

Towards Reusable Automation System
Components

T. Aschauer, G. Dauenhauer,W. Pree

10th International Conference on Software Reuse (ICSR'2008),
Beijing, China,

May 25-29, 2008

C. Doppler Laboratory
Embedded Software Systems
University of Salzburg
Austria

Towards Reusable Automation System Components

Thomas Aschauer, Gerd Dauenhauer, Wolfgang Pree

C. Doppler Laboratory Embedded Software Systems, University of Salzburg
Jakob-Haringer-Str. 2, 5020 Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Abstract. In this paper we present a domain specific language for describing an
automation system, that is, its hardware and software components. These do-
main components form the basis of large-scale reuse so that specific automation
systems can be configured efficiently.

Keywords: Component reuse, domain specific modeling language

Context and motivation
Our research group cooperates with an industry partner that is a dominant player in
the area of so-called engine test bed systems that are used, for example, in the auto-
motive industry for developing and optimizing combustion engines. Engine test bed
systems are specific automation systems. Typical functions of an engine test bed sys-
tem are the parameterization and visualization of its real-world components, such as
the engine under test, and the sensors, as well as the measured values. The corre-
sponding software has evolved over the last two decades and comprises about 1.5 mil-
lion lines of code, mainly written in C++ and C. Originally, one of the main goals was
to improve the current system’s usability. A major hurdle for the users of the current
system is the fact that the domain entities they have in mind (such as engines, dyna-
mometers, measurement and conditioning devices) do not match well with the entities
in its user interface. For example, a person who configures a test bed would like to
deal with a graphical representation of the test bed entities, with the parameters and
measured values associated with the physical components. In a typical setup there are
about 10,000 parameters with about 120,000 values to be set correctly. In other
words, the domain components should also be the entities the user deals with. The
domain components should be reusable assets that allow an efficient configuration of
a specific engine test bed system. For that purpose we defined the Domain Compo-
nent Description Language (DCDL) sketched in the next section.

Domain Component Description Language (DCDL)
DCDL is a domain specific language for describing the components of a test bed
automation system, either as text or in an equivalent visual form. For the sake of brev-
ity we use the textual representation below.

The primary entities of DCDL are components which describe the structure and the
behavior of automation system components such as the engine under test or meas-
urement devices, but also the relevant properties of an automation system's software
components. The electric current is an example of a physical component property.

The explicit description of hardware and software properties is required to check the
validity of compositions and thus to ensure the consistency of the DCDL model.

Consider, for example, a temperature sensor and a measurement device. The sen-
sor’s DCDL description comprises its plug’s shape and its emitted electrical signal.
The measurement device’s description also comprises its plug’s shape and its ac-
cepted electrical signal. If the sensor and the measurement device are connected in the
test bed description, a validity check is performed that only allows the sensor to be
plugged into the measurement device if both the plug shape and the electrical signals
match.

Viewing different component aspects. The various aspects of a DCDL component
can be grouped and component editors typically show them in separate views:
• Physical View: Represents physical and if applicable electrical aspects such as

plugs and wires (see figure 1).
• Functional View: Represents functional aspects, such as PID controllers and limit

monitors. This view is similar to dataflow modeling languages such as Simulink
[1].

• Parameter View: Represents variability aspects in terms of name/value pairs, e.g.
plug shape descriptions or PID controller values.

• Operation View: Visualizes a component during the operation of the test bed auto-
mation system, for example, by showing relevant measurement values and chang-
ing their color in case they are not within predefined limits.

Fig. 1. Sample physical view of a test bed

DCDL component definition by example. We use a table format to illustrate the
definition of DCDL components (see figure 2). The table shows two simplified En-
gines, E1 and E2. Possible properties of engine components are specified in columns.
It is not mandatory to define values for each property. E2, for example, does not spec-
ify the property Ignition.

Category: Engine
Component Cylinders Inertia Ignition
E1 8 1.06 kgm2 Plug 15
E2 6 1.04 kgm2

Fig. 2. Two sample DCDL components

DCDL offers mechanisms to reuse component definitions. Interviews with domain
experts showed that for them copying and pasting a component definition is a natural

way of reuseing it. Therefore DCDL supports what is called prototypical inheritance
in the object-orientated programming paradigm [2]. Figure 3 shows an engine E3,
which is defined by copying the definition of engine E1. The properties Cylinders and
Ignition are inherited and their values are unchanged, the property Inertia is inherited
but its value was changed, and a new property Nmax is added.

Category: Engine
Component Cylinders Inertia Nmax Ignition
E1 8 1.06 kgm2 Plug 15
E3  E1 8 1.05 kgm2 12,000 rpm Plug 15

Fig. 3. Component extension via prototypical inheritance

DCDL-based composition. DCDL was designed so that the compatibility of automa-
tion system components can be checked. When components are reused to assemble a
specific test bed system, the DCDL type system ensures that users can define only
valid compositions. The following concepts form the backbone of the type compati-
bility check:
• Components are assigned to user defined categories. The type system treats com-

ponents of different categories as incompatible. Since all components in figures 2
and 3 are classified as Engine, they are of the same category and are, for example,
not compatible to any component of another category such as Measurement De-
vice.

• Every view defines a separate type system. The physical view, for example, de-
fines compatibility between plugs in terms of plug shape. The parameter view’s
type system is analogous to that of imperative programming languages with strong
type checking such as Java.

Abstract DCDL components. DCDL offers the possibility to define types and values
of properties as unspecified. Components with at least one unspecified property are
abstract components. A valid DCDL model must not contain abstract components.
Abstracting from concrete components should further support the reuse of component
definitions. The properties of abstract components are listed, but not yet typed. The
following example shows how an abstract engine AbstractEngine could be modeled.

COMPONENT AbstractEngine CATEGORY 'Engine'
 Nmax : UNSPECIFIED := UNSPECIFIED
END

Hierarchical composition. DCDL components can be hierarchically composed of
other components. The dynamometer example shows how a dynamometer D and an
abstract test bed AbstractTestBed are defined. AbstractTestBed is composed of D and
AbstractEngine. Since AbstractEngine is an abstract component, AbstractTestBed is
also abstract. The property Nmax of engine AbstractEngine is used to express the con-
straint that only engines with a lower maximum rotation speed than the dynamometer
may be mounted. Although unspecified properties may be used to express constraints,
these constraints can not be enforced until all referenced properties are fully specified
in components that are based on abstract components.

COMPONENT D CATEGORY 'Dynamometer'
 Nmax : REAL := 20000[rpm]
END

COMPONENT AbstractTestBed CATEGORY 'Test bed'
 Engine : AbstractEngine
 Dyno : D
 Dyno.Nmax >= Engine.Nmax
END

From abstract to concrete components. Finally we illustrate the transformation of
an abstract component to a specific one. First, an engine E1 is defined whose proper-
ties have the same names as the ones of AbstractEngine. Second, SampleTestBed is
created as a clone of AbstractTestBed. SampleTestBed redefines the property Engine
by replacing the component AbstractEngine with E1. SampleTestBed is a concrete
component, since it neither contains abstract components nor does it contain unspeci-
fied properties itself.

In the context of SampleTestBed, AbstractEngine is substitutable by E1 since a)
both components are of category Engine, b) both components have a property Nmax
and c) D.Nmax has the same data type and unit as E1.Nmax. All parameters are speci-
fied and thus the constraint inherited from AbstractTestBed can be enforced.

COMPONENT E1 CATEGORY 'Engine'
 Nmax : REAL := 12000[rpm]
END

COMPONENT SampleTestBed LIKE AbstractTestBed
 Engine : E1
END

Related Work
There is a trend in the embedded industry to explicitly describe the overall computing
infrastructure, the static hardware and software setup as well as the interactions be-
tween the components. One example is AUTOSAR [3], an initiative by the automo-
tive industry. As automation systems differ from automotive computing platforms, the
description differs, though the vision is similar. Modeling languages such as UML
and SysML [4] could be harnessed for the visual representation of CDCL.

References
1. The MathWorks Simulink, www.mathworks.com/products/simulink
2. Abadi, M. and Cardelli, L.: A Theory of Objects. Monographs in Computer Science, Second

Edition, Springer-Verlag, New York (1998)
3. AUTOSAR (an acronym abbreviating AUTOmotive open System ARchitecture) see

www.autosar.org
4. Object Management Group: OMG Systems Modeling Language (OMG SysML™), Unified

Modeling Language (UML), www.omg.org

