
Simulating Real-Time Software Components based on Logical Execution Time
Andreas Naderlinger, Josef Templ, Wolfgang Pree

C. Doppler Laboratory Embedded Software Systems
University of Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Abstract
Real-time software components based on the logical execu-
tion time (LET) paradigm exhibit equivalent observable be-
havior independent from the execution platform respectively
the simulation environment. Thus, LET ensures a perfect
match between simulation and execution on a potentially dis-
tributed hardware without having to consider platform spe-
cific details already in the application model. Especially for
complex multi-mode multi-rate systems, a virtual machine
(VM) is the favored approach to ensure the correct timing
behavior. Simulation environments typically provide a trigger
mechanism that allows for implementing such a VM. This pa-
per discusses data dependency problems that may arise when
simulating LET-based components and which considerably
limit the applicability of existing approaches in practice. The
identified shortcomings concern components with cyclic data
flow, control loops involving plants without delay, and the
combination of LET-based and conventional components. We
present an execution mechanism based on a 2-step 3-phase
VM architecture that overcomes these limitations. The pre-
sented approach is implemented in MATLAB/Simulink and
applicable for mixed time- and event-triggered systems.
Keywords: logical execution time, data dependency, E-
Machine, Simulink, TDL

1. INTRODUCTION
Modeling and simulation environments enable the devel-

oper to design an application step-by-step and to continu-
ously test, analyze and optimize its behavior already early in
the development process. Automatic code generators trans-
form models typically into C code that is compiled later and
executed on some target platform. But although the gener-
ated code may perfectly match the modeled functionality,
when executed on an actual hardware platform, the applica-
tion is likely to show slightly different or even totally unex-
pected behavior. On a hardware platform, the execution of
some control task functionality or network communication
may take a considerable amount of time, whereas the exe-
cution in a simulation environment completes basically with-
out any time consumption. Especially for distributed systems
it is common practice to relax this mismatch by introducing
additional, arbitrary platform-dependent delays in the intrin-
sically platform neutral model. In other words, model simu-

lation and execution of the corresponding code are only ap-
proximately the same at best and as the generated code is typ-
ically fine-tuned manually, the correspondence to the model
is lost. The logical execution time (LET) [9] abstracts from
a particular platform and communication topology. This al-
lows someone to change the underlying platform and even
to distribute components between different nodes without af-
fecting the overall system behavior – provided that enough
computing and communication resources are available. This
enhances the status of simulation environments considerably
as simulation results match the behavior on a target platform
perfectly. Previous work [15] showed that simulating LET-
based applications is feasible in principle using Simulink.
In this paper we focus on three aspects which immediately
arise in practice and which required us to refine the approach
described in [15]: (1) the simulation of multiple LET-based
components with cyclic data dependencies, (2) the simula-
tion of control loops involving plants without delay, and (3)
the stepwise migration of simulation models towards LET.
We present an execution mechanism for the simulation envi-
ronment MATLAB/Simulink [19].

2. TDL – A LET BASED LANGUAGE
The Timing Definition Language (TDL) [17] is a high-level

software description language that allows the explicit timing
specification of hard real-time components in a platform inde-
pendent manner. TDL is based on the logical execution time
abstraction (LET) introduced in the realm of Giotto [9].

LET means that the observable temporal behavior of a task
is independent from its physical execution. It is only assumed
that the physical task execution is fast enough to fit some-
where within the logical start and end points. For a particular
platform this has to be ensured via an adequate scheduling
given the worst case execution time for each task. The inputs
of a task are read at the release time and the newly calculated
outputs are available at the terminate time. Between these two
logical instants, the outputs have the value of the previous ex-
ecution. Although LET introduces additional response time
overhead, it provides the cornerstone to deterministic behav-
ior, platform abstraction, and well-defined interaction seman-
tics between parallel activities [7].

In order to support complex applications, TDL introduces
a component model. Applications can be decomposed into in-
dividual components, each represented as a TDL module.

1 module S {
2

3 import R ;
4

5 s e ns o r
6 i n t s uses ge tS ;
7

8 a c t u a t o r
9 i n t a uses se tA ;

10

11 p u b l i c ta s k send {
12 input i n t i ;
13 output i n t o ;
14 uses sendImpl (i , o) ;
15 }

16 s t a r t mode main [p e r i o d =10ms] {
17 ta sk
18 [f r e q =1] send (s) ;
19 a c t u a t o r
20 [f r e q =1] a := send . o ;
21 mode
22 [f r e q =1] i f e x i t M a i n (R . r c v . o)
23 then f r e e z e ;
24 }
25

26 mode f r e e z e [p e r i o d =1000ms] {
27 }
28 }

1 module R {
2

3 import S ;
4

5 p u b l i c t a sk r c v {
6 input i n t i ;
7 output i n t o ;
8 use s r c v I m p l (i , o) ;
9 }

10 s t a r t mode main [p e r i o d =5ms] {
11 ta sk
12 [f r e q =1] r c v (S . send . o) ;
13 }
14 }

Figure 1. TDL module S and R

Module. A module performs computations represented as
tasks and communicates with the environment by means of
sensors and actuators. Modules may import one or multiple
other modules and access their public entities. At runtime, all
modules of an application run in parallel. Thus, a TDL appli-
cation is the parallel composition of a set of TDL modules,
which are synchronized to a common time base. A module is
in exactly one mode at a time.
Mode. A mode is a particular operational state of a module.
Modes have a period and consist of a set of activities. An ac-
tivity can be a task invocation, an actuator update, or a mode
switch. Each activity specifies its own logical execution in-
stants relative to the mode period. The LET of a task is al-
ways greater than zero, whereas actuator updates and mode
switches are executed in logical zero time.
Task. A task represents a computational unit of an applica-
tion. It declares an external function, which can be imple-
mented in an imperative language such as C. Furthermore, a
task declares input, state, and output ports.
Port. Ports are typed variables used for data communication.
TDL differentiates between task ports, sensors and actuators.
Guard. A guard is an external boolean function. Guards may
be used to execute mode activities conditionally.

Figure 1 shows a sample TDL application consisting of two
modules S and R. Module S (sender) has two operational
modes main and freeze. While freeze does not perform
any activity, main invokes the task send once per mode pe-
riod (LET=10ms) and updates the actuator a. The task send
reads a sensor value and provides its output to the actuator.
Once per mode period, S evaluates the mode switch guard
exitMain which uses the imported port rcv.o from module

[0 0 0] c a l l 1 / / a c t u a t o r i n i t : se tA (a)
[0 0 1] r e t u r n / / end of i n i t i a l i z a t i o n

/ / mode f r e e z e
[0 0 2] f u t u r e 4 , 1000000
[0 0 3] r e t u r n
[0 0 4] nop 1 / / eo t , end of t a s k t e r m i n a t i o n s
[0 0 5] nop 2 / / eoa , end of a c t u a t o r u p d a t e s
[0 0 6] jump 2 / / n e x t c y c l e : f r e e z e

/ / mode main
[0 0 7] c a l l 2 / / g e t : s := ge tS ()
[0 0 8] c a l l 3 / / r e l e a s e t a s k : send
[0 0 9] r e l e a s e 0 / / u s e s : sendImpl
[0 1 0] f u t u r e 12 , 10000
[0 1 1] r e t u r n
[0 1 2] c a l l 0 / / t e r m i n a t e t a s k : send
[0 1 3] nop 1 / / eo t , end of t a s k t e r m i n a t i o n s
[0 1 4] c a l l 4 / / a c t u a t o r u p d a t e : a := o
[0 1 5] c a l l 1 / / a c t u a t o r s e t t e r : se tA (a)
[0 1 6] nop 2 / / eoa , end of a c t u a t o r u p d a t e s
[0 1 7] i f 0 , 20 / / mode s w i t c h gua rd : e x i t M a i n
[0 1 8] c a l l 5 / / mode s w i t c h d r i v e r
[0 1 9] s w i t c h 0 / / mode s w i t c h −> f r e e z e : 0
[0 2 0] jump 7 / / n e x t c y c l e : main

Figure 2. E-Code for the TDL module S

R. Module R (receiver) has a single mode main that executes
task rcv once every 5ms (LET=5ms). R imports module S to
use the port S.send.o as input for rcv.

2.1. Executing TDL Components
The concept of the E-Machine (Embedded machine) was

first introduced in the realm of Giotto [10]. The E-Machine
is a virtual machine (VM) that lays the foundation for plat-
form-independent real-time software, while the implementa-
tion of the VM itself depends on the platform (e.g. the oper-
ating system). The E-Machine ensures the correct timing be-
havior of real-time applications. Therefore, the timing behav-
ior described in TDL components is compiled into an inter-
mediate code, called the Embedded Code [10] or E-Code for
short. E-Code describes an application’s reactivity, i.e. time
instants to release or terminate tasks or to interact with the
environment. It is a portable description as it relies on logical
timing and is independent of a particular platform. E-Code
is represented as a sequence of instructions that are inter-
preted by the E-Machine [6, 10]. Figure 2 lists the E-Code
for the TDL sample module S. According to the E-Code in-
structions the E-Machine timely hands tasks to a dispatcher
and executes drivers. A driver performs communication ac-
tivities, such as reading sensor values, providing input values
for tasks at their release time or copy output values at their
termination time. TDL compiler plug-ins generate drivers au-
tomatically for a certain platform according to the language
binding rules [17]. They are part of the so-called glue code
which additionally comprises type declarations, etc., as well
as the communication layer [5]. The functionality code, i.e.
task, guard, initializer, sensor and actuator functions, has to
be provided separately.

2.2. TDL E-Code Instruction Set
The E-Code instruction set for TDL builds on the set de-

fined for the Giotto language. A TDL E-Code instruction
c(args) consists of the command c and its list of integer ar-
guments args. All commands are executed synchronously:
call(d) executes the driver d; release(τ) marks the task τ
as ready for execution; future(a, δ) plans the execution of
the E-Code block starting at address a in δ µs; if(g, aelse)
proceeds with the next instruction if g evaluates to true else
jumps to aelse; jump(a) jumps to the E-Code at address a;
switch(m) performs a mode switch to mode m, i.e. the E-
Machine continues with the first instruction of m; return
terminates an E-Code block; nop(f) is a dummy (no oper-
ation) instruction, where f is used as a marker for identifying
different sections in the E-Code (see section 4.1.).

2.3. E-Code Blocks
An E-Code block is a list of E-Code instructions terminated

by a return instruction. It specifies for one logical time in-
stant within a mode period the actions that must be taken by
the E-Machine in order to comply with the LET semantics.
For a logical time instant t, the following sequence of actions
comprises one E-Code block: (1) update output ports of task
invocations logically terminating at t with the result values
from their execution; (2) update actuators that are defined to
be updated at t; (3) switch mode if a mode switch is defined
at t; (4) update input ports of tasks that are defined to be re-
leased at t; (5) release tasks that are defined to be released at
t; (6) advance time to the next logical time instant t + δ; (7)
return from E-Code block.

Note that sensors are read whenever their value is required.
However, at one particular logical time a sensor is read only
once, even if it is used multiple times.

2.4. Bisection of E-Code Blocks
As a generalization of the original use of E-Code in Giotto,

TDL supports applications consisting of multiple components
(modules). All modules of an application are (logically) exe-
cuted in parallel and share the same logical time. For a single-
threaded execution of multiple independent modules it suf-
fices to execute an E-Machine step for all modules sequen-
tially in any order. An E-Machine step for a module means
to execute the current mode’s E-Code block that belongs to
the current logical time. In addition to independent modules,
TDL allows one to define a data flow between modules by
means of reading from an imported output port. The execu-
tion order then influences the application behavior because
port updates in a certain module are only visible to modules
executing afterwards. For import relations conforming to a di-
rected acyclic graph (DAG), it suffices to sort the set of mod-
ules topologically according to the import relationship [5].
For modules with cyclic import dependencies, which are also

zero-order hold

T= task

task function

T= task

delay

T= LETtask

Figure 3. LET semantics in a data flow diagram

allowed in TDL, such a sort is not possible. Therefore, the
single-threaded execution of modules must be split into mul-
tiple phases instead of sorting. In the first phase, all output
ports must be updated before any other module reads them in
the second phase. Each phase is represented by an individual
section within an E-Code block. The TDL compiler inserts a
nop(f) instruction with an appropriate flag f to mark the end
of a section.

3. SIMULATING TDL COMPONENTS
A major advantage of the LET abstraction is the identi-

cal behavior of real-time applications on any platform that is
powerful enough. This makes simulation of LET-based ap-
plications particularly useful. Most simulation environments
fail in considering non-functional properties such as timing,
in particular for distributed applications. Typically, simula-
tion results can only be seen as estimations for the actual
behavior on a real hardware target. By considering a simu-
lation environment as yet another platform, the LET assump-
tion guarantees an equivalent behavior. Thus, the behavior of
a model simulation exactly matches the behavior shown in
practice. As communication latencies are also subsumed un-
der the LET, the simulation is totally independent from the
intended communication topology.

To achieve LET semantics of a task in a simulation envi-
ronment, the simulation engine must ensure that (1) the task
is released and terminated at well-defined logical points in
time, that (2) inputs are only read once when the task is re-
leased, and (3) output ports are solely updated when the task
terminates logically. Figure 3 shows a data flow diagram that
exhibits such semantics. The task function block which im-
plements the task’s functionality has a sample time T equal
to the period π of the task. Additionally, it is surrounded by a
zero-order hold and a discrete delay block. The sample time
of the zero-order hold block is set to the task’s period, which
ensures that input values do not change while the task exe-
cutes. The sample time of the delay block is set to the LET
of the task, which ensures that the newly calculated output
values are available only after the task terminated logically.

This approach is straightforward, however, it fails when
mode switching logic and multiple execution rates come into
play. Typically, control systems consist of periodically exe-
cuted tasks and involve mode-switching logic [9]. Depending
on the current mode, the application executes individual tasks
with different timing constraints or even changes the set of
executed tasks. It is difficult to understand the overall behav-
ior of the model as it becomes too cluttered for all but trivial
applications. It is also unclear if the exact mode switch se-

mantics can be obtained at all [16]. Our work is based on the
approach described in [15] which uses the concept of a virtual
machine (E-Machine) [10] that coordinates the timing.

3.1. Simulink Background
Basically, executing a block diagram involves repeatedly

(1) solving all block output equations, (2) updating the states,
and (3) advancing time. In principle, there exist different
strategies for (1). The blocks could be executed in arbitrary
order until the outputs do not change anymore, i.e. a fixed
point is reached. Although this approach requires only very
little information about block internals [12], it is rather in-
efficient. Simulink therefore follows a different strategy. A
sorted block order is derived from the initialization of the si-
mulation, which avoids the need for iteration. At each simula-
tion step, the blocks are executed in this fixed order that does
not necessarily comply with the block connections, but also
depends on the feedthrough characteristics of each block. A
block with direct feedthrough must know its current input val-
ues before it can set its output values. Assuming a model with
discrete blocks only, at each simulation step, the Simulink
engine computes the model’s outputs by invoking the output
method of each block (mdlOutputs) in the sorted order de-
rived during the initialization. Afterwards, the engine com-
putes the state of the model by invoking the update method of
each block (mdlUpdate), again in the predefined order.

In the regular case, the execution order of blocks is under
control of the simulation environment. This is not true for so-
called conditionally executed blocks respectively subsystems
such as function-call or triggered subsystems. They are not
part of the sorted block order. Instead, they are executed in
the context of their triggering or function-call initiating block
and thus kind of inherit the position in the sorted block or-
der. This position of the trigger block, however, is determined
by feedthrough characteristics and data dependencies of itself
and of all the blocks it triggers. A function-call initiator au-
tonomously decides which blocks to execute and in which
order.

The built-in Simulink block set can be extended by so-
called S-Functions, which are Simulink blocks implemented
in a programming language such as C. S-Function blocks are
allowed to trigger the execution of function-call subsystems
by using the Simulink macro ssCallSystemWithTid in their
mdlOutputs method. After the function call subsystem was
executed, the control is returned to the S-Function which re-
sumes execution.

3.2. The E-Machine as an S-Function
In order to use a typical state-of-the-art simulation environ-

ment as a platform for TDL, the chosen integration approach
must match with the computational model of the simulation
tool. In the Ptolemy [4] environment, for example, one can

sensor

mode switch condition

guard

E-Machine

source task function

task execution task termination actuator

control flow
data flow

sink

task release

Figure 4. The basic principle of an E-Machine as a Simulink
S-Function and triggered subsystems

implement customized directors that ensure the desired be-
havior. Commercial tools such as Simulink are typically more
restrictive. Simulink’s model of computation (MoC) is based
on continuous time. It is rather complex and there exists no
formal definition; the implementation is hidden in the simula-
tion engine [1, 2]. A straight forward modeling of TDL com-
ponents with standard Simulink blocks is not feasible, espe-
cially if they comprise several modes [16]. In principle, there
are several approaches for achieving LET semantics in Simu-
link [15]. We build on the most promising approach, which is
based on the E-Machine concept.

The E-Machine described in section 2.1. is realized in Si-
mulink by means of an S-Function that contains the E-Code
interpreter. Task-, guard-, and initializer functions are im-
plemented using function-call subsystems, which have to be
modeled by the application developer using ordinary Simu-
link blocks. The glue code, i.e. drivers that perform commu-
nication activities, such as reading sensors or copying values
from task ports to actuators, are also realized as function-call
subsystems. They all get invoked by the E-Machine. The out-
put ports of such a driver subsystem are directly connected
to its input ports, which corresponds with assignments in the
imperative programming paradigm as soon as the system is
triggered. The TDL tool-chain generates the driver subsys-
tems automatically when the simulation is started. Only the
timing, i.e. the TDL description, has to be specified and the
functionality, e.g. task function subsystems, has to be mod-
eled. Section 5. gives an overview of the development process
with TDL in Simulink.

Figure 4 exemplifies this E-Machine approach for a simpli-
fied application. The placement of the individual blocks con-
forms to the data flow, which is basically from left to right
along the arrows from a source to a sink. The source value is
read by a sensor which provides the value to a guard and a
task. The actuator block uses the output port of a task to write
to a sink. Regarding execution order, the figure must not be
read from left to right. The E-Machine triggers the individual
blocks according to the E-Code resulting in the above order
of activity execution (see section 2.3.). This also ensures the
correct LET behavior of a task by triggering its release and
termination drivers at the right time instants.

When the E-Machine triggers the execution of a guard, it
immediately reads the result via an input port. The result in-
fluences the further execution of E-Code instructions and con-

sequently which subsystem to trigger. Thus, the E-Machine
block has direct feedthrough.

The E-Machine has to be invoked whenever the simulation
time matches the logical time of a TDL activity as defined in
the E-Code. To ensure this, we use a fixed-sample time for
the E-Machine (E-Machine period), which is the GCD of all
activity periods.

3.3. Data Dependency Problems
The S-Function implementation of the E-Machine for a si-

mulation environment is very close to the original E-Machine
concept of Giotto. Compared to other approaches, this re-
sults in a straightforward and efficient simulation model [15].
However, due to data dependency problems which can occur
in simulation environments, its practical applicability turned
out to be limited. We identified the following application sce-
narios which in general cannot be handled by this previous
approach: (1) Cyclic import relationships between LET-based
components (controllers), (2) control loops involving plants
without delay, and (3) mixed LET-based and conventionally
modeled controllers. Theses cases are discussed in more de-
tail below. They are all related to cyclic data flow and the abil-
ity of the simulation environment to find a valid strategy for
executing each individual block. While some models of com-
putation support cycles without a delay (e.g. the Ptolemy syn-
chronous/reactive domain), Simulink1 (as well as LabView
or the Synchronous Data Flow domain in Ptolemy) doesn’t.
Delays are introduced by explicit delay blocks, or by other
blocks whose inputs have indirect feedthrough. Indirect (or
non-direct) feedthrough means that the block’s output y de-
pends on the state x, but is not directly controlled by the input
u. The delay block for example is described by the following
state space description y(t) = x(t), x(t + ∆) = u(t) where
∆ is the delay (i.e. the sample time of the block).

Cyclic import relationships. Import relationships lead to
Simulink signals between driver blocks of different modules.
For example, the termination driver of task send in module S
is connected to the release driver of task rcv in module R. As
outlined in section 3.1., Simulink uses a fixed block update
order in which blocks are executed. This rules out the ap-
proach described in [15] using one E-Machine per module, as
relative to other blocks, all drivers of a particular module are
executed at once. Only one global E-Machine, which inter-
prets the E-Code of all modules, leads to a model that follows
LET semantics and is resolvable by the simulation engine.

Plants without delay. Closed-loops are well known con-
cepts in control theory (e.g. for PID controllers). The con-
troller monitors the output of the plant, i.e. the system under
control, via sensors and adjusts its actuators to achieve a spec-
ified response. Plants with direct feedthrough, i.e. without in-

1Simulink’s support for cycles without delays (algebraic loops) is quite
limited [3].

0.2

 plant

i1

i2 o1

 c2

i1

i2 o1

 c
z

1

 Unit Delay

(a)

s1

s2 a1

c (TDL)

0.2

 plant

i1

i2 o1

 c2

(b)

Figure 5. A Simulink model (a) before and (b) after migrat-
ing the atomic subsystem of the controller c to TDL

troducing a delay, must – as a whole – execute after actuators
are updated and before sensors are being read. With the de-
scribed E-Machine approach both sensors and actuators are
under control of one single S-Function block. Consequently,
Simulink cannot find a valid update order of blocks.

LET- and Non-LET-based controllers. Another scenario
concerns the interaction between TDL modules (controllers)
and controllers that are not LET-based, for example when
a control application is migrated towards LET step-by-step.
Typically, controllers are modeled as atomic (nonvirtual) sub-
systems in Simulink in order to reflect the desired software
partitioning in the simulation and the program synthesis. The
equations defined by an atomic subsystem are evaluated as
a unit. Usually, in order to avoid ’false’ algebraic loops [13]
and to approximately mimic the computation time on a real
hardware platform, unit delay blocks are added between con-
trollers and the plant and also between multiple controllers.
Figure 5(a) shows a sample model with two conventionally
modeled controllers and a plant. Figure 5(b) shows the same
model partially based on LET. The controller c is replaced
by a TDL module executing the former implementation as a
task. The unit delay is now implicitly replaced by the task’s
LET ensured by the E-Machine. Again, Simulink cannot find
a valid update order of blocks.

In any of these cases, Simulink reports a data dependency
violation2, which is similar to an algebraic loop error. From
the control engineer’s point of view, this appears to be coun-
terintuitive, since the LET of a task is always greater than zero
and thus should introduce the required delay.

4. 2-STEP E-MACHINE ARCHITECTURE
This section describes a mechanism for simulating LET-

based software components, which is also based on an E-
Machine, but does not suffer from data dependency problems
as described above. We shall start with new requirements con-
cerning the E-Code representation and continue with its exe-
cution strategy during the simulation. The described mecha-
nism was implemented in Simulink. However, we expect it to
be applicable for a larger number of simulation environments.
Finally, we shall shortly sketch a minor extension of this ap-
proach to deal with both, time- and event-triggered systems.

2In some rare cases, Simulink may be able to simulate the model, when
the block reduction optimization option is enabled.

4.1. Trisection of E-Code Blocks
Data dependencies among TDL modules (see section 2.4.)

require the partitioning of E-Code into two sections. How-
ever, in order to execute the plant or other non-TDL blocks
between setting actuators and reading sensors, E-Code must
be split into three disjoint sections. These E-Code sections
represent the following three phases:

tt - Task termination phase. The tt phase includes all ac-
tivities that must be carried out in order to make output ports
available at the LET end of a task invocation. After that, the
updated output ports are visible to client modules and may be
used as input for any other activity.

au - Actuator update phase. The second phase au in-
cludes all activities that must be carried out in order to update
actuators with new values, potentially including the evalua-
tion of guards.

mstr - Mode switch and task release phase. The last
phase mstr includes all activities that must be carried out in
order to perform mode switches and to release new task invo-
cations. Releasing a task invocation means to copy the actual
parameters (stemming from sensors or task ports) to the in-
put ports of the released task. This phase also comprises the
execution of task functions.

Each phase must be executed for all TDL modules. This E-
Code trisection is the basic requirement for simulating mod-
els with data dependencies as described above. From these
dependencies, we can immediately derive the execution order
of our three phases and the remaining blocks: (1) tt, (2) au, (3)
non-TDL blocks, (4) mstr. To identify the individual phases
at runtime we introduce markers (tags) in the E-Code that
separate the corresponding sections from each other. Markers
are represented as nop instructions with an appropriate flag:
eot indicates the end of the tt section (phase), eoa indicates
the end of the au section (phase).

It should be noted that a trivial solution to the data depen-
dency violation is to put also all non-TDL blocks under the
control of the E-Machine. This would basically result in a
4th E-Machine phase which is executed between au and mstr
by an E-Machine trigger. However, this contradicts the un-
derstanding of an independent plant and brings about several
drawbacks; above all, the limitation to no longer support con-
tinuous Simulink blocks. Hence, we did not pursue this op-
tion.

sr tr tx tt au... tt au sr tr tx ...

t0-LET t0 t0+LET

step 1 step 2step 1 step 2... ...

Figure 6. Separation of triggers into steps

4.2. The 2-Step Execution Mechanism
Our primary goal is to decouple the triggering of actuators

and sensors in order to execute non-TDL blocks in between.
Figure 6 shows the execution of the individual triggers along
the timeline for a simple example where a task reads from
a sensor and updates an actuator: at time t0−LET , the sen-
sor is read (sr), the task is released (tr) and executed (tx); at
time t0, the task is terminated (tt) and the actuator is updated
(au). Afterwards, but at the same logical time, the next in-
vocation begins with executing sr, tr, and tx. The basic idea
of this approach is to split the execution of all triggers for
a particular logical time into two separate steps. Step 1 ex-
ecutes sensor-independent activities such as the termination
of tasks, while step 2 executes activities that are potentially
sensor-dependent such as the release driver of a task. Each
step is executed from a different S-Function, so that the plant
or other non-TDL blocks can be executed in between:

E-Machine 1 executes step 1, which comprises the execu-
tion of (1) task termination drivers, (2) actuator drivers, and
(3) their guards if both do not depend on a sensor value; ad-
ditionally, the E-Machine 1 executes (4) port initializer func-
tions when the simulation starts.

E-Machine 2 executes step 2, which comprises the ex-
ecution of the following activities: (1) sensor drivers, (2)
mode switch drivers, (3) mode switch guards, (4) task release
drivers, (5) task execution drivers, and (6) task guards; addi-
tionally, (7) actuator drivers and (8) their guards, if the actua-
tor itself or the guard depends on a sensor value3.

According to this scheme, the glue-code generator dis-
tributes the list of drivers (function-call subsystems) among
the two E-Machines. Both E-Machines operate on the same
E-Code and both are based on the same implementation. They
only differ in their mdlOutputs function. Algorithm 1 shows
the implementation for E-Machine 1, which executes only
phase tt and phase au.

Algorithm 1 mdlOutput function of E-Machine 1

1 f o r (module m : modules) { / / s t e p 1 , phase tt
2 ft[m] ← r e a d I n p u t () / / r e a d f u t u r e t ime from E−Machine 2
3 i f (ft[m] = nowε){ / / l o g i c a l t ime = s i m u l a t i o n t ime ?
4 fa[m] ← r e a d I n p u t () / / r e a d f u t u r e add r . from E−Machine 2
5 a ← fa[m]
6 / / e x e c u t e E−Code i n s t r . f o r m a t a u n t i l nopeot

7 i n t e r p r e t e E C o d e (m , a , nopeot)
8 }
9 }

10 f o r (module m : modules) { / / s t e p 1 , phase au
11 i f (ft[m] = nowε){ / / l o g i c a l t ime = s i m u l a t i o n t ime ?
12 / / e x e c u t e E−Code i n s t r . f o r m a t a u n t i l nopeoa

13 i n t e r p r e t e E C o d e (m , a , nopeoa)
14 }
15 }

3If an actuator or its guard reads a sensor, Simulink is only able to simu-
late the model, if there is a delay introduced somewhere along the signal path
between actuator and sensor.

Algorithm 2 mdlOutput function of E-Machine 2

1 f o r (module m : modules) { / / s t e p 2
2 i f (ft[m] = nowε){ / / l o g i c a l t ime = s i m u l a t i o n t i me ?
3 / / e x e c u t e E−Code i n s t r . f o r m a t fa[m] u n t i l return
4 i n t e r p r e t e E C o d e (m , fa[m] , ⊥) / / s e t s new fa[m] , ft[m]
5 w r i t e O u t p u t (ft[m]) / / w r i t e f u t u r e t ime t o E−Machine 1
6 w r i t e O u t p u t (fa[m]) / / w r i t e f u t u r e a d d r e s s t o E−Machine 1
7 }
8 }

Algorithm 2 shows the implementation for E-Machine 2,
which passes through the whole E-Code in order to execute
phase mstr and to properly handle sensor-dependent actuators
which appear in phase au.

Splitting the E-Code interpretation of one module into sep-
arate E-Machines introduces additional synchronization re-
quirements. Mode switches performed by E-Machine 2 have
to be signaled to E-Machine 1. More precisely, E-Machine 1
reads the a and δ argument of the last future instruction of
E-Machine 2 via a Simulink signal to timely resume execu-
tion at the correct E-Code instruction.

After executing step 2, time passes because the LET of a
task is always greater than zero. However, Simulink is not
aware of this, as it is not apparent from the data flow. Con-
sequently, without any further arrangements, Simulink could
not derive a valid block update order and would still report a
data dependency violation. Whenever data flow is implicitly
delayed by the E-Machine, i.e. a future instruction is hit, the
delay must be reflected in the simulation model. Time passes
between the execution of a task and its termination, as well as
between the E-Machine executions of step 2 and step 1. Thus
placing a unit delay block between each tx and tt driver pair
and between the two E-Machine blocks enables Simulink to
find a valid block update order, that exactly follows the LET
semantics. The sample time of the delay blocks is set to the
E-Machine period. Effectively, they have no impact on the
observable timing behavior.

Figure 7 illustrates the 2-step E-Machine architecture and
the block update order of the overall system. The introduced
delay blocks between the task execution and the termination
driver and between E-Machine 2 and E-Machine 1 are exe-
cuted first. Afterwards, the simulation environment executes
E-Machine 1. The plant (or any other non-TDL block) exe-
cutes third. Hereafter, the E-Machine 2 executes step 2.

To avoid illegal data dependencies caused by cyclic import
relationships, all TDL modules in a simulation model have to
be controlled by one single E-Machine pair only.

4.3. Mixed Time/Event-Triggered Systems
So far we only considered purely time-triggered real-

time applications. Recently, TDL was extended by a no-
tion for asynchronous (event-triggered) activities with a well-
defined synchronization mechanism for data flow between

E-Machine

2

sensor
task

release

task

termination
actuator

plant

E-Machine

1

delay

delay

4. 2.1. 3.

task

execution

control flow

data flow

Figure 7. The 2-step E-Machine architecture

time- and event-triggered activities [18]. The presented 2-
step E-Machine architecture proved to fit well for the new
requirements. To ensure that the different priorities are pre-
served and that the data flow exactly follows TDL semantics,
also asynchronous activities are triggered by the E-Machine,
which now uses an inherited sample time. However, when
using asynchronously executed TDL activities, simulation
looses its property to exactly match with the behavior on an
arbitrary potentially distributed hardware platform. Platform
specifics are not modeled in the simulation, which is thus nei-
ther aware of any target specific scheduling mechanism, net-
work topology, nor expected execution or transmission times,
etc. Nevertheless, the simulation is still useful for analyzing
synchronous and asynchronous TDL activities together with
the plant model.

4.4. Evaluation
We evaluated the runtime overhead of the presented E-

Machine architecture compared to a single-step approach. For
a model executing 200 empty task functions at an average rate
of 30ms (≈ 4400 E-Code instructions), we measured about
8% performance loss. In an active rear steering case study, the
overhead was about 6%. In general, the overhead decreases
with rising complexity of the plant and the task functions.
Furthermore, it increases with the length of the E-Code sec-
tions tt and au, because the E-Machine 2 iterates over the
whole E-Code for executing sensor-dependent actuators. If
required, this can be considerably optimized at the expense
of analyzing the E-Code during initialization.

5. CODE GENERATION & TDL TOOLS
The 2-step E-Machine approach has been implemented in

the TDL tool-chain [14]. The timing behavior of the appli-
cation, i.e. the TDL description, is specified by means of
the TDL:VisualCreator, a graphical modeling tool that is in-
tegrated into Simulink via a TDL Module Block in the Si-
mulink library. The functionality and the plant are modeled
with Simulink blocks. For simulating the model, the TDL de-
scription is compiled into E-Code and automatically trans-
formed into interconnected Simulink blocks which also link
to the already modeled functionality blocks. During the si-
mulation, the E-Machine pair triggers the individual blocks
according to the E-Code. Once the simulation exhibits satis-
factory behavior, we can go about generating code. Therefore,

we use the TDL:VisualDistributor tool to define a hardware
topology and to map the TDL modules to their target nodes.
This also requires to specify worst-case execution times and
hardware devices for sensors respectively actuators. A flex-
ible plugin-based code generation framework generates the
required C glue code and, in case of a distributed system, the
required communication schedule according to the specified
target platform [14]. We use MathWork’s Real-Time Work-
shop Embedded Coder [19] to generate C code for the control
task functionality. The generated code can now be compiled
and linked with the platform specific E-Machine.

6. RELATED WORK
The concept of LET was introduced in the realm of Giotto

[9]. Throughout this paper we used one of its successors, the
Timing Definition Language (TDL) [17], as a language based
on the LET programming model.

The foundation of our work, i.e. the initial prototypical E-
Machine S-Function implementation, is described in [15]. It
uses one single-step E-Machine for each module and is thus
prone to data dependency violations.

TrueTime [8] provides a MATLAB/Simulink toolbox for
simulating distributed real-time control systems. The result-
ing Simulink model, however, is tailored to one specific hard-
ware platform and network topology.

Mosterman et al. [13] describe illegal loops in Simulink
that arise when partitioning models in order to match the
hardware platform. The authors propose an interleaved ex-
ecution mechanism to resolve a certain class of algebraic
loops involving atomic subsystems. The simulation of LET-
based components requires solving data dependencies involv-
ing triggered subsystems.

Also another Giotto extension, HTL, allows for the simu-
lation of LET-based systems in Simulink [11]. In contrast to
our approach, the simulation results do not match exactly the
LET description. For breaking algebraic loops, additional de-
lay blocks are introduced which influence the observable tim-
ing. Additionally, this implementation trades off accuracy for
performance since it requires the sample rate of some blocks
to be at least one decimal order of magnitude higher than ac-
tually required by the HTL description.

TDL has also been ported to Ptolemy [4], a modeling
and simulation environment for heterogeneous systems, as a
new model of computation. The timing behavior is described
within the simulation model, whereas our approach abstracts
from both, the simulation respectively the execution platform.

7. CONCLUSION
We presented a mechanism for simulating LET-based real-

time components. We pointed out the problems with data de-
pendencies respectively algebraic loops that typically occur
when LET-based components (controllers) are simulated.The

described approach solves these problems and ensures that
the simulation in a modeling environment such as MAT-
LAB/Simulink exhibits exactly the same behavior as the ex-
ecution of the generated code on any potentially distributed
hardware platform.

Acknowledgements. We would like to thank Stefan
Resmerita for pointing us to the problem of simulating LET-
based controllers in models involving plants without a delay,
which led to the current version of the E-Machine architec-
ture. Gerald Stieglbauer helped us with subtle points regard-
ing Simulink’s semantics.

REFERENCES
[1] M. Baleani, A. Ferrari, L. Mangeruca, A. L. Sangiovanni-Vincentelli, U. Freund,

E. Schlenker, and H.-J. Wolff. Correct-by-Construction Transformations across
Design Environments for Model-Based Embedded Software Development. In
DATE ’05. IEEE Computer Society, 2005.

[2] L. Carloni, M. Benedetto, R. Passerone, A. Pinto, and A. Sangiovanni-Vincentelli.
Modeling Techniques, Programming Languages and Design Toolsets for Hybrid
Systems. Technical Report Columbus Project, IST-2001-38314 WPHS, 2004.

[3] B. Denckla. Many cyclic block diagrams do not need parallel semantics. SIG-
PLAN Not., 41(8):16–20, 2006.

[4] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. R.
Sachs, and Y. Xiong. Taming heterogeneity - the Ptolemy approach. Proceed-
ings of the IEEE, Special Issue on Modeling and Design of Embedded Software,
91(1):127–144, January 2003.

[5] C. Farcas. Towards Portable Real-Time Software Components. PhD thesis, Uni-
versity of Salzburg, 2006.

[6] C. Farcas and W. Pree. Virtual execution environment for real-time TDL com-
ponents. In ETFA ’07: Proceedings of the 12th IEEE Conference on Emerging
Technologies and Factory Automation, 2007.

[7] E. Farcas, C. Farcas, W. Pree, and J. Templ. Transparent distribution of real-time
components based on logical execution time. SIGPLAN Not., 40(7):31–39, 2005.

[8] D. Henriksson, A. Cervin, and K.-E. Arzen. TrueTime: Real-time Control Sys-
tem Simulation with MATLAB/Simulink. In Proceedings of the Nordic MATLAB
Conference, 2003.

[9] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A time-triggered language for
embedded programming. Proceedings of the IEEE, 91:84–99, January 2003.

[10] T. A. Henzinger and C. M. Kirsch. The embedded machine: predictable, portable
real-time code. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Confer-
ence on Programming language design and implementation, pages 315–326, New
York, NY, USA, 2002. ACM.

[11] D. Iercan and E. Circiu. Modeling In Simulink Temporal Behavior of a Real-
Time Control Application Specified in HTL. Journal of Control Engineering and
Applied Informatics (CEAI), 10(4):55–62, 2008.

[12] E. A. Lee and H. Zheng. Leveraging synchronous language principles for het-
erogeneous modeling and design of embedded systems. In C. M. Kirsch and
R. Wilhelm, editors, EMSOFT, pages 114–123. ACM, 2007.

[13] P. J. Mosterman and J. E. Ciolfi. Interleaved Execution to Resolve Cyclic Depen-
dencies in Time-Based Block Diagrams. In CDC ’04: Proceedings of the 43rd
IEEE Conference on Decision and Control, 2004.

[14] A. Naderlinger, J. Pletzer, W. Pree, and J. Templ. Model-Driven Development of
FlexRay-Based Systems with the Timing Definition Language (TDL). In ICSEW
’07: Proceedings of the 29th International Conference on Software Engineering
Workshops, Washington, DC, USA, 2007. IEEE Computer Society.

[15] G. Stieglbauer. Model-based Development of Embedded Control Software with
TDL and Simulink. PhD thesis, University of Salzburg, 2007.

[16] G. Stieglbauer and W. Pree. Visual and Interactive Development of Hard Real
Time Code, January 2004. Automotive Software Workshop San Diego (ASWSD).

[17] J. Templ. Timing Definition Language (TDL) 1.5 Specification. Technical report,
University of Salzburg, 2007. Available at http://www.softwareresearch.net.

[18] J. Templ, J. Pletzer, and A. Naderlinger. Extending TDL with Asychronous
Activities. Technical report, University of Salzburg, 2008. Available at
http://www.softwareresearch.net.

[19] The MathWorks. http://www.mathworks.com.

