
Visual Modeling of Real-Time Behavior

Andreas Naderlinger, Wolfgang Pree and Josef Templ

C. Doppler Laboratory Embedded Software Systems

University of Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Abstract. This paper describes the visual representation of the Timing Defini-

tion Language (TDL), a high-level textual description language for timing as-

pects of embedded real-time systems. For this purpose we have designed and

implemented the so-called TDL:VisualCreator tool. The paper presents the core
concepts of TDL, which comprises now both the time-triggered and event-

triggered paradigm, and exemplifies the textual and its corresponding visual re-

presentation. We also point out how the TDL:VisualCreator tool is integrated

with the visual development and simulation environment MATLAB/Simulink.

1 Introduction

Traditional development of software for embedded systems is highly platform specif-
ic. Ever more ambitious requirements and the increased complexity of the resulting
software make a more platform independent “high-level” programming style manda-
tory. In case of real-time software, this applies not only to functional aspects but also
to the temporal behavior of the software. In particular for distributed systems, dealing
with time, however, is not covered appropriately by any of the existing component
models for high-level languages.

The Timing Definition Language (TDL) [1] is such a high-level software descrip-
tion language. It allows the explicit and platform independent timing specification of
multi-mode multi-rate real-time components. TDL is based on the logical execution
time (LET) abstraction introduced in the realm of Giotto [2], which means that the
observable temporal behavior of a TDL task is independent of its physical execution.

TDL adheres to the AUTOSAR [3] vision as the timing behavior is defined inde-
pendent of a specific execution and communication platform. It allows you to develop
embedded real-time software components once and deploy them on any potentially
distributed platform that offers sufficient computing and communication resources.
However, TDL goes one significant step beyond AUTOSAR, as it offers a specifica-
tion of the timing behavior that allows fully automated generation of efficient produc-
tion code from the TDL program for a specific platform. This is in stark contrast to
AUTOSAR whose specification is not adequate for fully automated code generation.
Time-triggered communication schedules, e.g., have to be defined manually which is
error-prone and which requires tedious testing efforts against the AUTOSAR model.

TDL is also well integrated in MathWorks’ [4] MATLAB/Simulink, the de-facto
standard modeling and simulation environment in the automotive domain. This allows

2 Andreas Naderlinger, Wolfgang Pree and Josef Templ

the simulation and automatic code generation of TDL based applications. Simulink
provides an interactive graphical interface.

This paper describes a graphical representation of TDL and the development of
time- and event-triggered applications with our TDL:VisualCreator tool in Simulink.

2 Visual Modeling of TDL Modules in MATLAB/Simulink

TDL itself offers a textual notation for defining the timing behavior of time- and
event-triggered activities and the data flow between them. TDL-based applications
may be composed of several components called TDL modules. A TDL module forms
a unit that consists of sensors, actuators, and modes. A mode is a set of periodically
executed activities. The activities are task invocations, actuator updates, and mode
switches. All activities can have their own rate of execution and all activities can be
executed conditionally. A set of TDL modules corresponds to a set of independent
automatons that execute their time-triggered activities in parallel and that can switch
their modes independently. The tasks represent the functionality, particularly the
control laws. The task implementation is not done in TDL, but in an imperative pro-
gramming language, such as C, or modeled in MATLAB/Simulink. Fig. 2 shows two
TDL modules as TDL Module blocks embedded in a Simulink model.

Fig. 1 lists the textual representation of a sample module Sender. This simple module
comprises one sensor s1, two actuators a1 and a2, as well as a task inc and two opera-
tional states main and freeze called modes. Mode main, which is defined as the start
mode, executes three activities with a period of 10 ms. Within one such period the
activity sequence consisting of task inc and actuator a2 is executed 5 times. Thus the
LET of the task is 2 ms (10/5). The actuator a1 is updated with the output value of inc
at the same rate. In contrast to a2, a1 is not updated until the task’s LET has expired.
Additionally, once every period the sensor s1 is evaluated in a mode switch condition
(implemented in exit). When exit evaluates to true, the module switches to the second
mode freeze. This textual description of TDL covers three different aspects: (i) decla-
rations, (ii) data-flow semantics, and (iii) state transitions.

module Sender {

 sensor double s1 uses getS1;
 actuator int a1 uses setA1;
 actuator int a2 uses setA2;

 public task inc {
 output int o := 10;
 uses incImpl(o);
 uses [release] incRelease(o);
 }

 start mode main [period=10ms] {
 task [5] {inc(); a2 := inc.o}
 actuator [5] a1 := inc.o;
 mode [1] if exit(s1) then freeze;
 }

 mode freeze [period=1000ms] {}

}

 Fig. 1. Textual representation Fig. 2. TDL Modules in
 of a TDL sample module MATLAB/Simulink

Visual Modeling of Real-Time Behavior 3

Simulink developers are used to design their application within an interactive and
graphical environment. They click their way to a control application rather than writ-
ing code. For supporting a visual and interactive modeling of TDL applications we
designed and implemented the so-called TDL:VisualCreator tool [5] (see Fig. 3). It is
a syntax-driven editor that offers exactly the same TDL constructs as the textual TDL
version.

The tool can either be used as a stand-alone application or as a seamlessly inte-
grated add-on for the visual development and simulation environment MAT-
LAB/Simulink. In the latter case, the application’s functionality (i.e. the implementa-
tion of external functions such as inc or exit) can be modeled with Simulink (see Fig.
4). This has the advantage that the behavior of the application can be simulated. Fur-
thermore, the LET abstraction guarantees that the simulated behavior is equivalent to
the behavior on any, potentially distributed, execution platform that provides enough
resources to pass a time-safety check.

Fig. 3. The TDL:VisualCreator tool

The main window of the tool provides three panes that allow the visualization and the
editing of the aspects mentioned above. The upper left part of the window shows a
tree representation of the TDL module, with the module name as the root and its ele-
ments as sub-nodes of the corresponding folders. Below the tree there is table that
shows a list of all properties of the currently selected item in the tree. The pane on the
right side of the window provides the context specific editing capabilities for model-
ing data-flow or state transitions.

The ordering of the individual elements in the tree view follows the TDL language
specification [1]. The first part of a TDL program (up to but excluding the mode sec-
tion) is purely declarative. Therefore, the visualization capabilities are limited and are
restricted to the tree based representation of TDL constructs in combination with a
tabular listing of their properties.

4 Andreas Naderlinger, Wolfgang Pree and Josef Templ

Using the tree view, a developer may import from other TDL modules, declare

constants, types, sensors, actuators, global ports, and tasks. Import relations are visua-
lized by Simulink bus connections between the individual modules (see Fig. 2).
TDL’s built-in data types are mapped to corresponding Simulink types, arrays and
structured types correspond to multiplexed signals respectively Simulink buses. Sen-
sors and actuators are synchronized with In- and Outports of the TDL Module block.

The actual implementation of the task functionality is not part of TDL. Instead we
use MATLAB/Simulink to implement task functions. Fig. 4 shows a Simulink sub-
system containing a sample implementation for the function incImpl. A function pa-
rameter is automatically mapped to an In- respectively Outport. Application develop-
ers are free to use any of Simulink’s non-continuous library blocks with inherited
sample time for modeling the computational part of the application. The Simulink
subsystem instantaneously reflects changes which were applied to the TDL model
(e.g. deleting or renaming a port), and vice versa. For a more convenient editing, the
TDL:VisualCreator tool also supports the automatic creation of TDL task declarations
based on existing (legacy) Simulink subsystems.

Fig. 4. Using MATLAB/Simulink to model the task functionality

2.1 Mode Transitions and Time-Triggered Activities

The TDL:VisualCreator in Fig. 3 shows the mode transitions of module Sender. This
view summarizes all mode switch activities that are defined in any of the modes. In
this example there is only one transition from the start mode main to freeze.

The right part of the figure shows a screenshot of the contents of mode main. This
view contains every task sequence, task invocation, and actuator update that is de-
fined within a mode. To add activities, the corresponding task, actuator, etc. is
dragged from the tree pane and dropped onto the panel. This example, shows the task
sequence of task inc followed by the actuator update of a2 as well as the actuator
update of a1. Data flow is expressed by arrows and the timing behavior is defined in
the tabular view. As all activities in a mode run in parallel, the alignment of the indi-
vidual elements has no influence on the application’s behavior.

Visual Modeling of Real-Time Behavior 5

Activities may be executed conditionally, i.e. they may be guarded by an external
function. Such guards are created in the tree view and implemented in Simulink sub-
systems.

2.2 Event-Triggered Activities

In addition to time-triggered (synchronous) activities, TDL also supports the defini-
tion of event-triggered (asynchronous) activities. An asynchronous activity may be a
task invocation or an actuator update. Multiple activities may be grouped to a se-
quence that is triggered by an interrupt, a port update event, or a timer.

Fig. 5 lists a second module Receiver that imports module Sender and uses its port
inc.o as data source in asynchronous activities. Fig. 6 shows the corresponding repre-
sentation in the TDL:VisualCreator tool. The graphical representation exactly follows
the structure of the textual description. This separation of activities avoids ambiguities
with respect to their ordering.

module Receiver {

 import Sender as S;

 // …

 asynchronous {

 [interrupt=ir0, priority=5]
 t1(S.inc.o); a1 := t1.o;

 [timer=1000, priority=1]
 t2(t1.o);
 [update=t2.o, priority=1]
 t3(t2.o, S.inc.o); a1 := t3.o;

 }

}

 Fig. 5. Module Receiver Fig. 6. Asynchronous Activities

3 Simulation & Code Generation

When the application developer has finished the modeling phase, that is, timing beha-
vior has been specified using the TDL:VisualCreator and functionality has been im-
plemented with Simulink blocks, the application can be simulated. For this purpose,
we automatically generate a simulation model that translates the TDL model into
Simulink blocks and links timing and functionality [6]. When the simulation shows
satisfactory behavior, code generators like the Real-Time-Workshop Embedded Cod-
er [4] can be used to transform the Simulink block representation into C code. Ex-
ecuted on a (potentially distributed) hardware platform, the TDL runtime system
ensures that the time-triggered part of the application exhibits exactly the same beha-
vior as during the simulation.

6 Andreas Naderlinger, Wolfgang Pree and Josef Templ

4 Comparisons and Conclusions

The MathWorks [4] troika consisting of MATLAB, Simulink and Stateflow together
with the code generator Real-Time Workshop Embedded Coder is widely used for the
visual modeling of dynamic systems with mode logic. However, the inherent fusion
of functional and temporal aspects does not allow modeling of systems that can effi-
ciently be mapped to distributed platforms.

The SimTools [7] from Decomsys/Elektrobit and analogous tools such as TTP-
Matlink from TTTech [8] represent a Simulink extension that facilitates the simula-
tion and code generation for distributed real-time systems. However, these tools re-
quire the tedious modeling of platform details, as they lack the LET abstraction that
allows a platform independent development.

This paper describes a graphical notation and its tool implementation which allows
for a visual and interactive development of embedded real-time applications in a plat-
form independent way. For the presented modeling tool, TDL:VisualCreator, it was
sufficient to combine existing diagram types, i.e. data-flow and state transition dia-
grams as well as tree- and tabular views, rather than introducing new visual concepts.

We applied two different representations for the data-flow. The first combines all
mode activities in a single diagram. While this perfectly shows the relation and inter-
play of all involved TDL constructs and helps grasping the continuous data flow from
sensors to actuators, this representation also entails scalability shortcomings. The
second representation, which was used for asynchronous TDL activities, is more
structured and follows the textual description.

We described the integration into the widely used visual environment MAT-
LAB/Simulink, which offers optimal synergy. For further details, we refer to [9].

References

1. Templ, J. Timing Definition Language (TDL) 1.5 Specification. Technical Report, Universi-

ty of Salzburg, 2009. Available at www.softwareresearch.net

2. Henzinger, T., Horowitz, B., Kirsch, C. Giotto: A time-triggered language for embedded

programming. In Proc. of EMSOFT, LNCS 2211, pages 166–184. Springer, 2001

3. AUTOSAR. Automotive Open System Architecture. http://www.autosar.org.

4. The MathWorks. www.mathworks.com

5. preeTEC. www.preeTEC.com
6. Naderlinger, A., Templ, J., Pree, W. Simulating Real-Time Software Components based on

Logical Execution Time. In SCSC '09: Proceedings of the 2009 Summer Computer Simula-

tion Conference, 2009.

7. Decomsys/EB. www.decomsys.com/simtools

8. TTTech. www.tttech.com

9. Naderlinger, A., Pree, W., Templ, J. Visual Modeling of Real-Time Behavior. Technical
Report, T023, University of Salzburg, 2008. Available at www.softwareresearch.net

