
Variability in Automation System Models

Gerd Dauenhauer, Thomas Aschauer, Wolfgang Pree

C. Doppler Laboratory Embedded Software Systems, University of Salzburg
Jakob-Haringer-Str. 2, 5020 Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Abstract. Model driven engineering as well as software product line engineer-
ing are two approaches that increase the productivity of creating software. De-
spite the rather mature support of the individual approaches, tools and tech-
niques for their combination, promising product specific customization of mod-
els, are still inadequate. We identify core problems of current approaches when
applied to automation system models and propose a solution based on an ex-
plicit notion of variability embedded in the core of the modeling language itself.

1 Introduction

Model driven engineering (MDE) is becoming increasingly popular for developing
complex software intensive systems. Prominent examples include the Object Man-
agement Group’s Model Driven Architecture [1] initiative, targeted mainly at generat-
ing executable software, and MATLAB/Simulink [2], which is widely used for exam-
ple in the automotive industry for designing control algorithms. Both approaches
allow the user to define the behavior of a system in terms of a high-level model which
is then transformed into low-level implementation code.

Besides executable code, MDE may also be targeted at other artifacts such as con-
figuration files. Our group, for example, cooperates with a provider of a specific kind
of automation systems, called testbeds used for example in the automotive industry
for developing combustion engines. Due to the ever changing measurement tasks
during engine development, testbeds must be highly flexible and customizable. This
flexibility is achieved through configuration parameters of the automation system
software. Instead of the laborious and error prone process of manually configuring the
automation system – a typical configuration comprises tens of thousands of individual
parameter values – we apply MDE to let the users work with models of testbeds and
to automatically derive configuration data. Figure 1 shows the tool chain.

Fig. 1. Model driven engineering for configuration parameter generation.

2 Gerd Dauenhauer, Thomas Aschauer, Wolfgang Pree

Since a testbed can be used for different measurement tasks, its automation system
software has to be configured accordingly. Think for example of a testbed for diesel
and gasoline engines. If a diesel engine is operated, all gasoline related hardware and
software parts of the testbed must be disabled, and vice versa. In order to derive con-
figuration parameters, the model must be modified each time a different task is to be
performed. For a typical testbed, however, different usage scenarios can be antici-
pated. Instead of manually modifying the testbed model each time the measurement
task changes, the testbed model could already incorporate these usage scenarios, so
the model would allow choosing between predefined model variants.

Expressed in terms of software product line engineering (SPLE) [3], such a testbed
model represents a product line, from which specific products can be generated by
making decisions at variation points. While the product line comprises the union of
all possible testbed model variants, a product represents a specific testbed model from
which configuration parameters can be generated. Variation points in our case are for
example the choices between diesel and gasoline fuel. Products are created from reus-
able assets according to selections made at variation points; in our case these assets
are for example model fragments representing diesel and gasoline fuel subsystems.
Assets may also contain variation points, i.e. they may be parameterized. For example
a diesel fuel subsystem may support weight based or flow based measurement of fuel
consumption. We will use these terms throughout the rest of the paper.

SPLE is concerned with two major aspects: (a) the technical representation of vari-
ability, i.e. representing assets and variation points, and (b) feature modeling, i.e. the
representation of dependencies among variation points in terms of conditional expres-
sions. Assets used in SPLE often are source code fragments, and variation points are
represented as #IFDEF-like annotations within the source code. No generally applica-
ble equivalent however is available for the case of graphical models. In the rest of the
paper we thus focus on the representation of variability in a modeling evironment for
testbed automation systems and only briefly touch feature models. We describe com-
monly used workarounds for combining SPLE and MDE and then present our own
approach, which we think is applicable to other domain, too.

2 Problems of Current Approaches

Although software product line engineering techniques are already applied to model
driven engineering, we consider the current approaches inappropriate for automation
system models. The problems stem mainly from the fact that SPLE is implemented as
an add-on to existing MDE tools. This section uses examples to describe two concep-
tual approaches of applying SPLE approaches to MDE, and highlights their shortcom-
ings when it comes to modeling both, software and hardware aspects which is essen-
tial for our domain. In testbed models, software aspects are represented in a graphical
dataflow model; hardware aspects are represented in an electrical wiring model.

Variability in Automation System Models 3

2.1 Using Dedicated Model Elements to Represent Variation Points

This approach is based on positive variability where a model comprises the union of
all model elements used in any of the testbed’s variants. Decisions made in the feature
model are used to configure the model. Feature selection may be done through
parameterization of the model in place or by creating a new model from a subset of
the existing source model through some model transformation. Modeling a union
model however is not always straightforward as shown in figure 2 a). The semantics
of dataflow models for example usually forbids connecting multiple output signals to
one input signal, so we cannot simply define both connections and choose between
the connections depending on the feature model. We must find workarounds instead.

An existing model can be parameterized in place through removing or changing
individual model elements, for example by setting the output value of a constant
block in a dataflow model to a certain value. Model elements representing variation
points may be explicitly marked as fixed, optional, or variable. In case of UML, for
example, stereotypes may be used, as in the PLUS approach [4]. Whole parts of a
model can be enabled or disabled through model elements representing switches, for
example routing output signals of multiple source model elements into one input
signal of a target model element as in the Koala approach [5]. Figures 2 b) and c)
show how variant specific constant values in a dataflow model can be represented in
both ways. As a result of the feature selection, the existing model is altered at its
variation points, reflecting the choices made.

Fig. 2. A dataflow model with variation points.

Figure 2 d) shows how the final model for the example could look like if value “2”
was chosen in the feature model. If the source model was figure 2 b), the constant y
would be removed, along with the now unnecessary switch. If the source model was
figure 2 b), the unspecified value “C” would simple be replaced by “2”.

Although figure 2 b) is a possible solution to the problem of representing variabil-
ity within the model, it requires additional blocks that do not stem from modeling the
domain, but from the particular technical representation of variability. Such additional
blocks increase the size of the model and are likely to lead to obfuscated models or
“accidental complexity”, as Brooks calls it [6]. The second solution shown in figure 2
c) is less complex, but one still cannot fully understand the model until the choices
made in the feature model are clear, i.e. until the value “2” is specified. In the case of
dataflow models, however, this approach still is a practically used solution [7].

In contrast to the dataflow model before, we now consider an example specifying a
testbed’s electrical wiring. Suppose a testbed supports two operation modes, one

4 Gerd Dauenhauer, Thomas Aschauer, Wolfgang Pree

requiring a pressure sensor, and a second one requiring temperature sensor. Both
sensors would be connected to the same plug of an I/O device. In reality, of course
only one sensor may be connected to the I/O device at a time. Similarly to the case of
the dataflow model, a modeling environment might prevent multiple connections to a
single electrical plug in the model. As a consequence, the model fragment in figure 3
a) could not express the fact that both connections are valid in principle, but not at the
same time, similarly to the dataflow example in figure 2 a).

Fig. 3. An electrical wiring model with variation points.

In contrast to the dataflow example before, it is problematic to represent the variation
point by introducing an artificial switch component as shown in figure 3 b), since the
model would not reflect the structure of the physical testbed anymore. This is particu-
larly important since testbed models are not just used to derive configuration data, but
also to document the system’s current state to provide guidance for testbed mainte-
nance. Even if we would not require a hardware model to accurately represent its real
world counterpart, modeling an artificial switch still introduces accidental complexity.

2.2 Creating Products by Merging Assets in Multiple Model Fragments

An alternative technique for representing positive variability is using multiple assets
representing model fragments. One specific testbed model can then be created by
merging these fragments into a single model, as illustrated in figure 4.

Fig. 4. Dataflow models created by merging multiple fragments.

We use the dataflow example from the previous section; the electrical wiring example
can be modeled analogously. Figure 4 a) represents a fragment containing the com-
mon functionality where one of the controller’s inputs is not yet connected; figures b)
and c) are two additional fragments containing the variant specific elements to be
merged in. The complete model shown in figure 4 d) is the result of merging fragment
a) and b), while model e) is created from fragment a) and c). In order to be able to
merge fragments automatically, e.g. by a dedicated external SPLE tool, models of the
fragments must contain some uniquely identifiable shared elements.

 In our example, fragment b) and c) both contain a PID controller. Since the com-
mon model fragment a) also contains an equal controller block, they can be merged

Variability in Automation System Models 5

unambiguously by partially replacing the definition of the controller in the common
fragment. If no such shared element could be identified, merging could not be per-
formed automatically. As a consequence, fragments must be kept in sync, which may
not always be straightforward if they are stored in different files, edited by different
users. Another consequence of using multiple, technically independent assets is that
the “big picture” of the model is lost. Consistency checks for example, e.g. compati-
bility between dataflow signals, can be performed only locally for each fragment; the
overall consistency can not be checked until they are merged together according to a
particular selection in the feature model. The resulting cycle of “feature selection,
model merge, and consistency check” is cumbersome. In practice, this situation usu-
ally is avoided by encoding such technical requirements into the feature model, lead-
ing to complex feature dependencies that are intermixed with business decisions.
Maintaining the feature model then becomes difficult and error-prone, since in-depth
technical knowledge as well as business-specific knowledge is required.

3 A Modeling Language with Built-In Support for Variability

In the previous section we used examples to identify problems that arise when using a
modeling language that does not provide direct support for representing variability.
We now describe how a modeling language could support variability from a user’s
perspective. Our approach is related to the modeling approach using multiple model
fragments as described in section 2.2. Instead of using technically independent assets,
such as different files, we treat them as conceptual entities defined within one single
model, in order to avoid the disadvantages of that approach.

We start with a model defining the common behavior. We then explicitly define
the variation points with additional fragments and define their behavior as an exten-
sion of the common model. Picking up the example from figure 2, figure 5 shows how
our approach can be applied to define the dataflow model: a) describes the common
behavior, b) and c) are each defined by incrementally defining the variations.

Fig. 5. Explicit variations in the dataflow models.

Note that the first input port of the PID controller in fragment a) is not yet connected.
Incremental fragments b) and c) only define the constant block and the connection to
the PID controller in the common model. The PID controller drawn in dashed lines
and any other model elements defined by the common fragment are fixed since the
model fragment for a variation may only introduce additional behavior.

Instead of introducing fragment specific model elements as used in figure 5 that
differ only in their parameter values, we explicitly provide a means for representing
fragment specific parameter values. Figure 6 shows how our example could be repre-

6 Gerd Dauenhauer, Thomas Aschauer, Wolfgang Pree

sented more concisely. Fragment a) again is the common behavior, now however it
already contains a constant block with a default value explicitly marked as modifiable
in variants. Fragments b) and c) only redefine the parameter value. They do not intro-
duce additional model elements anymore.

Fig. 6. Explicit variation of parameter values.

Figure 7 shows a hardware example corresponding to figure 3. Note that no artificial
switch component from figure 3 b) is needed anymore, and both wire connections
from sensors x and y to the I/O device’s input plug can be represented without contra-
dictions. Again, a) represents the common behavior, where models b) and c) represent
the fragments using different sensors, where the common behavior is fixed.

Fig. 7. Explicit variation in the electrical wiring model.

The main difference to the merging approach described in section 2.2 is that in our
approach the common model and the fragments all share the same model elements.
There are no model elements that must be kept in sync in order to merge fragments
correctly. In our example, variations 3 and 4 both reference the same single I/O de-
vice element in the model. Another major difference is that in our approach, the frag-
ments describing the variations extend the common model fragment and as such more
consistency checks can be performed in context. For example, in variations 3 and 4,
not only the fact is modeled that sensor x or y is connected to the I/O device, but in
addition, the whole signal chain from the sensors to the automation system can be
traced and checked for consistency, e.g. for proper encoding of sensor data on bus
messages between the I/O device and the automation system. By keeping all frag-
ments within the same model, we however face the disadvantage that individual
fragments can not be used outside their anticipated scope. Additionally, model frag-
ments can not be created in a distributed environment without further support of the
modeling environment. We think that such restrictions are acceptable, though.

3.1 Variation Points and Feature Modeling

Although feature modeling is not the main focus of scope of this paper, we however
briefly describe how our modeling approach affects feature modeling. Similarly to the
approach in section 2.2, we create a complete testbed model by merging together

Variability in Automation System Models 7

multiple model fragments. The fragments to merge may be selected manually or they
may be defined by choices made in the feature model. Feature models are used to
express logical dependencies among variation points in a model. Fragments from
figure 4 b) and c) for example cannot be merged, since they contain contradicting
definitions for constant values. The same holds true for our fragments 6 b) and c).
While in the conventional approaches for combining SPLE with MDE such depend-
encies have to be modeled explicitly, in our approach these technical conflicts can
already be derived from the model. Table 1 shows the tabular representation of model
elements and fragments from our example in figure 5 and 6.

Table 1. Variants in tabular form describing their model elements.

Model element common + var. 1 + var. 2 + var. 3 + var. 4
constant 4 2 5 4 4
controller     
sensor x 
sensor y 
I/O device   
automation system   
… … … … … …

Model elements such as constant, controller, I/O device, and automation system are
used in the common fragment, but sensor x and sensor y are not. The constant is used
also in variation 1 and 2 representing dataflow model fragments with a value of “2”
and “5” respectively. It is also implicitly used in variation 3 and 4 with the default
value defined in the common fragment. From these definitions, one can automatically
derive that variation 1 and 2 cannot be used simultaneously. The controller is used
unmodified in variation 1 and 2 and again implicitly used in variation 3 and 4. Note
that the connections between model elements representing signal flows or electrical
wires are also model elements but are skipped here; they would also be explicitly
marked present or missing in each of the fragments.

Note that the model with its variation points does not yet define a complete feature
model. For example we described “common + variation 1”, as well as “common +
variation 3”, but did not make statements about whether these variations can be active
simultaneously. But since there are no conflicts visible in the table, these fragments
may technically both be used together. We currently do not care whether merging
these fragments make sense from e.g. a business perspective though. We think that
manually creating a testbed model from fragments like this, i.e. by enabling “col-
umns” from the table is a possible first step to a full-featured product line support in
our modeling environment. We thus consider presenting such a tabular view to the
users as the means for configuring testbed models; a feature model, however, could be
defined on top of this technical basis later on.

3.2 Variation Points of Model Elements

So far we have described how a model can be created by enabling model fragments,
i.e. by selecting which model elements to use, how to connect them and what their

8 Gerd Dauenhauer, Thomas Aschauer, Wolfgang Pree

parameter values should be. As motivated in the introduction, model elements may
themselves come in multiple variants. Their variants are chosen in the same way as
described above. After all, model elements and the testbed model are not different in a
technical sense; a testbed model itself is also just a model element that could in prin-
ciple be used in a model of a factory. As an example, consider a testbed model that
contains a diesel fuel system model element. This system may come with weight or
flow based measurement of fuel consumption and as such defines one variation point.

4 Model and Variability Representation

In order to sketch how we implement variability, we first introduce the language’s
existing implementation core. Similar to other modeling languages such as the UML
[8] with MOF [9] as its core, our modeling language uses a set of core of primitives.
Our language, however, is based on a unification of classes and objects known as
clabjects [10, 11]. White boxes in figure 8 represent a simplified view on our model-
ing language core, which is sufficient for our discussion here.

Variant ConnectorClabject

Field

enables

enables

source

target

requires

enables
contains

contains
contains

Fig. 8. Clabject based modeling language core.

Clabjects are used to represent model elements that users work with, for example
sensors and I/O devices. A clabject may represent either a type or an instance. A clab-
ject can be associated with another clabject by means of a connector, for example an
I/O device may contain electrical plugs. A connector also may represent either a type,
e.g. specifying cardinality, or an instance, i.e. a link between two clabjects represent-
ing instances. A connector may either represent composition of a clabject and its
contained clabjects, or it may represent general associations between clabjects. Both,
clabject and connector can have fields for representing parameter values, for example
the value of the constant in our dataflow example. Again, a field may be either a type
specifying e.g. the data type, or an instance specifying a value. Each of the basic ele-
ments, clabject, connector, and field, has another relation that allows defining subtype
and instantiation relations between elements; these relations are skipped here to re-
duce clutter. Although the modeling language core does not define semantics of a
specific domain, our modeling environment however ensures that the models are
consistent, i.e. that for example the connector instances are established between com-
patible clabject instances and that the model adheres to the multiplicity constraints.

The examples in section 3 informally introduced the kinds of variability we support
in our modeling language. These are: (1) enabling/disabling connections, for example
between the sensors and the I/O device in figure 7, (2) enabling/disabling model ele-
ments, for example the different sensors in figure 7, (3) enabling/disabling variant
specific field values, for example the constant values in figure 6, and (4) ena-

Variability in Automation System Models 9

bling/disabling of variants of contained model elements, for example the fuel con-
sumption measurement. The basic model is thus extended with an explicit notion of
one or more variants; one variant is always implicitly defined as the common variant.
The clabject representing e.g. a whole testbed thus contains the union of all clabjects,
connectors and fields used in any of these variants. The enables relations between a
variant and a subset of the clabjects, connectors and fields now explicitly define
which of these parts it requires. Two additional relations are defined for the variant:
an enables relation is used to chose between variants of a contained clabject, while the
requires relation is used to represent the DAG of variant dependencies.

Using this basic mechanism, we can represent the different kinds of variation eas-
ily: (1) can be represented straightforwardly by an enables relation between a variant
and a connector instance. (2) can be represented in the same way by an enables rela-
tion between a variant and a connector instance; note that the containment of clabjects
is represented by connectors, too. (3) can be represented by an enables relation be-
tween the variant and a specific field value. (4) can be represented by an enables
relation between the clabject’s variant and a variant of a contained clabjects.

5 Related Work

Voelter and Groher [12] use the terms negative and positive variability to describe
how models are constructed. Negative variability, uses a model from which unneces-
sary features are selectively removed to get a specific model. Positive variability, in
contrast, uses a core model to which features are added.

SPLE in MDE often is done by configuring models according to the choices made
in an external tool. pure::variants Connector is such a tool for MATLAB/Simulink
[13]. It imports Simulink blocks as assets into the separate feature modeling tool. For
a certain feature selection the corresponding Simulink blocks are added, removed, or
their parameters are set, and also signals, i.e. connections between blocks, can be
created or deleted. Thus this product supports positive as well as negative variability.

BigLever provides an analogous commercial Bridge solution [14] for integrating
Telelogic’s Rhapsody [15] UML and SysML modeling tool into their Gears SPLE
tool. Elements in a Rhapsody model are turned into variation points, managed by
Gears. Thus this commercial product supports negative variability.

Creating models from fragments seems to be less well supported. Voelter and Gro-
her [12], for example describe a solution based on positive variability using aspect
oriented software development. Among their assets are models that are merged or
woven together according to a feature model. Straw et al. [17] show how UML-like
class models can be merged, while Herrmann et al. [16] present an algebraic view on
model composition.

6 Conclusion

In this paper we motivated why a modeling environment for automation systems
should support variability of models. We first described why we consider existing

10 Gerd Dauenhauer, Thomas Aschauer, Wolfgang Pree

SPLE approaches insufficient in this context. We introduced our alternative approach
from a user perspective first and briefly outlined how it could be integrated seam-
lessly with our clabject based modeling language core. We already have implemented
the modeling environment and demonstrated its applicability to the domain. We did
however not yet implement the variability support. Although we described variability
using examples from the engine testbed domain, we expect that our approach can be
applied to other sufficiently complex domains as well.

References

1. OMG Model Driven Architecture, http://www.omg.org/mda
2. The MathWorks MATLAB/Simulink, http://www.mathworks.com/products/simulink
3. Clements, P., Northrop, L., Northrop, L. M.: Software Product Lines: Practices and Pat-

terns. Addison-Wesley Professional (2001)
4. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-

Based Software Architectures, Addison Wesley, Redwood City (2004)
5. van Ommering, R., van der Linden, F., Kramer, J., and Magee, J.: The Koala Component

Model for Consumer Electronics Software. Computer vol. 33, 3 (2000)
6. Brooks, F. P.: No Silver Bullet Essence and Accidents of Software Engineering, In: Com-

puter, vol. 20/4, pp. 10—19, IEEE Computer Society Press (1987)
7. Dziobek, C., Loew, J., Przystas, W., Weiland, J.: Von Vielfalt und Variabilität –

Handhabung von Funktionsvarianten in Simulink-Modellen, In: Elektronik Automotive, vol
2, pp. 33—37, WEKA Fachmedien GmbH (2008)

8. Object Management Group: Unified Modeling Language Superstructure, v 2.1.2 (2007)
9. Object Management Group: Meta Object Facility, http://www.omg.org/mof
10. Atkinson, C., Kühne, T.: The Essence of Multilevel Metamodeling, In: Proceedings of the

4th International Conference on the Unified Modeling Language, Modeling Languages,
Concepts, and Tools, pp. 19—33, Springer-Verlag (2001)

11. Aschauer, T., Dauenhauer, G., Pree, W.: Multi-Level Modeling for Industrial Automation
Systems. 35 th Euromicro Conference on Software Engineering and Advanced Applications,
to appear (2009)

12. Voelter, M. and Groher, I. 2007. Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development. In Proceedings of the SPLC’07, pp. 233-242, IEEE
Computer Society (2007)

13. pure systems: pure:variants Connector for MATLAB®/Simulink®,
http://www.pure-systems.com (2009)

14. BigLever Telelogic Rhapsody® GearsTM Bridge,
http://www.biglever.com/extras/Rhapsody_Gears_Data_Sheet.pdf (2009)

15. Telelogic Rhapsody®, http://modeling.telelogic.com/products/rhapsody, (2009)
16. Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., and Voelkel, S.: An algebraic view on

the semantics of model composition. In Proceeding of the 3rd European Conference on
Model Driven Architecture, Foundations and Applications, pp. 99—13. Springer-Verlag
(2007)

17. Straw, G., Georg, G., Song, E., Ghosh, S., France, R., and Bieman, J.: Model Composition
Directives, In Proceedings of the 7th UML Conference, pp. 87—94, Springer-Verlag (2004)

