us that “in the usual case” an engine model 
would need to comprise its inertia as well as its maximum speed. 
In some situations, for example when modeling a unique engine, 
custom properties would also have to be supported, e.g. a correc-
tion factor for friction calculation. The language would need to 
support both cases since “that’s real life”. According to these 
requirements we proposed to build the modeling language on a 
flexible framework that was inspired by prototype-based pro-
gramming languages, in particular SELF [9, 10]. In essence, a 
prototype-based language is a special kind of an object-based 
language that is not based on the usual class-object-dichotomy but 
instead allows creating a new object by cloning another object 
that acts as prototype. Afterwards the clone can be modified indi-
vidually [11]. Figure 1 shows an example. Engine1 is modeled as 
an individual object, and Engine2 is created by cloning Engine1 
and modifying the property values afterwards. The individual 
property FrictionFact for the friction correction factor is also 
added to Engine2. 

 

Engine1

Inertia := 1.08 kgm2

MaxSpeed := 9000 rpm

Engine2

Inertia := 1.12 kgm2
MaxSpeed := 9000 rpm
FrictionFact := 0.98

clone

  
Figure 1. Prototype-based engine modeling. 

The idea of harnessing the concepts of prototype-based modeling 
was appealing not only because of their simplicity. Prospective 
users were already accustomed to a copy&paste-style. In their 
daily work, they used previous automation system configuration 
data to create the configuration for new test facilities. So support-
ing the same metaphor in our language seemed just intuitive. Fur-
thermore, we had an explicit relationship between each prototype 
and its clones, so we could trace back every element to its origin. 



Consequently many of the disadvantages of using copy&paste, 
such as lack of change propagation, could be avoided [12]. 

2.3 Phase Two 
In the second phase we built a prototype implementation of the 
modeling language to test (a) the feasibility of the metamodeling 
framework, and (b) to evaluate the concepts of the DSL. For the 
validation an expert of the domain modeled a scenario based on a 
real test facility. Supporting reuse of model elements to assemble 
big models efficiently is an essential requirement for the lan-
guage, since we expect the models to be large, that is, several tens 
of thousands of elements. We chose to support reuse by means of 
model libraries populated by users. Library elements serve as 
prototypes and their clones can be customized according to the 
rules of prototype inheritance [11]. 

We further extended the scenario to demonstrate the whole 
process from modeling to configuration data generation to final 
execution of the automation system. The results were presented to 
the company’s general management, which in response decided 
that our approach should be an integral part of their future product 
portfolio. That decision also triggered the foundation of a separate 
development branch at the location of our research lab. The dem-
onstration showed that the overall approach was feasible and that 
the DSL concepts, by and large, provided the right level of ab-
straction and granularity. At that point we may have claimed the 
project to be a great success, and that the research prototype has 
well served its purpose. Nevertheless, a closer look at the system 
revealed two major flaws right at its core. 

2.3.1 Performance 
Due to the proof-of-concept character of the implementation, we 
decided to implement the prototype-based inheritance scheme by 
means of copying [11]. In essence, this means that reusing model 
elements to assemble larger models resulted in full duplication of 
data. While for the intended purpose as prototype environment 
this was acceptable, modeling the real-world scenario was soon 
rendered impossible due to the excessive memory consumption 
and associated performance issues. 

2.3.2 Modeling Categorization 
As it turned out, a simple, unrestricted cloning approach provided 
too much freedom for our metamodeling framework. In particular, 
the metamodeling framework did not support modeling categori-
zation well. For the generation of the automation system configu-
ration we need to model the properties of each individual engine. 
Since engines typically share most of their properties, we can 
reuse the corresponding transformation rules by introducing the 
concept of an Engine, and applying the transformation rules to 
each clone. Furthermore, engines typically are members of a 
whole engine series, and all members of a certain series share 
some characteristics such as their maximum speed, so we can 
again reuse the corresponding transformation rules. In other 
words, the engine family is a categorization of engines. In figure 2 
we see how this might be modeled with prototypes: First we 
model Engine1 as an individual object without any specific values 
for the attributes. Second, we create the clone SeriesS1 and spec-
ify the value for maximum speed, which is the same for all en-
gines of the series. Furthermore, we add a new property Tuning 
for the specific tuning of the engine. In the third step, we create a 
clone for a specific engine myS1Engine and provide the missing 

attribute values; we also add an individual attribute with a value, 
the FrictionFact attribute. 

A transformation rule for SeriesS1 can, for example, rely on 
the fact that MaxSpeed is set to 9,000 revolutions per minute to 
optimize the generated configuration parameters. The potential 
for optimizations is even larger when the transformation rule re-
lies on structural properties such as the number of cylinders of a 
SeriesS1-engine. This rule, however, cannot be reused safely for 
clones of SeriesS1. Due to the semantics of our prototype-based 
language, myS1Engine can be modified individually. So it is pos-
sible to change the maximum speed value, or to add an additional 
cylinder. Applying the transformation rule thus would lead to 
failure. Relying on the structural similarity between a prototype 
and its clones is not possible in our prototype-based language. 

 

 
Figure 2. Prototype-based engine modeling. 

In the end, due to this degree of freedom in the language, we 
would either have had to put much more effort into writing more 
robust transformation rules that do not rely on the inheritance of 
structure, or taking additional measures in the modeling environ-
ment to ensure that clones adhere to the structure of their proto-
types. Interestingly, this is also an observation made by the de-
signers of SELF:  “Functionality provided at the language level in 
class-based systems rose to the programming environment level in 
Self”. For the design of a new language one of them “…might be 
tempted to include inheritance of structure in the language, al-
though it would still be based on prototypes” [10, p. 38].  

So the question was which metamodeling framework to use 
that explicitly supports categorization. Powertypes [13] are a 
widely used pattern to model such relationships, and are, for in-
stance, supported by the UML [14]. Figure 3 shows how our ex-
ample could be modeled with powertypes. 

 

EngineSeries

MaxSpeed

Engine

Inertia

classifies

SeriesS1

MaxSpeed := 9000 rpm

SeriesS1

Tuning

<<instanceOf>> <<subclassOf>>

myS1Engine

Inertia := 1.08 kgm2

Tuning := racing

<<instanceOf>>

 
Figure 3. Engine categorization with powertypes. 

As we can see in figure 3, the concept of an engine and the con-
cept of an engine series are both represented explicitly in the 
model and are connected by a special association expressing that 
an engine series is a categorization of engines. The semantics of 
this association is that any instance of EngineSeries is, at the same 
time, also a subclass of Engine. This is expressed by the modeling 



of the entity SeriesS1 that is represented twice in the figure, i.e. in 
both roles. The concrete engine instance myS1Engine is also 
shown in the figure. Although this solution supports categoriza-
tion, we can not represent an individual attribute such as the fric-
tion correction factor as a property of myS1Engine, because in-
stances in UML cannot contain new structural properties. Fur-
thermore, as elaborated by Atkinson and Kühne, this solution has 
other disadvantages such as accidental complexity of the resulting 
models [15]: some concepts might not be part of the inherent con-
ceptualization of our domain, but they are necessary just because 
they are required for the powertype mechanism. 

2.4 Phase Three 
Although the prototype-based solution was, at least from our per-
spective as researchers, reasonable and intuitive, tests of real ex-
amples done by domain experts were necessary to reveal its short-
comings for large models. Having identified the flaws, we recon-
sidered the original design decisions and validated them against 
the original requirements. We all, including the company repre-
sentatives, now had a much better understanding of these re-
quirements and their implications. In a one-week workshop we 
identified some fundamental misunderstandings between the re-
searchers and the company representatives. We were surprised of 
these misunderstandings, but in retrospect we think that not 
enough care was taken to gain a common understanding of the 
terminology. At the same workshop we also developed a set of 
postulates a better system would have to be built on. Overall, 
most of these matched the previously built system quite well, e.g. 
the overall vision, the domain specific language concepts, the user 
interface, and the interaction patterns between the automation 
system and the modeling environment. The metamodeling frame-
work however, i.e. our prototype-based inheritance scheme, no 
longer seemed to be appropriate. The new system would have to 
support inheritance of structure. 

It was due to the determination of the company to get the 
most suitable solution that they decided to start over again with 
the same team. Understandably, this decision was quite contro-
versial, if we consider that an effort of almost 20 person-years 
had been invested until then. Later on it turned out that this deci-
sion was a key factor to a successful turn-around. The alternative 
plan was to fix the memory and performance problems with some 
smart technique and to put more effort in the development of the 
user interface and the transformation engine to overcome the limi-
tations of the language. 

To start the DSL development again from scratch, we had to 
find an alternative metamodeling framework that better supported 
the needs of the domain experts. It was not until we have imple-
mented the basic mechanisms based on the workshop postulates 
that we found that the notion of a Clabject was much closer to 
what we needed. This concept has been proposed by Atkinson in 
1997 [16] and since then been studied and extended in several 
contributions, e.g. [15, 17]. A clabject in principle is a dual-
faceted modeling entity that unifies classes and objects; it has a 
so-called type facet as well as an instance facet. So a clabject can 
be an instance of some clabject, and at the same time it can be the 
type of another clabject. Figure 4 shows our engine example mod-
eled with this concept. Note that each modeling entity in the fig-
ure is a clabject. As UML does not support the notion of clabjects, 
we use UML’s class symbol for that purpose. 

The Engine on top represents the most abstract concept and 
only defines structural properties such as the fields (these are the 

clabject’s equivalent of attributes in UML) MaxSpeed and Inertia. 
Engine is then instantiated by SeriesS1, which represents the en-
gine concept for a particular engine series. It provides a value for 
the maximum speed field, which means that all engines of this 
series share the same value, which cannot be changed individually 
by its instances. Furthermore the series-specific field Tuning is 
introduced. The concrete engine, myS1Engine, is an engine of that 
series and specifies the corresponding field values. Introducing 
the individual field FrictionFact is not supported by the original 
clabject concept. However, this is one of the extensions that we 
proposed for the applicability in our domain [12, 18]. 

 

 
Figure 4. Engine model with clabjects. 

After the reimplementation of the language core, now inspired by 
clabjects to resolve the modeling issues, and employing some 
memory-saving optimizations to overcome the performance is-
sues, the functionality of the previous prototype was migrated and 
performance tests assured that the new foundation was solid. 
Modeling exercises by domain experts and experiments with the 
transformation engine also showed that the new metamodeling 
framework was suitable. We also demonstrated that our memory-
efficient representation method and the corresponding traversal 
algorithms scale to large models [19]. 

2.5 A Test Facility Model in Numbers 
Domain experts are currently working on the model of a real test 
facility to demonstrate the complete cycle of model-driven pa-
rameter generation. During configuration of a test facility, the 
domain expert assembles the model from instances of pre-defined 
model elements maintained in a library and connects them accord-
ing to the system to be described. Instances of library elements 
are customized either by changing their field values or by adding 
new fields.  Based on the assembly of the model elements and 
their connections, the transformation engine generates the corre-
sponding automation system configuration. When custom fields 
are added to a library element, the corresponding transformation 
rule also has to be adapted.  

Table 1 shows some quantitative information on a current 
model covering about 60% of the overall facility. According to 
the domain experts the hardware part of the model is almost fin-
ished; the remaining work primarily is to finish modeling the 
associated functionality performed by the automation system 
software and the model transformation rules. For each category 
we see the number of model elements and the number of fields. 
For the fields we also include how many were added or modified, 



since these numbers indicate to which degree pre-defined library 
elements need to be customized. The visualization of model ele-
ments in diagrams is also stored in the model, so the correspond-
ing numbers are included as a separate category.  

 

Table 1. Size of a test facility model (~60% completed) 

Fields 
Category Elements 

Total Added Modified 
Hardware 9120 26625 0 1548 
Software 3692 18764 28 17 
Input/Output 3422 11006 0 231 
Visualization 10440 71148 0 2829 
Total 26674 127543 28 4625 

 

3. CODE EVOLUTION 
After examining the overall project development, we will now 
look at the evolution of the source code. To this end, we mined 
our source code repository for quantitative data. First of all we 
extracted monthly snapshots of the active development branch. 
On each of these snapshots we calculated two metrics: the number 
of classes and interfaces on the one hand, and the number of code 
lines on the other hand. To see how the different parts of our solu-
tion evolved, we categorized the software modules, called “as-
semblies” in .Net terminology [20], manually into the following 
categories: BASE denoting the metamodeling framework, DSL 
denoting the domain specific language, GUI denoting the user 
interface, and TSA denoting the transformation engine and the 
transformation rules. The category TOTAL summarizes the num-
bers for all categories including modules not captured otherwise, 
such as import/export functions. Because in the first phase most 
of the created artifacts were informal documents and test pro-
grams, we did not include this phase in our measurements. 

Figure 5 shows the graphs of the number of classes and inter-
faces of our system. The TOTAL graph reveals some interesting 
facts. In the beginning (i) we can observe the trend of continuous 
growth as we would expect. Perhaps the most striking feature can 
be observed at the end of the second phase at instant (ii), where 
all software development was stopped. With the beginning of 
phase 3 we started from scratch. Note that the codebase we had by 
then was not completely abandoned, but was further used for 
some time by domain experts to experiment with the DSL con-
cepts and by new team members that needed to acquaint them-
selves with the project. Since the development of this codebase 
was a dead end, we did not include it in our metrics that repre-
sents the active development branch only. 

After the restart we can observe a steep growth of classes 
(iii). This can be explained by the fact that a considerable amount 
of code could be migrated from the earlier version to the new one. 
Later on the number of classes steadily grows, except for a short 
negative spike that represents a cleanup of the DSL (iv), where 
we got rid of obsolete language elements that were introduced 
now and then, but that later became obsolete. It is important to 
note that most of the classes in the DSL category were automati-
cally generated. In fact, the language elements of the DSL are 
modeled as classes in a UML model with a custom profile. The 
UML model is then used to generate C# classes that represent the 
language elements in our implementation. If we consider the trend 
of the DSL category, we can see that after the initial startup and 
except for the cleanup, the corresponding code was quite stable. 

As a matter of fact, the increased number of classes between in-
stants (ii) and (iii) is only due to the new representation based on 
clabjects. The number of DSL elements is the same at both in-
stants, and we used the same UML model to generate the corre-
sponding classes. The continuing steep growth of TOTAL classes 
after instant (iv) can be explained due to additional developers 
that joined the team and primarily worked on the user interface 
and on the transformation engine.  
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Figure 5. Classes and interfaces in active development branch. 
Significant sections are (i) steady growth, (ii) phase 3 as a com-
plete restart, (iii) steep growth due to migration of features from 

phase 2, and (iv) DSL cleanup. 

In figure 6 we see the same period as in figure 5, but this time we 
measured lines of code (LOC). To fully understand the absolute 
numbers, it is important to note that we only counted lines that 
were actually compiled into .NET Common Intermediate Lan-
guage instructions [21]. An empty method body or class defini-
tion, for example, does not count in this LOC-metric, since no 
instructions are generated. 
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Figure 6. Lines of code in active development branch. 

The graph by and large resembles figure 5. Interestingly, the 
LOC-counts at (ii) and (v) differ only slightly, whereas we have 

quite different class-counts at the same instants in figure 5. 

iv 

i 

ii 

iii 

ii 
v 

Phase 2 Phase 3 



3.1 Discussion 
By and large, the class graphs of figure 5 and the LOC-graphs of 
figure 6 look alike. However, a remarkable feature is revealed 
when we observe that for the total amount of LOC in figure 6 the 
growth from instant (ii) to instant (v) is about 12%. Comparing 
the number of classes for the same instants, we see that the 
growth there is significantly higher, about 49%.  Since at the later 
instant the software provided more functionality than at the earlier 
instant, we might reason that now we can do more with the same 
amount of code; it is, however, structured differently and in 
smaller classes. Another explanation along the same lines is that 
because agile techniques such as refactoring were applied [22], 
the code was steadily enhanced and cleaned up so that its verbos-
ity decreased. In other words, the code evolved into smaller, self-
explaining methods and classes. 

Considering the most remarkable feature of both graphs, i.e. 
the complete rewrite of the metamodeling framework at the be-
ginning of phase 3, one is tempted to ask: What would have hap-
pened if this endeavor was conducted by an industrial company 
without academic involvement? Would they have stopped the 
project after the language flaw and the memory problem were 
revealed? Would they have just fixed the performance issues, and 
continued? Or similarly: How would the project have proceeded 
in a purely academic setting? Would we have got to the end of 
phase 3 and revealed the maintenance flaws, or would we have 
declared the project as “successfully finished” even before we got 
there? Well, there certainly are no definite answers to these ques-
tions. But the graphs indicate that, arguably, the close cooperation 
between industry and academia was an important factor for the 
endeavor’s development. 

3.2 Limitations 
The results of our analysis presented in this section certainly are 
biased by the data that has been used, and so care must be taken 
when attempting to generalize them. The threats to validity that 
appear to be most relevant are: (a) we have used the data of one 
system only, which is focused on a certain market niche in the 
domain of automotive test systems, and (b) the metrics used rep-
resent, by their very nature, only specific aspects of the system 
under study. 

4. LANGUAGE INTERFACE 
In phase 3 we have resolved the language issue and the memory 
problems. Over time the system grew and the industry partner 
implemented most of the additional code contributing to function-
ality, user interface, and usability. For a broader accessibility of 
the modeling environment several convenience features such as a 
more mature graphical representation and some import-tools were 
needed. Since the resources at our site were limited, development 
and test activities were transferred to a near-shore center in 
Europe and also to an off-shore center in India; this explains some 
of the steep growth of code we saw in figure 5 after instants (iii) 
and (iv). 

At the end of the third phase the results were again presented 
to the company’s general management. We happily reported the 
success story of our new approach. Nevertheless, with more and 
more code being added to the system by more and more develop-
ers, we saw complexity creeping in and felt that in the long run 
maintainability will become an issue.  

4.1 Generic API 
As one of the root causes of the maintainability problem we iden-
tified that the low-level application programming interface (API) 
to access model elements was not well-suited for the code written 
by the increasing number of developers. In our current implemen-
tation, the interface to access model elements is generic. It basi-
cally contains methods to retrieve model elements, to navigate 
along connectors (these are the equivalent of associations in clab-
ject terminology) and along the inheritance graph, and to access 
fields and their values. This way the modeling environment’s core 
is independent of the concrete DSL since it only relies on these 
meta-concepts. Functionality such as persistency and the query 
engine are also implemented generically through this API.  

Our modeling environment is built around a compact core 
which comprises the metamodeling framework, the DSL, a ge-
neric visualization framework, and services such as persistency. 
In order to support specific application scenarios the core envi-
ronment is extended by plug-in modules, which can depend on 
certain DSL-concepts. Our visualization plug-in, for instance, 
provides specific renderings for DSL elements representing hard-
ware such as sensors or actuators. Another plug-in realizes an 
importer for a fieldbus device description language. Although 
these modules depend on certain DSL concepts and must make 
assumptions about their structure, they still have to use the low-
level API to access model elements. The following code exempli-
fies the kind of programs developers have to write1:  

 
public void SetMaxTemp(IModel model) { 
  IElement sensor =  
    (from element in model.TopLevelElements 
     where element.Type.Name == "TempSensor" 
     select element).First(); 
  IField max = sensor.GetField("RangeMax"); 
  max.Value = 420; 
} 

 
The code snippet searches the first temperature sensor in the 
model and assigns the RangeMax field the value 420. In some 
situations it might be quite convenient to be able to access an 
element’s fields via a generic API; here, however, it causes tedi-
ous programming. Moreover, the access through names such as 
“TempSensor” or “RangeMax” might cause maintenance prob-
lems since their validity cannot be checked statically but only at 
runtime. 

Interestingly, we find similar customization issues in other 
DSL environments, such as MetaEdit+ [23] or the Generic Model-
ing Environment (GME) [24]. Using these environments or simi-
lar ones usually involves two steps: a) defining a metamodel that 
defines the domain specific language, and b) using the metamodel 
to provide an environment for domain specific modeling. The 
latter step can be realized either by a generic environment that 
interprets the metamodel, or by a custom environment generated 
from the metamodel. The visualization of a DSL concept usually 
can be customized, e.g. by providing individual icons or more 
sophisticated by creating of a custom plug-in. Creating plug-ins to 
customize these environments, be it either for visualization pur-

                                                                 

 
1 The actual interface to access model elements is more sophisti-

cated, but we omit all technical details for reasons of brevity. 



poses, for import/export functionality, or for model transforma-
tions, means that one has to use the generic API. Similarly to the 
example we have seen above, this leads to lengthy code due to the 
low abstraction level of these interfaces. For some often-needed 
customizations these tools provide special interfaces. MetaEdit+, 
for example, provides its own scripting language called MERL for 
developing model transformations that allows the usage of DSL-
elements directly in the language [2]. In the general case, how-
ever, one still has to stick to the generic API. 

4.2 Domain Specific API 
A domain specific interface for accessing model elements sup-
ports a high-level style of programming much better. So in our 
language we provide two interfaces: the low-level API as de-
scribed above, and a second, domain specific API that is auto-
matically created from the DSL model. Figure 7 shows the ap-
proach: Plug-ins can access model elements either through the 
Generic API, or through the Domain Specific API. 

 

 
Figure 7. Generic and domain specific API for model access. 

When using the generic API, a plug-in might as well access ele-
ments of the DSL—since our language is based on clabjects, 
DSL-concepts are not different from other model elements. Inter-
estingly, this is an immediate benefit of the so-called Orthogonal 
Classification Architecture as described by Atkinson and Kühne 
[17]. Its basic idea is that in any clabject-based system we have 
two orthogonal classification dimensions: In one dimension we 
have the classification between the programming language 
classes, such as IElement or IField, and the modeling language 
elements, such as Sensor or RangeMax, as instances of them. This 
dimension is called linguistic classification. The second dimen-
sion, called ontological classification, is the classification be-
tween the modeling elements at different abstraction levels, e.g. 
between the DSL element Sensor and test facility model elements 
such as TempSensor. All elements in the ontological classification 
dimension are at the same time also classified by linguistic ele-
ments, so we can treat them uniformly—in our case, we can use 
the generic API to access both, model elements and DSL ele-
ments. 

The ultimate goal of the domain specific API is giving the 
developer the ability to write code in terms of higher abstractions 
than with the low-level access. The code for our former example 
of assigning a maximum range value to the first sensor in the 
model should rather look like accessing a sensor object similar to 
common object-oriented languages, for example as follows: 
 
public void SetMaxTemp(IDslModel model) { 
  Sensor sensor =  
    (from element in model.TopLevelElements 
     where element is TempSensor 
     select element as Sensor).First(); 
  sensor.MaxRange = 420; 
} 

 

To evaluate whether realizing the domain specific API by gener-
ating the corresponding classes a priori is feasible, we need to 
take a closer look at how models represented by the Model-layer 
in figure 7 are built. In our case this is not only one user-built 
model, but it is a layered set of libraries and user-models that 
define concepts at different abstraction levels.  Figure 8 shows a 
typical example: The Domain Concept Library defines concepts 
that are well-known in the domain, such as an engine, a measure-
ment device, or an electrical connector; these elements are not 
specific to a certain manufacturer. This library is provided by our 
partner company. The Manufacturer Library is also provided by 
our partner or by a third-party vendor; it contains models of spe-
cific products such as a measurement device for emissions analy-
sis or a specific kind of engine. This library builds on the concepts 
defined in the domain concept library. Even a customer can pre-
pare its own library of customized versions of the third-party 
vendor’s measurement devices or engines. Finally, the Test Facil-
ity Model represents the facility for which we generate the con-
figuration parameters. 

  

  
Figure 8. Example of libraries comprising the model level. 

In our customizable modeling environment, plug-in modules can 
depend on specific libraries. The vendor of measurement devices 
might, for example, provide a module that can update model in-
formation of devices by importing a proprietary configuration file. 
An engine-manufacturer might provide a plug-in that provides 
consistency checks for engine models. Since test facilities are 
individually built systems, it is even possible that a customer’s 
R&D department needs to provide custom check routines or tools. 
Since we can not foresee the number and kind of such plug-ins, 
implementing the domain specific API by means of generating 
classes a priori would mean to generate classes for each of these 
model layers. 

4.2.1 Implementation 
Generating the domain specific API would, in the end, mean to 
generate tens of thousands of classes. So as an alternative we use 
a precompiler for implementing the domain specific API. The 
precompiler translates the code into a representation that accesses 
the low-level API only, as shown in figure 9. 

  

  
Figure 9. A precompiler for realizing the domain specific API. 

The main advantage of this solution is that we do not need to 
generate any classes a priori, and so we can also access library 
elements such as TempSensor as classifiers in the domain specific 
API. In addition, we can implement domain specific checks—a 
feature that justifies the term precompiler, as opposed to a pre-
processor performing only macro expansion. We can, for exam-
ple, check whether the model library really contains the element 



TempSensor and whether it is derived from the DSL element Sen-
sor; so all its instances are guaranteed have the property 
MaxRange. It is also possible to enhance the syntax for domain 
specific purposes. In our case, for example, we plan to provide a 
specific syntax for specifying units such as °C for the temperature 
sensor’s maximum value. Furthermore, as a future extension a 
domain specific query language is planned, so the precompiler 
will be used as a framework for seamless integration of both lan-
guages.  

Providing a specific API in domain specific modeling envi-
ronments is not a new idea. Nordstrom et al. [25], for example, 
propose a technique for automatically generating a domain spe-
cific API for metamodels built with the GME. The basic idea is to 
automatically generate an API for each element of the DSL. They 
describe in detail how the generic modeling concepts of GME can 
be encapsulated by automatically generated C++ wrapper classes. 
For C# a similar implementation also exists [26]. Since these ap-
proaches use a generative approach and because GME is based on 
a fixed metamodel hierarchy, the corresponding domain specific 
API is based on metamodel elements only. In contrast, due to the 
utilization of a precompiler and as a consequence of the Orthogo-
nal Classification Architecture, our approach also allows to use 
library elements as classifiers in program code. 

4.2.2 Expected Impacts on Code Base  
We are currently finishing the implementation of the precompiler. 
In the short term we expect that this affects the code base only 
insignificantly, in contrast to the effect we saw when switching 
from prototypes to clabjects. The transition now is expected to be 
rather smooth since the domain specific API is only an extension 
to the generic API; we can refactor the code bit by bit. In the long 
term, however, we expect that the lines of code will grow much 
slower than they do now. But more importantly, we expect that 
the complexity of the code decreases significantly, which is an 
important aspect for maintainability and understandability. 

5. LESSONS LEARNED 
During the evolution of solution we gained some insights in the 
practice of transferring technology from an academic institution 
to industrial practice. Remarkably, the essential lessons are not 
about technical details, but about organization of the collabora-
tion, about social factors, and about communication. 
 
Embark on projects that allow for a fundamental change. 
Many projects in which industry and academia collaborate require 
the almost impossible: fix an existing system but do not change it 
too much. Narrow space for developments, however, does not 
encourage fundamental innovations.  

In our case we set the conditions so that we were free to fun-
damentally rethink how the configuration system should be de-
signed. Within about half a year it was clear that the effort needed 
to overcome the enormous complexity, which was accidentally 
added to the existing system over the years, was not justifiable.  
Accidental complexity means that not the complexity of the do-
main caused the overly complex software, but the short-sighted 
fixing of various problems and probably some bad design deci-
sions [27]. No matter what caused the unmanageable complexity, 
the existing system could not just be overhauled. Rewriting the 
complete control system also was impracticable since the system 
has a good reputation, it has a long-standing leadership role in the 
market, and the effort required was simply too much for the re-

sources we had available. So a happy medium—based on the 
existing control system, but radically different from the current 
configuration approach—had to be found, and these constraints 
finally broke the ground for applying model-driven engineering. 

 
Be careful with terminology and your own bias. Failing to 
establish a well-defined terminology that is understood by both 
parties can cause serious communication problems: you use the 
same term but mean different things. This issue, often encoun-
tered in requirements engineering, is also called a conflict in ter-
minological interference [28]. 

In our early workshops, for example, the term “component 
framework” was used by both parties. Different interpretations of 
that term caused a fundamental misunderstanding of the problems 
that the academic institution was supposed to solve. The software 
scientists meant a technical framework for components, which are 
units of composition with contractually specified interfaces and 
explicit context dependencies. The domain experts, in contrast, 
meant domain components that describe test facility elements 
such as an engine or a speed controller; these components can be 
assembled to describe a complete test facility. While these two 
interpretations of the term “component” are somehow related, 
they require different problems to be solved. A technical compo-
nent framework needs to take care of e.g. component deployment, 
registration and discovery, process boundaries, etc. A domain 
component framework, in contrast, needs to provide means for 
describing the domain entities concisely and mechanisms for as-
sembling these descriptions in order to compose sub-system de-
scriptions. Surprisingly, although we were quite aware of the 
potential pitfall of an inconsistent terminology in the requirements 
elicitation phase, it took us months to clarify that issue. In retro-
spect, we think that a too loose usage of technical terms and our 
own bias were the root causes for that misunderstanding. 

 
Solve fundamental problems without deadlines and perform 
major rework when necessary. When the industry partner needs 
results at some deadline, one is tempted to go for a quick fix in-
stead of a solid solution. It is important to make clear that such 
quick fixes easily introduce accidental complexity again. 

At the end of the second phase we had to present some mile-
stone results, and so the whole team was occupied for weeks in 
preparing the software to be able to present the required function-
ality. Due to the tight schedule and other pressure sources more 
and more quick fixes were added to the system. For the presenta-
tion this was fine. On the code, however, this had a bad impact, so 
that in the end everybody was unhappy with its quality—we fell 
into the same trap of tentative implementations that caused so 
many problems in the old system. With the project restart we had 
a chance to do better the second time—not only with better con-
cepts, but also with an improved discipline. It is not that we didn’t 
have tight schedules later on, but now the system’s quality had 
top priority, and the key stakeholders seemed to understand that 
thorough deliberation leads to better solutions. 

 
Find an advocate. The industry partner needs to understand that 
there is a different working culture at the research institute. We 
think that this is not a problem if the cooperation is a loose one, 
where a regular meeting every few weeks is sufficient. But in a 
close cooperation, where work results from one side are immedi-
ately used by the other side, conflicting interests quickly arise. It 
takes an experienced leader to shield the team from too much 



pressure. Particularly in long running projects this requires stam-
ina, patience, and conviction. Experience reports of other DSL 
projects also describe the necessity of having such a person, 
called an advocate by Wile [29]. We also made the experience 
that it is indispensible that the advocate is strongly backed by the 
management when times get rough.  

In our case we were lucky to have an experienced project 
manager on the industry side who saw the potential of different 
but complementing working cultures. He has formerly led re-
search and development projects within the company, but also 
with academic cooperations. Our advocate had to be backed by 
the upper management to be able to shield the team from other 
groups in the company that would have pushed for a conventional 
project management, that declared the project as failed when the 
performance problems were revealed, and that would have liked 
the project to be discontinued when budgets had to be cut due to 
the global economic downturn. 

 
Expect emotions and be aware of miscommunication. As 
Ramos et al. point out, the introduction of radically new software 
and the vision of a changed work reality is never free of emotions 
[30]. Underestimating or not taking seriously these inevitable 
emotions and beliefs can endanger the system’s acceptance, and 
thus the success of the whole endeavor.   

After about six months our team presented the prototype, 
which was enthusiastically received by the industry partner’s 
management. We captured the demonstrations as video sequences 
and, with the best of intentions, distributed them inside the com-
pany. Some people apparently took this the wrong way: since this 
was the first reliable source of information on our project, the 
videos caused disturbance in the current system’s development 
team. We were told not to distribute information in this format 
any more. In the following weeks our advocate was quite busy to 
shield the project team from very emotional discussions on the 
meaningfulness of the project. It took months of careful commu-
nication to convince the key persons that the new system does not 
only serve some academic hypothesis, but also eases their daily 
businesses.  

 
Displacement vs. integration—have both in due course. On the 
one hand, displacement from the partner company’s site encour-
ages the development of new ideas because one is less exposed to 
the tacit assumptions that domain experts usually share. More-
over, having a beginner’s mind, that is, being an ignoramus with 
respect to the problem domain, enables to think outside the box 
[31]. This is an advantage of loose research partnerships. On the 
other hand, one runs the risk of acceptance and integration issues 
if, for example, one does not strictly adhere to the company’s 
development process. For a long-running and close cooperation as 
ours, we think that having both at the right time helps to create 
innovative solution with good acceptance. 

In the early phases we were geographically and organiza-
tionally displaced from the company’s headquarter. For the 
development of our concepts this was useful since we could ask 
all our “stupid questions” in a protective environment. Never-
theless, it was also important to have easy access to domain 
experts in that phase, an observation that confirms the experience 
of others [31]. When our prototype reached a more mature stage it 
was valuable that the company founded a separate branch at the 
research site: until the integration of the development team in the 
industry-partner’s process, some key people still regarded our 
project as just an academic prototype that could not stand up to 

just an academic prototype that could not stand up to real-world 
problems. 
 
People transfer eases technology transfer. When the company 
opened the local branch, some developers stayed at the academic 
institution and continued to work on research questions, and oth-
ers transferred to the company to advance the software to product-
quality. 

In our experience this transfer eased the cooperation in later 
phases. The obvious advantage for the company was that these 
developers built the initial system architecture and so there was 
continuity in the development team, and they were part of their 
organization. The advantage for the researches was that theirs 
roles changed from core development to more conceptual respon-
sibilities. Moreover, the communication and the appreciation of 
each other’s contribution improved; we think that social factors 
played an essential role here. 
 
Be proud of applied research. Not only practitioners have mis-
taken our work, we had similar experiences in the academic 
world. Due to the lack of generalizations, which we could not 
draw in the early stages of our endeavor, our work was dismissed 
because it appeared as an application of “existing concepts” only, 
or as a “nice engineering exercise” with low scientific value. De-
veloping the domain specific modeling language and getting it 
ready for production certainly was a lot of work. Perhaps the 
same effort could have generated more publications if invested in 
other topics. 

In the end, however, we could show that model driven engi-
neering is feasible for our target domain. We could further dem-
onstrate advantages and weaknesses of modeling languages based 
on prototypes and clabjects in an industrial context. Many of the 
subtle details did not occur until we further developed the re-
search prototype into production-quality. So we completely con-
cur with David L. Parnas’ statement in an ICSE plenary talk: “If 
we want our ideas to catch on, we have to put them into products. 
There is a legitimate, honorable and important place for research-
ers who don’t invent new ideas but, instead, apply, demonstrate, 
and evaluate old ones” [32]. 

 

6. CONCLUSION 
In this paper we presented the evolution of a domain specific 
modeling language for engine test facilities. By examining the 
history of the endeavor we saw that although the domain abstrac-
tions were quite stable from the beginning, our initial choice for a 
metamodeling framework was not ideal and thus led to a complete 
project restart. But even with an appropriate framework at hand, 
the reality of a flexible architecture and a distributed multi-
national development team had influence on how this framework 
was used. Consequently, we had to provide a domain specific API 
to raise the level of abstraction used by developers. 

What we can learn from these observations is that the 
mechanisms we need in a metamodeling framework are not only 
influenced by the necessity to model a domain concisely, but also 
by the context in which the framework is applied. For a practical 
MDE solution dependencies between the architecture and its con-
stituting parts arise; instead of encountering them on accident, 
they should be examined more systematically from the beginning. 

Another conclusion is that the cooperation between the aca-
demic and the industrial world is not always easy—there are 



many pitfalls in the technology transfer process. As indicated by 
the lessons learned, the essential factors in a close cooperation are 
of social and communicational nature; these are usually difficult 
to control. Nevertheless, it is rewarding to develop an idea into a 
mature product in this setup: it can raise new potentials for the 
partner company, and it can bring new insights for the research 
partner. We hope to help others who set out for a similar journey 
to avoid the one or other of the inevitable pitfalls. 
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