
RePP Submission: Flexible Scheduling of
Predictable Software with Logical Execution

Time Constraints

Stefan Resmerita and Patricia Derler

University of Salzburg, Austria
firstName.lastName@cs.uni-salzburg.at

Abstract. Various programming models for embedded, time-triggered
software employ the logical execution time (LET) abstraction in order
to achieve predictable timing behavior. In these models, the application
software is partitioned into tasks and a LET is associated with every
task. In every execution, a task reads input values that are valid at the
beginning of the LET and writes output values at the end of the LET.
While existing approaches constrain scheduling of a task execution to
the LET bounds, we present a more e�cient alternative where tasks
can be executed outside of the LET bounds without changing the ob-
servable behavior of the system. Our methodology uses detailed timing
information about the embedded software and about the physical envi-
ronment. This extends the class of systems that are schedulable under
the LET constraints. Moreover, in mixed time-/event-triggered systems
the relaxed scheduling constraints can decrease response times of event-
triggered tasks.

1 Introduction

Developing complex real time applications requires programming disciplines that
take into account suitable abstractions of execution and communication times,
which are specific to execution platforms. The Giotto programming model [5]
introduced the concept of logical execution time (LET) of a software component
(a task), representing a fixed logical duration for one execution of the task. The
LET specifies the real time instants when task inputs and outputs are updated
for every execution of the task. A runtime system performs the I/O actions at
the right times, and also dispatches the task for execution. The task should be
executed such that it uses input values that are valid at the beginning of the
LET and it must issue outputs to the runtime system before the end of the task’s
LET, when they will be made available to the task’s environment.

The LET concept is used in Giotto successors such as TDL [6] and HTL [3].
Advantages of LET-based programming models are that the application devel-
opment process benefits from platform independence and from a dual separation
of concerns: timing versus functionality and reactivity versus scheduling [4]. Fur-
thermore, the I/O behavior of the application is predictable.

For an application with LET specifications and a given execution platform,
a time-safety check must be performed to decide whether the LET requirements
can be met. This check involves a schedulability analysis, which takes as inputs
a scheduling policy, the worst case execution times (WCETs) of the application
tasks and the scheduling constraints derived from the LET specifications. The
analysis decides if the task set can be scheduled such that the LET constraints are
satisfied. Existing implementations of the above mentioned programming model
use conservative constraints, essentially requiring the total physical computation
of a task to take place within the LET interval. In other words, the beginning of
LET is the release time of the task when the task becomes ready for execution,
and the end of the LET forms the latest termination time of the task. Figure
1(a), which can be found in [2] and [6], illustrates the classical LET view with
the I/O semantics and the scheduling constraints.

An embedded application (program) consisting of a set of time-triggered tasks
with LET specifications is said to be schedulable if any run of the program sat-
isfies the LET-based I/O semantics. Satisfaction of the conservative scheduling
constraints is a su�cient condition for schedulability of the application. Thus,
if no schedule with these constraints can be found, the application is declared
unschedulable. Note that these conservative constraints are platform indepen-
dent and reflect a black-box view of a task, since they use no information about
the task’s internal structure. Yet the schedulability analysis uses these platform
independent constraints in conjunction with platform specific information such
as the scheduling policy and the WCET information of tasks which is usually
obtained from a detailed analysis of the code and the target platform.

In this work, we propose deriving more relaxed scheduling constraints from
the LET specifications, by using information about: (1) Internal structure of
a task, (2) Execution times of parts of the tasks’ code, (3) Scheduling policy
of the target platform, and (4) Dynamics of input signals from the physical
environment. We describe circumstances under which a task can be released for
execution before the beginning of its LET and can be allowed to execute past
the end of the LET, thus extending the time frame for scheduling the task’s
execution, while preserving the LET-based I/O semantics. This is schematically
depicted in Figure 1(b). A task T can be released for execution earlier than the
beginning of its LET if: (1) Each input port that is read by T before the start of
the LET has been updated by the runtime system with the latest value, and (2)

read inputs write outputs

logical
physical

Logical Execution Time (LET)

preempt resume
release terminate

start finish

read inputs write outputs
Logical Execution Time (LET)

time

release terminate

preempt resumestart finish

(a) (b)

Fig. 1. Logical Execution Time, (a) LET with classical scheduling constraints, (b) LET
with flexible scheduling constraints

The value of the corresponding input source does not change from the moment
of the update until the beginning of LET. Similarly, a task’s execution can be
allowed to spill over the end of the LET if it is guaranteed that the task updates
no output port during the spillover part.

By relaxing the scheduling constraints, the search space for feasible schedules
is increased. In particular, an application that is declared unschedulable with the
conservative constraints can become schedulable with the relaxed constraints.
Moreover, a better processor utilization is achieved, where a time-triggered task
can partially execute outside of its LET when the processor would be otherwise
idle. Consequently, response times of low-priority event tasks decrease. Also, this
reduces the risk of LET deadline violations in systems with high-priority event
tasks that may preempt time-triggered tasks.

2 Using System Information for Enhanced Schedulability

The contents of a software task (at source code level, or assembly level) can reveal
syntactical and semantical information that can be used to loosen the LET-based
scheduling constraints. Some of this information is described in the sequel, with
the help of a simple example involving one time-triggered task T with two inputs
i1 and i2, and one output o1. When associating a LET to T in a programming
model such as Giotto or TDL, the task is considered as an opaque component,
or black-box, as illustrated in 2(a). The task implementation (source code or
binary code) is used only to obtain its WCET. In our approach, we open up the
task and extract more information, as follows. Let us consider two alternative
implementations of T , schematically depicted in Figure 2(b) and Figure 2(c),
where the input and output ports are implemented as global variables.

δmin1

T_Implementation() {
 initialize();
 readState();
 ...
 v1 = i1 + ...
 ...
 v2 = i2 + ...
 ...
 o1 = ...
 computeState();
}

δmin2

δmin3

Task T

i1

i2

o1

(a) (b) T_Implementation() {
 counter++;
 ...
 if (counter % 2 == 0) {
 ...
 v2 = i2 + ...
 ...
 o1 = ...
 }
 ...
}

(c)

Fig. 2. A Task T with inputs and outputs. (a) shows the black-box view, (b) and (c)
show possible implementations of T .

Syntactical information refers to lines of code where input and output ports
are accessed. For example, some of the task’s code is executed before accessing
any input port (e.g. reset or initialization routines). Also, some code can be
executed after all output ports are updated (e.g. computation of internal state).
Using timing analysis, one can determine the shortest execution time between
the beginning of the execution and the moment when an input port is accessed

in the code, as well as the shortest execution time between a last access to an
output port and the end of execution. In Figure 2(b), �min1 denotes the minimum
execution time between the beginning of the task and any access to input ports
(assuming that variable i1 is the first input port to be used in any execution of
the task), �min2 is the minimum execution time between the beginning of the
task and the first access to i2, and �min3 is the minimum execution time between
the last access to any output port and the end of execution.

Semantical information reveals possible behaviors of the task’s I/O activity.
A typical example in this respect is illustrated in Figure 2(c), where the code
of the if block is executed every second invocation of the task. If the ports i1
and o1 are accessed only within that block, then we know that i1 need not be
updated by the runtime system in invocations 1, 3, 5, . . . of the task, and that o1

has a constant value during two periods of the task.
Timing predictability of inputs means that input values of a task may be

known in advance over a time window. In general, we distinguish among two
types of predictable input sources for time-triggered tasks in a LET-based sys-
tem: Time-triggered and event-triggered tasks. Since the I/O behavior of all
time-triggered tasks is specified by their LETs, the outputs of a time-triggered
tasks are unchanged between two consecutive LET ends. An event usually rep-
resents a value change of a physical parameter, detected by an active sensor.
Control applications are designed based on a model of the physical process to be
controlled. The model contains information about real-time evolution of physical
parameters, which could be used to predict events. In particular, we are inter-
ested in the minimum period of time during which a sensor value stays unchanged
in the system. For example, consider a heater/cooler control application, where
a temperature sensor with hysteresis is used. The maximum rate of temperature
change at the sensor’s location in the controlled space and the sensor’s hysteresis
determine a minimum time period between any two consecutive changes in the
sensor’s output.

3 Example

To obtain larger scheduling bounds, one should aggregate information from dif-
ferent sources of predictability, as described above. We illustrate this aggregation
process in an example of an embedded application with two time-triggered tasks
T1, T2 and an event-triggered task E. For this example, we will determine re-
lease times for the task T1 that precede the beginning of T1’s LET, such that
T1’s LET-based I/O semantics is preserved. Figure 3(b) shows a time window
with the placement of LETs for the time-triggered tasks and two executions of
the event task. The implementation of T1 is outlined in Figure 3(a), where T1

first reads an input from E via the input port pE , then from T2 via p2 and later
from a sensor via ps. For an input port p of task T1, we denote by �min(T1, p)
the minimum execution time of T1’s code segment from the beginning until the
place where p is accessed for the first time. We assume that there exists a mini-
mum time period between any two consecutive executions of E, also called the

minimum inter-arrival time of E, denoted by �E . We use tLs(T1) to represent
the beginning of T1’s LET shown in the figure and tLe(T2) for the end of T2’s
LET which precedes tLs(T1).

time

T1

T2

(a)

δmin (T1 , ps)

δmin (T1 , p2)

(b)

δmin (T1 , p2)

δmin (T1 , pE)
T1 (...) {
 ...
 ... = pE ...
 ...
 ... = p2 ...
 ...
 ... = ps ...
 ...
}

δE
E

δmin (T1 , ps)

δmin (T1 , pE)

t1 t2 t4 t5 t3

Fig. 3. T1 is released before the start of the LET

Let us consider the sources of T1’s inputs. We assume that ps is connected to
an unpredictable sensor, so one cannot predict the value on ps at time tLs(T1)
ahead of time. Consequently, ps must be updated by the runtime system at
tLs(T1) and T1 must not read the variable ps earlier. This is satisfied if T1

begins execution at any time in the interval (t2, tLs(T1)], where t2 = tLs(T1) �
�min(T1, ps).The source of p2 is time-predictable: it is updated only at the end of
T2’s LET, thus a correct execution of T1 must not read from p2 before tLe(T2).
The earliest time at which T1 can be released under this condition is t1 =
tLe(T2) � �min(T1, ps). The port pE is updated by the event-triggered task E
at times which cannot be statically predicted. The earliest release time for T1

which guarantees that T1 reads from pE at or after tLs(T1) is t4 = tLs(T1) �
�min(T1, pE). It follows that the earliest static release time for T1 that ensures a
correct LET-based I/O operation is tr(T1) = max{t1, t2, t4} = t4. The value of
tr(T1) can be decreased by using a dynamic scheduling procedure. Assume that
t3 + �E > tLs(T1) meaning that pE remains unchanged between t3 and tLs(T1).
Hence the earliest release time for T1 can be determined by the dynamic scheduler
at time t3, as tr(T1) = max{t1, t2, t3}.

4 Discussion

The relaxed scheduling constraints have to be evaluated in conjunction with
the scheduler used by the operating system on the target platform to make sure
that the parts of tasks which can be executed outside of the corresponding LETs
are in fact executed when the processor would otherwise be idle. For example,
when using a priority-based preemptive scheduler, the priority of a task can be
set to be lower than the normal priority of any task in the system for the time
intervals the task is executing outside the LET bounds. This will ensure that the
code executed outside of the LET will not preempt or delay any other regular
execution of a time- or event-triggered task.

Information about task internal structure and inter-task dependencies has
been applied to general scheduling problems. In [1], Gerber and Hong present a
language where timing semantics is based solely on observable events, which are

I/O send and receive actions. Tasks are split such that the part of code that does
not contain observable events (send and receive actions) is put into a separate
task which can be scheduled later. We also consider code starting code earlier
than stated in the timing specification. This means using shortest execution time
of code segments, while the vast majority of scheduling research considers worst
case (longest) execution time analysis.

While the relaxed constraints provide an increased scheduling flexibility,
they may weaken a compositionality property of the system. Using the clas-
sical scheduling constraints, a system is still schedulable if a new task is added
to an existing system with a LET that does not overlap with existing tasks
LETs. This guarantee cannot be given with the scheduling constraints described
in this work, since tasks can be executed outside of their LETs. However, notice
that in any situation in which such a new task cannot be added to a given sys-
tem, this implies that the original system is not schedulable with the classical
constraints. Note that the classical requirement ET WCET LET is not
necessary with the relaxed scheduling constraints, where a task is schedulable
even if it’s WCET is bigger than its LET. Another potential disadvantage of the
proposed constraints is that the static schedule of actions that must be executed
by the runtime system is platform-specific. In the classical case, the time steps
of timing instructions depend only on the LET specifications. This can be easily
overcome by using a tool to automatically generate the relaxed constraints.

Further work on this topic involves deriving the precise formulas for relaxed
execution bounds, and proving various properties of the system as consequences
of using these bounds. We plan to evaluate the benefits and costs of using our
approach on several relevant examples of embedded applications and provide an
implementation of the new scheduling.

References

1. Richard Gerber and Seongsoo Hong. Semantics-based compiler transformations for
enhanced schedulability. In Proceedings IEEE Real-Time Systems Symposium, pages
232–242. IEEE Computer Society Press, 1993.

2. Arkadeb Ghosal, Tom Henzinger, Christoph Kirsch, and Marco Sanvido. Event-
driven programming with logical execution times. In George Alur, Rajeev; Pappas,
editor, Proceedings of the 7th International Workshop, Hybrid Systems Computation
and Control, March 2004.

3. Arkadeb Ghosal, Alberto Sangiovanni-Vincentelli, Christoph M. Kirsch, Thomas A.
Henzinger, and Daniel Iercan. A hierarchical coordination language for interacting
real-time tasks. In EMSOFT ’06: Proceedings of the 6th ACM & IEEE International
conference on Embedded software, pages 132–141, New York, NY, USA, 2006. ACM.

4. T. A. Henzinger, C. M. Kirsch, M. A. A. Sanvido, and W. Pree. From control models
to real-time code using giotto. Control Systems Magazine, IEEE, 23(1):50–64, 2003.

5. Thomas A. Henzinger, Christoph M. Kirsch, and Slobodan Matic. Composable code
generation for distributed giotto. SIGPLAN Not., 40(7):21–30, 2005.

6. Wolfgang Pree and Josef Templ. Modeling with the timing definition language
(TDL). Second Automotive Software Workshop, ASWSD 2006, San Diego, CA,
USA, pages 133–144, 2008.

