
Virtual Execution Environment for Real-Time TDL Components

Claudiu Farcas
Calit2, University of California

San Diego, USA
cfarcas{at}soe.ucsd.edu

Wolfgang Pree
C. Doppler Lab Embedded Software Systems

University of Salzburg, Austria
wolfgang.pree{at}cs.uni-salzburg.at

Abstract

Existing embedded software development methodolo-
gies can hardly cope with platform changes such as CPU
upgrades, different RTOS or distributed systems. The
Timing Definition Language (TDL) enables the develop-
ment of deterministic real-time components regardless of
the deployment platform. The proposed virtual execution
environment enables parallel execution and deterministic
run-time composition of real-time TDL components with
data dependencies. We focus on embedded code genera-
tion and the virtual machine that controls the execution of
TDL components and their interaction patterns.

1. Introduction

In recent years, advances in hardware devices, net-
works, and related technologies are hardly matched by
correspondent advances in software development. Us-
ing traditional real-time software development method-
ologies it is hard to perform the migration of embedded
software from one platform to another, even if the plat-
form change is only for hardware upgrade to a faster pro-
cessor. The main problems are timing as an accidental
consequence of the implementation, conceptual and func-
tional differences between the underlying real-time oper-
ating systems, lack of compilers and corresponding run-
time environments, and additional testing and verification
phases for the behavior of the new system. New devel-
opment methodologies focus on modeling the application
using visual tools such as Matlab/Simulink, supplemented
by automatic code generators. However, for improved
platform performance most real-time control applications
require manual fine-tuning that breaks the correspondence
between the model and the implementation, and makes the
resulting code hardly portable.

An improved development methodology pioneered by
the high-level time-triggered Giotto language [9] makes
the timing an explicit part of the real-time software de-
sign. The Timing Definition Language (TDL) [14] goes
further with a component model, streamlined syntax, im-
proved semantics, and full support for distribution. It al-
lows deterministic software composition out of individual
components, which run in parallel, may exchange infor-
mation, and switch execution modes independently. In

addition to its virtual machine presented in this paper, it
employs a fast on-line scheduler [4] using precompiled
schedules and a platform abstraction layer [4] to decouple
the components from the underlying platform architecture
and enable transparent distribution [6].

In most embedded systems, the interplay between tasks
defining the application behavior is tightly integrated into
the source code of the application itself, whereas in the
case of TDL, the behavior is defined externally and can
be easily changed without altering the functionality code.
This translates into great benefits for the embedded market
as precompiled real-time software libraries can be used for
a variety of applications. For instance, in the automotive
domain, decoupling the development of individual func-
tionalities for subsystems such as engine control, braking,
navigation, from their various integrations options into
product lines reduces the development cost and time-to-
market of the final product. In addition, late fixes in the
application behavior can be easily performed as the devel-
oper could simply provide a different set of TDL embed-
ded code without recompiling the application.

In this paper, we focus on the virtual machine of TDL
and its accompanying embedded code. We introduce the
set of algorithms that perform the compilation and run-
time handling of the intra- and inter-component interac-
tion patterns. We go significantly beyond previous work
on Giotto by handling parallel run-time composition, data
dependencies between components, and support for dis-
tribution. In contrast with Giotto’s generated E-Code that
preempts the application at GCD of all activities, we op-
timize the TDL E-code for size and minimal number of
preemptions, i.e. only at LET instances.

We begin with an overview of TDL and its component
model with import relationships. In Section 3, we present
the embedded code generation. Section 4 contains the al-
gorithms of the virtual machine. We round out the paper
with an evaluation section, related work, and conclusions.

2. Timing Definition Language (TDL)

TDL is a high-level description language for specify-
ing the explicit timing requirements of a time-triggered
application, which may be constructed out of several in-
dependently developed components. Although, it relies on
the same core concept of the Giotto language - the Logical

time

Logical task invocation

Logical Execution Time (LET)

Logical

Physical

start stopsuspend resume

release terminate

Figure 1. The LET concept

Execution Time (LET) abstraction - it introduces a compo-
nent model and improves the syntax and semantics, mak-
ing it more adequate for the development of complex ap-
plications. [14, 6, 4] summarize the differences between
the two languages. The actual functionality can be imple-
mented in a language such as C/C++, and later linked with
the compiled TDL source [6].

2.1. Logical Execution Time (LET)
The LET concept means that the observable tempo-

ral behavior of a computational task is independent of its
physical execution on a platform. From the logical point
of view, depicted in the upper part of the Figure 1, a task
reads its inputs at the release time, then it runs contin-
uously until its termination time, when its computation
results are available to the environment and other tasks.
From the platform point of view, the task starts at some
point in time after it was released, may be preempted by
some other tasks or the operating system, and completes
before the end of its LET. Tasks are purely computational,
do not share internally any resources except at their re-
lease and terminate time, and have no internal synchro-
nization points, such as locks, mutexes, etc.

The LET concept introduces a unit-delay behavior [9],
which may appear as a disadvantage. However, it provides
determinism, composition [11], and platform abstraction,
which are more relevant for safety-critical systems. It also
prevents by design race conditions, deadlocks, and pri-
ority inversions. The underlying assumption, which we
have to verify [5], is that the run-time system and the
scheduling mechanisms used for the physical execution
allow each task to complete before its deadline.

2.2. Component Model
As a major improvement over Giotto, TDL introduces

a component model that allows the decomposition of com-
plex applications into a hierarchical set of components, i.e.
modules. Figure 2 illustrates the syntax of the language.

Modules. The TDL component model relies on the
concept of a module, which may encapsulate an entire ap-
plication or parts of a complex application. It provides
a separate name-space for all contained TDL entities and
acts as a unit of composition and distribution. The TDL
components that form an application may work indepen-
dently, each addressing a specific part of the functional-
ity of the application, or may collaborate to implement a
complex behavior. In addition, the component model al-
lows for decomposing existing complex applications into
smaller, more manageable parts, each with specific timing

and functionality, and provides the means for determinis-
tic component interaction. Developers can reuse existing
components to extend the functionality of an application
or create new applications.

From a Giotto perspective, a TDL module is concep-
tually a complete Giotto program, with improved syn-
tax and semantics. However, a TDL module may import
one or more other modules to build complex applications.
This feature introduces data dependencies between mod-
ules. The developer may declare a task as public and then
may access its output port values from any other mod-
ule importing the task’s parent module. For the follow-
ing algorithms, M represents a module, which may con-
tain a set of types and constants, Modes[M], Tasks[M],
Sensors[M], Actuators[M], and Guards[M].

Modes. The mode of a module is a set of period-
ically executed activities. At run-time a TDL module
may change its mode independently of the others. With
Giotto, the mode-changes happen after a time interval de-
pending on the state of the program (number of running
tasks) and the program logic, whereas TDL mode changes
are regarded as instantaneous. This feature increases the
flexibility of the application but introduces constraints on
the moments when mode switches may occur in a mod-
ule - TDL enforces harmonic mode switches, i.e. the
mode switch must not break the LET of any task invo-
cation within that mode. This apparent restriction im-
proves the determinism and schedulability analysis of the
mode-switch, and allows us to perform distributed mode
switches in complex applications. A module has a unique
start mode (initial state), noted ms.

A mode encompasses a set of activities such as task
invocations, actuator updates, with the corresponding fre-
quencies relative to the mode period ωτ , ωα, or changes of
the application state into a new state, i.e. mode switches
η with ωη. The period of an activity a within a mode m
is equal with the mode period Πm divided by the relative
frequency ωa of that activity within the mode.

Tasks. The task represents the computational unit of
TDL. It has a set of input, state, and output ports, along
with an external implementation referred through sym-
bolic linking. A task invocation within a mode represents
the execution of a task instance within the period of that
mode. Each task τ has a number of invocations within
a mode m equal with its relative frequency ωτ within
that mode (tasks can have different periods in different
modes). TDL regards the tasks as scheduled elements
with logical execution time [11]. Tasks[m] ⊂ Tasks[M]
represents the set of tasks invoked in a mode m of M .

Sensors and Actuators. In TDL, the sensors provide
information from the environment to the entities of a mod-
ule, i.e. tasks or guards, while the actuators provide the
feedback from tasks back to the environment. The under-
lying assumption is that the external functional implemen-
tation of the sensor getters and actuator setters executes
in logical zero time, i.e. orders of magnitude faster than
the smallest task computation. Practical implementations

module M1 {
public const

c1 = 50; c2 = 200;
basep = 10ms;

sensor
int s uses getS;

actuator
int a1 := c1 uses setA1;
int a2 := c2 uses setA2;

public task inc [wcet=1ms] {
output int o := c1;
uses incImpl(o);
}
public task dec [wcet=1ms] {

output int o := c2;
uses decImpl(o);
}
start mode f11 [basep] {

task
[1] inc(); // LET=basep/1
[1] dec(); // 10ms period

actuator
[1] a1 := inc.o;
[1] a2 := dec.o;

mode
[1] if switch2f12(s, inc.o)

then f12;
}
mode f12 [period=basep] {

task
[1] inc(); // 10ms period
[2] dec(); // LET=5ms

actuator
[1] a1 := inc.o; // 10ms
[2] a2 := dec.o; // 5ms

mode
[1] if switch2f11(s, inc.o)

then f11;
}
}

module M2 {
// get access to M1 and
// all its public entities
import M1;

// initialize actuator a with
// constant defined in M1
actuator

int a := M1.c2 uses setA;

task sum [wcet=1ms] {
input

// input for inc.o of M1
int i1;
// input for dec.o of M1
int i2;

output
// initialize task out port o
// with constant from M1
int o := M1.c2;

// external C function o=i1+i2
uses sumImpl(i1, i2, o);
}

// use public constant from M1
// as reference period
start mode main [M1.basep] {

task
// import task ports from M1

// Note: this is not RPC
[1] sum(M1.inc.o, M1.dec.o);

// update actuator with the
// sum of inc and dec of M1

actuator
[1] a := sum.o; // 10ms

}
}

Figure 2. Modules M1 and M2

may simply read or write to dedicated memory locations
or I/O ports, and additional overhead of complex com-
putations may be included into the corresponding task’s
worst-case completion time (wcct).

Guards. The guards are external user-defined Boolean
functions, which take as input the sensor or task output
values, compute in logical zero time, and depending on
their result at runtime, they condition the execution of
corresponding tasks, actuator updates, or mode switches.
Guards[m] represents the set of guards defined in m.

Ports and Drivers. The ports are the fundamental in-
terfacing options between the TDL entities of a module,
e.g. tasks, sensors, actuators. There can be input, out-
put, or state ports, each with a distinct type, e.g. int, byte,
float. Only tasks can have state ports, which we regard as
private ports. The output ports of tasks declared as public
may provide inputs to tasks or actuators in other modules.

The drivers as introduced by Giotto are no longer syn-
tactically explicit in TDL. The improved syntax of TDL
allows the TDL compiler to automatically perform the
type checking between ports and then generate the drivers
which transport the port values between the intercon-

nected TDL entities. d[e] ∈ Drivers[M] represents the
driver of a TDL entity e defined in M .

As example consider a simple application from Fig-
ure 2, consisting of two modules. M1 has two operating
modes f11 and f12, the only difference being that in the
second mode, the dec task is invoked twice as fast as inc
task. The implementations of both tasks (incImpl and dec-
Impl) have a worst case execution time of 1ms on the test
platform. A push button connected as sensor via the exter-
nal function getS may be used to trigger the mode switches
via the guards switch2f11 and switch2f12. The module M2
has only one operational mode, one sum task and no sen-
sors. It imports the module M1, hence, its sum task gets
as input the outputs of the two tasks of M1. The actuators
provide the tasks’ results to the physical environment.

3. Embedded Code

The E-Code concept, a novel way of encapsulating the
real-time behavior of an application, was first introduced
as a compilation target for the Giotto language [9]. Natu-
rally, we reuse this flexible concept for capturing the tim-
ing information of TDL. We consider the E-Code as re-
active code [11] that we execute at run-time on a virtual
machine (E-Machine [10]), assuming that there are suffi-
cient run-time resources, e.g. CPU and memory, in order
to meet the real-time behavior requirements expressed by
the E-Code and the accompanying functionality code.

The TDL compiler verifies this assumption using the
wcct of all tasks from all modules in conjunction with the
scheduling algorithm and an estimation of the overhead
of the TDL runtime on the given platform. This is nec-
essary because the TDL model is compositional by itself,
but in practice the overhead of multiple modules’ E-Code
might add up and break the compositionality. Hence, only
if the application set is schedulable on that platform, the
TDL compiler generates a table-driven schedule using an
algorithm such as EDF, which accounts for the E-code ex-
ecution overhead and the computed number of preemp-
tions. At run-time, the TDL scheduler monitors the tasks’
execution by waking-up at precomputed dispatch or task
completion times, and may either throw a LET violation
exception or reschedule with a low priority the tasks ex-
ceeding their wcct.

3.1. E-Code Instructions for TDL
We define a TDL E-Code instruction as the pair (c,

[args]), composed of the command c and its set of argu-
ments [args]. All E-Code instructions are synchronous,
i.e. execute in logical zero time. We can express the
behavior of a TDL mode m with one or more E-Code
instruction blocks. The reunion of all E-Code blocks of
all modes of the module M , represents the E-Code of the
module M , with the size ‖E[M]‖.

The CALL(d,[flag]) instruction has the functional pur-
pose of encapsulating the interaction between different
TDL entities via drivers. Its first argument represents a

driver d ∈ Drivers[M], which performs the actual port
copying operation required by LET semantics. An op-
tional second argument indicates that the driver corre-
sponds to a task termination event.

RELEASE(τ , deadline) prepares an instance of τ for exe-
cution; however, it does not imply an immediate dispatch
operation. The runtime scheduler maintains one or more
queues of released task instances, and depending on their
deadlines and a specific scheduling policy decides at run-
time which task instance runs on the CPU [4].

The FUTURE(a, t) instructions plans a later execu-
tion of the E-Code block starting at the address a ∈
[0 . . . ‖E[M]‖). t represents the time interval until the E-
Machine starts executing the instructions from address a.

The IF(g, atrue, afalse) instruction introduces branches
in the execution of the E-Code, in order to implement the
functionality of TDL guard g. The E-machine, depending
on the Boolean result of the guard condition u[g], contin-
ues the execution from the atrue or afalse addresses.

The SWITCH(η) instruction triggers a synchronous
change in the state of the current module, such that the ex-
ecution continues with the E-Code of the mode mη. The
context in which this instruction appears has to retain the
TDL semantics regarding harmonic mode switches.

The JUMP(a) instruction instructs the run-time environ-
ment to continue the execution from address a.

The RETURN instruction terminates a block of E-Code.
In order to continue the execution of its E-Code instruc-
tions, a TDL module has to provide a pair of future ad-
dress and time offset via a FUTURE instruction before the
RETURN instruction. Except for the initialization phase,
this instruction stops the execution of the module.

The E-Code instructions have well defined syntax and
semantics; however, they are not strictly limited to TDL
or its current semantics. As E-Code is synchronous, reac-
tive code, we could also use it to express the behavior of
software written in a synchronous language.

3.2. Encoding TDL Semantics into E-Code
Encoding the semantics of a TDL module into E-Code

improves portability and paves the way for real-time ap-
plications. For example, a low power microcontroller ex-
ecuting the E-Code enables better power management of
a more powerful processor executing the user tasks and
deep sleeping when idle.

The TDL compiler creates one E-Code file per module
using the Algorithm 1. The function emit(c, [args]) pro-
duces the E-Code instruction (c, [args]) and increments
the address counter a. We first generate the initializa-
tion E-Code for module M ending with a RETURN instruc-
tion. This enables a synchronized startup of an application
composed of parallel modules. From a developer perspec-
tive, common resources used by multiple modules should
only be initialized by a module, and the modules’ initial-
ization order should not matter.

For each mode m of the module M we retain the start-
ing address startm of its E-Code sequence. We later reuse

Algorithm 1. E-Code generation
a← 0 // initialization of the address counter
∀po ∈ Portsout[M] : emit(CALL(d[po])) // init. of output ports
emit(RETURN) // module initialization is complete

∀m ∈ Modes[M]
startm ← a // start address of mode m
Activ← ∅ // set of actions indexed by time
∀τ ∈ Tasks[m] : ∀t ∈ [0, ωτ), t ∈ N // release & terminate of τ

Activ{t · (Πm/ωτ)} ← Activ{t · (Πm/ωτ)} ∪ τr

Activ{(t + 1) · (Πm/ωτ)} ← Activ{(t + 1) · (Πm/ωτ)} ∪ τ t

∀α ∈ Actuators[m] : ∀t ∈ [0, ωα], t ∈ N // actuator updates
Activ{t · (Πm/ωα)} ← Activ{t · (Πm/ωα)} ∪ α
∀η ∈ ModeSWs[m] : ∀t ∈ (0, ωη], t ∈ N // mode switches

Activ{t · (Πm/ωη)} ← Activ{t · (Πm/ωη)} ∪ η
// the set Activ[] contains a timeline of mode m activities

for t ∈ Activ // at each time instant t do
∀τ t ∈ Activ{t} : emit(CALL(d[τ t], true)) // terminate τ driver
∀α ∈ Activ{t} : // ACTUATORS

if (∃g[α]) // guards for actuator updates
emit(IF(g[α], a + 1, a + 2))

end if
emit(CALL(d[αu])) // update actuator driver
emit(CALL(d[α])) // set actuator driver
∀σ ∈ Sensors[m] : // SENSORS read in mode m

emit(CALL(d[σ]))
∀η ∈ Activ{t} : // MODE SWITCHES

emit(IF(g[η], a + 1, a + 3))
emit(CALL(d[η]))
emit(SWITCH(η))
∀τr ∈ Activ{t} : // TASKS

if (∃g[τ]) // guards for task releases
emit(IF(g[τ], a + 1, a + 3))

end if
emit(CALL(d[τr])) // update task input ports
emit(RELEASE(τ)) // release task τ

if (∃t′ = successor(t), t′ ∈ Activ[]) then
δ ← t′ − t // time interval until next moment t′

emit(FUTURE(δ, a + 2))
emit(RETURN)

else // t = Πm loop to the beginning of the mode m
emit(JUMP(startm)) || emit(SWITCH(m)) // alternatives

end if
end for // loop to the next t in the list of activities Activ

this information to perform mode switches into this mode
or to loop back to the beginning of the mode’s period. We
create first the set of activities Activ[], which encapsu-
lates the semantics of the TDL module M . The subset
Activ{t} represents the set of activities to perform at time
t. For each task τ in the task set Tasks[m] of the mode m,
we add the release and terminate markers τ r, respectively
τ t to the activities set Activ{t} related to its release and
terminate events, i.e. when t is a multiple of its period
πτ . We continue by adding the actuator updates. Assum-
ing the mode switches defined in m are harmonic, we add
them to the set Activ{t} (when t | Πm/ωη). The resulted
set Activ[] contains the logical behavior of m.

Using the information encoded in the set Activ[], we
create a timeline ordered from 0 to Πm out of the moments
t ∈ [0,Πm],∃Activ{t}. For each t in the timeline, we
emit the E-Code sequence that encodes the actions we have
to perform at that time instant. We process first the task
termination markers by CALL-ing their appropriate drivers
to commit their computation results. A driver in the form

d[τ t] updates the task output port set Portsout[τ] with the
results of the user-defined calculation u[τ]. We continue
by issuing the CALL instructions for actuators and sensors.

The drivers d[αu] update the actuator input port values,
with the values from the output ports of the driving tasks,
and then execute the actuator setter functions, which pro-
vide the reaction of the computational system to the envi-
ronment. We only update the sensor output ports that are
required as inputs into new task instances or guard condi-
tions in the mode m. For each mode-switch defined in the
mode, we emit a sequence of three E-Code instructions:
an IF with the guard function u[g], a CALL to the optional
driver d[η] that performs the update of output ports in the
target mode m′, and the actual SWITCH instruction.

For task releases, we optionally emit an IF instruction
for the guard of each task, followed by the CALL to the
release driver d[τ r] that copies the output ports of other
tasks or sensors to the input ports of the task τ , and the
actual RELEASE instruction passing τ to TDL scheduler.

If we have a successor of the time instance t on the
timeline, we compute the time interval δ between t and
its successor. We issue a FUTURE instruction planning the
execution of the following instructions after the time δ is
elapsed at run-time. In the case when we have no succes-
sor for t (i.e., we are at the end of the mode t = Πm), after
all tasks are terminated and we completed all other activ-
ities, we loop back to the beginning of the E-Code block
of the mode m via a JUMP or SWITCH instruction.

The usage of a SWITCH instruction to complete the
mode is useful in distributed systems, or in systems with
cyclic dependencies between modules. This final instruc-
tion bounds the E-Code sequence of the mode m.

The E-Code is an abstract and compact way of express-
ing the TDL semantics of a module (see Figure 3). By as-
signing an integer number to each driver, guard and task,
and a binary opcode to each command from the E-Code
instruction set, we obtain a binary representation[14] of
the E-Code program for a TDL module.

4. Virtual Machine

We retain the original naming of the virtual ma-
chine in Giotto, i.e. Embedded machine or for short E-
Machine [10], which interprets an E-Code block. How-
ever, we adapt the E-Machine to the improved semantics
of TDL, parallel modules, and the concept of stub mod-
ules used for transparent distribution [6].

We introduce the Algorithm 2 for executing an arbi-
trary E-Code block. It requires that the E-Machine can
preempt the execution of TDL tasks in order to execute the
E-Code instructions. In the case of an application consist-
ing of a single module, it may be sufficient for the execu-
tion of that application on a resource limited system. For
a TDL module M , we define its E-Code program config-
uration at a time t as the tuple (E[M], ip, fa, ft, τa[t], t).
The instruction pointer ip denotes the address from which
the E-Machine executes the next E-Code instruction of the

——– Module M1 ——–
// initialization
00: CALL(setA1(a1))
01: CALL(setA2(a2))
02: CALL(getS(s))
03: RETURN()

// Start Mode: f11
04: CALL(read inputs(inc))
05: RELEASE(inc,10ms)
06: CALL(read inputs(dec))
07: RELEASE(dec,10ms)
08: FUTURE(10,10ms)
09: RETURN()

10: CALL(terminate(inc),true)
11: CALL(terminate(dec),true)
12: CALL(update(a1))
13: CALL(setA1(a1))
14: CALL(update(a2))
15: CALL(setA2(a2))
16: CALL(getS(s))
17: IF(switch2f12(s),18,20)
18: CALL(switch driver f12)
19: SWITCH(f12)
20: SWITCH(f11)

// Mode: f12
21: CALL(read inputs(inc))
22: RELEASE(inc,10ms)
23: CALL(read inputs(dec))
24: RELEASE(dec,5ms)
25: FUTURE(27,5ms)
26: RETURN()

27: CALL(terminate(dec),true)
28: CALL(update(a2))
29: CALL(setA2(a2))
30: CALL(read inputs(dec))
31: RELEASE(dec,5ms)
32: FUTURE(34,5ms)
33: RETURN()

34: CALL(terminate(inc),true)
35: CALL(terminate(dec),true)
36: CALL(update(a1))
37: CALL(setA1(a1))
38: CALL(update(a2))
39: CALL(setA2(a2))
40: CALL(getS(s))
41: IF(switch2f11(s),42,44)
42: CALL(switch driver f11)
43: SWITCH(f11)
44: SWITCH(f12)

——– Module M2 ——–
00: CALL(setA(a))
01: RETURN()

// Start Mode: main
02: CALL(read inputs(sum))
03: RELEASE(sum,10ms)
04: FUTURE(6,10ms)
05: RETURN()

06: CALL(terminate(sum),true)
07: CALL(update(a))
08: CALL(setA(a))
09: SWITCH(main)

Figure 3. E-code of M1 and M2

module M . The future address fa represents the next ip,
after the future time offset ft has elapsed.

The set τa[t] denotes the tasks active at the moment t.
We call a task τa as active at a moment t if the task was re-
leased at or before t and not completed until t. However,
an active task τa at the moment t, does not mean that it
is actually running at that moment, as it could have been
preempted by some other task. A task τ , which terminates
at a moment t, is automatically removed from τa[t]. The
function FetchInstruction, returns the next E-Code instruc-
tion e from the address ip, and then increments ip.

In most applications, the functionality is distributed
into several modules that run logically in parallel, ef-
fectively sharing the processor and memory resources of
the platform. TDL module may have data dependencies
through the import relationship. To maintain the applica-
tion’s behavioral determinism, at the end of any tasks’s
LET from any module, its output ports must be updated
before any other entity reads them. In this sense, a simpli-
fied version of the Algorithm 2 executes the CALL instruc-
tion for the task termination drivers.

For parallel modules, Algorithm 3 executes each mod-
ule only at the logical time when it needs to run according
to the LET semantics. Its complexity is O(n), where n
is the number of modules executed in parallel. As a dif-
ference to the Algorithm 2, where the logical time t was
tightly correlated with the time of a single module, in the
Algorithm 3 we have to deal with multiple parallel FU-

Algorithm 2. Execution of an E-Code block
ft ←∞ // reset future time
fa ←⊥ // reset future address
while (ip 6= ⊥) // until termination

e← FetchInstruction(E[M], ip)
if (e = CALL(d)) then

f [d] // executes the driver d functionality code
else if (e = RELEASE(τ)) then

τa[t]← τa[t] ∪ τ // add the task τ to the active tasks set τa[t]
else if (e = FUTURE(a′, t′)) then

fa ← a′ // store the planned E−Code address a′

ft ← t′ // store the future relative logical time t′

else if (e = IF(g, atrue, afalse)) then
if (u[g]) then // evaluate the guard condition u[g]

ip ← atrue // jump to the address atrue

else
ip ← afalse // jump to the address afalse

end if
else if (e = SWITCH(η) and τa[t] = ∅) then

ip ← startm′ // only harmonic mode switches
else if (e = JUMP(a′)) then

ip ← a′ // unconditional jump to the address a′

else if (e = RETURN) then
ip ←⊥ // terminate the execution of this E−Code block

end if
end while
// return the planned address fa and time ft

TURE instructions with unrelated timings.
At the moment t = 0, we execute for all runable mod-

ules their E-Code and update their future time and address
parameters (ft and fa). We then compute the minimum
waiting interval δmin until we have to execute the E-Code
of one or more modules. This interval is given by the
smallest argument ft of a FUTURE instruction from all
modules. We then pass to the TDL Scheduler the set of
active tasks from all modules τa[], and idle the virtual
machine until t+δmin. We begin a new cycle and execute
the modules that have the ft = δmin from the previous
cycle and update ft of all other modules with δmin.

For the E-Code from Figure 3, after executing their ini-
tialization drivers of both modules, we set the logical time
t = 0 and the entry points fa[M1] = 4 and fa[M2] = 2 to
the beginning of the start modes f11, respectively main.

For the module M1, we run with Algorithm 2 the drivers
that update the input ports of the tasks inc and dec and then
release the two tasks by placing them in the set of active
tasks. We similarly release the sum task and update δmin.

After 10ms, we start a new cycle where modules have
updated task outputs. We run the termination drivers of inc
and dec, followed by sum. We assume that s has changed
its value triggering a mode change in M1 into the new
mode f12. E-Machine idles 5ms, whereas TDL scheduler
dispatches the active-tasks. At t = 15ms, M2 has no logical
action to perform as sum is still logically running. How-
ever, dec has completed its LET; thus, we update its output
ports. Afterward, we start a new mode f12 cycle, release a
new instance of dec, and set a new ft[M1] = 5ms. During
the execution of the E-Code, the E-Machine preempted
sum and inc that remained in the list of active tasks.

When t reaches 20ms, all tasks have completed their
LETs, and after updating their output ports, we begin a

Algorithm 3. Parallel execution of modules
// initialization phase with Algorithm 2
for i← 1 to n // where n is the number of modules

execute(E[Mi], 0, 0) // run the E−Code of Mi

end for
for i← 1 to n // prepare modules for execution

// initialize fa of each module with corresponding start mode address
// assuming ∃ms ∈ m[Mi]
fa[Mi]← startms [Mi]
ft[Mi]← 0 // simulate a future instruction at time 0

end for
t← 0 // logical time t starts at 0
δmin ← 0 // initialization of time offset until first E−action
while (¬ shutdown) // main loop

for i← 1 to n
if (ft[Mi] = δmin) // we have to execute this module

ip[Mi]← fa[Mi] // set E−Code entry point
commit(E[Mi], fa[Mi], ft[Mi]) // simplified Alg. 2 from fa[Mi]

else // we don’t have to run the E−Code of this module yet
ft[Mi]← ft[Mi]− δmin // update elapsed

end if
end for // at this point task outputs are ready
for i← 1 to n

if (ft[Mi] = 0) // continue the E−Code of this module
ip[Mi]← fa[Mi] // set E−Code entry point
execute(E[Mi],fa[Mi], ft[Mi]) // Alg. 2 after last termin. drv.

end if
end for
// get the minimum time offset till next E−action from all modules
δmin ← min(ft[Mi]), ∀Mi, i ∈ [1, n]

pass to scheduler(τa[]) // list of all active tasks
// we abstract here the scheduling of tasks and the logical time update
sleep(δmin) // free CPU for user tasks until next E−action
t← t + δmin // update logical time

end while

new mode cycle in both modules. The process contin-
ues deterministically, as at any logical moment t only the
module that has logical activities assigned with that mo-
ment gets executed, whereas the others are preempted.

5. Evaluation

The component model of TDL introduces determinism
and flexibility in the development of embedded systems.
Real-time applications can be built out of individual mod-
ules developed independently, and later integrated in var-
ious ways without perturbing the behavior of each indi-
vidual component. An interesting aspect is the allocation
of functionality, i.e. tasks, into modules according to the
application logic. Depending on the amount of data ex-
changed between tasks and platform specifics such as net-
work topology or the availability of specialized I/O, the
developer may have the option of placing tasks into one
or more modules. This decision has a great impact on the
resulted E-Code of each module, the CPU utilization and
the overall system’s performance.

In this sense, the classic Bell polynomials [2] from
combinatorial mathematics provide the upper bound on
the number of possible allocations of tasks to modules.
This number grows exponentially making automated opti-
mal allocations difficult. We analyzed in Figure 4 the case
of allocating 7 tasks, with a total number of 877 possible

4000-4400
3600-4000
3200-3600
2800-3200
2400-2800
2000-2400
1600-2000
1200-1600
800-1200
400-800
0-400

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 … 30k

1

2

3

4

5

6

7

N modules Flash

1 module Flash

N modules SRAM

1 module SRAM

Ta
sk

s
an

d
M

od
ul

es

Bytes

0
0.1
0.2
0.3
0.4
0.5

%

1 2

1 module
N modules

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7

1 module avg
1 module max
N modules avg
N modules max

Avg CPU Utilization

CPU cycles

Modules/Tasks

Memory footprint

1
2 3 4 5 6 7

0
400
800
1200
1600
2000
2400
2800
3200
3600
4000
4400

1

3

5

7
6

4

2

MAXIMUM

Allocated Tasks
Modules

E-Code

1
2 3 4 5 6 7

1

3

5

7

0
400
800
1200
1600
2000
2400
2800
3200
3600
4000
4400

6

4

2
Allocated Tasks

Modules

E-Code

AVERAGES

1 2 3 4 5 6 7
M1

M2

M3

M4

M5

M6

M7

Harmonic set
AVERAGES

Top View

M
od

ul
es

Allocated Tasks

E-Code

a) Harmonic task set (T=2,4,8,16,32,64,128ms) b), c) Non-harmonic task set (T=10,20,30,40,50,60,70ms)

0

2

4

6

8

10

12

1 2 3 4 5 6 7

1 module avg

1 module max

N modules avg

N modules max

Processor utilization

Tasks

C
P

U
 ti

m
e

(u
s)

Figure 4. E-Code size in relation with the Bell distribution of tasks into modules

allocations into 1-7 modules running on the same CPU.
For each of these allocations, the E-Code size of the entire
application depends greatly on the task periods. The worst
and most uncommon case is when the tasks have prime-
number periods, as the size of the E-Code would be pro-
portional with their LCM. The simplest case is when the
task set is harmonic. Figure 4 (a) presents this distribu-
tion, where allocating all tasks to one module produces the
largest E-Code. The most common case is when the tasks
have periods derived from a common reference period (in
our case 10ms). The two graphs (b) and (c) illustrate the
average and maximum E-Code size vs the tasks to mod-
ule allocation. The leftmost peak on the averages graph
comes from the case when the 1st module uses the task
with the smallest period, whereas the 2nd module contains
all other tasks. The maximum E-Code size is important to
determine the necessary ROM space for the application
(functionality + TDL runtime + E-Code [+ RTOS]).

We identify two interesting extremes: allocating all
tasks to one module, and the opposite of creating one
module per task. We analyzed these two cases on an AT-
mega128 AVR microcontroller for sets of 1-7 tasks using
the same task periods from Figure 4 (b). To correlate our
results with previous work for Giotto [12], we used the
Avrora simulator [15]. We evaluated the impact of the
task allocation on the application’s memory footprint. We
also analyzed the overhead of the TDL runtime, without
focusing on the performance of a particular implementa-
tion of the user functionality (e.g.,hand-coded or gener-
ated). While supporting parallel modules, the measured
avg/max E-Machine execution times for TDL are similar
with Giotto although TDL offers a component model with
improved semantics for structuring complex applications.
The results from Figure 5 illustrate a typical tradeoff be-
tween memory and CPU utilization: one module requires
more memory but less CPU, whereas a module per task
has the opposite requirements.

6. Related work

The initial step towards platform independence using
the LET concept was laid out with Giotto [9] and E-
Code [10]. However, there are significant changes at the
level of E-Code and the TDL mode-change semantics.

Giotto. Without a component model and limited sup-
port for distribution Giotto can hardly cope with complex
applications. TDL addresses these problems and allows
data dependencies between components through import
relationships, synchronized initializations, and improved
semantics for the CALL and FUTURE instructions.

The Giotto the mode-change protocol specifies that the
mode-switches happen after a time interval depending on
the state of the program (number of running tasks) and the
program logic, whereas TDL mode changes are regarded
as instantaneous. This gives more flexibility to the devel-
oper and improves the schedulability analysis. Also, orig-
inal Giotto E-Code performs mode switches through JUMP
instructions hiding the logical control flow and the current
execution mode. TDL introduces the SWITCH instruction
as it provides additional support for distribution by clearly
marking the moment when a mode switch occurs.

For its E-Machine execution, Giotto and its latest
derivate HTL [7] has triggers to preempt the execution
of user tasks at any t multiple of the GCD of all activ-
ity periods from the current mode. This is necessary to
allow the E-machine to check for task releases, sensor up-
dates or mode switches, but induces a high number of con-
text switches [12]. TDL semantics make the timing of
these events known in advance; thus, we can eliminate the
queuing of triggers at run-time and skip the unnecessary
context switches. Our algorithm compacts the E-Code by
reusing periodically executing blocks through the FUTURE
and SWITCH instructions. It also enables the parallel exe-
cution of multiple modules.

In summary, the key advantages of TDL over Giotto
come from its component model, the improved seman-
tics (including the mode-change protocol), the extension
of the E-Code, and a leaner and more capable E-Machine.

RT-CORBA. is an optional extension of CORBA for
real-time systems. The multithreading capabilities via
thread-pools and the priority-mappings between CORBA
priority levels and native RTOS priorities are particularly
interesting for portable embedded systems. [8] introduces
a dynamic scheduling proposal as improvement over the
general restriction regarding the fixed-priority schedul-
ing. The popular component models such as CCM, EJB,
COM+, and .NET require too many resources for real-
time systems. As they mature, more lightweight ap-

4000-4400
3600-4000
3200-3600
2800-3200
2400-2800
2000-2400
1600-2000
1200-1600
800-1200
400-800
0-400

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 … 30k

1

2

3

4

5

6

7

N modules Flash

1 module Flash

N modules SRAM

1 module SRAM

Ta
sk

s
an

d
M

od
ul

es

Bytes

0
0.1
0.2
0.3
0.4
0.5

%

1 2

1 module
N modules

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7

1 module avg
1 module max
N modules avg
N modules max

Avg CPU Utilization

CPU cycles

Modules/Tasks

Memory footprint

1
2 3 4 5 6 7

0
400
800
1200
1600
2000
2400
2800
3200
3600
4000
4400

1

3

5

7
6

4

2

MAXIMUM

Allocated Tasks
Modules

E-Code

1
2 3 4 5 6 7

1

3

5

7

0
400
800
1200
1600
2000
2400
2800
3200
3600
4000
4400

6

4

2
Allocated Tasks

Modules

E-Code

AVERAGES

1 2 3 4 5 6 7
M1

M2

M3

M4

M5

M6

M7

Harmonic set
AVERAGES

Top View

M
od

ul
es

Allocated Tasks

E-Code

a) Harmonic task set (T=2,4,8,16,32,64,128ms) b), c) Non-harmonic task set (T=10,20,30,40,50,60,70ms)

0

2

4

6

8

10

12

1 2 3 4 5 6 7

1 module avg

1 module max

N modules avg

N modules max

Processor utilization

Tasks

C
P

U
 ti

m
e

(u
s)

Figure 5. Virtual machine performance with the non-harmonic task set

proaches such as OpenCOM have the potential to be-
come more popular for embedded design. However, RT-
CORBA just ensures the end-to-end relations between
components, and more research effort is required for prov-
ing that it can be extended without perturbing existing
functionality of an embedded system.

RT-Java. The Java platform is attractive to embed-
ded systems development for its component architecture,
OOP, platform independence, and multithreading. How-
ever, Java is not deterministic, does not provide bounded
resource usage, and the garbage collector introduces ran-
dom delays. For real-time systems, the Real-Time Speci-
fication for Java (RTSJ) [3] offers real-time threads with
synchronization, memory management, shared resources
with bounded priority inversion, and explicit timing con-
straints. For an efficient real-time garbage collection [1]
proposes a mostly non-copying incremental collector,
which achieves low space and time overhead. However,
in safety-critical systems, it is a common practice to for-
bid dynamic allocation. The Ravenscar-Java profile [13]
eliminates complex semantics and features with high over-
heads, such as garbage collection and asynchronous trans-
fer of control. The result is a less flexible programming
environment, which pretty much reduces Java capabilities
to the level of standard C language.

7. Conclusions

With a clear separation of timing, functionality, exe-
cution flow, and platform, we have achieved promising
results towards portability of real-time software compo-
nents. Using a virtual machine for the logical behavior
maintains the observable timing and functional behavior
of TDL software components on various platforms and
enables advanced real-time systems with improved en-
ergy efficiency. In addition, the real-time components can
be independently developed and later integrated, without
changing their behavior or implementation. The determin-
ism, composability, and platform independence properties
gained by using TDL, and its runtime environment can re-
duce the development, testing and integration costs, and
speed-up the development of complex real-time systems.
As future work, more experimentation and a more thor-
ough evaluation is necessary to provide more evidence
about the applicability and superiority of our approach in
comparison with other model-driven design approaches.

References

[1] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time
garbage collector with low overhead and consistent utiliza-
tion. In POPL ’03: Proc. of the 30th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, New York, 2003. ACM Press.

[2] E. T. Bell. Partition Polynomials. Annals of Mathematics,
29:38–46, 1927.

[3] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling,
D. Hardin, and M. Turnbull. The real-time specification
for Java, 2000.

[4] C. Farcas. Towards Portable Real-Time Software Com-
ponents. PhD thesis, Department of Computer Science,
University of Salzburg, Austria, July 2006.

[5] E. Farcas. Scheduling Multi-Mode Real-Time Distributed
Components. PhD thesis, Department of Computer Sci-
ence, University of Salzburg, Austria, July 2006.

[6] E. Farcas, C. Farcas, W. Pree, and J. Templ. Transparent
distribution of real-time components based on logical exe-
cution time. In Proc. of LCTES. ACM Press, 2005.

[7] A. Ghosal, A. Sangiovanni-Vincentelli, C. M. Kirsch,
T. A. Henzinger, and D. Iercan. A hierarchical coordi-
nation language for interacting real-time tasks. In Proc. of
EMSOFT, pages 132–141. ACM Press, 2006.

[8] O. M. Group. The COmmon Object Request Broker: Ar-
chitecture and specification, Feb. 2001.

[9] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A time-
triggered language for embedded programming. In Proc.
of EMSOFT, LNCS 2211, pages 166–184. Springer, 2001.

[10] T. Henzinger and C. Kirsch. The Embedded Machine: Pre-
dictable, portable real-time code. In Proc. of the PLDI,
pages 315–326. ACM Press, 2002.

[11] C. Kirsch. Principles of real-time programming. In
Proc. International Workshop on Embedded Software
(EMSOFT), LNCS 2491, pages 61–75. Springer, 2002.

[12] C. Kirsch, M. Sanvido, and T. A. Henzinger. A pro-
grammable microkernel for real-time systems. Proc. of
VEE, 2005.

[13] J. Kwon, A. J. Wellings, and S. King. Ravenscar-Java: A
high integrity profile for Real-Time Java. In Proc. of the
Joint ACM Java Grande - ISCOPE Conference, 2002.

[14] J. Templ. TDL Specification and Report. Technical re-
port, University of Salzburg, Austria, http://www.software
research.net/site/publications/C059.pdf, March 2004.

[15] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: scal-
able sensor network simulation with precise timing. IEEE
Press, Los Angeles, CA, 2005.

