
A Modeling Language’s Evolution Driven by Tight
Interaction between Academia and Industry

Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree
University of Salzburg, C. Doppler Laboratory Embedded Software Systems

Jakob-Haringer-Str. 2
5020 Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Domain specific languages play an important role in model-
driven engineering of software-intensive industrial systems. A
rich body of knowledge exists on the development of languages,
modeling environments, and transformation systems. The under-
standing of architectural choices for combining these parts into a
feasible solution, however, is not particularly deep. We report on
an endeavor in the realm of a technology transfer process from
academia to industry, where we encountered unexpected influ-
ences of the architecture on the modeling language. By examining
the evolution of our language and its programming interface, we
show that these influences mainly stemmed from practical consid-
erations; for identifying these early on, tight interaction between
our research lab and the industrial partner was key. In addition,
we share insights into the practice of cooperating with industry by
presenting essential lessons we learned.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific architectures –
domain specific languages, model driven engineering.

General Terms
Design, Experimentation, Languages.

Keywords
Academic-Industry Cooperation, Domains Specific Language,
Model Driven Engineering Architecture, Clabjects.

1. INTRODUCTION
Model-driven engineering (MDE) promises a substantial gain in
productivity and quality for building large software-intensive
systems. In many development endeavors, MDE is applied to
cope with the increasing complexity and size of software inten-
sive systems. Domain specific modeling (DSM) can further en-
hance this gain by aligning the modeling language closely with
the problem domain, enabling domain experts to express their
solutions in terms of well-known concepts. A rich body of litera-
ture is available for the various aspects of DSM, in particular, the
modeling language, the modeling environment, and the transfor-

mation or generation technology; see for example [1, 2]. Never-
theless, knowledge about the role of the architecture that puts
these parts together into a working system is not particularly
deep. For example, the fact that concepts of the modeling lan-
guage usually dictate the architectural choices for building the
modeling environment seems reasonable at first glance. More-
over, when using an off-the-shelf language workbench, most ar-
chitectural choices usually have already been made for you. But
what if architectural forces of the modeling environment influ-
ence the way the modeling language is constructed or its pro-
gramming interface is designed, in order to get a feasible solu-
tion?

In this paper we report on a DSM endeavor that was con-
ducted in close cooperation between our research lab and an in-
dustrial partner over the last three years. The overall goal of this
technology-transfer collaboration is to build a MDE-based prod-
uct for the configuration of automation systems in the domain of
engine test facilities. In this realm we developed a domain spe-
cific language (DSL), a modeling environment, and a transforma-
tion engine. Initially, the development seemed to be quite
straight-forward and the first research prototype successfully
demonstrated the applicability of the DSL. Since the goal is to
build a production-ready system, we needed to develop the proto-
type further. In this process we encountered that the chosen
metamodeling framework did not meet the requirements of indus-
trial reality. Together with other shortcomings, this finding re-
sulted in a complete restart of the project, and it influenced the
choice for a new metamodeling framework and its programming
interface.

In order to identify these issues and to show how we solved
them technically, we examine the evolution of our modeling lan-
guage in its historical context. We will see that the evolution was
not only driven by the domain’s mere complexity, but also by the
interaction with other parts of the MDE architecture and practical
considerations such as maintainability and understandability. In
this respect, the close cooperation between academia and industry
was invaluable. Nevertheless, this form of cooperation also has its
pitfalls, in particular regarding interpersonal and communication
factors. We want to emphasize this fact by presenting some im-
portant lessons we had to learn.

2. THE HISTORICAL PERSPECTIVE
Initially, our research group set out to improve the state-of-
practice of configuring automation systems in the domain of en-
gine test facilities, which are used to run experiments on combus-
tion engines and to collect and record measured data. These facili-
ties are complex systems of systems comprising various “machin-
ery, instrumentation, and support services, housed in a building
adapted or built for its purpose” [3]. The test facility automation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
ICSE '10, May 2-8, 2010, Cape Town, South Africa
Copyright © 2010 ACM 978-1-60558-719-6/10/05 ... $10.00

system plays an important role since it is responsible for safe
conduction of an experiment by monitoring operation parameters
in real-time, for controlling the defined sequence of test steps, and
for managing the acquisition of data generated by various sensors
and complex instruments. The functioning of the real-time auto-
mation system is tightly coupled with the actual setup of the
physical test facility, since it has to ensure that all sensors, in-
struments, actuators, and facility services act safely in concert.
Because of the dependence on the actual system setup, the auto-
mation system needs to be highly customizable and flexible for
supporting a wide range of test facilities. This flexibility, how-
ever, comes at the cost of a great effort that is required to custom-
ize an automation system for a particular test facility setup. With-
out adequate software support, customization can be an error-
prone and time-consuming activity.

Model-driven engineering was chosen to address these is-
sues. The basic idea is to build a model of the test facility, com-
prising both hardware and software. This model is then used to
derive the corresponding configuration data for the automation
system. Our goal was not to invent yet another MDE approach or
to build yet another modeling tool, but to select adequate ideas
and technologies, ideally proven in practice, and put them to work
in a real product.

2.1 Cooperation Setup
There are various ways in which academic and industrial institu-
tions can team up, ranging from mere sponsorship models, to
internship programs, to close collaboration. The process of tech-
nology transfer in general is divided into separate steps, and usu-
ally different parties are involved in these steps [4, 5]. Rombach
and Achatz, for example, propose the following technology trans-
fer model: (1) basic research, (2) applied research, (3) prototype
in vitro, (4) prototype in vivo, (5) industrial replication, and fi-
nally (6) roll out [5].

We use the model above to describe where our work fits in:
In our case the collaboration was planned to incorporate steps 2 to
4. Step 2 had to be carried out primarily at our research lab with
frequent participation of the industry partner. For step 3 both par-
ties had to work in close cooperation, and step 4 needs to be per-
formed by the industrial partner with scientific support. So the
cooperation was a close one. After one and a half years, the com-
pany even founded a separate, dedicated branch at our research
site to immediately incorporate research results in the develop-
ment of its product. In retrospect, this was a critical factor for
being able to judge the maturity and ramifications of our solu-
tions. More than once the devil was in the details, which are eas-
ily overlooked in a prototype implementation in a mere academic
setting. As we will see in the following, the evolution of the mod-
eling language nicely exemplifies this observation.

2.1.1 Research Institution
Organizationally our research lab is part of the University of Salz-
burg. It is partially funded by the Christian Doppler Forschungs-
gesellschaft (CDG), a semi-governmental non-profit organization
with the mission of easing access for Austrian companies to lead-
ing-edge research [6]. On this account the CDG funds applica-
tion-oriented basic research to bridge the gap between industry
and academia by enabling knowledge and technology transfer.

2.2 Phase One
First of all the research team had to gain some knowledge about
the problem domain of testing combustion engines. Several work-
shops and a short internship proved valuable for the researchers to
get a grip on the concepts and peculiarities in that domain. We
continued with an in-depth requirements analysis to clarify the
long-term vision of the product to be built, and to understand the
problems to be solved. The initial set of requirements was am-
biguous, contradictory, vague, and by no means complete. As we
reported elsewhere [7] in detail, the requirements analysis was
supported by paper-prototyping and by a mock-up prototype
demonstrating essential application scenarios.

It became clear quite early that is was not possible to just fix
the old system used for customizing the automation system; it did
not provide adequate abstractions, but burdened the domain ex-
perts to understand low-level implementation decisions of the
automation systems software to be able to customize these sys-
tems correctly. Instead, we would provide a domain specific lan-
guage (DSL), and we also got a good understanding what the
abstraction level should be so that the language would enable
domain experts to model test facilities rapidly and concisely.

Nevertheless, the choice for an underlying metamodeling
framework for the DSL was rather unclear. Prevalent metamodel-
ing approaches based on the Meta Object Facility [8] or similar
meta-metamodeling languages didn’t seem to match the expecta-
tions since they were too inflexible. For example, the domain
experts kept telling us that “in the usual case” an engine model
would need to comprise its inertia as well as its maximum speed.
In some situations, for example when modeling a unique engine,
custom properties would also have to be supported, e.g. a correc-
tion factor for friction calculation. The language would need to
support both cases since “that’s real life”. According to these
requirements we proposed to build the modeling language on a
flexible framework that was inspired by prototype-based pro-
gramming languages, in particular SELF [9, 10]. In essence, a
prototype-based language is a special kind of an object-based
language that is not based on the usual class-object-dichotomy but
instead allows creating a new object by cloning another object
that acts as prototype. Afterwards the clone can be modified indi-
vidually [11]. Figure 1 shows an example. Engine1 is modeled as
an individual object, and Engine2 is created by cloning Engine1
and modifying the property values afterwards. The individual
property FrictionFact for the friction correction factor is also
added to Engine2.

Engine1

Inertia := 1.08 kgm2

MaxSpeed := 9000 rpm

Engine2

Inertia := 1.12 kgm2
MaxSpeed := 9000 rpm
FrictionFact := 0.98

clone

Figure 1. Prototype-based engine modeling.

The idea of harnessing the concepts of prototype-based modeling
was appealing not only because of their simplicity. Prospective
users were already accustomed to a copy&paste-style. In their
daily work, they used previous automation system configuration
data to create the configuration for new test facilities. So support-
ing the same metaphor in our language seemed just intuitive. Fur-
thermore, we had an explicit relationship between each prototype
and its clones, so we could trace back every element to its origin.

Consequently many of the disadvantages of using copy&paste,
such as lack of change propagation, could be avoided [12].

2.3 Phase Two
In the second phase we built a prototype implementation of the
modeling language to test (a) the feasibility of the metamodeling
framework, and (b) to evaluate the concepts of the DSL. For the
validation an expert of the domain modeled a scenario based on a
real test facility. Supporting reuse of model elements to assemble
big models efficiently is an essential requirement for the lan-
guage, since we expect the models to be large, that is, several tens
of thousands of elements. We chose to support reuse by means of
model libraries populated by users. Library elements serve as
prototypes and their clones can be customized according to the
rules of prototype inheritance [11].

We further extended the scenario to demonstrate the whole
process from modeling to configuration data generation to final
execution of the automation system. The results were presented to
the company’s general management, which in response decided
that our approach should be an integral part of their future product
portfolio. That decision also triggered the foundation of a separate
development branch at the location of our research lab. The dem-
onstration showed that the overall approach was feasible and that
the DSL concepts, by and large, provided the right level of ab-
straction and granularity. At that point we may have claimed the
project to be a great success, and that the research prototype has
well served its purpose. Nevertheless, a closer look at the system
revealed two major flaws right at its core.

2.3.1 Performance
Due to the proof-of-concept character of the implementation, we
decided to implement the prototype-based inheritance scheme by
means of copying [11]. In essence, this means that reusing model
elements to assemble larger models resulted in full duplication of
data. While for the intended purpose as prototype environment
this was acceptable, modeling the real-world scenario was soon
rendered impossible due to the excessive memory consumption
and associated performance issues.

2.3.2 Modeling Categorization
As it turned out, a simple, unrestricted cloning approach provided
too much freedom for our metamodeling framework. In particular,
the metamodeling framework did not support modeling categori-
zation well. For the generation of the automation system configu-
ration we need to model the properties of each individual engine.
Since engines typically share most of their properties, we can
reuse the corresponding transformation rules by introducing the
concept of an Engine, and applying the transformation rules to
each clone. Furthermore, engines typically are members of a
whole engine series, and all members of a certain series share
some characteristics such as their maximum speed, so we can
again reuse the corresponding transformation rules. In other
words, the engine family is a categorization of engines. In figure 2
we see how this might be modeled with prototypes: First we
model Engine1 as an individual object without any specific values
for the attributes. Second, we create the clone SeriesS1 and spec-
ify the value for maximum speed, which is the same for all en-
gines of the series. Furthermore, we add a new property Tuning
for the specific tuning of the engine. In the third step, we create a
clone for a specific engine myS1Engine and provide the missing

attribute values; we also add an individual attribute with a value,
the FrictionFact attribute.

A transformation rule for SeriesS1 can, for example, rely on
the fact that MaxSpeed is set to 9,000 revolutions per minute to
optimize the generated configuration parameters. The potential
for optimizations is even larger when the transformation rule re-
lies on structural properties such as the number of cylinders of a
SeriesS1-engine. This rule, however, cannot be reused safely for
clones of SeriesS1. Due to the semantics of our prototype-based
language, myS1Engine can be modified individually. So it is pos-
sible to change the maximum speed value, or to add an additional
cylinder. Applying the transformation rule thus would lead to
failure. Relying on the structural similarity between a prototype
and its clones is not possible in our prototype-based language.

Figure 2. Prototype-based engine modeling.

In the end, due to this degree of freedom in the language, we
would either have had to put much more effort into writing more
robust transformation rules that do not rely on the inheritance of
structure, or taking additional measures in the modeling environ-
ment to ensure that clones adhere to the structure of their proto-
types. Interestingly, this is also an observation made by the de-
signers of SELF: “Functionality provided at the language level in
class-based systems rose to the programming environment level in
Self”. For the design of a new language one of them “…might be
tempted to include inheritance of structure in the language, al-
though it would still be based on prototypes” [10, p. 38].

So the question was which metamodeling framework to use
that explicitly supports categorization. Powertypes [13] are a
widely used pattern to model such relationships, and are, for in-
stance, supported by the UML [14]. Figure 3 shows how our ex-
ample could be modeled with powertypes.

EngineSeries

MaxSpeed

Engine

Inertia

classifies

SeriesS1

MaxSpeed := 9000 rpm

SeriesS1

Tuning

<<instanceOf>> <<subclassOf>>

myS1Engine

Inertia := 1.08 kgm2

Tuning := racing

<<instanceOf>>

Figure 3. Engine categorization with powertypes.

As we can see in figure 3, the concept of an engine and the con-
cept of an engine series are both represented explicitly in the
model and are connected by a special association expressing that
an engine series is a categorization of engines. The semantics of
this association is that any instance of EngineSeries is, at the same
time, also a subclass of Engine. This is expressed by the modeling

of the entity SeriesS1 that is represented twice in the figure, i.e. in
both roles. The concrete engine instance myS1Engine is also
shown in the figure. Although this solution supports categoriza-
tion, we can not represent an individual attribute such as the fric-
tion correction factor as a property of myS1Engine, because in-
stances in UML cannot contain new structural properties. Fur-
thermore, as elaborated by Atkinson and Kühne, this solution has
other disadvantages such as accidental complexity of the resulting
models [15]: some concepts might not be part of the inherent con-
ceptualization of our domain, but they are necessary just because
they are required for the powertype mechanism.

2.4 Phase Three
Although the prototype-based solution was, at least from our per-
spective as researchers, reasonable and intuitive, tests of real ex-
amples done by domain experts were necessary to reveal its short-
comings for large models. Having identified the flaws, we recon-
sidered the original design decisions and validated them against
the original requirements. We all, including the company repre-
sentatives, now had a much better understanding of these re-
quirements and their implications. In a one-week workshop we
identified some fundamental misunderstandings between the re-
searchers and the company representatives. We were surprised of
these misunderstandings, but in retrospect we think that not
enough care was taken to gain a common understanding of the
terminology. At the same workshop we also developed a set of
postulates a better system would have to be built on. Overall,
most of these matched the previously built system quite well, e.g.
the overall vision, the domain specific language concepts, the user
interface, and the interaction patterns between the automation
system and the modeling environment. The metamodeling frame-
work however, i.e. our prototype-based inheritance scheme, no
longer seemed to be appropriate. The new system would have to
support inheritance of structure.

It was due to the determination of the company to get the
most suitable solution that they decided to start over again with
the same team. Understandably, this decision was quite contro-
versial, if we consider that an effort of almost 20 person-years
had been invested until then. Later on it turned out that this deci-
sion was a key factor to a successful turn-around. The alternative
plan was to fix the memory and performance problems with some
smart technique and to put more effort in the development of the
user interface and the transformation engine to overcome the limi-
tations of the language.

To start the DSL development again from scratch, we had to
find an alternative metamodeling framework that better supported
the needs of the domain experts. It was not until we have imple-
mented the basic mechanisms based on the workshop postulates
that we found that the notion of a Clabject was much closer to
what we needed. This concept has been proposed by Atkinson in
1997 [16] and since then been studied and extended in several
contributions, e.g. [15, 17]. A clabject in principle is a dual-
faceted modeling entity that unifies classes and objects; it has a
so-called type facet as well as an instance facet. So a clabject can
be an instance of some clabject, and at the same time it can be the
type of another clabject. Figure 4 shows our engine example mod-
eled with this concept. Note that each modeling entity in the fig-
ure is a clabject. As UML does not support the notion of clabjects,
we use UML’s class symbol for that purpose.

The Engine on top represents the most abstract concept and
only defines structural properties such as the fields (these are the

clabject’s equivalent of attributes in UML) MaxSpeed and Inertia.
Engine is then instantiated by SeriesS1, which represents the en-
gine concept for a particular engine series. It provides a value for
the maximum speed field, which means that all engines of this
series share the same value, which cannot be changed individually
by its instances. Furthermore the series-specific field Tuning is
introduced. The concrete engine, myS1Engine, is an engine of that
series and specifies the corresponding field values. Introducing
the individual field FrictionFact is not supported by the original
clabject concept. However, this is one of the extensions that we
proposed for the applicability in our domain [12, 18].

Figure 4. Engine model with clabjects.

After the reimplementation of the language core, now inspired by
clabjects to resolve the modeling issues, and employing some
memory-saving optimizations to overcome the performance is-
sues, the functionality of the previous prototype was migrated and
performance tests assured that the new foundation was solid.
Modeling exercises by domain experts and experiments with the
transformation engine also showed that the new metamodeling
framework was suitable. We also demonstrated that our memory-
efficient representation method and the corresponding traversal
algorithms scale to large models [19].

2.5 A Test Facility Model in Numbers
Domain experts are currently working on the model of a real test
facility to demonstrate the complete cycle of model-driven pa-
rameter generation. During configuration of a test facility, the
domain expert assembles the model from instances of pre-defined
model elements maintained in a library and connects them accord-
ing to the system to be described. Instances of library elements
are customized either by changing their field values or by adding
new fields. Based on the assembly of the model elements and
their connections, the transformation engine generates the corre-
sponding automation system configuration. When custom fields
are added to a library element, the corresponding transformation
rule also has to be adapted.

Table 1 shows some quantitative information on a current
model covering about 60% of the overall facility. According to
the domain experts the hardware part of the model is almost fin-
ished; the remaining work primarily is to finish modeling the
associated functionality performed by the automation system
software and the model transformation rules. For each category
we see the number of model elements and the number of fields.
For the fields we also include how many were added or modified,

since these numbers indicate to which degree pre-defined library
elements need to be customized. The visualization of model ele-
ments in diagrams is also stored in the model, so the correspond-
ing numbers are included as a separate category.

Table 1. Size of a test facility model (~60% completed)

Fields
Category Elements

Total Added Modified
Hardware 9120 26625 0 1548
Software 3692 18764 28 17
Input/Output 3422 11006 0 231
Visualization 10440 71148 0 2829
Total 26674 127543 28 4625

3. CODE EVOLUTION
After examining the overall project development, we will now
look at the evolution of the source code. To this end, we mined
our source code repository for quantitative data. First of all we
extracted monthly snapshots of the active development branch.
On each of these snapshots we calculated two metrics: the number
of classes and interfaces on the one hand, and the number of code
lines on the other hand. To see how the different parts of our solu-
tion evolved, we categorized the software modules, called “as-
semblies” in .Net terminology [20], manually into the following
categories: BASE denoting the metamodeling framework, DSL
denoting the domain specific language, GUI denoting the user
interface, and TSA denoting the transformation engine and the
transformation rules. The category TOTAL summarizes the num-
bers for all categories including modules not captured otherwise,
such as import/export functions. Because in the first phase most
of the created artifacts were informal documents and test pro-
grams, we did not include this phase in our measurements.

Figure 5 shows the graphs of the number of classes and inter-
faces of our system. The TOTAL graph reveals some interesting
facts. In the beginning (i) we can observe the trend of continuous
growth as we would expect. Perhaps the most striking feature can
be observed at the end of the second phase at instant (ii), where
all software development was stopped. With the beginning of
phase 3 we started from scratch. Note that the codebase we had by
then was not completely abandoned, but was further used for
some time by domain experts to experiment with the DSL con-
cepts and by new team members that needed to acquaint them-
selves with the project. Since the development of this codebase
was a dead end, we did not include it in our metrics that repre-
sents the active development branch only.

After the restart we can observe a steep growth of classes
(iii). This can be explained by the fact that a considerable amount
of code could be migrated from the earlier version to the new one.
Later on the number of classes steadily grows, except for a short
negative spike that represents a cleanup of the DSL (iv), where
we got rid of obsolete language elements that were introduced
now and then, but that later became obsolete. It is important to
note that most of the classes in the DSL category were automati-
cally generated. In fact, the language elements of the DSL are
modeled as classes in a UML model with a custom profile. The
UML model is then used to generate C# classes that represent the
language elements in our implementation. If we consider the trend
of the DSL category, we can see that after the initial startup and
except for the cleanup, the corresponding code was quite stable.

As a matter of fact, the increased number of classes between in-
stants (ii) and (iii) is only due to the new representation based on
clabjects. The number of DSL elements is the same at both in-
stants, and we used the same UML model to generate the corre-
sponding classes. The continuing steep growth of TOTAL classes
after instant (iv) can be explained due to additional developers
that joined the team and primarily worked on the user interface
and on the transformation engine.

0

500

1000

1500

2000

2500

3000

3500

4000

Ja
n-

08

M
ar

-0
8

M
ay

-0
8

Ju
l-0

8

Sep
-0

8

N
ov

-0
8

Ja
n-

09

M
ar

-0
9

M
ay

-0
9

Ju
l-0

9

Sep
-0

9

C
la

s
s
e
s
 &

 I
n

te
fa

c
e
s

TOTAL BASE DSL GUI TSA

Figure 5. Classes and interfaces in active development branch.
Significant sections are (i) steady growth, (ii) phase 3 as a com-
plete restart, (iii) steep growth due to migration of features from

phase 2, and (iv) DSL cleanup.

In figure 6 we see the same period as in figure 5, but this time we
measured lines of code (LOC). To fully understand the absolute
numbers, it is important to note that we only counted lines that
were actually compiled into .NET Common Intermediate Lan-
guage instructions [21]. An empty method body or class defini-
tion, for example, does not count in this LOC-metric, since no
instructions are generated.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Ja
n-

08

M
ar

-0
8

M
ay

-0
8

Ju
l-0

8

Sep
-0

8

N
ov

-0
8

Ja
n-

09

M
ar

-0
9

M
ay

-0
9

Ju
l-0

9

Sep
-0

9

L
in

e
s
 o

f
C

o
d

e

TOTAL BASE DSL GUI TSA

Figure 6. Lines of code in active development branch.

The graph by and large resembles figure 5. Interestingly, the
LOC-counts at (ii) and (v) differ only slightly, whereas we have

quite different class-counts at the same instants in figure 5.

iv

i

ii

iii

ii
v

Phase 2 Phase 3

3.1 Discussion
By and large, the class graphs of figure 5 and the LOC-graphs of
figure 6 look alike. However, a remarkable feature is revealed
when we observe that for the total amount of LOC in figure 6 the
growth from instant (ii) to instant (v) is about 12%. Comparing
the number of classes for the same instants, we see that the
growth there is significantly higher, about 49%. Since at the later
instant the software provided more functionality than at the earlier
instant, we might reason that now we can do more with the same
amount of code; it is, however, structured differently and in
smaller classes. Another explanation along the same lines is that
because agile techniques such as refactoring were applied [22],
the code was steadily enhanced and cleaned up so that its verbos-
ity decreased. In other words, the code evolved into smaller, self-
explaining methods and classes.

Considering the most remarkable feature of both graphs, i.e.
the complete rewrite of the metamodeling framework at the be-
ginning of phase 3, one is tempted to ask: What would have hap-
pened if this endeavor was conducted by an industrial company
without academic involvement? Would they have stopped the
project after the language flaw and the memory problem were
revealed? Would they have just fixed the performance issues, and
continued? Or similarly: How would the project have proceeded
in a purely academic setting? Would we have got to the end of
phase 3 and revealed the maintenance flaws, or would we have
declared the project as “successfully finished” even before we got
there? Well, there certainly are no definite answers to these ques-
tions. But the graphs indicate that, arguably, the close cooperation
between industry and academia was an important factor for the
endeavor’s development.

3.2 Limitations
The results of our analysis presented in this section certainly are
biased by the data that has been used, and so care must be taken
when attempting to generalize them. The threats to validity that
appear to be most relevant are: (a) we have used the data of one
system only, which is focused on a certain market niche in the
domain of automotive test systems, and (b) the metrics used rep-
resent, by their very nature, only specific aspects of the system
under study.

4. LANGUAGE INTERFACE
In phase 3 we have resolved the language issue and the memory
problems. Over time the system grew and the industry partner
implemented most of the additional code contributing to function-
ality, user interface, and usability. For a broader accessibility of
the modeling environment several convenience features such as a
more mature graphical representation and some import-tools were
needed. Since the resources at our site were limited, development
and test activities were transferred to a near-shore center in
Europe and also to an off-shore center in India; this explains some
of the steep growth of code we saw in figure 5 after instants (iii)
and (iv).

At the end of the third phase the results were again presented
to the company’s general management. We happily reported the
success story of our new approach. Nevertheless, with more and
more code being added to the system by more and more develop-
ers, we saw complexity creeping in and felt that in the long run
maintainability will become an issue.

4.1 Generic API
As one of the root causes of the maintainability problem we iden-
tified that the low-level application programming interface (API)
to access model elements was not well-suited for the code written
by the increasing number of developers. In our current implemen-
tation, the interface to access model elements is generic. It basi-
cally contains methods to retrieve model elements, to navigate
along connectors (these are the equivalent of associations in clab-
ject terminology) and along the inheritance graph, and to access
fields and their values. This way the modeling environment’s core
is independent of the concrete DSL since it only relies on these
meta-concepts. Functionality such as persistency and the query
engine are also implemented generically through this API.

Our modeling environment is built around a compact core
which comprises the metamodeling framework, the DSL, a ge-
neric visualization framework, and services such as persistency.
In order to support specific application scenarios the core envi-
ronment is extended by plug-in modules, which can depend on
certain DSL-concepts. Our visualization plug-in, for instance,
provides specific renderings for DSL elements representing hard-
ware such as sensors or actuators. Another plug-in realizes an
importer for a fieldbus device description language. Although
these modules depend on certain DSL concepts and must make
assumptions about their structure, they still have to use the low-
level API to access model elements. The following code exempli-
fies the kind of programs developers have to write1:

public void SetMaxTemp(IModel model) {
 IElement sensor =
 (from element in model.TopLevelElements
 where element.Type.Name == "TempSensor"
 select element).First();
 IField max = sensor.GetField("RangeMax");
 max.Value = 420;
}

The code snippet searches the first temperature sensor in the
model and assigns the RangeMax field the value 420. In some
situations it might be quite convenient to be able to access an
element’s fields via a generic API; here, however, it causes tedi-
ous programming. Moreover, the access through names such as
“TempSensor” or “RangeMax” might cause maintenance prob-
lems since their validity cannot be checked statically but only at
runtime.

Interestingly, we find similar customization issues in other
DSL environments, such as MetaEdit+ [23] or the Generic Model-
ing Environment (GME) [24]. Using these environments or simi-
lar ones usually involves two steps: a) defining a metamodel that
defines the domain specific language, and b) using the metamodel
to provide an environment for domain specific modeling. The
latter step can be realized either by a generic environment that
interprets the metamodel, or by a custom environment generated
from the metamodel. The visualization of a DSL concept usually
can be customized, e.g. by providing individual icons or more
sophisticated by creating of a custom plug-in. Creating plug-ins to
customize these environments, be it either for visualization pur-

1 The actual interface to access model elements is more sophisti-

cated, but we omit all technical details for reasons of brevity.

poses, for import/export functionality, or for model transforma-
tions, means that one has to use the generic API. Similarly to the
example we have seen above, this leads to lengthy code due to the
low abstraction level of these interfaces. For some often-needed
customizations these tools provide special interfaces. MetaEdit+,
for example, provides its own scripting language called MERL for
developing model transformations that allows the usage of DSL-
elements directly in the language [2]. In the general case, how-
ever, one still has to stick to the generic API.

4.2 Domain Specific API
A domain specific interface for accessing model elements sup-
ports a high-level style of programming much better. So in our
language we provide two interfaces: the low-level API as de-
scribed above, and a second, domain specific API that is auto-
matically created from the DSL model. Figure 7 shows the ap-
proach: Plug-ins can access model elements either through the
Generic API, or through the Domain Specific API.

Figure 7. Generic and domain specific API for model access.

When using the generic API, a plug-in might as well access ele-
ments of the DSL—since our language is based on clabjects,
DSL-concepts are not different from other model elements. Inter-
estingly, this is an immediate benefit of the so-called Orthogonal
Classification Architecture as described by Atkinson and Kühne
[17]. Its basic idea is that in any clabject-based system we have
two orthogonal classification dimensions: In one dimension we
have the classification between the programming language
classes, such as IElement or IField, and the modeling language
elements, such as Sensor or RangeMax, as instances of them. This
dimension is called linguistic classification. The second dimen-
sion, called ontological classification, is the classification be-
tween the modeling elements at different abstraction levels, e.g.
between the DSL element Sensor and test facility model elements
such as TempSensor. All elements in the ontological classification
dimension are at the same time also classified by linguistic ele-
ments, so we can treat them uniformly—in our case, we can use
the generic API to access both, model elements and DSL ele-
ments.

The ultimate goal of the domain specific API is giving the
developer the ability to write code in terms of higher abstractions
than with the low-level access. The code for our former example
of assigning a maximum range value to the first sensor in the
model should rather look like accessing a sensor object similar to
common object-oriented languages, for example as follows:

public void SetMaxTemp(IDslModel model) {
 Sensor sensor =
 (from element in model.TopLevelElements
 where element is TempSensor
 select element as Sensor).First();
 sensor.MaxRange = 420;
}

To evaluate whether realizing the domain specific API by gener-
ating the corresponding classes a priori is feasible, we need to
take a closer look at how models represented by the Model-layer
in figure 7 are built. In our case this is not only one user-built
model, but it is a layered set of libraries and user-models that
define concepts at different abstraction levels. Figure 8 shows a
typical example: The Domain Concept Library defines concepts
that are well-known in the domain, such as an engine, a measure-
ment device, or an electrical connector; these elements are not
specific to a certain manufacturer. This library is provided by our
partner company. The Manufacturer Library is also provided by
our partner or by a third-party vendor; it contains models of spe-
cific products such as a measurement device for emissions analy-
sis or a specific kind of engine. This library builds on the concepts
defined in the domain concept library. Even a customer can pre-
pare its own library of customized versions of the third-party
vendor’s measurement devices or engines. Finally, the Test Facil-
ity Model represents the facility for which we generate the con-
figuration parameters.

Figure 8. Example of libraries comprising the model level.

In our customizable modeling environment, plug-in modules can
depend on specific libraries. The vendor of measurement devices
might, for example, provide a module that can update model in-
formation of devices by importing a proprietary configuration file.
An engine-manufacturer might provide a plug-in that provides
consistency checks for engine models. Since test facilities are
individually built systems, it is even possible that a customer’s
R&D department needs to provide custom check routines or tools.
Since we can not foresee the number and kind of such plug-ins,
implementing the domain specific API by means of generating
classes a priori would mean to generate classes for each of these
model layers.

4.2.1 Implementation
Generating the domain specific API would, in the end, mean to
generate tens of thousands of classes. So as an alternative we use
a precompiler for implementing the domain specific API. The
precompiler translates the code into a representation that accesses
the low-level API only, as shown in figure 9.

Figure 9. A precompiler for realizing the domain specific API.

The main advantage of this solution is that we do not need to
generate any classes a priori, and so we can also access library
elements such as TempSensor as classifiers in the domain specific
API. In addition, we can implement domain specific checks—a
feature that justifies the term precompiler, as opposed to a pre-
processor performing only macro expansion. We can, for exam-
ple, check whether the model library really contains the element

TempSensor and whether it is derived from the DSL element Sen-
sor; so all its instances are guaranteed have the property
MaxRange. It is also possible to enhance the syntax for domain
specific purposes. In our case, for example, we plan to provide a
specific syntax for specifying units such as °C for the temperature
sensor’s maximum value. Furthermore, as a future extension a
domain specific query language is planned, so the precompiler
will be used as a framework for seamless integration of both lan-
guages.

Providing a specific API in domain specific modeling envi-
ronments is not a new idea. Nordstrom et al. [25], for example,
propose a technique for automatically generating a domain spe-
cific API for metamodels built with the GME. The basic idea is to
automatically generate an API for each element of the DSL. They
describe in detail how the generic modeling concepts of GME can
be encapsulated by automatically generated C++ wrapper classes.
For C# a similar implementation also exists [26]. Since these ap-
proaches use a generative approach and because GME is based on
a fixed metamodel hierarchy, the corresponding domain specific
API is based on metamodel elements only. In contrast, due to the
utilization of a precompiler and as a consequence of the Orthogo-
nal Classification Architecture, our approach also allows to use
library elements as classifiers in program code.

4.2.2 Expected Impacts on Code Base
We are currently finishing the implementation of the precompiler.
In the short term we expect that this affects the code base only
insignificantly, in contrast to the effect we saw when switching
from prototypes to clabjects. The transition now is expected to be
rather smooth since the domain specific API is only an extension
to the generic API; we can refactor the code bit by bit. In the long
term, however, we expect that the lines of code will grow much
slower than they do now. But more importantly, we expect that
the complexity of the code decreases significantly, which is an
important aspect for maintainability and understandability.

5. LESSONS LEARNED
During the evolution of solution we gained some insights in the
practice of transferring technology from an academic institution
to industrial practice. Remarkably, the essential lessons are not
about technical details, but about organization of the collabora-
tion, about social factors, and about communication.

Embark on projects that allow for a fundamental change.
Many projects in which industry and academia collaborate require
the almost impossible: fix an existing system but do not change it
too much. Narrow space for developments, however, does not
encourage fundamental innovations.

In our case we set the conditions so that we were free to fun-
damentally rethink how the configuration system should be de-
signed. Within about half a year it was clear that the effort needed
to overcome the enormous complexity, which was accidentally
added to the existing system over the years, was not justifiable.
Accidental complexity means that not the complexity of the do-
main caused the overly complex software, but the short-sighted
fixing of various problems and probably some bad design deci-
sions [27]. No matter what caused the unmanageable complexity,
the existing system could not just be overhauled. Rewriting the
complete control system also was impracticable since the system
has a good reputation, it has a long-standing leadership role in the
market, and the effort required was simply too much for the re-

sources we had available. So a happy medium—based on the
existing control system, but radically different from the current
configuration approach—had to be found, and these constraints
finally broke the ground for applying model-driven engineering.

Be careful with terminology and your own bias. Failing to
establish a well-defined terminology that is understood by both
parties can cause serious communication problems: you use the
same term but mean different things. This issue, often encoun-
tered in requirements engineering, is also called a conflict in ter-
minological interference [28].

In our early workshops, for example, the term “component
framework” was used by both parties. Different interpretations of
that term caused a fundamental misunderstanding of the problems
that the academic institution was supposed to solve. The software
scientists meant a technical framework for components, which are
units of composition with contractually specified interfaces and
explicit context dependencies. The domain experts, in contrast,
meant domain components that describe test facility elements
such as an engine or a speed controller; these components can be
assembled to describe a complete test facility. While these two
interpretations of the term “component” are somehow related,
they require different problems to be solved. A technical compo-
nent framework needs to take care of e.g. component deployment,
registration and discovery, process boundaries, etc. A domain
component framework, in contrast, needs to provide means for
describing the domain entities concisely and mechanisms for as-
sembling these descriptions in order to compose sub-system de-
scriptions. Surprisingly, although we were quite aware of the
potential pitfall of an inconsistent terminology in the requirements
elicitation phase, it took us months to clarify that issue. In retro-
spect, we think that a too loose usage of technical terms and our
own bias were the root causes for that misunderstanding.

Solve fundamental problems without deadlines and perform
major rework when necessary. When the industry partner needs
results at some deadline, one is tempted to go for a quick fix in-
stead of a solid solution. It is important to make clear that such
quick fixes easily introduce accidental complexity again.

At the end of the second phase we had to present some mile-
stone results, and so the whole team was occupied for weeks in
preparing the software to be able to present the required function-
ality. Due to the tight schedule and other pressure sources more
and more quick fixes were added to the system. For the presenta-
tion this was fine. On the code, however, this had a bad impact, so
that in the end everybody was unhappy with its quality—we fell
into the same trap of tentative implementations that caused so
many problems in the old system. With the project restart we had
a chance to do better the second time—not only with better con-
cepts, but also with an improved discipline. It is not that we didn’t
have tight schedules later on, but now the system’s quality had
top priority, and the key stakeholders seemed to understand that
thorough deliberation leads to better solutions.

Find an advocate. The industry partner needs to understand that
there is a different working culture at the research institute. We
think that this is not a problem if the cooperation is a loose one,
where a regular meeting every few weeks is sufficient. But in a
close cooperation, where work results from one side are immedi-
ately used by the other side, conflicting interests quickly arise. It
takes an experienced leader to shield the team from too much

pressure. Particularly in long running projects this requires stam-
ina, patience, and conviction. Experience reports of other DSL
projects also describe the necessity of having such a person,
called an advocate by Wile [29]. We also made the experience
that it is indispensible that the advocate is strongly backed by the
management when times get rough.

In our case we were lucky to have an experienced project
manager on the industry side who saw the potential of different
but complementing working cultures. He has formerly led re-
search and development projects within the company, but also
with academic cooperations. Our advocate had to be backed by
the upper management to be able to shield the team from other
groups in the company that would have pushed for a conventional
project management, that declared the project as failed when the
performance problems were revealed, and that would have liked
the project to be discontinued when budgets had to be cut due to
the global economic downturn.

Expect emotions and be aware of miscommunication. As
Ramos et al. point out, the introduction of radically new software
and the vision of a changed work reality is never free of emotions
[30]. Underestimating or not taking seriously these inevitable
emotions and beliefs can endanger the system’s acceptance, and
thus the success of the whole endeavor.

After about six months our team presented the prototype,
which was enthusiastically received by the industry partner’s
management. We captured the demonstrations as video sequences
and, with the best of intentions, distributed them inside the com-
pany. Some people apparently took this the wrong way: since this
was the first reliable source of information on our project, the
videos caused disturbance in the current system’s development
team. We were told not to distribute information in this format
any more. In the following weeks our advocate was quite busy to
shield the project team from very emotional discussions on the
meaningfulness of the project. It took months of careful commu-
nication to convince the key persons that the new system does not
only serve some academic hypothesis, but also eases their daily
businesses.

Displacement vs. integration—have both in due course. On the
one hand, displacement from the partner company’s site encour-
ages the development of new ideas because one is less exposed to
the tacit assumptions that domain experts usually share. More-
over, having a beginner’s mind, that is, being an ignoramus with
respect to the problem domain, enables to think outside the box
[31]. This is an advantage of loose research partnerships. On the
other hand, one runs the risk of acceptance and integration issues
if, for example, one does not strictly adhere to the company’s
development process. For a long-running and close cooperation as
ours, we think that having both at the right time helps to create
innovative solution with good acceptance.

In the early phases we were geographically and organiza-
tionally displaced from the company’s headquarter. For the
development of our concepts this was useful since we could ask
all our “stupid questions” in a protective environment. Never-
theless, it was also important to have easy access to domain
experts in that phase, an observation that confirms the experience
of others [31]. When our prototype reached a more mature stage it
was valuable that the company founded a separate branch at the
research site: until the integration of the development team in the
industry-partner’s process, some key people still regarded our
project as just an academic prototype that could not stand up to

just an academic prototype that could not stand up to real-world
problems.

People transfer eases technology transfer. When the company
opened the local branch, some developers stayed at the academic
institution and continued to work on research questions, and oth-
ers transferred to the company to advance the software to product-
quality.

In our experience this transfer eased the cooperation in later
phases. The obvious advantage for the company was that these
developers built the initial system architecture and so there was
continuity in the development team, and they were part of their
organization. The advantage for the researches was that theirs
roles changed from core development to more conceptual respon-
sibilities. Moreover, the communication and the appreciation of
each other’s contribution improved; we think that social factors
played an essential role here.

Be proud of applied research. Not only practitioners have mis-
taken our work, we had similar experiences in the academic
world. Due to the lack of generalizations, which we could not
draw in the early stages of our endeavor, our work was dismissed
because it appeared as an application of “existing concepts” only,
or as a “nice engineering exercise” with low scientific value. De-
veloping the domain specific modeling language and getting it
ready for production certainly was a lot of work. Perhaps the
same effort could have generated more publications if invested in
other topics.

In the end, however, we could show that model driven engi-
neering is feasible for our target domain. We could further dem-
onstrate advantages and weaknesses of modeling languages based
on prototypes and clabjects in an industrial context. Many of the
subtle details did not occur until we further developed the re-
search prototype into production-quality. So we completely con-
cur with David L. Parnas’ statement in an ICSE plenary talk: “If
we want our ideas to catch on, we have to put them into products.
There is a legitimate, honorable and important place for research-
ers who don’t invent new ideas but, instead, apply, demonstrate,
and evaluate old ones” [32].

6. CONCLUSION
In this paper we presented the evolution of a domain specific
modeling language for engine test facilities. By examining the
history of the endeavor we saw that although the domain abstrac-
tions were quite stable from the beginning, our initial choice for a
metamodeling framework was not ideal and thus led to a complete
project restart. But even with an appropriate framework at hand,
the reality of a flexible architecture and a distributed multi-
national development team had influence on how this framework
was used. Consequently, we had to provide a domain specific API
to raise the level of abstraction used by developers.

What we can learn from these observations is that the
mechanisms we need in a metamodeling framework are not only
influenced by the necessity to model a domain concisely, but also
by the context in which the framework is applied. For a practical
MDE solution dependencies between the architecture and its con-
stituting parts arise; instead of encountering them on accident,
they should be examined more systematically from the beginning.

Another conclusion is that the cooperation between the aca-
demic and the industrial world is not always easy—there are

many pitfalls in the technology transfer process. As indicated by
the lessons learned, the essential factors in a close cooperation are
of social and communicational nature; these are usually difficult
to control. Nevertheless, it is rewarding to develop an idea into a
mature product in this setup: it can raise new potentials for the
partner company, and it can bring new insights for the research
partner. We hope to help others who set out for a similar journey
to avoid the one or other of the inevitable pitfalls.

7. ACKNOWLEDGMENTS
We thank our industry partner, the AVL List GmbH, and in par-
ticular the members of their research & development team.

8. REFERENCES
[1] M. Mernik, J. Heering, and A. M. Sloane. When and how to

develop domain-specific languages. ACM Computing Sur-
veys, 37(4):316-344, 2005.

[2] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling:
Enabling Full Code Generation. John Wiley & Sons, 2008.

[3] A. J. Martyr and M. A. Plint. Engine Testing: Theory and
Practice. BUTTERWORTH HEINEMANN, 3rd edition,
June 2007.

[4] S.L. Pfleeger. Understanding and improving technology
transfer in software engineering. Journal of Systems and
Software, 47(2-3): 111-124, 1999.

[5] D. Rombach and R. Achatz. Research Collaborations be-
tween Academia and Industry. In 29th International Confer-
ence on Software Engineering (ICSE’07), Workshop on the
Future of Software Engineering (FOSE’07). IEEE Computer
Society Press, 2007.

[6] Christian Doppler Forschungsgesellschaft.
http://www.cdg.ac.at

[7] T. Aschauer, G. Dauenhauer, P. Derler, W. Pree, and C.
Steindl. Could an agile requirements analysis be automated?
- Lessons learned from the successful overhauling of an in-
dustrial automation system. In Innovations for Requirement
Analysis. From Stakeholders’ Needs to Formal Designs: 14th
Monterey Workshop 2007, Revised Selected Papers. LNCS
5320, pages 25-42. Springer-Verlag, 2008.

[8] Object Management Group. Meta Object Facility (MOF)
Core Specification, Version 2.0, January 2006. Document
formal/06-01-01.

[9] D. Ungar and R. B. Smith. Self: The power of simplicity. In
Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA ’87), pages 227-242,
New York, NY, USA, 1987. ACM. Also published as SIG-
PLAN Notices, 22(12):227-242, 1987.

[10] D. Ungar and R. B. Smith. Self. In Third ACM SIGPLAN
History of Programming Languages Conference (HOPL-III),
pages 1-50. ACM, 2007.

[11] A. Taivalsaari. On the notion of inheritance. ACM Comput-
ing Surveys, 28(3):438-479, 1996.

[12] T. Aschauer, G. Dauenhauer, and W. Pree. Towards a ge-
neric architecture for multi-level modeling. In 2009 Joint
Working IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture
(WICSA/ECSA 2009), pages 121-130. IEEE Computer Soci-
ety, September 2009.

[13] J. J. Odell. Power types. Journal of Object-Oriented Pro-
gramming, 7(2):8-12, May 1994.

[14] Object Management Group. OMG Unified Modeling Lan-
guage (OMG UML), Infrastructure, V2.1.2, Nov. 2007.
OMG document formal/2007-11-04.

[15] C. Atkinson and T. Küuhne. Reducing accidental complexity
in domain models. Software and Systems Modeling,
7(3):345-359, August 2008.

[16] C. Atkinson. Meta-modeling for distributed object environ-
ments. In IEEE International Enterprise Distributed Object
Computing Conference, pages 90-101. IEEE Computer Soci-
ety, Oct 1997.

[17] C. Atkinson and T. Kühne. Model-driven development: A
metamodeling foundation. IEEE Software, 20(5):36-41,
2003.

[18] T. Aschauer, G. Dauenhauer, and W. Pree. Multi-level mod-
eling for industrial automation systems. In 35th EUROMI-
CRO Conference on Software Engineering and Advanced
Applications (SEAA 2009), pages 490-496. IEEE Computer
Society, August 2009.

[19] T. Aschauer, G. Dauenhauer, and W. Pree. Representation
and traversal of large clabject models. In 12th International
Conference On Model Driven Engineering Languages And
Systems (MODELS 2009), LNCS 5795, pages 17-31.
Springer-Verlag, 2009.

[20] Ecma International, Geneva, Switzerland. Standard ECMA-
335: C# Language Specification, 4th edition, 2006. Also ap-
proved as ISO/IEC 23271:2006.

[21] Ecma International, Geneva, Switzerland. Standard ECMA-
334 : Common Language Infrastructure (CLI), 4th edition,
June 2006. Also approved as ISO/IEC 23270:2006.

[22] R. C. Martin and M. Martin. Agile Principles, Patterns, and
Practices in C#. Prentice Hall PTR, 2006.

[23] MetaCase, MetaEdit+, http://www.metacase.com/mwb/
[24] A. Lédeczi, A. Bakay, M. Maróti, P. Völgyesi, G. Nord-

strom, J. Sprinkle, and G. Karsai. Composing domain-
specific design environments. IEEE Computer, 34(11):44-51,
2001.

[25] S. Nordstrom, S. Shetty, K. G. Chhokra, J. Sprinkle, B.
Eames, and A. Ledeczi. Anemic: automatic interface enabler
for model integrated computing. In 2nd International Confer-
ence on Generative Programming and Component Engineer-
ing (GPCE’03), pages 138-150. Springer-Verlag, 2003.

[26] T. Vajk, R. Kereskényi, T. Levendovszky, and Á. Lédeczi.
Raising the abstraction of domain-specific model translator
development. In 16th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems,
pages 31-37. IEEE Computer Society, 2009.

[27] F. Brooks, Jr. No silver bullet - essence and accidents of
software engineering. IEEE Computer, 20(4):10-19, 1987.

[28] N. Niu and S. Easterbrook. So, you think you know others’
goals? A repertory grid study. IEEE Software, 24(2):53-61,
2007.

[29] D. Wile. Lessons learned from real dsl experiments. Science
of Computer Programming, 51(3):265-290, 2004.

[30] I. Ramos, D. M. Berry, and J. A. Carvalho. Requirements
engineering for organizational transformation. Information &
Software Technology, 47(7):479-495, 2005.

[31] D. M. Berry. The importance of ignorance in requirements
engineering. Journal of Systems and Software, 28(2):179-
184, 1995.

[32] D. L. Parnas. Software aging. In 16th International Confer-
ence on Software Engineering (ICSE ’94), pages 279-287.
IEEE Computer Society Press, 1994. (Invited plenary talk).

