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This paper describes two different approaches of simulating embedded control 
software whose real-time requirements are explicitly specified by means of the 
Logical Execution Time (LET) abstraction introduced in the Giotto project [3]. 
As simulation environments we chose the black-box Matlab®/Simulink® 
product and the open-source project Ptolemy II [1]. The paper first sketches the 
modeling of LET-based components with the Timing Definition Language 
(TDL) [2]. As the LET abstraction allows the platform-independent modeling 
of the timing behavior of embedded software, a correct simulation of TDL 
components is equivalent to the behavior on a specific platform. We integrated 
TDL with both Matlab/Simulink and Ptolemy and highlight the differences and 
similarities of the particular TDL simulation. 

Key words: simulation of real-time behavior, real-time modeling, Simulink, 
Ptolemy, Timing Definition Language (TDL) 

1. Introduction 

This work compares the way simulation environments with different goals facilitate 
the simulation of embedded control software modeled with the Timing Definition 
Language (TDL). TDL harnesses the Logical Execution Time (LET) abstraction for 
deterministically describing the timing behavior of a set of periodic tasks. If the tasks 
can be scheduled for a specific, potentially distributed platform given the worst-case 
execution time for each task for each computing node, the observable behavior of the 
system will be the same on the platform as in a simulation given the same inputs. 

Matlab/Simulink is a commercially available tool suite used to simulate control 
systems and also to generate C code. Simulink defines a fixed model of computation 
(MoC) that can only be adapted to some extent by means of so-called solvers as well 
as via the triggering of block executions. Ptolemy is an open-source simulation 
environment that serves as playground for experimenting with different MoCs and 
their combination in heterogeneous models.  

We implemented the TDL model of computation in both, Simulink and Ptolemy, 
and describe the different integration approaches we had to take. We first introduce 
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TDL. Sections 2 and 3 sketch the core concepts how TDL components are modeled 
and simulated in Simulink and Ptolemy. Section 4 compares the two approaches. 
 
Timing Definition Language (TDL). While TDL is conceptually based on the LET-
abstraction introduced in the Giotto project, it provides extended features, a more 
convenient syntax, and an improved set of programming tools. The LET associated 
with a computational unit, called task, represents the duration between the time 
instant when the task becomes ready for execution and the instant when the execution 
finishes. A task’s LET is specified independently of the task’s functionality. When 
deploying the model on a platform, the LET specification is satisfied if the total 
physical execution time of the task is included in the LET interval for every task 
invocation, and an appropriate runtime system ensures that task inputs are read at the 
beginning of the LET interval (the release time) and task outputs are made available 
at the end of the LET interval (the termination time). Figure 1 illustrates the LET 
abstraction for one task invocation. Between release and termination points, the 
output values are those established in the previous execution; default or specified 
initial values are used during the first execution. 

 

 
Fig. 1. Logical Execution Time (LET) 

 
TDL is targeted at control applications consisting of periodic software tasks for 
controlling a physical environment. Thus, some tasks take information from the 
environment via sensors and some tasks act on the environment via actuators. Tasks 
that must be executed concurrently are grouped in modes. In TDL, a mode is a set of 
periodically executed activities that can be task invocations, actuator updates, and 
mode switches. A mode activity has a specified execution rate and may be carried out 
conditionally. TDL provides a top-level structuring unit called a module, which 
consists of sensors, actuators and modes that typically form a unit that delivers a 
specific functionality. A TDL module might be a complex combustion engine 
controller or a PID controller in a process automation system. 

Figure 2 shows a schematic representation of a sample TDL module. The module 
contains one sensor variable s1, one actuator variable a1, and two modes called main 
and freeze. The mode main specifies a task invocation activity, an actuator update and 
a conditional mode switch, each of which must be executed once per mode period, 
which is every 5 milliseconds in this example. In other words, the task’s LET is 5 ms. 
The actuator is updated with the task output value at the end of the LET. The freeze 
mode contains no activity at all.  
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module Sender { 

  sensor int s1 uses getS1; 
  actuator int a1 uses setA1; 

  public task t1 { 
    input int i; 
    output int o := 10; 
    uses t1Impl(i, o); 
  } 

  start mode main [period=5ms] { 
    task [freq=1] t1(s1); // LET = 5ms/1 = 5ms 
    actuator [freq=1] a1 := t1.o; 
    mode [freq=1] if exitMain(s1) then freeze; 

  } 

  mode freeze [period=1000ms] {} 

} 

  
Fig. 2. TDL sample module 

 
Executing TDL modules means executing all actions defined in the TDL code in the 
correct order at the specified points in time. A simulation environment for TDL 
modules must enforce the execution of these actions at the correct times and in this 
order. Those TDL actions are: 

 
1. Update output ports of tasks with the values from the previous execution. At 

time 0, the ports are initialized rather than updated. 

2. Update actuators connected to the ports involved in step 1.  

3. Test for mode switches. If a mode switch is enabled, switch to the target 
mode. 

4. Update input ports of LET tasks. 

5. Execute LET tasks. 
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A general concept in simulating dynamic systems is that a simulation time is used to 
determine the actions that must be processed. TDL actions that are scheduled for a 
particular simulation time instant are executed without changing the time. If no 
actions remain, the simulation time is increased  

Consider the execution of task t1 in the previously described example. At 
simulation time 0 actions in the start mode are processed. Output ports are initialized 
and connected actuators are updated. Sensor s1 is read and the value is provided as 
input for the task, which is then executed. There are no more actions to be done at 
time 0. Then the simulation time is increased to 5, which is the end of the LET of t1. 
At simulation time 5, output ports and actuators are updated. Next, the mode switch 
condition in the guard function exitMain is evaluated. If it evaluates to true, a mode 
switch to the empty mode freeze is performed and no further actions are processed. 
Otherwise the module stays in the mode and the task is executed again. The following 
sections describe how this general approach is implemented in Simulink and Ptolemy. 

2. TDL Modeling in Simulink 

The Matlab extension Simulink from The MathWorks [7] was initially targeted for 
simulating control systems. It has significantly grown in popularity and due to 
numerous specific libraries is used for modeling systems ranging from control 
systems to artificial neural networks. It provides a visual, interactive environment for 
modeling block diagrams based on the data-flow paradigm. Simulink’s model of 
computation is based on continuous time. This MoC is rather complex and there 
exists no formal definition; the implementation is hidden in the simulation engine [9, 
10]. A straight forward modeling of TDL components with standard Simulink blocks 
is not feasible especially if they comprise several modes, because the execution 
strategy of the simulation engine, Simulink’s MoC, differs in detail from the TDL 
semantics described above [6].  

Simulink provides an extension mechanism by the so-called S-Function interface 
[8]. The subsequent section describes the Simulink integration of TDL by means of a 
customized S-Function and the corresponding model transformation. 
 
LET semantics in Simulink. The integration of TDL in Simulink requires both the 
modeling of TDL components, and their simulation adhering to TDL semantics. We 
implemented a custom Simulink block that represents a TDL module. Modeling the 
TDL data-flow relationships especially for multiple modes is not feasible [6]. A 
special purpose editor is used for describing timing aspects of the tasks, the data-flow 
between task ports, sensors and actuators, as well as the grouping of tasks to modes, 
and the mode switching logic. Tasks and guards are implemented in standard 
Simulink subsystems, which are referenced by the editor. In order to simulate a 
model, we automatically generate a simulation model consisting of standard Simulink 
blocks.  

Figure 3 shows the Simulink model for the sample TDL module from section 2. 
The model in Fig. 3a contains a TDL module block, a source block that provides a 
sensor value for the TDL module and a scope block to display actuator values. The 
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content of the TDL module block in Fig. 3b shows the generated simulation model 
and the subsystems for the task and guard function implementations. Fig. 3c depicts a 
sample implementation for the task t1.   

 

 
Fig. 3. (a) Simulink model with the TDL module block Sender, (b) Generated 
contents of the Sender module, (c) Sample implementation of the t1Impl task 

function. 
 

To ensure that all TDL actions are executed at the correct time instants we 
implemented the concepts of E-Code and E-Machine in Simulink [11]. Henzinger et 
al. [4] introduced the E-Code concept in the realm of the Giotto project as a way of 
encapsulating the timing behavior and the reactivity of real-time applications. E-Code 
is a sequence of instructions for one period of every mode that describes the timing of 
all TDL actions. At run-time, these instructions are interpreted by a virtual machine, 
the E-Machine, which hands tasks to a scheduler or executes drivers. A driver 
performs communication activities, such as reading sensor values, providing input 
values for tasks at their release time, copy output values at their termination time, or 
updating actuators. 

The TDL compiler [5] generates E-Code from a given TDL source file. In 
Simulink, we implemented the E-Machine by using an S-Function. Drivers are 
modeled as Triggered Subsystems where input ports are directly connected to output 
ports. E-Machine blocks trigger the execution of these subsystems such that the TDL 
semantics are followed.  

3. TDL Modeling in Ptolemy 

Ptolemy II is the software infrastructure of the Ptolemy project at the University of 
California at Berkeley [1]. The project studies modeling, simulation, and design of 
concurrent, real-time, embedded systems. Ptolemy II is an open source tool written in 
Java, which allows modeling and simulation of systems adhering to various models of 
computation (MoC). Conceptually, a MoC represents a set of rules, which govern the 
execution and interaction of model components. The implementation of a MoC is 
called a domain in Ptolemy. Some examples of existing domains are: Discrete Event 
(DE), Continuous Time (CT), Finite State Machines (FSM), and Synchronous Data 
Flow (SDF). 
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Ptolemy is extensible in that it allows the implementation of new MoCs. Most 
MoCs in Ptolemy support actor-oriented modeling and design, where models are built 
from actors that can be executed and which can communicate with other actors 
through ports. A Ptolemy model explaining the main Ptolemy entities is shown in 
Figure 4. The nature of communication between actors is defined by the enclosing 
domain, which is itself represented by a special actor, called the domain director. 
Simulating a model means executing actors as defined by the top-level model 
director.  

 

 
Fig. 4. Ptolemy II model 

 
 
We implemented TDL as an experimental domain in Ptolemy. The implementation 

is based on the modal model variant of the Finite State Machine (FSM) domain in 
Ptolemy. Like modal models, TDL modules consist of modes with different 
behaviors, where only one mode can be active at a time. Transitions between states in 
modal models have the same behavior as mode switches in TDL. 

The TDL domain consists of three specialized actors: TDLModule, TDLMode and 
TDLTask. The TDLModule actor (with the associated TDLModuleDirector) restricts 
the basic modal model behavior according to the TDL semantics. In modal models, 
mode switches are made whenever a mode switch guard evaluates to true whereas in 
TDL modules, mode switches are only allowed at predefined points in time. Similar 
restrictions apply to the port updates. To ensure LET semantics of the tasks, input 
ports of TDL tasks are only allowed to be read once at the beginning of the LET, 
output ports are only allowed to be written at the end of the LET and not when a task 
finished its computation. TDL requires a deterministic choice of simultaneously 
enabled transitions, which is not provided by the FSM domain. In this respect, we 
define an order on all transitions from a mode and take the first enabled transition in 
this order. TDL timing information such as the mode period is associated with TDL 
actors in the model. 

TDL activities are conceptually regarded as discrete events that are processed in 
increasing time stamp order. Thus, a TDL module can be seen as a restricted DE 
actor. This enables the usage of TDL modules inside every domain that can deal with 
DE actors. The example from section 2 modeled in Ptolemy is shown in Figure 5.  
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Fig. 5. A TDL module in Ptolemy 

 
The model shown in the top left box of Figure 5 contains a TDL Module and two 

actors to provide sensor values and display actuator values. The TDL Module 
contains two modes (see Figure 5, the lower left box). Both modes have the period 
associated as a parameter. The main mode contains the task and the association of 
sensor and actuator values to input and output ports of the task. The frequency of task 
invocation, which determines the LET, is defined as a parameter. The task is an SDF 
actor, which executes in logically zero time. The top-level director is a DE director. 
The DE director uses a global event queue to schedule the execution of actors in the 
model. The TDL module places events in this queue for every time stamp where at 
least one TDL action is scheduled.  

4. Summary and conclusions 

We presented the modeling and simulation of TDL real-time components with logical 
execution time (LET) in two different simulation environments, namely Simulink and 
Ptolemy. Due to fundamental differences in the simulation environments we had to 
apply two different approaches regarding both, modeling and simulation. Table 1 lists 
the main concepts in modeling and simulation of TDL modules and how they were 
implemented in Simulink and Ptolemy. 

The open and extensible architecture of Ptolemy allowed us to express the 
complete TDL semantics in the model. In the Simulink integration, the developer only 
models the functionality (task implementations and the plant) with Simulink blocks. 
Timing, mode switching logic and the overall application data-flow are described 
with a special purpose editor. An elaborate model transformation automatically 
creates a simulation model that contains data-flow and timing information. 

Both approaches extend the existing simulation framework with a new actor 
(block) containing tasks with real time requirements described by TDL. In Simulink, 
the timing requirements are enforced by the E-Machine, in Ptolemy the director of the 
TDL domain employs the TDL semantics. 
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 Simulink Ptolemy 
Modeling 
TDL Module A TDL module block (actor) was implemented and is 

available in a library. 
TDL Mode  Modes are defined in 

the TDL editor. 
A TDL mode actor was 
implemented and is available 
in a library. A TDL mode 
contains input and output ports 
of a TDL module (=sensors, 
actuators) and TDL tasks. 

Data-flow 
(Connections 
between sensors, 
task ports, and 
actuators) 

Data-flow is defined 
in the TDL editor. 

Graphically connect TDL 
module ports to task ports. 

An embedded model (subsystem) implements the task 
functionality. 

Task functionality 

Stub subsystems are 
generated, which 
provide the input and 
output ports. They 
have to be 
implemented with 
Simulink blocks. 

A TDL task actor was 
implemented and is available 
in a library. The TDL task is a 
composite actor containing the 
embedded model. 

Simulation 
Triggering of all 
actors (blocks) in 
the model (TDL 
modules and plant) 

Simulink triggers all 
blocks of the plant 
and the E-Machine S-
Function blocks. 

The top-level director, which 
has to be able to deal with DE 
actors, triggers all actors 
including TDL modules. 

Timing description 
of TDL actions 
 

Generate static E-
Code before starting 
the simulation. 

Generate events dynamically 
during the simulation. 

Enforcing the 
timely execution of 
TDL actions 

The E-Machine 
interprets E-Code 
instructions and 
triggers TDL actions. 

The TDL Director creates 
events for all TDL actions. 

Table 1: Comparison of TDL Modeling and Simulation in 
Simulink and Ptolemy 

 
Ptolemy uses events to schedule TDL activities dynamically whereas in 

Simulink, we compute a static list of TDL activities in the form of E-Code before 
starting the simulation. The main advantage of the static approach is its low 
computational overhead for determining the next TDL actions. Maintaining an E-
Code program counter is enough, it is not necessary to create events and handle 
dynamically changing event queues. Event queues, on the other hand, potentially 
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require less storage space than E-Code, because they contain only the immediate 
follow-up events, not all activities of a mode period. 
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