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Abstract. Model driven engineering as well as software product line engineer-
ing are two approaches that increase the productivity of creating software. De-
spite the rather mature support of the individual approaches, tools and tech-
niques for their combination, promising product specific customization of mod-
els, are still inadequate. We identify core problems of current approaches when 
applied to automation system models and propose a solution based on an ex-
plicit notion of variability embedded in the core of the modeling language itself. 

1 Introduction 

Model driven engineering (MDE) is becoming increasingly popular for developing 
complex software intensive systems. Prominent examples include the Object Man-
agement Group’s Model Driven Architecture [1] initiative, targeted mainly at generat-
ing executable software, and MATLAB/Simulink [2], which is widely used for exam-
ple in the automotive industry for designing control algorithms. Both approaches 
allow the user to define the behavior of a system in terms of a high-level model which 
is then transformed into low-level implementation code. 

Besides executable code, MDE may also be targeted at other artifacts such as con-
figuration files. Our group, for example, cooperates with a provider of a specific kind 
of automation systems, called testbeds used for example in the automotive industry 
for developing combustion engines. Due to the ever changing measurement tasks 
during engine development, testbeds must be highly flexible and customizable. This 
flexibility is achieved through configuration parameters of the automation system 
software. Instead of the laborious and error prone process of manually configuring the 
automation system – a typical configuration comprises tens of thousands of individual 
parameter values – we apply MDE to let the users work with models of testbeds and 
to automatically derive configuration data. Figure 1 shows the tool chain. 

 

 
Fig. 1. Model driven engineering for configuration parameter generation. 
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Since a testbed can be used for different measurement tasks, its automation system 
software has to be configured accordingly. Think for example of a testbed for diesel 
and gasoline engines. If a diesel engine is operated, all gasoline related hardware and 
software parts of the testbed must be disabled, and vice versa. In order to derive con-
figuration parameters, the model must be modified each time a different task is to be 
performed. For a typical testbed, however, different usage scenarios can be antici-
pated. Instead of manually modifying the testbed model each time the measurement 
task changes, the testbed model could already incorporate these usage scenarios, so 
the model would allow choosing between predefined model variants. 

Expressed in terms of software product line engineering (SPLE) [3], such a testbed 
model represents a product line, from which specific products can be generated by 
making decisions at variation points. While the product line comprises the union of 
all possible testbed model variants, a product represents a specific testbed model from 
which configuration parameters can be generated. Variation points in our case are for 
example the choices between diesel and gasoline fuel. Products are created from reus-
able assets according to selections made at variation points; in our case these assets 
are for example model fragments representing diesel and gasoline fuel subsystems. 
Assets may also contain variation points, i.e. they may be parameterized. For example 
a diesel fuel subsystem may support weight based or flow based measurement of fuel 
consumption. We will use these terms throughout the rest of the paper. 

SPLE is concerned with two major aspects: (a) the technical representation of vari-
ability, i.e. representing assets and variation points, and (b) feature modeling, i.e. the 
representation of dependencies among variation points in terms of conditional expres-
sions. Assets used in SPLE often are source code fragments, and variation points are 
represented as #IFDEF-like annotations within the source code. No generally applica-
ble equivalent however is available for the case of graphical models. In the rest of the 
paper we thus focus on the representation of variability in a modeling evironment for 
testbed automation systems and only briefly touch feature models. We describe com-
monly used workarounds for combining SPLE and MDE and then present our own 
approach, which we think is applicable to other domain, too. 

2 Problems of Current Approaches 

Although software product line engineering techniques are already applied to model 
driven engineering, we consider the current approaches inappropriate for automation 
system models. The problems stem mainly from the fact that SPLE is implemented as 
an add-on to existing MDE tools. This section uses examples to describe two concep-
tual approaches of applying SPLE approaches to MDE, and highlights their shortcom-
ings when it comes to modeling both, software and hardware aspects which is essen-
tial for our domain. In testbed models, software aspects are represented in a graphical 
dataflow model; hardware aspects are represented in an electrical wiring model. 
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2.1 Using Dedicated Model Elements to Represent Variation Points 

This approach is based on positive variability where a model comprises the union of 
all model elements used in any of the testbed’s variants. Decisions made in the feature 
model are used to configure the model. Feature selection may be done through 
parameterization of the model in place or by creating a new model from a subset of 
the existing source model through some model transformation. Modeling a union 
model however is not always straightforward as shown in figure 2 a). The semantics 
of dataflow models for example usually forbids connecting multiple output signals to 
one input signal, so we cannot simply define both connections and choose between 
the connections depending on the feature model. We must find workarounds instead. 

An existing model can be parameterized in place through removing or changing 
individual model elements, for example by setting the output value of a constant 
block in a dataflow model to a certain value. Model elements representing variation 
points may be explicitly marked as fixed, optional, or variable. In case of UML, for 
example, stereotypes may be used, as in the PLUS approach [4]. Whole parts of a 
model can be enabled or disabled through model elements representing switches, for 
example routing output signals of multiple source model elements into one input 
signal of a target model element as in the Koala approach [5]. Figures 2 b) and c) 
show how variant specific constant values in a dataflow model can be represented in 
both ways. As a result of the feature selection, the existing model is altered at its 
variation points, reflecting the choices made. 
 

  
Fig. 2. A dataflow model with variation points. 

Figure 2 d) shows how the final model for the example could look like if value “2” 
was chosen in the feature model. If the source model was figure 2 b), the constant y 
would be removed, along with the now unnecessary switch. If the source model was 
figure 2 b), the unspecified value “C” would simple be replaced by “2”. 

Although figure 2 b) is a possible solution to the problem of representing variabil-
ity within the model, it requires additional blocks that do not stem from modeling the 
domain, but from the particular technical representation of variability. Such additional 
blocks increase the size of the model and are likely to lead to obfuscated models or 
“accidental complexity”, as Brooks calls it [6]. The second solution shown in figure 2 
c) is less complex, but one still cannot fully understand the model until the choices 
made in the feature model are clear, i.e. until the value “2” is specified. In the case of 
dataflow models, however, this approach still is a practically used solution [7]. 

In contrast to the dataflow model before, we now consider an example specifying a 
testbed’s electrical wiring. Suppose a testbed supports two operation modes, one 
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requiring a pressure sensor, and a second one requiring temperature sensor. Both 
sensors would be connected to the same plug of an I/O device. In reality, of course 
only one sensor may be connected to the I/O device at a time. Similarly to the case of 
the dataflow model, a modeling environment might prevent multiple connections to a 
single electrical plug in the model. As a consequence, the model fragment in figure 3 
a) could not express the fact that both connections are valid in principle, but not at the 
same time, similarly to the dataflow example in figure 2 a). 
 

 
Fig. 3. An electrical wiring model with variation points. 

In contrast to the dataflow example before, it is problematic to represent the variation 
point by introducing an artificial switch component as shown in figure 3 b), since the 
model would not reflect the structure of the physical testbed anymore. This is particu-
larly important since testbed models are not just used to derive configuration data, but 
also to document the system’s current state to provide guidance for testbed mainte-
nance. Even if we would not require a hardware model to accurately represent its real 
world counterpart, modeling an artificial switch still introduces accidental complexity. 

2.2 Creating Products by Merging Assets in Multiple Model Fragments 

An alternative technique for representing positive variability is using multiple assets 
representing model fragments. One specific testbed model can then be created by 
merging these fragments into a single model, as illustrated in figure 4. 

 

  
Fig. 4. Dataflow models created by merging multiple fragments. 

We use the dataflow example from the previous section; the electrical wiring example 
can be modeled analogously. Figure 4 a) represents a fragment containing the com-
mon functionality where one of the controller’s inputs is not yet connected; figures b) 
and c) are two additional fragments containing the variant specific elements to be 
merged in. The complete model shown in figure 4 d) is the result of merging fragment 
a) and b), while model e) is created from fragment a) and c). In order to be able to 
merge fragments automatically, e.g. by a dedicated external SPLE tool, models of the 
fragments must contain some uniquely identifiable shared elements. 

 In our example, fragment b) and c) both contain a PID controller. Since the com-
mon model fragment a) also contains an equal controller block, they can be merged 
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unambiguously by partially replacing the definition of the controller in the common 
fragment. If no such shared element could be identified, merging could not be per-
formed automatically. As a consequence, fragments must be kept in sync, which may 
not always be straightforward if they are stored in different files, edited by different 
users. Another consequence of using multiple, technically independent assets is that 
the “big picture” of the model is lost. Consistency checks for example, e.g. compati-
bility between dataflow signals, can be performed only locally for each fragment; the 
overall consistency can not be checked until they are merged together according to a 
particular selection in the feature model. The resulting cycle of “feature selection, 
model merge, and consistency check” is cumbersome. In practice, this situation usu-
ally is avoided by encoding such technical requirements into the feature model, lead-
ing to complex feature dependencies that are intermixed with business decisions. 
Maintaining the feature model then becomes difficult and error-prone, since in-depth 
technical knowledge as well as business-specific knowledge is required. 

3 A Modeling Language with Built-In Support for Variability 

In the previous section we used examples to identify problems that arise when using a 
modeling language that does not provide direct support for representing variability. 
We now describe how a modeling language could support variability from a user’s 
perspective. Our approach is related to the modeling approach using multiple model 
fragments as described in section 2.2. Instead of using technically independent assets, 
such as different files, we treat them as conceptual entities defined within one single 
model, in order to avoid the disadvantages of that approach. 

We start with a model defining the common behavior. We then explicitly define 
the variation points with additional fragments and define their behavior as an exten-
sion of the common model. Picking up the example from figure 2, figure 5 shows how 
our approach can be applied to define the dataflow model: a) describes the common 
behavior, b) and c) are each defined by incrementally defining the variations. 

 

 
Fig. 5. Explicit variations in the dataflow models. 

Note that the first input port of the PID controller in fragment a) is not yet connected. 
Incremental fragments b) and c) only define the constant block and the connection to 
the PID controller in the common model. The PID controller drawn in dashed lines 
and any other model elements defined by the common fragment are fixed since the 
model fragment for a variation may only introduce additional behavior. 

Instead of introducing fragment specific model elements as used in figure 5 that 
differ only in their parameter values, we explicitly provide a means for representing 
fragment specific parameter values. Figure 6 shows how our example could be repre-
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sented more concisely. Fragment a) again is the common behavior, now however it 
already contains a constant block with a default value explicitly marked as modifiable 
in variants. Fragments b) and c) only redefine the parameter value. They do not intro-
duce additional model elements anymore. 
 

 
Fig. 6. Explicit variation of parameter values. 

Figure 7 shows a hardware example corresponding to figure 3. Note that no artificial 
switch component from figure 3 b) is needed anymore, and both wire connections 
from sensors x and y to the I/O device’s input plug can be represented without contra-
dictions. Again, a) represents the common behavior, where models b) and c) represent 
the fragments using different sensors, where the common behavior is fixed. 
 

 
Fig. 7. Explicit variation in the electrical wiring model. 

The main difference to the merging approach described in section 2.2 is that in our 
approach the common model and the fragments all share the same model elements. 
There are no model elements that must be kept in sync in order to merge fragments 
correctly. In our example, variations 3 and 4 both reference the same single I/O de-
vice element in the model. Another major difference is that in our approach, the frag-
ments describing the variations extend the common model fragment and as such more 
consistency checks can be performed in context. For example, in variations 3 and 4, 
not only the fact is modeled that sensor x or y is connected to the I/O device, but in 
addition, the whole signal chain from the sensors to the automation system can be 
traced and checked for consistency, e.g. for proper encoding of sensor data on bus 
messages between the I/O device and the automation system. By keeping all frag-
ments within the same model, we however face the disadvantage that individual 
fragments can not be used outside their anticipated scope. Additionally, model frag-
ments can not be created in a distributed environment without further support of the 
modeling environment. We think that such restrictions are acceptable, though. 

3.1 Variation Points and Feature Modeling 

Although feature modeling is not the main focus of scope of this paper, we however 
briefly describe how our modeling approach affects feature modeling. Similarly to the 
approach in section 2.2, we create a complete testbed model by merging together 
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multiple model fragments. The fragments to merge may be selected manually or they 
may be defined by choices made in the feature model. Feature models are used to 
express logical dependencies among variation points in a model. Fragments from 
figure 4 b) and c) for example cannot be merged, since they contain contradicting 
definitions for constant values. The same holds true for our fragments 6 b) and c). 
While in the conventional approaches for combining SPLE with MDE such depend-
encies have to be modeled explicitly, in our approach these technical conflicts can 
already be derived from the model. Table 1 shows the tabular representation of model 
elements and fragments from our example in figure 5 and 6. 

Table 1. Variants in tabular form describing their model elements. 

Model element common + var. 1 + var. 2 + var. 3 + var. 4 
constant 4 2 5 4 4 
controller      
sensor x      
sensor y      
I/O device      
automation system      
… … … … … … 
 

Model elements such as constant, controller, I/O device, and automation system are 
used in the common fragment, but sensor x and sensor y are not. The constant is used 
also in variation 1 and 2 representing dataflow model fragments with a value of “2” 
and “5” respectively. It is also implicitly used in variation 3 and 4 with the default 
value defined in the common fragment. From these definitions, one can automatically 
derive that variation 1 and 2 cannot be used simultaneously. The controller is used 
unmodified in variation 1 and 2 and again implicitly used in variation 3 and 4. Note 
that the connections between model elements representing signal flows or electrical 
wires are also model elements but are skipped here; they would also be explicitly 
marked present or missing in each of the fragments. 

Note that the model with its variation points does not yet define a complete feature 
model. For example we described “common + variation 1”, as well as “common + 
variation 3”, but did not make statements about whether these variations can be active 
simultaneously. But since there are no conflicts visible in the table, these fragments 
may technically both be used together. We currently do not care whether merging 
these fragments make sense from e.g. a business perspective though. We think that 
manually creating a testbed model from fragments like this, i.e. by enabling “col-
umns” from the table is a possible first step to a full-featured product line support in 
our modeling environment. We thus consider presenting such a tabular view to the 
users as the means for configuring testbed models; a feature model, however, could be 
defined on top of this technical basis later on. 

3.2 Variation Points of Model Elements 

So far we have described how a model can be created by enabling model fragments, 
i.e. by selecting which model elements to use, how to connect them and what their 
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parameter values should be. As motivated in the introduction, model elements may 
themselves come in multiple variants. Their variants are chosen in the same way as 
described above. After all, model elements and the testbed model are not different in a 
technical sense; a testbed model itself is also just a model element that could in prin-
ciple be used in a model of a factory. As an example, consider a testbed model that 
contains a diesel fuel system model element. This system may come with weight or 
flow based measurement of fuel consumption and as such defines one variation point.  

4 Model and Variability Representation 

In order to sketch how we implement variability, we first introduce the language’s 
existing implementation core. Similar to other modeling languages such as the UML 
[8] with MOF [9] as its core, our modeling language uses a set of core of primitives. 
Our language, however, is based on a unification of classes and objects known as 
clabjects [10, 11]. White boxes in figure 8 represent a simplified view on our model-
ing language core, which is sufficient for our discussion here. 

 

Variant ConnectorClabject

Field

enables

enables

source

target

requires

enables
contains

contains
contains

 
Fig. 8. Clabject based modeling language core. 

Clabjects are used to represent model elements that users work with, for example 
sensors and I/O devices. A clabject may represent either a type or an instance. A clab-
ject can be associated with another clabject by means of a connector, for example an 
I/O device may contain electrical plugs. A connector also may represent either a type, 
e.g. specifying cardinality, or an instance, i.e. a link between two clabjects represent-
ing instances. A connector may either represent composition of a clabject and its 
contained clabjects, or it may represent general associations between clabjects. Both, 
clabject and connector can have fields for representing parameter values, for example 
the value of the constant in our dataflow example. Again, a field may be either a type 
specifying e.g. the data type, or an instance specifying a value. Each of the basic ele-
ments, clabject, connector, and field, has another relation that allows defining subtype 
and instantiation relations between elements; these relations are skipped here to re-
duce clutter. Although the modeling language core does not define semantics of a 
specific domain, our modeling environment however ensures that the models are 
consistent, i.e. that for example the connector instances are established between com-
patible clabject instances and that the model adheres to the multiplicity constraints. 

The examples in section 3 informally introduced the kinds of variability we support 
in our modeling language. These are: (1) enabling/disabling connections, for example 
between the sensors and the I/O device in figure 7, (2) enabling/disabling model ele-
ments, for example the different sensors in figure 7, (3) enabling/disabling variant 
specific field values, for example the constant values in figure 6, and (4) ena-
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bling/disabling of variants of contained model elements, for example the fuel con-
sumption measurement. The basic model is thus extended with an explicit notion of 
one or more variants; one variant is always implicitly defined as the common variant. 
The clabject representing e.g. a whole testbed thus contains the union of all clabjects, 
connectors and fields used in any of these variants. The enables relations between a 
variant and a subset of the clabjects, connectors and fields now explicitly define 
which of these parts it requires. Two additional relations are defined for the variant: 
an enables relation is used to chose between variants of a contained clabject, while the 
requires relation is used to represent the DAG of variant dependencies. 

Using this basic mechanism, we can represent the different kinds of variation eas-
ily: (1) can be represented straightforwardly by an enables relation between a variant 
and a connector instance. (2) can be represented in the same way by an enables rela-
tion between a variant and a connector instance; note that the containment of clabjects 
is represented by connectors, too. (3) can be represented by an enables relation be-
tween the variant and a specific field value. (4) can be represented by an enables 
relation between the clabject’s variant and a variant of a contained clabjects. 

5 Related Work 

Voelter and Groher [12] use the terms negative and positive variability to describe 
how models are constructed. Negative variability, uses a model from which unneces-
sary features are selectively removed to get a specific model. Positive variability, in 
contrast, uses a core model to which features are added. 

SPLE in MDE often is done by configuring models according to the choices made 
in an external tool. pure::variants Connector is such a tool for MATLAB/Simulink 
[13]. It imports Simulink blocks as assets into the separate feature modeling tool. For 
a certain feature selection the corresponding Simulink blocks are added, removed, or 
their parameters are set, and also signals, i.e. connections between blocks, can be 
created or deleted. Thus this product supports positive as well as negative variability.  

BigLever provides an analogous commercial Bridge solution [14] for integrating 
Telelogic’s Rhapsody [15] UML and SysML modeling tool into their Gears SPLE 
tool. Elements in a Rhapsody model are turned into variation points, managed by 
Gears. Thus this commercial product supports negative variability. 

Creating models from fragments seems to be less well supported. Voelter and Gro-
her [12], for example describe a solution based on positive variability using aspect 
oriented software development. Among their assets are models that are merged or 
woven together according to a feature model. Straw et al. [17] show how UML-like 
class models can be merged, while Herrmann et al. [16] present an algebraic view on 
model composition. 

6 Conclusion 

In this paper we motivated why a modeling environment for automation systems 
should support variability of models. We first described why we consider existing 
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SPLE approaches insufficient in this context. We introduced our alternative approach 
from a user perspective first and briefly outlined how it could be integrated seam-
lessly with our clabject based modeling language core. We already have implemented 
the modeling environment and demonstrated its applicability to the domain. We did 
however not yet implement the variability support. Although we described variability 
using examples from the engine testbed domain, we expect that our approach can be 
applied to other sufficiently complex domains as well. 
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