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Abstract This paper presents an approach for incrementally adjusting the 

timing behavior of legacy real-time software according to explicit timing 

specifications expressed in the Timing Definition Language (TDL). The 

primary goal of such a migration is to achieve predictable timing behavior, 

which enables application of formal verification methods to the legacy 

system. 

Our approach entails a minimal instrumentation of the original code 

combined with an automatically generated runtime system, which ensures 

that the executions of designated periodic computations in the legacy 

software satisfy the logical execution time specifications of the TDL model. 

The presented approach has been applied to a complex legacy controller 

system in the automotive domain. 

 

1. Introduction 
Modern methodologies for embedded system design such as Model-Driven Engineering (MDE) [9] 

and Platform-Based Design [1] advocate a top-down approach for application development. The 

development process starts from high level models, which are incrementally refined to software 

models and then to implementations on execution platforms. 

While the benefits of these approaches are well-understood, their full adoption in the established 

embedded industry is rather slow. One of the main factors responsible for this is the large base of 

legacy applications, which have been traditionally developed at the programming language level, are 

usually highly optimized and thoroughly tested. MDE is thus employed only partially, typically for 

developing new functionality up to the software model, which is then manually merged with the 

existing legacy code. 

Based on the argument that execution time of software should be captured in high-level models [2], 

several MDE approaches propose programming disciplines based on timing models for certain 

embedded applications. In particular, the Logical Execution Time (LET) abstraction has been proposed 

for achieving predictable timing properties of control applications [4]. This model is used in several 

timing specification languages and tools such as the Hierarchical Timing Language (HTL) [3] and the 

Timing Definition Language (TDL) [6]. While all of these assume the classical MDE top-down 

approach, they are particularly amenable to a bottom-up application to legacy software, due to the 

separation of concerns provided by the original LET model, where timing is separated from 

functionality. This facilitates the enforcement of timing requirements on a legacy system in a 

systematic and minimally interventive way. It also addresses intellectual property concerns, requiring 



no information about what the legacy code does. However, availability of the legacy source code and 

platform configuration information is assumed.  

In this paper we describe how to apply TDL modeling to typical controller systems. We propose an 

instrumentation-based approach, with minimal intervention in the legacy code and platform 

configuration. To achieve this, we had to reconcile the top-down approach of TDL with the constraints 

imposed by the legacy system. Two main aspects required trade-offs in this respect: (1) Event-

triggered computations, which in TDL are assumed to have lower priorities than time-triggered tasks, 

while the legacy application has higher priority events, and (2) the TDL runtime system, which 

originally implements a virtual machine called E-Machine and compiles the timing specification into 

code for this E-Machine, called E-code, which has proved to be quite large for complex legacy 

applications. Issue (1) was addressed by a careful scheduling analysis, considering information about 

minimum inter-arrival times of high-priority events. Problem (2) was resolved by employing an 

application-specific runtime system, called TDL-Machine, which was code-generated from the TDL 

model and from application-specific information. 

The approach described in this paper was applied to a complex industrial legacy application in an 

incremental manner. The desired timing behavior was observed on hardware-in-the-loop simulations.   

2. Background 
This section briefly presents the Timing Definition Language (TDL), as well as common 

characteristics of legacy software that challenge some of the assumptions made in LET-based 

programming disciplines such as TDL.  

2.1. The Timing Definition Language (TDL) 

TDL allows the LET-based specification of timing properties of hard real-time applications. The LET 

of a computational unit, or task, represents a fixed logical duration between the time instant when the 

task becomes ready for execution and the instant when the execution finishes. A task's LET is 

specified at the model level, independently of the task's functionality. When deploying the model on a 

platform, the LET specification is satisfied if the total physical execution time of the task is within the 

LET interval for every task invocation, and an appropriate runtime system ensures that task inputs are 

read at the beginning of the LET interval (the release time) and task outputs are made available at the 

end of the LET interval (the termination time). This is illustrated in Figure 1. Between release and 

termination points, the output values are those calculated in the previous execution. Default or 

specified initial values are used in the first execution of a task. 

 

 
Figure 1. The Logical Execution Time (LET). 

 

Tasks can receive information from the environment via sensors and act on the environment via 

actuators. A task has input ports, output ports, and state ports. State ports keep state information 

between different executions of the same task.  



Tasks that are executed concurrently are grouped in modes. In TDL, a mode is a set of periodically 

executed activities: task invocations, actuator updates, and mode switches. Such a mode activity has a 

specified execution rate and may be carried out conditionally. The LET of a task is expressed as the 

mode period divided by the frequency of the task invocation. Note that the time steps of all activities in 

a mode period can be statically determined.  

Mode activities are carried out by a runtime system which performs the following operations at 

every time step: 

• Update output ports of tasks whose LET end at the current time step. At time 0, the ports are 

initialized rather than updated. 

• Update actuators. 

• Test for mode switches. If a mode switch is enabled, switch to the target mode. 

• Update input ports of the tasks whose LET start at the current time step. 

• Trigger the execution of the tasks whose LET start at the current time step.  

TDL provides a top level structuring unit called a module, which groups sensors, actuators, tasks, and 

modes that belong together. The module concept serves multiple purposes: (1) a module provides a 

name space and an export/import mechanism and thereby supports decomposition of large systems, (2) 

modules allow the parallel composition of real-time applications, (3) modules serve as units of loading, 

that is, a runtime system may support dynamic loading and unloading of modules, and (4) modules are 

the natural choice as unit of distribution because dataflow within a module (cohesion) will most 

probably be much larger than dataflow across module boundaries (adhesion). 

An example of a TDL program is shown in Figure 2. In the example, module Sender contains a 

sensor variable s1 and an actuator variable a1. The value of s1 is updated by executing the (platform-

specific) driver getS1 and the value of a1 is sent to the physical actuator by using the platform-specific 

driver setA1. Every module has exactly one start mode, indicated by preceding the mode declaration 

with the keyword start. The declaration of the output port of task inc specifies an initial value of 10. 

The task is invoked in mode main of the Sender module, where its input port is connected to the sensor 

s1. In the same mode, actuator a1 is updated with the value of the task's output port. The timing 

behavior of the mode activities is specified by means of individual frequencies within their common 

mode period. For example, with a frequency of 1, task inc is defined to have a LET of 5 ms. A more 

detailed description of TDL features can be found in [8]. 

 
 module Sender { 
  sensor int s1 uses getS1; 
  actuator int a1 uses setA1; 
  public task inc { 
    input int i; 
    output int o := 10; 
    uses incImpl(i,o); 
  } 
  start mode main [period=5ms] { 
    task [freq=1] inc(s1);                 
          //LET = 5ms (=period/freq) 
    actuator [freq=1] a1 := inc.o; 
    mode [freq=1] if exitMain(s1) then   
                             freeze; 
  } 
  mode freeze [period=1000ms] {} 
} 

 

 

Figure 2. A TDL Example. 

 



A TDL application consists of a set of time-triggered tasks and a runtime system called TDL-Machine, 

which performs all mode operations according to the TDL specifications. A platform specific 

implementation of the TDL-Machine can be generated from the specifications [7].  

 

2.2 Aspects of legacy controller systems 

It is common for an embedded controller software system to contain both time-triggered and event-

triggered computations. Some event triggered tasks may require fast reaction times, and thus may have 

higher priorities than time-triggered tasks. 

We call a unit of execution of the legacy code on the execution platform a platform task. For 

example, if the legacy application runs on an OSEK [5] operating system, then a platform task is an 

OSEK task. A common design practice is to group the time-triggered computations into a small 

number of time-triggered platform tasks, which are triggered by a high priority task that is itself 

triggered from a periodic interrupt that defines the base period in the system. That high priority task 

dispatches the time-triggered platform tasks at multiples of the base period, using system services for 

task activation. In addition, each time-triggered task may internally perform computations at multiples 

of the task’s period.   

Another common characteristic of legacy embedded code is heavy usage of shared memory 

communication (global variables) between various components in the system. Moreover, 

communication with the physical environment is done by memory-mapped I/O devices. Thus, reading 

from a sensor means accessing a (read-only) global variable, while actuating means writing into a 

global variable. 

3. Modeling timing behavior legacy controllers with TDL  
The main goal of imposing a LET-based execution and data-transfer semantics on an existing 

application is to eliminate unpredictable behaviors due to variations in execution times. An important 

refactoring requirement in this respect is minimal modification of the legacy system, including the 

application code and its configuration on the platform. Thus, code changes are done only by adding the 

TDL-Machine as a separate component and by inserting calls to the TDL-Machine functions at well 

defined, top-level places in the original application. No line of the legacy code is modified. Also, all 

the parameters of the legacy configuration remain unchanged (same platform tasks, periods, and 

priorities). Additional resources of the operating system may be necessary to trigger executions of 

TDL tasks, as described in the sequel. Moreover, an additional platform task may be required for the 

TDL-Machine. 

Modeling the timing behavior of legacy software with TDL must reconcile the assumptions made 

on the implementation of TDL tasks and the ability of the runtime system to control executions with 

the characteristics of the legacy applications mentioned in Section 2.2. TDL requires that inputs and 

outputs of TDL tasks be passed to the implementation functions by means of function arguments, 

while the legacy code uses mostly global variables. Platform tasks are activated according to the 

legacy configuration, which must remain unchanged, so the TDL runtime system does not have full 

control over triggering of TDL tasks. Nevertheless, one has to make sure that the TDL semantics is 

preserved. 

Complex legacy applications contain periodic computations with periods that differ by several 

orders of magnitude. For example, a computation may have a period of 5 milliseconds, while another 

one may have a period of 3 seconds. Since each periodic computation is mapped to a TDL task, the 

number of operations of the TDL-Machine  in a hyperperiod  of the system (the least common multiple 



of all the periods) may be quite large. This makes the usage of the E-Machine approach originally 

proposed in Giotto [4] impractical due to memory constraints, since the E-code defines all operations 

in a hyperperiod. Thus, we chose to generate directly from the TDL specification a TDL-Machine 

specific to the particular legacy system, rather than generating E-code and using a generic 

implementation of an E-Machine.  

 

3.1 Mapping the legacy architecture to TDL constructs 

A TDL task can be mapped to any function of the legacy code, which is referred to as the 

implementation function of the task. Since TDL tasks are assumed to be independent, a TDL task 

cannot be mapped to a function that is called from the implementation function of another TDL task.  

In general, TDL tasks are included in platform tasks, in the sense that a platform task may contain 

implementation functions of more than one TDL task, while a TDL task cannot be mapped to more 

than one platform task. If a TDL task is mapped to a platform task, the platform task function is the 

implementation function of the TDL task. A TDL task can be:  

- Synchronous, also called time-triggered, if it corresponds to a periodic computation and it has a 

LET specification. The period of a synchronous TDL task is the same as the period of 

execution of the implementation function of the TDL task, which is a multiple of the period of 

execution of the platform task that contains the implementation function. The LET intervals are 

established together with application engineers, such that the system is schedulable. TDL has 

been extended to allow the definition a task’s LET inside the task’s period, by specifying an 

offset between the beginning of the period and the beginning of the LET.  

- Asynchronous, also called event-triggered, if it corresponds to an event-triggered computation, 

in which case it has no LET. The task implementation function of an asynchronous TDL task 

always corresponds to a platform task function. 

An input (output) port of a TDL task T corresponds to a legacy global variable that is read (written) 

during the execution of the task implementation function and that is written (read) in another part of 

the legacy application that is independent of the particular TDL task T.  

We consider the typical case of memory-mapped I/O devices, where sensors and actuator values are 

stored in memory locations (global variables mapped to hardware registers). Thus, sensing is 

performed by first writing in an output variable (which, for example, can be mapped to a command 

register of an A/D converter) and then reading from an input variable (which, for example, can be 

mapped to the data register of the A/D converter). Consequently, the TDL model contains no dedicated 

sensor/actuator variables. 

Since we deal here with the migration of monolithic legacy controllers, we define one TDL module 

per application. A TDL module may contain several modes. We consider here the case where all TDL 

tasks are present in each mode, such that modes only define different timing behaviors of the tasks.  

3.2 Implementation of the TDL operational semantics  

TDL operations are carried out at runtime by a dedicated component called the TDL-Machine, which 

deals with activation of synchronous TDL tasks, data transfer, and mode switches. The architecture of 

the TDL-Machine and its interaction with the legacy application are schematically illustrated in Figure 

3. The TDL-Machine has a time-triggered component and an event-triggered component.  

The time-triggered component is executed in a periodic platform task with the highest priority and 

smallest period (the base period). Such a task is common in legacy applications, its main role being to 

dispatch executions of lower-priority periodic tasks with periods that are multiples of the base period. 
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If the task is not defined in the legacy application, or if the TDL-Machine needs a smaller base period 

(e.g., for a finer granularity of LET endpoints), then an additional platform task needs to be introduced. 

The time-triggered component performs all the operations that are necessary at LET endpoints. The 

operations that interfere with the execution of legacy code are synchronous task invocations and data 

transfers. We describe how to deal with these situations in the sections below. Mode switches are 

implemented by simply changing the LETs for the task set. These LET intervals for each mode are 

stored in a table. 

The event-triggered component defines one start function and one end function for each TDL task. 

These functions are called whenever an execution of the task implementation (legacy) function begins, 

respectively ends. Thus, calls to these functions are inserted at the beginning and end of the 

corresponding legacy functions. Their role is to perform buffering and synchronization operations, as 

detailed further in this section. 

 

 
 

 

void Tx_Implementation() 

{ 

  ... // local variables  

  // execution start callback: 

  On_Tx_start_execution(); 

  . 

  .     legacy code  

  . 

  // execution end callback: 

  On_Tx_end_execution(); 

} 

 

Figure 3. The TDL-Machine architecture  

 

3.2.1 Activation of synchronous TDL tasks 

In every execution period, a time-triggered TDL task must be activated at the start of its LET interval. 

The execution period is a multiple of the period of the platform task that contains the TDL task 

implementation function. If the start of the LET interval coincides with the start of the period, then no 

action is taken by the TDL-Machine, since every platform task is activated by the platform anyway. If 

the LET interval starts after the beginning of the TDL task’s period (at a fixed offset), then an 

additional synchronization point is needed, to enable the TDL-Machine to trigger the execution of the 

task implementation function at the LET start, which ensures that the physical execution of the 

function takes place within the LET bounds. The implementation of this synchronization is operating 

system-specific. For example, in the case of an OSEK operating system, a WaitEvent system call is 

used in the entry instrumentation function. At runtime, a corresponding SetEvent system call is 

performed by the TDL-Machine  at the LET start. This ensures that the legacy function does not start 

executing before the LET start. No change is made to the platform-triggered activation of platform 

tasks (which include the asynchronous TDL tasks). 

For example, consider a platform task with a period of 5ms, with the following task function: 



 
void Platform_Task() 

{ 

 taskCounter = taskCounter + 1; 

legacy_func_5ms();    // executed every 5ms 
if (taskCounter & 0x01) { 
 legacy_func_10ms();   // executed every 10ms 
} 

} 

 

We define a TDL task T5 with a period of 5ms and implementation function legacy_func_5ms, 

and a TDL task T10 with a period of 10ms and implementation function legacy_func_10ms. Assume 

that T5 has a LET of 2ms and offset zero, while T10 has also a LET of 2ms, but an offset of 2.4ms. An 

example of executions in the original system and in the TDL-modeled system is depicted in Figure 4. 

 
Figure 4. Execution example: original (top) and TDL-based (bottom) 

 

In the TDL-based system, callbacks are inserted at the beginning and end of the two legacy functions. 

To be able to enforce a LET start for the 10ms function, the callback On_T_10ms_start_execution 

makes a blocking call on an operating system resource, which is released at the LET start by the time-

triggered component of the TDL-Machine: 
 
void On_T_10ms_start_execution(){  //called at the beginning of legacy_func_10ms 

  WaitEvent(EV_T10_LET_START);       // blocks the execution of the platform task 

}        //until the event is set by the TDL-Machine  

 
void TDLMachineStep(crTime){  // time-triggered TDL-Machine  function 

  ... 

  if (crTime == LET_START_T10ms){ 

   SetEvent(Platform_Task, EV_T10_LET_START);  

 } 

 ... 

} 

3.2.2 Data transfer operations  

The implementation of LET-based data transfer for a synchronous TDL task must deal with the fact 

that data communication between the legacy implementation function of the TDL task and the rest of 

the system is done by shared memory. Since inputs and outputs are provided via global variables, their 
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values need to be buffered in TDL-specific variables as described below. The following behavior must 

be ensured: 

A. When the LET begins, the value of each original input variable is stored in an additional 

internal task input variable. This is necessary because the value of an original input variable 

may change between the starting of the LET and the moment when the physical execution of 

the TDL task implementation function starts. 

B. During execution, the task implementation function uses the values of the internal input 

variables instead of the actual values of the original variables. 

C. During execution, the values of legacy output variables are stored in additional internal output 

variables. 

D. When LET ends, the original global output variables (the legacy variables) are updated with the 

values of the TDL-internal output variables.  

Operations A and D are executed by the time-triggered part of the TDL-Machine. To achieve a 

minimal instrumentation of the legacy code, we chose to implement B and C in the execution 

callbacks, as explained below. 

 

Communication between synchronous TDL tasks only 

Consider two periodic time-triggered legacy functions tt_func_write and tt_func_read, where some 

execution of tt_func_write updates a global variable gvar, and some execution of tt_func_read reads 

from the same variable. Assume now that tt_func_write is mapped to a TDL task T_WRITE and 

tt_func_read is mapped to another TDL task T_READ. A sample module with these two TDL tasks 

might be defined as follows: 

 
module Example { 
  public task T_WRITE { 
    output int gvar := 0; 
    uses T_WRITE_Implementation(gvar); 
  } 
  public task T_READ { 
    input int gvar; 
    uses T_READ_Implementation(gvar); 
  } 
  start mode main [period=5ms] { 
    task [freq=1] T_WRITE();       //LET = 5ms (=period/freq) 
    task [freq = 5, slots = 2-4] T_READ(T_WRITE.o);  //LET = 3ms, offset = 1ms 
  } 
} 

 

To ensure LET-based data transfer between tt_func_write  and tt_func_read, the TDL-Machine is 

generated so that it has an internal output variable for T_WRITE called T_WRITE_tp_o_gvar, a task 

output port variable called T_WRITE_o_gvar, and an input port variable for T_READ, called 

T_READ_in_gvar. The TDL-Machine also uses additional buffer variables T_WRITE_tp_gvar  and 

T_READ_tp_gvar. The following data transfer callbacks are defined in the TDL-Machine: 

On_T_WRITE_start_execution, On_T_WRITE_end_execution, On_T_READ_start_execution, and 

On_T_READ_end_execution. Figure 5 shows a sample execution trace which highlights when data 

transfer operations of the TDL-Machine are executed. The operations are detailed in Table 1. 

 



 
Figure 5. Execution of TDL-Machine data transfer operations 

 

 

Operations at LET endpoints (A and D) 

 

Operations at physical execution endpoints 

(B and C) 
void TDLMachineStep(crTime){ 

if (crTime == LET_START_T_READ){ 

  // Operation A 

  T_READ_in_gvar = T_WRITE_o_gvar;  

  } 

 

if (crTime == LET_END_T_WRITE){ 

  // Operation D 

  T_WRITE_o_gvar = T_WRITE_tp_o_gvar; 

  } 

} 

 

void On_T_WRITE_start_execution(){ 

  T_WRITE_tp_gvar = gvar;    // - B 

} 

void On_T_WRITE_end_execution(){ 

  T_WRITE_tp_o_gvar = gvar;   // - C 

  gvar = T_WRITE_tp_gvar;     // - C 

} 

void On_T_READ_start_execution(){ 

  T_READ_tp_gvar = gvar;  // - B 

  gvar = T_READ_in_gvar;   // - B 

} 

void On_T_READ_end_execution(){ 

  gvar = T_READ_tp_gvar;  // - C 

} 

Table 1. Data transfer operations in the TDL-Machine for time-triggered tasks 

 

Communication between synchronous and asynchronous TDL tasks 

Consider three legacy functions tt_read_write, ev_write and ev_read, with the corresponding 

synchronous TDL task T_RW, and the two asynchronous TDL tasks E_WRITE, and E_READ, 

respectively. Assume that tt_read_write reads variable gvar_r and writes into variable gvar_w, 

ev_write writes in variable gvar_r, and ev_read reads from both variables. An execution example is 

shown in Figure 6, and the corresponding TDL-Machine operations are summarized in Table 2. 

For this example, one can check that the LET requirements for data transfer regarding synchronous 

TDL tasks are satisfied. In particular, the value of gvar_r read in the execution of tt_read_write is the 

one updated by a previous execution of ev_write, which is not shown in the figure (the one preceding 

the depicted execution). This is the value of the output port of E_WRITE at the beginning of T_RW’s 

LET. However, ev_read uses the latest value of gvar_r, updated during the depicted execution of 

ev_write. Thus, TDL modeling may introduce controlled delays in the communication involving 

synchronous TDL tasks, but it never delays communication between asynchronous tasks.  
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Figure 6. Mixed time and event-triggered execution example 

 

TDL program Operations at physical execution endpoints 
module Example { 
   
  public task T_RW { 
    input int gvar_r; 
    output int gvar_w := 0; 
    uses T_RW_Implementation(gvar_r, gvar_w); 
  } 
   
  public task E_WRITE { 
    output int gvar_r :=0; 
    uses E_WRITE_Implementation(gvar_r); 
  } 
   
  public task E_READ { 
    input int gvar_r; 
    input int gvar_w; 
    uses E_READ_Implementation(gvar_r, gvar_w); 
  } 
 
  start mode main [period=5ms] { 
    task [freq=1] T_RW(E_WRITE.gvar_r);  
  } 
 
  asynchronous { 

     
    E_WRITE(); 

    E_READ(E_WRITE.gvar_r, T_RW.gvar_w); 

  } 
} 
 

Operations at LET endpoints 

void TDLMachineStep(crTime){ 

if (crTime == LET_START_T_RW){   

   T_RW_in_gvar_r = E_WRITE_o_gvar_r;  

}     // operation A 

if (crTime == LET_END_T_RW){    

  T_RW_o_gvar_w = T_RW_tp_o_gvar_w; 

}     //operation D 

} 

 

void On_E_WRITE_start_execution(){ 

  E_WRITE_tp_gvar_r = gvar_r;     

}  // operation W in Figure 6 

 

void On_E_WRITE_end_execution(){ 

  E_WRITE_o_gvar_r = gvar_r;   

  gvar_r = E_WRITE_tp_gvar_r;  

}  // operation X in Figure 6 

 

void On_E_READ_start_execution(){ 

  E_READ_tp_gvar_r = gvar_r; 

  E_READ_tp_gvar_w = gvar_w; 

  gvar_r = E_WRITE_o_gvar_r;  

  gvar_w = T_RW_o_gvar_w;   

}  // operation Y in Figure 6 

 

void On_E_READ_end_execution(){ 

  gvar_w = E_READ_tp_gvar_w; 

  gvar_r = E_READ_tp_gvar_r;  

} // operation Z in Figure 6 

 

void On_T_RW_start_execution(){ 

  T_RW_tp_gvar_r = gvar_r;   

  T_RW_tp_gvar_w = gvar_w; 

  gvar_r = E_WRITE_o_gvar_r;  

} // operation B in Figure 6 

 

void On_T_RW_end_execution(){ 

  T_RW_tp_o_gvar_w = gvar_w;  

  gvar_r = T_RW_tp_gvar_r;    

  gvar_w = T_RW_tp_gvar_w;    

} // operation C in Figure 6 

Table 2. TDL model of the legacy example  

 



4. Conclusions 
Modeling the timing behavior of legacy applications with TDL represents an instance of bridging the 

gap between the general benefits advocated by Model-Based-Design approaches (such as 

predictability, separation of concerns, portability), and the efficiency-oriented design of legacy 

applications. It is a meet-in-the-middle process, with the top-down direction assumed by TDL and the 

bottom up direction required by the legacy application. 

This paper presents an approach for applying TDL timing specifications to legacy control software, 

focusing on achieving the required timing behavior with minimal intervention in the original 

application. Thus, the paper focuses on the structure of the runtime system and instrumentation, which 

are automatically generated from the timing specification and from information about the legacy 

source code and platform. This approach has been successfully applied to a complex legacy controller 

system in the automotive domain. Detailed description of other important aspects such as dealing with 

schedulability and the actual code generation algorithm are omitted due to lack of space. 

The refactored legacy system is schedulable if it can be executed such that the TDL timing 

specifications are satisfied, i.e., every physical execution of a synchronous TDL task takes place in the 

associated LET interval. Achieving schedulability is especially difficult when asynchronous tasks have 

higher priorities than synchronous TDL tasks.  

It is worth noting that the described TDL modeling can be applied incrementally on a legacy 

application, starting with a single synchronous TDL task and stepwise adding more synchronous tasks. 

At each step, the system can be tested for schedulability, as well as for timing and functional 

properties. This makes the approach feasible in practice and recommends it as the core of a structured 

process for incremental migration of large legacy software towards more predictable systems. 
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