
Hyperperiod Bus Scheduling and Optimizations for TDL Components

Emilia Farcas
Calit2

University of California, San Diego
efarcas@soe.ucsd.edu

Wolfgang Pree
C. Doppler Lab Embedded Software Systems

University of Salzburg, Austria
wolfgang.pree@cs.uni-salzburg.at

Abstract

The Timing Definition Language (TDL) provides a
component model and a tool chain as a solution for build-
ing time-safe components that can be developed indepen-
dently and integrated in a distributed platform without
changing the observable behavior and the code of existing
components. TDL is based on the Logical Execution Time
abstraction and supports the decomposition of hard real-
time applications into modules that are executed logically
in parallel. This paper presents the algorithms for auto-
matic schedule generation of TDL communications over
the hyperperiod. As modules may switch modes indepen-
dently, we combine the messages from all modes in the
schedule. Hence, we introduce several optimizations to
save bandwidth and improve the schedule’s feasibility.

1. Introduction

Embedded software is often platform dependent and

not compositional, especially from the timing perspective,

leading to high costs for validation, integration, and main-

tenance. The behavior of a component depends on the

overall system load and configuration, and timing prop-

erties result from the implementation without being ex-

plicitly specified at the design level. Even in model-based

development approaches, the code generated from high-

level specifications is later fine-tuned manually to meet

the timing requirements for the target platform. Hence,

the code and platform are tightly coupled, and the corre-

spondence between the model and the final code is lost.

Therefore, embedded systems would benefit from a

paradigm shift that ensures determinism, compositional-

ity, and platform independence. AUTOSAR [1] aims at

application-centric development of automotive software

by decoupling functions from the underlying platform.

We emphasize that not only software development, but

also timing behavior should be platform independent. The

explicit description of the timing behavior must be an in-

tegral part of the design and semantics of the software.

The Timing Definition Language (TDL) [16] is based

on the Logical Execution Time (LET) abstraction, intro-

duced in the realm of Giotto [7]. LET abstracts from the

physical execution time and, thereby, from both the ex-

ecution platform and the communication topology. TDL
is a high-level description language for specifying the

explicit timing requirements of a time-triggered applica-

tion, which may be constructed out of several components.

TDL allows modularization of applications, ECU consoli-

dation, and the transparent distribution [3] of multi-mode

real-time components.

With transparent distribution, a TDL application be-

haves exactly the same at run-time, no matter if all com-

ponents are executed on a single node or if they are dis-

tributed across multiple nodes. The logical timing is al-

ways preserved; only the physical timing, which is not

observable from the outside, may be changed. TDL com-

ponents can be developed without having the execution

on a potentially distributed platform in mind, as the distri-

bution is visible only for the system integrator who spec-

ifies the mapping of components to computation nodes.

Note that transparency applies not only to the functional

but also to the temporal behavior of an application.

TDL transparent distribution allows independent com-

ponent development and makes system integration easier,

as the platform is considered after the components have

been developed. The TDL tool chain frees the developer

from the burden of explicitly specifying the communi-

cation requirements of components. Thus, TDL compo-

nents can be moved to other nodes (if there are enough

resources) without modifying their source code and with-

out changing their behavior. TDL provides a complete tool

chain for transparent distribution with a run-time system

that enforces LET semantics and automatic generation of

communications schedule and glue code.

This paper presents the automatic bus-schedule gener-

ation as an end-to-end process, starting with identifying

the required messages for a set of components and ob-

taining in the end a table with the bus schedule for the

target network topology. As we combine messages from

different modes of execution, we use optimizations to al-

locate bandwidth efficiently. We introduce the algorithms

for hyperperiod TDL scheduling with producer-consumer

optimizations, dynamic multiplexing, and merging.

In the following, we start with an overview of the TDL
component model. Then, we present each step of the bus-

schedule generation. Section 4 presents measurements on

the effects of various optimizations. An overview of re-

lated work and conclusions round out the paper.

2. TDL Component Model

Our real-time component is the TDL module, which

communicates with the physical environment through sen-

sors and actuators, performs computation in tasks, and de-

fines different operational modes that can be changed at

run-time. A module is the unit of compilation and pro-

vides a namespace environment for declaring the language

constructs (see [16] for the EBNF grammar).

LET defines the exact moments when a task exchanges

data with the environment and other tasks. From the log-

ical point of view, a task reads its inputs at the release
event and runs continuously until its termination event;

only then, its newly computed results are made available

to the rest of the system. Thus, the observable temporal

behavior of a task is independent from its physical execu-

tion (platform performance, communication topology, and

scheduling policy). LET provides value and time deter-

minism, compositionality, platform abstraction, and well-

defined interaction semantics between parallel activities.

A module M can be only in one mode at a time. A

mode m ∈ Modes[M] is a set of periodically executed

activities, which can be task invocations, actuator up-

dates, and mode switches: Activities[m] = Invokes[m]∪
Updates[m]∪ Switches[m]. A mode has a fixed period

T (m), and each activity a has its own rate of execution

ω(a) within the mode. All activities are time triggered and

can be executed conditionally (i.e., guarded by a Boolean

function). TDL expresses only the timing behavior with

LET semantics: when tasks read inputs and provide out-

puts, when actuators are updated, and when mode-switch

conditions are checked. Data is communicated between

entities through ports, and the functionality is specified as

external functions in any imperative language.

A module M ∈ Modules may import other modules

M ′ ∈ Imports[M] ⊂ Modules \ {M} and may export
some of its own program entities to other client modules

by declaring them as publicly visible. Figure 1 sketches

two sample TDL modules: MPrd with two modes contain-

ing two tasks each, and MCns with one mode and a task

Task2 that uses the output from Task1. The arrows depict

the import relationship and the LET data-flow semantics,

which are defined per mode.

Parallel tasks within a mode may depend on each other,

i.e., the output of one task may be used as the input of

another task. Moreover, a service provider module may

export a task’s outputs, which in turn may be imported by

a client module and used as input for the client’s compu-

tations. However, this data-flow dependency is defined by

LET and it does not introduce precedence constraints for

the release times of tasks. In the current TDL semantics,

the LET of a task is equal to its period within the mode; the

tasks invoked in a mode are a subset of the set Tasks[M]
declared in this module.

When a module starts executing a mode m, all tasks

invoked in m are released synchronously. TDL restricts

mode switches to be harmonic: mode switches from mode

Producer Module MPrd Consumer Module MCns

mode1

mode2

a1

a3

a4

Task1 [T=30ms]

Task3 [T=20ms]

Task1 [T=20ms]

Task4 [T=10ms]

s1

s2

mode
switch

modeX

a2Task2 [T=30ms]

S
en

so
rs

A
ct

ua
to

rs

Import
relationship

Figure 1. Visual representation of a module

m to mode m′ may not interrupt task invocations (i.e.,

LET) in the old mode m. Thus, the period for evaluating

the condition of any mode switch in m is a multiple of the

LCM from the periods of all tasks invoked in m. A mode

switch in a module is executed instantaneously.

The TDL component model solves the problem of ECU

consolidation in the automotive domain by allowing mul-

tiple modules to run on the same ECU if there are enough

resources available. All modules start the execution syn-

chronously in their own start mode. Each module defines

its own modes of operation and performs mode changes

independent of other modules; this remains valid also

when distributing modules. Thus, all modules execute

logically in parallel: M1 ‖ M2 ‖ · · · ‖ M|Modules|.
TDL achieves parallel composition, as LET is always pre-

served: adding a new module will never affect the observ-

able temporal behavior of other modules. It is the respon-

sibility of the scheduler to guarantee conformance to LET.

3. Bus-Schedule Generation

Figure 2 shows the TDL tool chain. The compiler pro-

cesses TDL source code and generates an abstract syntax

tree (AST) representation of the TDL modules and the so-

called ecode, which describes the LET semantics. The

TDL run-time system [3] consists of a virtual machine for

ecode execution, a scheduler, and a communication layer.

The plug-in architecture of the compiler allows its ex-

tension with any number of tools that rely on the AST. The

Bus-Scheduler Plugin generates the bus schedule, based

on a configuration file containing the list of computing

nodes, the allocation of modules to nodes, and the physi-

cal properties of the network. For each target platform and

module allocation, a Platform Plugin generates the glue

code between the functionality, ecode, and run-time sys-

tem and interfaces with a tool for WCET estimation.

.tdl Compiler

TDL run-time
system

Bus Scheduler
plugin

AST

.ecode
functionality

code

Platform
plugin

glue
codeplatform

specific

network
config.

busch

AST

Figure 2. Overview of TDL tool chain

For transparent distribution [3], if a client module im-

ports a producer module, the TDL run-time system creates

an image of the producer module (i.e., a stub module) on

the client’s node. The client module will interact with this

stub without knowing that the producer is actually on an-

other node. The TDL run-time system synchronizes the

stub with the producer itself based on the bus schedule,

which must maintain the LET semantics.

3.1. Overview of Bus-Schedule Generation
We separate task and communication scheduling in two

steps. The bus schedule is generated off-line as a descrip-

tion of the network activities within a bus period that is ex-

ecuted repeatedly. Tasks are scheduled on-line using EDF

with timing constraints derived from the bus schedule.

We use broadcast communication on the bus. The ac-

cess to the shared communication medium is collision free

via a Time Division Multiple Access (TDMA) [11] ap-

proach. To support TDMA, we need a mechanism for

clock synchronization over the network, which is imple-

mented in the TDL communication layer if it is not avail-

able a priori on the platform (e.g., in our case studies [3]

for CAN and RT-Ethernet). Our distribution approach is

implemented on top of existing network protocols.

Furthermore, we use the Producer-Consumer model.

The nodes that produce information trigger the sending

of data over the network. The nodes that need the infor-

mation do not send any requests, but just retrieve the data

from the network. We use the terms producer and con-
sumer only in respect to the data flow over the network.

The module is our unit of distribution. Modules are

statically allocated to nodes, and more modules can be al-

located to the same node. As a first step to fault tolerance,

TDL supports module replication. The replicas are identi-

fied from the module-to-node assignment in the configu-

ration file. We send the messages produced in all producer

replicas and we process them in all consumer replicas.

The Bus-Schedule Generation Tool performs several

steps (see Figure 3). It receives as input the TDL modules

from the compiler and a configuration file for the target

network topology and protocol. It provides as output the

bus schedule with start and stop times for all frames.

Based on the allocation of modules to nodes, the Con-

nection Identifier scans the TDL modules and identifies

the producers, consumers, and data connections between

them. Based on these connections, a TDL Distribution

Protocol computes the bus period, identifies the required

messages with their timing constraints, and binds mes-

sages to frames. A message represents the values of the

task output ports produced by a task invocation. A frame
represents the entire unit of information to be sent on the

network: payload and control bits. The protocol maps n
messages to m ≤ n frames, and currently does not support

large messages, which should be split in several frames.

As each module switches its mode independently of

other modules, we can create a global table with messages

from all modes of all modules or a table for each possible

Connection Identifier

Message
Identifier

Bus-Period
Calculator

Message to
Frame
Binder

Frame
Scheduler

conn

n
messages

m
frames

p
frames

 TDL Modules
(AST)

TDL Distribution Protocol

busPeriod

config
Module to node allocation Bus properties

busch

Bus properties
(max payload)

Figure 3. TDL Bus-Schedule Generation

combination of parallel modes -
∏

M |Modes[M]|. As the

latter leads to an explosion of tables, we use the first op-

tion. In this paper, we present a TDL scheduling approach

over the hyperperiod of task invocations, where the sched-

ule combines the messages from all modes. As modes in

one module are exclusive, such a schedule wastes band-

width. Thus, we introduce optimizations in the Producer-

Consumer model (Section 3.4) and in the Frame Scheduler

(Section 3.5), to reduce the number of frames. In TDMA,

avoiding redundant messages at run-time is not helpful,

as the time slots can not be reassigned to nodes. But we

perform these optimizations off-line, when generating the

schedule, as to improve the feasibility of the system.

The Frame Scheduler receives a set of frames with tim-

ing constraints and schedules the frames within the bus

period, depending on the properties of the underlying net-

work (e.g., protocol overhead, minimum and maximum

payload size, gap bits, rate, and clock resolution). The

Frame Scheduler performs multiplexing or merging be-

tween frames, leading to a reduced number of frames and

to changes in the mapping between messages and frames.

In the end, the bus schedule will contain p ≤ m data

frames, plus the control frames. To maintain the LET se-

mantics, the producer stub must know in which mode the

producer is running. Thus, we allocate at the beginning

of the bus period a control frame per each producer node

containing the current modes of the producer modules.

Mode switches impose restrictions on the length of the

bus period. As the execution of any mode must start syn-

chronized with the bus cycle, a mode switch may not oc-

cur inside the bus cycle. We define mspGCDM for a

module M as the GCD of mode periods and mode-switch
periods in all modes of M . The mode-switch instants of

M are positive multiples of mspGCDM . Thus, for ev-

ery module that communicates on the bus, mspGCDM

must be a multiple of the bus period; this implies that

mspGCDS , the global GCD of mspGCDM , is a multi-

ple of the bus period. Thus, TDL hyperperiod scheduling

can be used when the TDL modules define periods such as

the LCM of task periods is a divisor of mspGCDS . This

is a common scenario, as modules typically have related

mode periods and could even have the same mode-switch

periods (recall that mode switches are harmonic within a

module). In [4] we presented a Microperiod TDL Dis-

tribution Protocol that defines the bus period as equal to

mspGCDS for arbitrary TDL modules. In this paper, we

focus on the end-to-end process and the optimizations in

all steps of hyperperiod scheduling.

3.2. Connection Identifier
For bus scheduling, we are interested only in the data

connections that require communication on the network.

Thus, the Connection Identifier reads the allocation of

modules to nodes from the configuration file and scans

the TDL modules to identify producers, consumers, and

data connections between them. Each mode activity

(a, ω, guard, SrcPorts, DstPorts) defines a relative fre-

quency, a guard function, a set of source ports, and a set

of destination ports. By investigating the declarations of

mode activities in all modes from all modules, we can

determine which activities use remote source ports, i.e.,

ports from imported modules located on other nodes.

Consumers of data can be any mode activities: task

invocations, actuator updates, and mode switches. Task

invocations need source values for all task input ports,

whereas actuator updates need one source value that will

be used to set the physical actuator. Mode switches can be

consumers because they may initialize task output ports in

the target mode with remote values. Moreover, the guard

of any activity may also use remote ports in its arguments.

Producers of data can be only task output ports. Sen-

sors can also be used as input to other entities; however,

reading a local sensor takes logical zero time, but sending

over the network a message with its value takes a non-

negligible time. Thus, to maintain the transparent distri-

bution, we do not allow direct references to remote sen-

sors. Sensors can be accessed via task wrappers, which

define the LET and reading rate for the sensors.

We introduce Algorithm 1 for identifying the producer-

consumer data connections from a set of TDL modules.

For each producer task τ , we select only its output ports

that are required by at least one consumer, obtaining the

set of producer ports ProdOutPorts[τ] ⊂ OutPorts[τ].
We also create a data connection from each producer task

to all its consumers. Data may be produced, respectively

read, with different frequencies in different modes. Thus,

a connection dc = (τ, PrdPeriods, CnsPeriods) has

associated the set of periods PrdPeriods of invoking τ
in all modes and the set of periods CnsPeriods of read-

ing the producer ports in all consumers in all modes. We

use the notation X∪ ← x for adding an element to a set,

and x | p for identifying elements that satisfy a property.

Algorithm 1. Identify data connections
identifyConnections(Set Modules) returns Set

dataConnections← ∅
∀M ∈ Modules :

// identify connections from other modules to this module
∀m ∈ Modes[M] :

//check all mode activities
∀(a, ω, guard, SrcPorts, DstPorts) ∈ Activities[m] :

// check all source ports for this activity and its guard
∀s ∈ SrcPorts[a] ∪ SrcPorts[guard] :

// identify all remote replicas of the producer module
∀PrdM ∈ Imports[M] | s ∈ PrdM :

if node(M) �= node(PrdM) then
select τ ∈ Tasks[PrdM] | s ∈ OutPorts[τ]
ProdOutPorts[τ]∪ ← s
if �dc(τ) ∈ dataConnections then

dc← new DataConnection(τ)

// get all periods for updating s in all modes
∀pm ∈ Modes[PrdM] :

if τ ∈ Invokes[pm] then
PrdPeriods[dc]∪ ← T (pm)/ω(τ, pm)

endif
dataConnections∪ ← dc

endif
// add the period of the current consumer
CnsPeriods[dc]∪ ← T (m)/ω(a)

endif
return dataConnections

As TDL supports module replication, we check each

replica separately to identify the connections. Depend-

ing on the allocation to nodes, the replicas of the same

producer can have different consumers requiring commu-

nication on the network. Thus, we create an independent

connection for each producer replica. For instance, mod-

ule M1 is replicated on three nodes N1, N2, and N3; mod-

ule M2 imports M1 and runs on N3. We create connections

only for producer tasks in the first two replicas of M1.

3.3. Basic Producer-Consumer Model
The straightforward approach to implement the

Producer-Consumer model is to ignore the knowledge

about the periods of consumers. We need the Connec-

tion Identifier only to filter task output ports to those that

have at least one consumer. However, we communicate

messages each time a new value is produced, regardless

of whether a consumer instance uses that particular value.

Thus, we send messages with the frequency of producers.

We compute the bus period as the LCM of producer

task periods in all modes and all modules:

busPeriod = lcm
∀dc
{T | T ∈ PrdPeriods[dc]}

We introduce Algorithm 2 for identifying messages

and frames from a set of connections. We create one mes-

sage for each instance of a producer task τ within each

mode of operation; the message gathers the values of all

producer ports ProdOutPorts[τ]. Thus, the number of

messages is given by the bus period divided with the pe-

riod of the producer TPrd in the analyzed mode. The re-

lease r and deadline d constraints for a message depend on

the worst-case execution time wcet and the LET instants

for the producer-task instance. The size of the message is

fixed, summing the size of the producer ports.

Algorithm 2. Basic Prod-Cons model
createMessagesFrames(Set connections) returns Set

frames← ∅
∀dc ∈ connections:

∀TPrd ∈ PrdPeriods[dc]:
//identify all task invocations within the bus period
∀invPrd ∈ N = 1, · · · , busPeriod/TPrd:

msg ← createMessage(τ(dc), invPrd, TPrd)

addMessage(msg, frames)

return frames

//creates a message for an invocation of a producer task
createMessage(Task τ, inv ∈ N, T ∈ N) returns Message

r ← (inv − 1) · T + wcet(τ) //msg release
d← inv · T //msg deadline

return new Message(τ, r, d)

//adds a message to an existing frame of the same producer with
//the same deadline or creates a new frame for the message
addMessage(Message m, Set frames)

if ∃f ∈ frames | d(m) = d(f) ∧ (∀m′ ∈ f, τ(m) = τ(m′))
then

r(f)← max(r(f), r(m)) //keep the max release time
f∪ ← m //add the message to the frame

else
f ← new Frame(m) //copy m constraints (r,d,size) to f
frames∪ ← f

endif

When a producer task has invocations with the same

deadline in different modes, it is redundant to schedule

all messages because modes are exclusive. Thus, we al-

locate all messages from such producer instances to only

one frame, whose release constraint is the maximum re-

lease among all messages. This allocation strategy is a

simple case of multiplexing. The size of the frame is the

size of one message.

timemode1

LET task1

mode2

MPrd LET task1

1 msg

20ms 40ms

30ms 60ms

60ms

1 msg 1 msg 1 msg

1 msg

Figure 4. The messages and frames for a
producer invoked in different modes

Figure 4 presents as example task1 invoked in two

modes of module MPrd with periods of 30ms, respec-

tively 20ms. Within the bus period of 60ms, there are five

messages in total, but only four frames because the last

producer invocation has the same deadline in both modes.

3.4. Optimized Producer-Consumer Model
We optimize the Producer-Consumer model by con-

sidering only the messages that are actually used by at

least a consumer in at least one mode of operation. When

the consumers have a lower frequency than the producer,

an obvious optimization is to suppress unused messages.

Therefore, this optimization saves network bandwidth.

The difference to the basic model from Section 3.3 is

that we must consider the relation between the periods of

producers and consumers. If there exists one consumer

with a smaller period than the producer, it will consume

all results produced; thus, we cannot reduce the number

of messages for this producer in the given mode. In gen-

eral, there can be data connections that can be optimized,

whereas others can not.

The bus period becomes equal to the LCM of (1) pro-

ducer periods for all data connections dc and (2) consumer

periods only for connections that can be optimized:

busPeriod = lcm
∀dc
{PrdPeriods[dc]} ∪ {CnsPeriods[dc]

|min(CnsPeriods[dc]) > min(PrdPeriods[dc])}

We may obtain a larger bus schedule than in the basic

model, because we consider also consumer periods. How-

ever, this schedule better utilizes the bandwidth.

We introduce Algorithm 3 for identifying the required

messages and frames. When a consumer runs slower than

the producer, for each consumer instance we identify the

producer instance with the closest deadline to the release

of the consumer. We create a corresponding message with

release and deadline determined by this producer instance,

only if the message was not already requested by other

consumers. Although different consumers may require

different output ports from tasks, we send all producer

values to all consumers so that to maintain producer con-

sistency. From this reason, we created a data connection

per producer task and not per producer port.

Algorithm 3. Optimized Prod-Cons model
createMessagesFrames(Set connections) returns Set

frames← ∅
∀dc ∈ connections:

∀TPrd ∈ PrdPeriods[dc]:
if min(CnsPeriods[dc]) ≤ TPrd then

//create messages for TPrd as in basic Prd−Cns model
∀invPrd ∈ N = 1, · · · , busPeriod/TPrd:

msg ← createMessage(τ(dc), invPrd, TPrd)

addMessage(msg, frames)

else
∀TCns ∈ CnsPeriods[dc]:
∀invCns ∈ N = 1, · · · , busPeriod/TCns:

//identify the last invocation of the producer
invPrd← invCns · TCns/TPrd
if �msg(τ(dc), invPrd, TPrd) then

msg ← createMessage(τ(dc), invPrd, TPrd)

addMessage(msg, frames)

endif
endif

return frames

timemode1

LET task1

mode2

MPrd LET task1

1 msg

20ms 40ms

30ms 60ms

60ms

1 msg 1 msg 1 msg

time

LET task2

60ms

modexMCns

1 msg

Figure 5. Optimizing messages

Figure 5 reviews the example from Section 3.3, with

a consumer task2 invoked in one mode of module MCns
with period 30ms. In the optimized model, we create four

messages and three frames. When task1 runs in mode2,

the result of its second invocation is not used by task2,

because the second invocation of task2 reads the inputs at

its release of 30ms as specified by LET semantics, thus,

requiring the result of the first invocation of task1.

3.5. Frame Scheduler
The Frame Scheduler receives as input a set of frames

from the basic or optimized Producer-Consumer model.

Each frame has a payload size and timing constraints com-

puted from the messages bound to the frame. The worst-

case transmission time is computed from the frame size

and the network properties. The release and deadline of

the frame define a communication window. As the com-

munication windows of different frames could overlap, we

schedule them with a variation of the Reversed EDF algo-

rithm, or the Latest Release Time [12]. When scheduling

a frame, we assign it the transmission start and stop times.

As producer tasks are scheduled on-line with deadlines

at the start of the frame containing the produced message,

our strategy is to schedule frames as late as possible, to

allow more flexibility for task scheduling. Thus, we sort

the set of frames by deadlines and then by release times;

we schedule the ordered frames non-preemptively starting

from the end of the bus period and going backwards. We

do not restrict the TDMA pattern inside a cycle, as frames

sent by different nodes may alternate in the schedule and

may have different sizes. We used this approach in our

cases studies with a time-triggered adaptation of CAN [9]

and RT-Ethernet.

The Frame Scheduler has constraints from the physical

properties of the communication infrastructure. For ex-

ample, it aligns the start time according to the inter-frame

gap and the clock resolution on the nodes. It also gener-

ates control frames, for time synchronization and for com-

municating the active modes. Remember that a producer

can change the mode only at the end of the bus cycle.

We introduce Algorithm 4 for scheduling a set of TDL
frames with multiplexing and merging between frames.

We define multiplexing as the allocation to the same frame

of messages from different modes of operations of the

same module; these messages will not be sent in the frame

in the same bus cycle but in different bus cycles depending

on the current mode. We define merging as the allocation

to the same frame of messages that will be sent together in

the same bus cycle. Both optimizations reduce the number

of frames, but multiplexing also reduces the payload size.

Recall from Sections 3.3 and 3.4 that a frame had mes-

sages from the same producer task in different modes. Af-

ter scheduling, a frame can have several multiplexed mes-

sages from different producer tasks, and it can also have

merged messages, even from different modules. The bus

schedule is static in the sense that it is predefined when

a frame is sent and which messages are allocated to the

frame. But the structure of a frame changes depending
on the active modes at run-time. The schedule specifies

statically the size of the frame such that, at run-time, the

messages from any modes will fit in the frame.

Before scheduling a frame f , the Frame Scheduler tries

first to multiplex it with a previously scheduled frame pf .

As merging is not considered at this point, the Frame

Scheduler identifies the messages from pf having the

same producer module as the messages from f . If the

two sets of messages correspond to producer tasks up-

dated in different modes, they are exclusive at run-time.

Thus, they can reuse the same frame in the schedule.

However, we can reallocate the messages from f to pf ,

only if the timing constraints of all messages are met:

start(pf) ≥ r(msg) and stop(pf) ≤ d(msg).

Algorithm 4. Multiplexing and merging
scheduleFrames(Set frames)

sortRevEDF(frames); //sort backwards by deadline, then release
endT ime← busPeriod
∀f ∈ frames:

muxed← merged← false
prevFrames← previouslyScheduledFrames(frames, f)

while pf ∈ prevFrames and not muxed:

muxed← tryMultiplexing(f, pf)
if not muxed then

while pf ∈ prevFrames and not merged:

merged← tryMerging(f, pf)
endif
if muxed or merged then

delete f
else

scheduleFrame(f, endT ime)

endT ime← start(f)− gapT ime
endif

frames∪ ← controlFrames //add and schedule control frames

tryMultiplexing(Frame f , Frame pf) returns bool
if node(f) �= node(pf) or d(f) < stop(pf)

or module(f) /∈ pf then return false
∀msg ∈ f :

if mode(msg) ∈ pf then return false
newSize← max(size(f), size(pf))
if not checkTiming(pf, f, newSize) then return false
reallocateMessages(msg(f), pf)

return true

tryMerging(Frame f , Frame pf) returns bool
if node(f) �= node(pf) or d(f) < stop(pf) then return false
if we combine merging with multiplexing then

//get the size needed by the producer module in the previous frame
moduleSize← sizePerModule(pf, module(f))

∀msg ∈ f :

modeSize← size(msg)+ sizePerMode(pf, mode(msg))

overhead← max{modeSize} −moduleSize
newSize← max(size(f), size(f) + overhead)

else
newSize← size(f) + size(pf)

endif
if newSize > maxPayload return false
if not checkTiming(pf, f, newSize) then return false
reallocateMessages(msg(f), pf)

return true

When we multiplex frames, we delete f and the new

size of the frame pf is not the sum but the maximum be-

tween the sizes of pf and f . This could also lead to an

enlargement of pf , which could change its transmission

time in systems with high clock resolution. As pf could

be any of the previously scheduled frames, this change

could require the shifting of all frames between f and pf .

We have chosen not to perform multiplexing (nor merg-

ing) if shifting is required.

If pure multiplexing fails, the Frame Scheduler tries

to merge frames if they are sent by the same node, even

from different modules. In pure merging, the size of f
is simply added to the size of pf . In merging combined

with multiplexing, each message from f is merged with

the messages from pf from the same mode in the same

producer module. Thus, we change the size required by

some producer modes in pf , which may increase also the

m
ul

tip
le

xi
ng

M1.m3
.msg4

M1.m2.msg3

M1.m1.msg1 M1.m1.msg2

merging

M1.m3.msg5

M2.m4.msg6

M2.m5.msg7

2 4 6 8 bytes

Figure 6. Multiplexing & merging in a frame

size required by the producer module.

Figure 6 presents an example of seven messages allo-

cated to one frame of 8 bytes: there are 4 bytes reserved

for each merged module, M1 and M2. The rectangle of a

message shows its size in bytes. In each module, there are

messages multiplexed from different modes; M1 has also

messages merged within mode m1 and m3. For instance,

at run-time when M1 runs in m3 and M2 runs in m5, the

frame will contain messages msg4, msg5, and msg7.

4. Evaluation

In the following, we present how Producer-Consumer

optimizations, multiplexing, and merging frames affect

the creation of the bus schedule. As we have automatic

bus-schedule generation, we can perform numerical ex-

periments on sets of TDL modules as input. Thus, we

implemented a tool that creates random TDL modules.

We started with a single-node system and added one

node in each iteration up to 25 nodes; we allocated two

modules to each node. Each module had five modes, with

each mode period as 24ms and the mode-switch frequen-

cies as 1, resulting in a bus period of 24ms. Each module

has a random number of producer and consumer tasks less

than five, where consumers use remote values uniformly

from all other modules in the system. Each task within a

mode has a random period among the divisors of the mode

period. Tasks are assigned randomly to modes, but each

task is invoked in at least two modes. Each task has a port

of 4 bytes, to simplify the import relationships and avoid

type mismatches.

We performed experiments for the CAN network, and

the properties are provided in a configuration file. CAN

has a maximum payload of 8 bytes and a minimum inter-

frame gap of 3 bits. It has 44 envelope bits, but due to bit

stuffing, the overhead of the frame varies with the message

content and is maximum 68 bits. We assumed a bus rate

of 1Mbit/s and a clock resolution of 200μs on the nodes,

which reduces the bandwidth we can use. Within a bus

cycle of 24ms, we can send maximum 120 frames.

Figure 7 presents the total number of messages for the

basic and optimized Producer-Consumer model. As the

number of nodes grows, so does the number of produc-

ers and consumers in the system, which require a higher

number of messages except when the new consumers use

the same messages as the others (see the 15th node). The

optimized model (Sect. 3.4) avoids creating messages for

values produced but not required by any consumers; for

random periods, it reduces the number of messages with

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of nodes

To
ta

l n
um

be
r o

f m
es

sa
ge

s

Basic Prod-Cons
Optimized Prod-Cons

Figure 7. Producer-Consumer optimizations

23% in the average case.

Figure 8 presents the total number of scheduled frames

and the data throughput when enabling or not multiplex-

ing and merging in Frame Scheduler. The X axis shows

the number of messages identified in the basic model.

Recall that messages from the same producers are mul-

tiplexed from the beginning, thus the number of frames is

reduced even if not optimizing in Frame Scheduler (see

Basic PC line: 147 messages use 112 frames). Adding

optimizations further reduces the number of frames and,

more importantly, increases the schedulability of the sys-

tem; each line stops when the schedule becomes unfea-

sible. We can schedule up to 320 messages within 112

frames, and the average gain of all optimizations is 50%.

Figure 8 also shows that merging reduces the frames

more than multiplexing, as the message size is 4 bytes al-

lowing merging, whereas tasks are invoked only in two

modes limiting multiplexing. However, merging does not

change the data throughput, but only the data efficiency

by reducing the frame overhead. Instead, multiplexing

reduces the data throughput as we reserve less space for

messages sent in different cycles. Thus, multiplexing re-

duces the bandwidth consumption of a set of messages.

Furthermore, our strategy is to schedule frames as late

0

20

40

60

80

100

120

24 64 96 122 147 165 194 235 265 288 335 358

Total number of messages in Basic PC model

To
ta

l n
um

be
r o

f f
ra

m
es

Basic PC
+ mux
+ merge
+ mux + merge

Optimized PC+ mux +merge

D
at

a
th

ro
ug

hp
ut

 [K
bi

ts
/s

]
. 0

25

50

75

100

125

150

175

200
225

Figure 8. Frame Scheduler optimizations

as possible to allow more time for the task computation.

Merging and multiplexing reduce the average slack of

messages (message deadline − frame stop), as they are

allocated to frames scheduled later in the bus period. The

charts for the effect of the optimizations on the slack are in

correspondence with the charts for the number of frames.

5. Discussion and Related Work

TTTech [17] and its subsidiary TTAutomotive support

the development of time-triggered automotive systems,

based on TTP [18] and FlexRay [5] protocols. FlexRay

is also supported by DECOMSYS’s [2] Designer Pro and

Vector’s [19] DaVinci tool suites. Their tools for schedule

generation require as input the set of messages and their

timing constraints, whereas we automatically detect them

from the TDL modules. TDL also provides tools that map

TDL modules to the TTTech and Designer Pro tools.

Our Frame Scheduler can also be easily adapted for

TTCAN [10], TTP, and FlexRay, by considering their re-

strictions on the structure of TDMA cycles. It can also in-

corporate multiplexing and merging within other schedul-

ing algorithms than Reverse EDF (e.g., heuristic search),

which could further optimize feasibility and bandwidth.

[15] also addresses the problem of frame packing as to

minimize the bandwidth consumption for CAN and to

choose the priorities for frames. Frame packing is sim-

ilar to what we call merging; their algorithms are based

on greedy or bin packing and fixed-priority scheduling,

whereas we address TDMA and combine merging with

multiplexing for LET semantics. We also focus on mini-

mizing the slack (by scheduling frames as late as possible)

and then optimizing the bandwidth. Note that in our case,

frames are not periodic inside the bus cycle.

We schedule tasks and messages in two steps, which

is also the case of the [17, 2, 19] tools. This leads to

suboptimal solutions, as there is a tradeoff between the

two, but the bus-schedule generation could be tuned on the

feedback from the schedulability analysis for tasks. Algo-

rithms for scheduling clock-driven tasks and messages in

one step (e.g., [6]) are impractical in our case because of

independent mode switches.

Fixed-time partitioning between modules for proces-

sors and the network (e.g., virtual networks [14]) offers

compositionality, but can waste system resources, leading

to infeasibility. Server-based scheduling [13] is a more

flexible and fair alternative for hierarchical scheduling,

but it needs a timing analysis. These strategies need to be

further evaluated for multi-mode LET systems like TDL.

Related work on mode changes addresses only global

modes, which simplify the scheduling problem. [6] also

proposes faster mode changes than at the end of the cy-

cle, via a transition schedule. Giotto [7] saw the bene-

fits of LET for distributed systems, but its prototype im-

plementations have limited support for distribution, where

the schedules are constructed mostly manually and do not

support mode switches [8].

6. Conclusions

TDL supports parallel composition of real-time com-

ponents in respect to both value and time determinism. It

becomes possible to change the underlying platform and

to distribute components without affecting the overall sys-

tem behavior and without changing the code of compo-

nents, because we identify and schedule automatically all

required communications on the network.

We showed how producer-consumer optimizations, dy-

namic multiplexing, and merging improve the feasibil-

ity and reduce the bandwidth consumption. Producer-

consumer optimizations and multiplexing reduce the pay-

load, whereas merging reduces only the frame overhead.

Merging is useful in systems with low clock resolution,

when more messages have a small size and fit in a frame.

References
[1] Automotive Open System Architecture. www.autosar.org.
[2] DECOMSYS. www.decomsys.com.
[3] E. Farcas, C. Farcas, W. Pree, and J. Templ. Transparent

distribution of real-time components based on logical ex-

ecution time. In Proc. ACM SIGPLAN/SIGBED Confer-
ence on Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 31–39, June 2005.

[4] E. Farcas, W. Pree, and J. Templ. Bus scheduling for TDL

components. In Architecting Systems with Trustworthy
Components, LNCS 3938, pages 71–83. Springer, 2006.

[5] FlexRay Consortium. FlexRay Communications System
Protocol Specification, Version 2.0, June 2004.

[6] G. Fohler. Flexibility in Statically Scheduled Hard Real-
Time Systems. PhD thesis, Technische Univ. Wien, 1994.

[7] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto:

A time-triggered language for embedded programming. In

Proc. EMSOFT, pages 166–184, 2001.
[8] T. A. Henzinger, C. M. Kirsch, and S. Matic. Compos-

able code generation for distributed Giotto. In Proc. ACM
SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), 2005.

[9] ISO IS 11898. Road vehicles – Interchange of Digital
Information – Controller Area Network (CAN) for High-
Speed Communication, 1993.

[10] ISO IS 11898-4. Road vehicles - Controller area network
(CAN) - Part 4: Time-triggered communication, 2004.

[11] H. Kopetz. Real-time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer, 1997.

[12] J. W. S. Liu. Real-Time Systems. Prentice-Hall, 2000.
[13] T. Nolte. Share-Driven Scheduling of Embedded Net-

works. PhD thesis, Mälardalen University, May 2006.
[14] R. Obermaisser, P. Peti, and H. Kopetz. Virtual net-

works in an integrated time-triggered architecture. In Proc.
WORDS, pages 241 – 253, Feb. 2005.

[15] R. Saket and N. Navet. Frame packing algorithms for au-

tomotive applications. Journal of Embedded Computing,

2(1):93–102, 2006.
[16] J. Templ. TDL Specification and Report. Techni-

cal report, University of Salzburg, Austria. Mar 2004,

www.SoftwareResearch.net/site/publications/C059.pdf.
[17] TTTech Computertechnik AG. www.tttech.com.
[18] TTTech. Time-Triggered Protocol TTP/C High-Level

Specification Document, Edition 1.4.3, Nov. 2003.
[19] Vector Informatik GmbH. www.vector-informatik.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

