

Simulation of LET Models in Simulink
and Ptolemy

P. Derler, A. Naderlinger, W. Pree, S. Resmerita, J. Templ

Monterey Workshop 2008,
Budapest,

Sept. 24-26, 2008

C. Doppler Laboratory
Embedded Software Systems
University of Salzburg
Austria

Simulation of LET Models in Simulink and Ptolemy

Patricia Derler, Andreas Naderlinger, Wolfgang Pree, Stefan
Resmerita, Josef Templ

C. Doppler Laboratory Embedded Software Systems
University of Salzburg

firstname.lastname@cs.uni-salzburg.at

This paper describes two different approaches of simulating embedded control
software whose real-time requirements are explicitly specified by means of the
Logical Execution Time (LET) abstraction introduced in the Giotto project [3].
As simulation environments we chose the black-box Matlab®/Simulink®
product and the open-source project Ptolemy II [1]. The paper first sketches the
modeling of LET-based components with the Timing Definition Language
(TDL) [2]. As the LET abstraction allows the platform-independent modeling
of the timing behavior of embedded software, a correct simulation of TDL
components is equivalent to the behavior on a specific platform. We integrated
TDL with both Matlab/Simulink and Ptolemy and highlight the differences and
similarities of the particular TDL simulation.

Key words: simulation of real-time behavior, real-time modeling, Simulink,
Ptolemy, Timing Definition Language (TDL)

1. Introduction

This work compares the way simulation environments with different goals facilitate
the simulation of embedded control software modeled with the Timing Definition
Language (TDL). TDL harnesses the Logical Execution Time (LET) abstraction for
deterministically describing the timing behavior of a set of periodic tasks. If the tasks
can be scheduled for a specific, potentially distributed platform given the worst-case
execution time for each task for each computing node, the observable behavior of the
system will be the same on the platform as in a simulation given the same inputs.

Matlab/Simulink is a commercially available tool suite used to simulate control
systems and also to generate C code. Simulink defines a fixed model of computation
(MoC) that can only be adapted to some extent by means of so-called solvers as well
as via the triggering of block executions. Ptolemy is an open-source simulation
environment that serves as playground for experimenting with different MoCs and
their combination in heterogeneous models.

We implemented the TDL model of computation in both, Simulink and Ptolemy,
and describe the different integration approaches we had to take. We first introduce

2 Patricia Derler, Andreas Naderlinger, Wolfgang Pree, Stefan Resmerita, Josef Templ

TDL. Sections 2 and 3 sketch the core concepts how TDL components are modeled
and simulated in Simulink and Ptolemy. Section 4 compares the two approaches.

Timing Definition Language (TDL). While TDL is conceptually based on the LET-
abstraction introduced in the Giotto project, it provides extended features, a more
convenient syntax, and an improved set of programming tools. The LET associated
with a computational unit, called task, represents the duration between the time
instant when the task becomes ready for execution and the instant when the execution
finishes. A task’s LET is specified independently of the task’s functionality. When
deploying the model on a platform, the LET specification is satisfied if the total
physical execution time of the task is included in the LET interval for every task
invocation, and an appropriate runtime system ensures that task inputs are read at the
beginning of the LET interval (the release time) and task outputs are made available
at the end of the LET interval (the termination time). Figure 1 illustrates the LET
abstraction for one task invocation. Between release and termination points, the
output values are those established in the previous execution; default or specified
initial values are used during the first execution.

Fig. 1. Logical Execution Time (LET)

TDL is targeted at control applications consisting of periodic software tasks for
controlling a physical environment. Thus, some tasks take information from the
environment via sensors and some tasks act on the environment via actuators. Tasks
that must be executed concurrently are grouped in modes. In TDL, a mode is a set of
periodically executed activities that can be task invocations, actuator updates, and
mode switches. A mode activity has a specified execution rate and may be carried out
conditionally. TDL provides a top-level structuring unit called a module, which
consists of sensors, actuators and modes that typically form a unit that delivers a
specific functionality. A TDL module might be a complex combustion engine
controller or a PID controller in a process automation system.

Figure 2 shows a schematic representation of a sample TDL module. The module
contains one sensor variable s1, one actuator variable a1, and two modes called main
and freeze. The mode main specifies a task invocation activity, an actuator update and
a conditional mode switch, each of which must be executed once per mode period,
which is every 5 milliseconds in this example. In other words, the task’s LET is 5 ms.
The actuator is updated with the task output value at the end of the LET. The freeze
mode contains no activity at all.

Simulation of LET Models in Simulink and Ptolemy 3

module Sender {

 sensor int s1 uses getS1;
 actuator int a1 uses setA1;

 public task t1 {
 input int i;
 output int o := 10;
 uses t1Impl(i, o);
 }

 start mode main [period=5ms] {
 task [freq=1] t1(s1); // LET = 5ms/1 = 5ms
 actuator [freq=1] a1 := t1.o;
 mode [freq=1] if exitMain(s1) then freeze;

 }

 mode freeze [period=1000ms] {}

}

Fig. 2. TDL sample module

Executing TDL modules means executing all actions defined in the TDL code in the
correct order at the specified points in time. A simulation environment for TDL
modules must enforce the execution of these actions at the correct times and in this
order. Those TDL actions are:

1. Update output ports of tasks with the values from the previous execution. At

time 0, the ports are initialized rather than updated.

2. Update actuators connected to the ports involved in step 1.

3. Test for mode switches. If a mode switch is enabled, switch to the target
mode.

4. Update input ports of LET tasks.

5. Execute LET tasks.

4 Patricia Derler, Andreas Naderlinger, Wolfgang Pree, Stefan Resmerita, Josef Templ

A general concept in simulating dynamic systems is that a simulation time is used to
determine the actions that must be processed. TDL actions that are scheduled for a
particular simulation time instant are executed without changing the time. If no
actions remain, the simulation time is increased

Consider the execution of task t1 in the previously described example. At
simulation time 0 actions in the start mode are processed. Output ports are initialized
and connected actuators are updated. Sensor s1 is read and the value is provided as
input for the task, which is then executed. There are no more actions to be done at
time 0. Then the simulation time is increased to 5, which is the end of the LET of t1.
At simulation time 5, output ports and actuators are updated. Next, the mode switch
condition in the guard function exitMain is evaluated. If it evaluates to true, a mode
switch to the empty mode freeze is performed and no further actions are processed.
Otherwise the module stays in the mode and the task is executed again. The following
sections describe how this general approach is implemented in Simulink and Ptolemy.

2. TDL Modeling in Simulink

The Matlab extension Simulink from The MathWorks [7] was initially targeted for
simulating control systems. It has significantly grown in popularity and due to
numerous specific libraries is used for modeling systems ranging from control
systems to artificial neural networks. It provides a visual, interactive environment for
modeling block diagrams based on the data-flow paradigm. Simulink’s model of
computation is based on continuous time. This MoC is rather complex and there
exists no formal definition; the implementation is hidden in the simulation engine [9,
10]. A straight forward modeling of TDL components with standard Simulink blocks
is not feasible especially if they comprise several modes, because the execution
strategy of the simulation engine, Simulink’s MoC, differs in detail from the TDL
semantics described above [6].

Simulink provides an extension mechanism by the so-called S-Function interface
[8]. The subsequent section describes the Simulink integration of TDL by means of a
customized S-Function and the corresponding model transformation.

LET semantics in Simulink. The integration of TDL in Simulink requires both the
modeling of TDL components, and their simulation adhering to TDL semantics. We
implemented a custom Simulink block that represents a TDL module. Modeling the
TDL data-flow relationships especially for multiple modes is not feasible [6]. A
special purpose editor is used for describing timing aspects of the tasks, the data-flow
between task ports, sensors and actuators, as well as the grouping of tasks to modes,
and the mode switching logic. Tasks and guards are implemented in standard
Simulink subsystems, which are referenced by the editor. In order to simulate a
model, we automatically generate a simulation model consisting of standard Simulink
blocks.

Figure 3 shows the Simulink model for the sample TDL module from section 2.
The model in Fig. 3a contains a TDL module block, a source block that provides a
sensor value for the TDL module and a scope block to display actuator values. The

Simulation of LET Models in Simulink and Ptolemy 5

content of the TDL module block in Fig. 3b shows the generated simulation model
and the subsystems for the task and guard function implementations. Fig. 3c depicts a
sample implementation for the task t1.

Fig. 3. (a) Simulink model with the TDL module block Sender, (b) Generated
contents of the Sender module, (c) Sample implementation of the t1Impl task

function.

To ensure that all TDL actions are executed at the correct time instants we
implemented the concepts of E-Code and E-Machine in Simulink [11]. Henzinger et
al. [4] introduced the E-Code concept in the realm of the Giotto project as a way of
encapsulating the timing behavior and the reactivity of real-time applications. E-Code
is a sequence of instructions for one period of every mode that describes the timing of
all TDL actions. At run-time, these instructions are interpreted by a virtual machine,
the E-Machine, which hands tasks to a scheduler or executes drivers. A driver
performs communication activities, such as reading sensor values, providing input
values for tasks at their release time, copy output values at their termination time, or
updating actuators.

The TDL compiler [5] generates E-Code from a given TDL source file. In
Simulink, we implemented the E-Machine by using an S-Function. Drivers are
modeled as Triggered Subsystems where input ports are directly connected to output
ports. E-Machine blocks trigger the execution of these subsystems such that the TDL
semantics are followed.

3. TDL Modeling in Ptolemy

Ptolemy II is the software infrastructure of the Ptolemy project at the University of
California at Berkeley [1]. The project studies modeling, simulation, and design of
concurrent, real-time, embedded systems. Ptolemy II is an open source tool written in
Java, which allows modeling and simulation of systems adhering to various models of
computation (MoC). Conceptually, a MoC represents a set of rules, which govern the
execution and interaction of model components. The implementation of a MoC is
called a domain in Ptolemy. Some examples of existing domains are: Discrete Event
(DE), Continuous Time (CT), Finite State Machines (FSM), and Synchronous Data
Flow (SDF).

6 Patricia Derler, Andreas Naderlinger, Wolfgang Pree, Stefan Resmerita, Josef Templ

Ptolemy is extensible in that it allows the implementation of new MoCs. Most
MoCs in Ptolemy support actor-oriented modeling and design, where models are built
from actors that can be executed and which can communicate with other actors
through ports. A Ptolemy model explaining the main Ptolemy entities is shown in
Figure 4. The nature of communication between actors is defined by the enclosing
domain, which is itself represented by a special actor, called the domain director.
Simulating a model means executing actors as defined by the top-level model
director.

Fig. 4. Ptolemy II model

We implemented TDL as an experimental domain in Ptolemy. The implementation

is based on the modal model variant of the Finite State Machine (FSM) domain in
Ptolemy. Like modal models, TDL modules consist of modes with different
behaviors, where only one mode can be active at a time. Transitions between states in
modal models have the same behavior as mode switches in TDL.

The TDL domain consists of three specialized actors: TDLModule, TDLMode and
TDLTask. The TDLModule actor (with the associated TDLModuleDirector) restricts
the basic modal model behavior according to the TDL semantics. In modal models,
mode switches are made whenever a mode switch guard evaluates to true whereas in
TDL modules, mode switches are only allowed at predefined points in time. Similar
restrictions apply to the port updates. To ensure LET semantics of the tasks, input
ports of TDL tasks are only allowed to be read once at the beginning of the LET,
output ports are only allowed to be written at the end of the LET and not when a task
finished its computation. TDL requires a deterministic choice of simultaneously
enabled transitions, which is not provided by the FSM domain. In this respect, we
define an order on all transitions from a mode and take the first enabled transition in
this order. TDL timing information such as the mode period is associated with TDL
actors in the model.

TDL activities are conceptually regarded as discrete events that are processed in
increasing time stamp order. Thus, a TDL module can be seen as a restricted DE
actor. This enables the usage of TDL modules inside every domain that can deal with
DE actors. The example from section 2 modeled in Ptolemy is shown in Figure 5.

Simulation of LET Models in Simulink and Ptolemy 7

Fig. 5. A TDL module in Ptolemy

The model shown in the top left box of Figure 5 contains a TDL Module and two

actors to provide sensor values and display actuator values. The TDL Module
contains two modes (see Figure 5, the lower left box). Both modes have the period
associated as a parameter. The main mode contains the task and the association of
sensor and actuator values to input and output ports of the task. The frequency of task
invocation, which determines the LET, is defined as a parameter. The task is an SDF
actor, which executes in logically zero time. The top-level director is a DE director.
The DE director uses a global event queue to schedule the execution of actors in the
model. The TDL module places events in this queue for every time stamp where at
least one TDL action is scheduled.

4. Summary and conclusions

We presented the modeling and simulation of TDL real-time components with logical
execution time (LET) in two different simulation environments, namely Simulink and
Ptolemy. Due to fundamental differences in the simulation environments we had to
apply two different approaches regarding both, modeling and simulation. Table 1 lists
the main concepts in modeling and simulation of TDL modules and how they were
implemented in Simulink and Ptolemy.

The open and extensible architecture of Ptolemy allowed us to express the
complete TDL semantics in the model. In the Simulink integration, the developer only
models the functionality (task implementations and the plant) with Simulink blocks.
Timing, mode switching logic and the overall application data-flow are described
with a special purpose editor. An elaborate model transformation automatically
creates a simulation model that contains data-flow and timing information.

Both approaches extend the existing simulation framework with a new actor
(block) containing tasks with real time requirements described by TDL. In Simulink,
the timing requirements are enforced by the E-Machine, in Ptolemy the director of the
TDL domain employs the TDL semantics.

8 Patricia Derler, Andreas Naderlinger, Wolfgang Pree, Stefan Resmerita, Josef Templ

 Simulink Ptolemy
Modeling
TDL Module A TDL module block (actor) was implemented and is

available in a library.
TDL Mode Modes are defined in

the TDL editor.
A TDL mode actor was
implemented and is available
in a library. A TDL mode
contains input and output ports
of a TDL module (=sensors,
actuators) and TDL tasks.

Data-flow
(Connections
between sensors,
task ports, and
actuators)

Data-flow is defined
in the TDL editor.

Graphically connect TDL
module ports to task ports.

An embedded model (subsystem) implements the task
functionality.

Task functionality

Stub subsystems are
generated, which
provide the input and
output ports. They
have to be
implemented with
Simulink blocks.

A TDL task actor was
implemented and is available
in a library. The TDL task is a
composite actor containing the
embedded model.

Simulation
Triggering of all
actors (blocks) in
the model (TDL
modules and plant)

Simulink triggers all
blocks of the plant
and the E-Machine S-
Function blocks.

The top-level director, which
has to be able to deal with DE
actors, triggers all actors
including TDL modules.

Timing description
of TDL actions

Generate static E-
Code before starting
the simulation.

Generate events dynamically
during the simulation.

Enforcing the
timely execution of
TDL actions

The E-Machine
interprets E-Code
instructions and
triggers TDL actions.

The TDL Director creates
events for all TDL actions.

Table 1: Comparison of TDL Modeling and Simulation in
Simulink and Ptolemy

Ptolemy uses events to schedule TDL activities dynamically whereas in

Simulink, we compute a static list of TDL activities in the form of E-Code before
starting the simulation. The main advantage of the static approach is its low
computational overhead for determining the next TDL actions. Maintaining an E-
Code program counter is enough, it is not necessary to create events and handle
dynamically changing event queues. Event queues, on the other hand, potentially

Simulation of LET Models in Simulink and Ptolemy 9

require less storage space than E-Code, because they contain only the immediate
follow-up events, not all activities of a mode period.

References

[1] Brooks, C., Lee, E.A., Liu, X., Neuendorffer, S., Zhao, Y., Zheng, H., (eds.):
Heterogeneous Concurrent Modeling and Design in Java (Volume 1:
Introduction to Ptolemy II), EECS Department, University of California,
Berkeley, UCB/EECS-2007-7, January 2007.

[2] Templ, J.: TDL - Timing Definition Language 1.4 Specification. Available at
http://www.preetec.com/, 2007.

[3] Henzinger, T.A., Kirsch, C.M., Sanvido, M., Pree, W.: From Control Models to
Real-Time Code Using Giotto. IEEE Control Systems Magazine 23(1), February
2003.

[4] Henzinger, T.A., Kirsch, C.M.: The Embedded Machine: Predictable, portable
real-time code. In Proc. of the PLDI. ACM Press, 2002.

[5] preeTEC. http://preetec.com/
[6] Pree, W., Stieglbauer, G.: Visual and Interactive Development of Hard Real Time

Code. Automotive Software Workshop San Diego (ASWSD). January 2004.
[7] The MathWorks. http://www.mathworks.com
[8] The MathWorks. Simulink 7, Writing S-Functions. 2008.
[9] Carloni, L., Benedetto, M.D.D., Passerone, R. , Pinto, A., Sangiovanni-

Vincentelli, A.: Modeling Techniques, Programming Languages and Design
Toolsets for Hybrid Systems, Project IST-2001-38314 COLUMBUS-Design of
Embedded Controllers for Safety Critical Systems, WPHS: Hybrid System
Modeling, version: 0.2, Deliverable number: DHS4-5-6, July 2004.

[10] Baleani, M., Ferrari, A., Mangeruca, L., Sangiovanni-Vincentelli, A. L., Freund,
U., Schlenker, E., Wolff, H.-J.: Correct-by-Construction Transformations across
Design Environments for Model-Based Embedded Software Development, In
Proc. of the conference on Design, Automation and Test in Europe (DATE),
2005.

[11] Stieglbauer, G.: Model-based Development of Embedded Control Software with
TDL and Simulink. PhD thesis, Department of Computer Sciences, University of
Salzburg, Austria, 2007.

