
Impact of Platform Abstractions on
the Development Workflow

Johannes Pletzer and Wolfgang Pree

C. Doppler Laboratory Embedded Software Systems, University of Salzburg,
Jakob-Haringer-Str. 2, 5020 Salzburg, Austria.

firstname.lastname@cs.uni-salzburg.at

Abstract. The development workflow for distributed embedded system
components in the automotive industry is typically characterized by a strict
separation of concerns between the Original Equipment Manufacturer (OEM)
and its suppliers. It is based on hardware components or Electronic Control
Units (ECUs), where the OEM specifies the network layout and communication
system properties before suppliers develop individual ECUs implementing the
required functionality. We argue that platform abstractions such as envisioned
by AUTOSAR or the Logical Execution Time (LET) abstraction would allow a
fundamental overhaul of the development workflow, eventually leading to a
significant gain in productivity and flexibility. We analyze the typical workflow
and two standard development tools which are commonly used and compare
both to the development workflow employed by tools based on the Timing
Definition Language (TDL) which represents a LET-based language.

Keywords: Automotive development workflow, Timing Definition Language,
Logical Execution Time, OEM - supplier relationship.

1 Introduction

So far, the principal means for structuring the growing amount of software in a car is
the splitting of functionality into separate Electronic Control Units (ECUs). An ECU
corresponds to a software module. This affects the division of work between an
Original Equipment Manufacturer (OEM) and its suppliers and thus the overall
development workflow. The OEM specifies all signals sent between the ECUs in the
overall electronic system and the complete communication infrastructure which
carries them. These signals and the topology information, together with a detailed
functional specification, are the basis for the development work of the suppliers,
which eventually provide one or multiple ECUs to the OEM who is then responsible
for the final integration and testing of the overall system.

This approach requires quite a detailed knowledge of the electronic system from
the beginning, as the ECUs depend on the communication parameters and signals and
vice-versa. Especially when using the FlexRay protocol [3] there are numerous
parameters, such as the division into a so-called static (time-triggered) and dynamic
(event-triggered) part, the communication cycle length and static slot size, that need

2 Johannes Pletzer and Wolfgang Pree

to be agreed on in an early phase of the development process as otherwise the ECUs
are not able to communicate. Consequently, changes in a later phase are expensive, as
they require adaptations in all ECUs of potentially different suppliers.

The original vision of AUTOSAR [8] was to abstract from platform details to
allow developing a software component once and then be able to deploy it
automatically on any hardware platform. This would have held the potential to also
change the rigid development process. The Giotto language [1] and one of its
successors, the Timing Definition Language (TDL) [5] share this vision with
AUTOSAR. One consequence of an adequate platform abstraction would be that the
communication schedule is not a requirement which suppliers need to obey, but which
can be generated automatically as a last step when the OEM integrates all
components.

In the following we will outline and compare a) the non-AUTOSAR workflow
based on Elekrobit’s EB Designer Pro b) an AUTOSAR-workflow based on Vector’s
DaVinci Tool Suite and c) a TDL workflow based on preeTEC’s TDL tools integrated
in MATLAB/Simulink [9]. We argue that b) is not sufficient to significantly simplify
the development workflow in comparison to a) and that only abstractions such as LET
that allow the automatic generation of platform-specific code will do so.

2 Current Workflow and Tools in the Automotive Industry

The tools available for developing automotive distributed systems reflect the
workflow which is commonly employed in the industry. Typically one has to specify
the communication properties as one of the first steps in development as all further
steps depend on it. We take a closer look on two commonly used tools, namely
Elekrobit’s EB Designer Pro and Vector’s DaVinci tool suite.

2.1 EB Designer Pro

EB Designer Pro by Elekrobit [7] is a tool for the design of distributed real-time
systems using the FlexRay communication protocol. It aids the user to set up all
FlexRay parameters and produces configuration files for FlexRay controllers and the
operating system running on the ECUs of the system. Task functions must be
provided separately. The tool is available in a full version and also as two separate
units, the EB Designer Pro <SYSTEM>, which is limited to OEM design tasks and
the EB Designer Pro <ECU>, limited to design tasks performed by ECU suppliers.
The developer is guided step-by-step through all required settings to obtain a working
system. The steps are divided into a system part and an ECU part which corresponds
to the two versions of EB Designer Pro as mentioned above.

Figure 1 outlines the complete development workflow of EB Designer Pro. The
first step in the system part is the architecture definition, where the network topology
including the number of ECUs and communication controllers in the system and the
bandwidth of the FlexRay bus is specified. Next, the detailed settings of the FlexRay
protocol must be entered using an optional wizard. The system part is then concluded

Impact of Platform Abstractions on the Development Workflow 3

with the communication planning, i.e. the assignment of FlexRay communication
slots to ECUs in the system.

The next development phase is the ECU part which is typically done by one or
more suppliers, who are able to import all the settings the OEM has specified in the
system part. The ECU workflow starts with an ECU hardware refinement step, where
the type of Microcontroller Units (MCUs) and FlexRay controllers are selected and
operating system parameters are specified. Next, the ECU software is refined by
defining application and system tasks and assigning them to MCUs. Finally,
automatic code generation for every ECU is triggered after the detailed configuration
of the communication layer.

2.2 DaVinci Tool Suite

The DaVinci tool suite by Vector Informatik [4] consists of three parts. The System
Architect and the Network Designer are typically used by OEMs, whereas the
DaVinci Developer is targeted at ECU suppliers. Every tool is used to perform
distinct design tasks according to the AUTOSAR methodology. See Figure 2 for an
overview of the workflow.

DaVinci System Architect is used to define AUTOSAR software components on
an abstract level. This means that no functionality is specified, but only the interface
and connections of components, i.e. so-called ports that have a type and a data size. In
addition, a network of ECUs is defined and subsequently every software component is
mapped to an ECU where it is later executed. After this step, ports can be
distinguished by whether the associated software components are mapped to the same
ECU and therefore are ECU-local (so-called internal ports) or require network
communication as they are located on different ECUs (so-called external ports).

DaVinci Networker Designer is available for different communication buses such
as CAN and FlexRay. It is used to set up all properties of the specific protocol, in-
cluding bandwidth, communication layout, frames and messages. The most important
workflow step is the assignment of external ports to messages so that the required
values for exchanging data between software components are transferred via the bus.

Compile & link ECU binaries

ECU software refinement (task scheduling)

ECU hardware refinement (CPU and FlexRay controllers)

Communication planning (FlexRay slot assignment)

FlexRay protocol specification

Specify network topology (ECUs and buses)

System Requirements

Fig. 1. EB Designer Pro workflow overview (white: OEM, gray: supplier)

4 Johannes Pletzer and Wolfgang Pree

On basis of the former specification of the system, an ECU supplier can then use
DaVinci Developer to create the complete ECU software. So-called Runnables must
be defined which are used as a container for user code and finally implement the
functionality of software components. Runnables then need to be mapped to operating
system tasks where also a priority is assigned to them. Finally, the operating system
and the communication layer must be configured before the complete ECU software
can be compiled and linked.

2.3 Evaluation

In order to evaluate the flexibility of the workflow of the two tools, let us consider the
following example use case: For reasons such as ECU consolidation, a software
component of a previously completely specified system needs to be moved from one
ECU to another. This typically leads to a change in the communication requirements
for the involved ECUs and therefore also to a change required in the communication
schedule. For both tools this means that adaptations are required very early in the
workflow, and as all subsequent steps depend on it, they all need to be reevaluated
and in many cases a redesign is necessary.

When using the EB Designer Pro, it depends on the concrete change that is re-
quired to determine to which workflow step one has to go back. If it is sufficient to
add or change the contents of individual FlexRay slots, changes in the communication
planning workflow step are required. If this is the case, subsequent changes in the
ECUs are local to the ECUs involved in the relocation of the software component. If
however moving the component requires changes in either the slot size or the com-
munication cycle length, this leads to a change in the FlexRay protocol configuration
and thereby invalidates the design of all ECUs in the cluster. In this case all FlexRay
controllers must be reconfigured which potentially leads to a change in the timing and
therefore the behavior of every single task on every ECU of the system.

Unfortunately, also the AUTOSAR-based DaVinci Tools provide only little sup-
port for the described ECU consolidation use case. As the mapping of software com-
ponents to ECUs is done by the OEM early in the workflow, a change again

Compile & link ECU binaries

Configuration of OS and communication layer

Definition of Runnables that implement software components

Detailed communication planning based on mapping (bus-specific)

Mapping of software components to ECUs

Definition of software components & ports connecting them

System requirements

Fig. 2. DaVinci Tools workflow overview (white: OEM, gray: supplier)

Impact of Platform Abstractions on the Development Workflow 5

invalidates all subsequent steps to a certain degree. Most importantly the com-
munication planning step, which is done manually with DaVinci Network Designer, is
critical as it later is the basis for ECU development with DaVinci Designer.

The AUTOSAR methodology is meant to promote a less ECU-centric workflow by
supporting the reuse of components and the freedom of moving them between ECUs.
Indeed, these tasks are simplified by the introduction of the standardized AUTOSAR
Basic Software and the introduction of the software component abstraction. However,
(a) moving a software component from one ECU to another requires significant
manual design and development efforts and (b) it is not guaranteed that the
component will behave equally as before. The actual behavior will depend on
complex timing issues regarding the layout of the communication schedule, the CPU
power of the ECUs, the task priorities of AUTOSAR Runnables and the timing of
sensors and actuators, among others. As a consequence, the consolidated system must
again be rigorously tested.

3 The TDL Approach and its Impact on the Workflow

The TDL approach is based on the concept of Logical Execution Time (LET),
which was introduced in the realm of Giotto [1]. It aims to resolve typical
shortcomings of embedded software construction, such as platform dependency and
lack of compositionality. These are caused primarily by the fact that timing behavior
is not specified explicitly but rather is a result of the system load and the occurrence
of unpredictable events at runtime. The LET abstraction offers a solution by
abstracting from the physical execution time of tasks and, in the distributed case, from
network communication. It does so by specifying that the inputs of a task, which can
be values read from sensors or outputs of other tasks, are read at the beginning of the
LET period and the outputs provided to other tasks or actuators are only updated at
the end of a task’s LET. As shown in Figure 3, we call the beginning of the LET the
release event and its end the terminate event. As long as physical task execution at
runtime and potential network communication take place within the LET of a task, the
software will exhibit exactly the same observable behavior on any platform - no
matter if it is fast, slow or even distributed. Handling network communication inside
the LET leads to the notion of transparent distribution [2], as the fact that a system is
distributed does not change its observable behavior, though the physical behavior, in

Fig. 3. Logical Execution Time (LET)

6 Johannes Pletzer and Wolfgang Pree

particular the order and length of task executions and the time when messages are
communicated, may differ.

3.1 TDL Tools

The main TDL tools [10] offered by preeTEC are the TDL:VisualCreator and the
TDL:VisualDistributor, where the former is used for platform-independent modeling
and the latter for platform mapping.

The TDL:VisualCreator is used to create so-called TDL modules, which are
software components that act as a unit of composition and distribution. Modules
contain sensor, actuator, task and mode definitions. Only one TDL mode can be
active at a time and it contains the timing specification for actuators and the LETs for
all tasks running in the specific mode. Functionality code for tasks must be provided
separately as source or object code. When using the MATLAB/Simulink integration
feature of the TDL:VisualCreator, the functionality code can be generated
automatically from the Simulink model by a standard MATLAB tool named Real-
Time Workshop Embedded Coder (RTW-EC). The Simulink integration also allows
the simulation of the TDL system, which due to the LET abstraction is guaranteed to
be equal to the observable behavior on the platform.

The TDL:VisualDistributor is used to deploy TDL modules on a potentially
distributed hardware platform. It allows specifying the platform, i.e. the ECUs and
communication buses connecting them. Support for new types of ECUs and buses can
be added via a plug-in architecture. Note that to support a platform also a
corresponding TDL runtime system must be implemented which ensures the proper
timing of the system according to the LET semantics. When mapping a TDL module
to a concrete ECU, a platform specific Worst Case Execution Time (WCET) must be
set for each task of a module running on an this ECU. Furthermore, the sensors and
actuators of a TDL module must be assigned either by specifying a C function or via a
graphical interface in case the corresponding ECU plug-in supports that. Finally, the
complete code for the system can be generated. This also triggers the fully automatic
bus schedule generator which determines the communication requirements of TDL

Compile & link ECU binaries

Automatic generation of communication schedule and ECU glue code

Deploy TDL modules on target platform

Specify target platform (ECUs and buses)

Simulate behavior (optional)

Specify TDL modules including functionality code

System Requirements

Fig. 4. TDL tools workflow overview (white: OEM, gray: supplier)

Impact of Platform Abstractions on the Development Workflow 7

modules by their deployment to ECUs.
Regarding the automotive workflow, the TDL tools can be used as shown in the

workflow overview in Figure 4. Suppliers may use the TDL:VisualCreator to model
software components according to requirements provided by the OEM. The OEM
then uses the TDL:VisualDistributor to map the TDL modules to the target platform.

3.2 Evaluation

Considering the ECU consolidation use case as described in 2.3 above, it can be per-
formed with much less effort. As no TDL modules need to be changed in such a case,
only the mapping of modules to the hardware platform must be adapted in the
TDL:VisualDistributor. This is done by assigning the module to another ECU and
setting the sensor, actuator and WCET properties accordingly. After that, the code of
the whole system–including the network schedule–is simply regenerated. Note that if
the schedulability check passes and code is generated the observable behavior is
exactly the same as before ECU consolidation, without requiring additional testing.

4 TDL Workflow Advantages

The TDL workflow offers a new level of flexibility and productivity for OEMs and
suppliers that range from testing to the optimization of hardware platforms.

In contrast to conventional tools and also the generic AUTOSAR methodology, the
specification of the communication network is not done manually and early in the
development workflow, but instead it is generated automatically as a last step. The
design of TDL modules is completely platform-independent and lets the supplier
focus on the functionality to implement without having the target platform in mind.
When using the Simulink-integrated TDL:VisualCreator, the behavior of the modeled
functionality can be accurately simulated. The supplier can also utilize the fact that
TDL modules behave exactly the same on any (distributed) platform by testing the
functionality in a real car by deploying it to any platform for which a TDL runtime
system exists. The fact that it is sufficient to test functionality only in the Simulink
simulation or on one hardware platform also greatly reduces the testing efforts.

For the OEM, the TDL methodology provides the flexibility of choosing the
hardware platform, i.e. the ECUs and all connecting communication infrastructure,
after all functionality is implemented and not beforehand. Suppliers do not provide
complete ECUs but instead TDL modules and corresponding functionality code. The
mapping of TDL modules to ECUs is then up to the OEM, who can then for example
select numerous less powerful nodes or a small number of powerful nodes in an effort
to reduce costs, increase reliability or improve electrical stability very late in the
development process. Another example is the selection of the communication bus: On
basis of the actual bandwidth requirements, the OEM can choose for example
between CAN, FlexRay [3] and TTEthernet [6] without redesigning or retesting the
software, as it is guaranteed that it behaves the same as long as TDL is able to
generate code for the specific hardware platform.

8 Johannes Pletzer and Wolfgang Pree

5 Transition from Today’s Workflow to the TDL Workflow

As the TDL methodology introduces fundamental changes to the current workflow,
we are aware that the transition will be a difficult task. However we think the advan-
tages outlined above are strong arguments and that the transition will quickly pay off.
This will be especially true if an OEM does not want to commit to a specific
communication protocol and wants to be able to change it easily. The TDL tools
provide a single development environment that can be adapted to any existing target
platform by developing a plug-in and runtime system for it. Choosing the hardware
late in the development process avoids pessimistic hardware choices or complex
analysis on what platforms might be adequate to perform the required functionality.

Suppliers can reuse their functionality code or Simulink models and construct TDL
modules out of them. However they need to make sure that the functionality still lies
within the specification after adding LETs to all functions. The greatest benefit for
suppliers is that they can focus on the functionality and develop in a platform-
independent way and therefore are released from the burden of testing the same
software repeatedly on different platforms.

6 Conclusion

We showed that while even the AUTOSAR methodology fails to fulfill its vision of
proper platform abstraction, the TDL tools deliver this vision. We outlined how
employing the LET concept finally enables the industry to move away from the
traditional ECU-centric workflow to a truly software component-centric workflow. In
our view, the newly proposed workflow would have a beneficial impact on the OEM-
supplier relationship, leading to increased efficacy, productivity and flexibility.

References

[1] T.A. Henzinger, B. Horowitz, C.M. Kirsch. GIOTTO: A Time-Triggered Language for
Embedded Programming. Proc. IEEE 91 (2003) 84–99.

[2] E. Farcas, C. Farcas, W. Pree, J. Templ. Transparent Distribution of Real-Time
Components Based on Logical Execution Time. LCTES, Chicago, Illinois, 2005.

[3] Makowitz, R. und Temple, C. FlexRay - A Communication Network for Automotive
Control Systems. Proc. WFCS 2006, pp. 207–212.

[4] Vector: DaVinci Tools Suite. http://www.vector-worldwide.com.
[5] J. Templ. Timing Definition Language (TDL) Specification 1.5. Technical Report,

University of Salzburg, 2008.
[6] TTEthernet Specification. Available at http://www.ttagroup.org/ttethernet/overview.htm.
[7] Elekrobit: EB Designer Pro. http://www.elektrobit.com.
[8] AUTOSAR. Automotive Open System Architecture. http://www.autosar.org.
[9] The MathWorks: MATLAB/Simulink. http://www.mathworks.com.
[10] preeTEC: TDL Tools. http://www.preetec.com.

