
A Deterministic Infrastructure for Real-Time Distributed
Systems

Claudiu Farcas
Calit2, University of California

San Diego, USA
cfarcas{at}soe.ucsd.edu

Wolfgang Pree
C. Doppler Lab Embedded Software Systems

University of Salzburg, Austria
wolfgang.pree{at}cs.uni-salzburg.at

ABSTRACT
The development of reliable software for real-time systems is cur-
rently a challenge. Moreover, changing the underlying platform for
simple purposes such as a processor upgrade may severely affect
the behavior of the real-time software. Working with distributed
systems is even more difficult, and transitioning from one system
to another is typically impossible.

We address these problems through a development framework
for deterministic and portable real-time software using the Timing
Definition Language (TDL). It enables transparent, yet determin-
istic distribution of real-time components regardless of the target
platform and its deployment architecture. In this paper, we intro-
duce the algorithms and internal mechanisms for transparent real-
time distribution, and analyze the interactions between the user-
functionality, the virtual machine of the language, the communica-
tion subsystem, and the underlying platform.

1. INTRODUCTION
The advances in computational hardware and the corresponding

promises for real-time process control make ”embedding” com-
puters into many systems a common practice. Complex applica-
tions typically require distributed systems for reasons of depend-
ability (fault-tolerance), scalability, localization. A distributed sys-
tem may be more reliable than a single node system as through
replication faults on a node may be corrected by the other nodes;
thus, maintaining a high degree of dependability of the overall sys-
tem. It can also be extended by adding more processing nodes to
solve a computational-intensive job, in comparison with the case
of a single node system where a more powerful processor may be
too costly, require too much power, or simply be unavailable. On
the other hand, the complexity of the distributed systems is several
orders of magnitude more significant and harder to deal with than a
single-node system. Migrating from a single-node solution to a dis-
tributed system is hardly possible with the traditional development
methodologies for real-time systems. Even simple changes in the
topology of a distributed system or addition of new nodes become
a challenge in most applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2007 National ICT Australia. All rights reserved. The copy-
right of this collection is with National ICT Australia. The copyright of
the individual articles remains with their authors..

To address these problems our approach for real-time distribu-
tion relies on a high-level component-oriented language that makes
the timing an explicit part of the real-time software design and de-
couples the timing from the implementation of the computational
tasks of an application. The Timing Definition Language (TDL) [17,
5] is a high-level description language for specifying the explicit
timing requirements of a time-triggered [11] application, which
may be constructed out of several independently developed compo-
nents. The actual functionality can be implemented in any imper-
ative language available for the target platform, e.g. C, C++, Java,
and later linked with the compiled TDL source. TDL relies on the
Logical Execution Time (LET) abstraction introduced in the Giotto
language [7], but goes beyond with a component model, improved
syntax and semantics, and full support for distribution.

LET means that the observable temporal behavior of a computa-
tional task is independent from its physical execution. The LET of a
TDL computation is always equal with its invocation period and we
only assume that its physical execution is fast enough to fit some-
where within the logical start and end points. Thus, it is always
defined which value is in use at which time instant and there are
no race conditions or priority inversions involved. LET introduces
a unit-delay behavior [7], which may appear as a disadvantage.
However, it provides determinism, composition [9], and platform
abstraction, which are more relevant for safety-critical systems.

This paper focuses on the algorithms and mechanisms for trans-
parent hard real-time distribution and the interplay of the compo-
nents of the run-time system. We present the distribution from the
logical point of view of the developer and then from the underly-
ing run-time system of TDL. We introduce an algorithm to bridge
the gap between the task and network communication scheduling,
and detail the interactions between the user-functionality, the vir-
tual machine of the language, the communication subsystem, and
the underlying platform. We introduce an abstraction layer for dis-
tribution and present the algorithms for data encapsulation and state
synchronization across the network.

We begin with an overview of the TDL component model and
its capabilities for structuring complex real-time applications. Sec-
tion 3 describes the notion of transparent distribution available with
TDL and briefly presents the development tool-chain. In Section 4,
we analyze the internals of the TDL run-time system, and introduce
the algorithms that govern the interactions and synchronization of
its constituents, namely the TDL scheduler, the virtual-machine (E-
Machine) for logical timing, and the communication layer TDL-
Comm. An evaluation in Section 5 illustrates our approach through
a running example. We complete the article with a section of re-
lated work and our conclusions.



Import
relationship

Comparator1 Comparator2

RefSignal1 RefSignal2

Filter1 Filter2 Filter3 Filter4

10ms5ms0ms 15ms 20ms

LET Semantics
Mode periods

Module M1

Sampler mode
public task

Filter
LET=5ms

S

Module M2

Generator mode
public task
RefSignal
LET=10ms

Module M3

Process mode

task
Comparator
LET=10ms

A

Figure 1: TDL Modules and LET semantics

2. TDL COMPONENT MODEL
The TDL component model relies on the concept of a module,

which may encapsulate an entire application or parts of a complex
application.The TDL modules may work independently or may col-
laborate to implement a complex behavior. The component model
allows for decomposing existing complex applications into smaller,
more manageable parts, each with specific timing and functionality,
and provides the means for deterministic component interaction.
Developers can reuse existing modules to extend the functionality
of an application or create new applications.

The TDL module acts as the unit of composition and distribution,
and may import one or more other modules as depicted in Figure 1.
Computation results or environment state can be exported from a
module to any other module that imports it. Typically, a devel-
oper may import the values of some task output ports by declaring
the corresponding task as public. This feature introduces data de-
pendencies between modules as one module provides data services
to other client modules. It is important to note that LET is always
preserved, i.e., adding a new module to an application will never af-
fect the observable temporal behavior of other modules. The TDL
compiler performs schedulability analysis using the worst-case ex-
ecution time for tasks on the target platform and issues an error if
LET cannot be maintained (e.g., wcet is too large).

Modes.. The mode of a module is a set of periodically executed
activities such as task invocations, actuator updates, and mode-
changes. The period of an activity within a mode is equal with the
mode period divided by the invocation frequency of that activity
within the mode. A module has an unique start mode.

The mode-change protocol of TDL is different from Giotto, re-
quiring new schedulability analysis [4]. A TDL module changes
at run-time its mode independently of other modules. Within a
module, TDL enforces harmonic mode switches – the mode switch
must not break the LET of any task invocation within the current
mode of the module. This restriction enables deterministic mode
switches in distributed applications. Furthermore, mode switches
in a module may break the LET of tasks from other modules, which
are not affected by the mode switch. TDL mode changes are re-
garded as instantaneous.

Tasks are computational units in TDL. A task has a set of input,
state, and output ports, along with an external implementation re-
ferred through symbolic linking. A task invocation within a mode
represents the execution of a task instance within the period of that
mode. TDL regards the tasks as scheduled elements with logical
execution time [9]. From the logical point of view, a task reads its
inputs at the release time, then it runs continuously until its termi-

nation time, when its computation results are available to the envi-
ronment and other tasks; whereas, from the platform point of view,
the task starts at some point in time after it was released, may be
preempted by some other tasks or the RTOS, and completes before
the end of its LET. The underlying assumption, which we have to
verify [4], is that the run-time system and the scheduling mecha-
nisms used for the physical execution allow each task to complete
before its deadline.

Sensors and actuators exchange information between the envi-
ronment and the tasks of a module. TDL assumes that the external
functional implementation of the sensor getters and actuator set-
ters executes in logical zero time, i.e., orders of magnitude faster
than the smallest task computation. Practical implementations may
simply read or write to dedicated memory locations or I/O ports.

Guards are lightweight Boolean functions operating on sensor
or task output values. Depending on their result at run time, they
condition the execution of corresponding tasks, actuator updates,
or mode switches.

Ports interface TDL entities within a module and between mod-
ules. There can be input, output, or state ports, each with a distinct
type (int, byte, float, etc.). Only tasks can have state ports. To im-
plement the LET mechanism, the TDL tasks have two copies of
the output ports: internal and visible. The internal output ports are
updated directly by the task functionality code, whereas the visible
ports are updated through drivers by the TDL runtime environment
at the end of the LET of the task.

The drivers as introduced by Giotto are no longer syntactically
explicit in TDL. Nevertheless, a TDL driver still performs the port-
value copying operations under the LET semantics. The improved
syntax of TDL allows the TDL compiler to automatically perform
the type checking between ports and then generate the drivers which
transport the port values between the interconnected TDL entities.

3. TRANSPARENT DISTRIBUTION
We use the term transparent distribution [5] in the context of

hard real-time application with respect to two aspects. Firstly, at
runtime a TDL application behaves exactly the same, no matter if
all modules (i.e., components) are executed on a single node or
if they are distributed across multiple nodes. The logical timing is
always preserved, only the physical timing, which is not observable
from the outside, may be changed. Secondly, for the developer of
a TDL module, it does not matter where the module itself and any
imported modules are executed. The TDL tool-chain and runtime
system frees the developer from the burden of explicitly specifying
the communication requirements of modules. It should be noted
that in both aspects transparency applies not only to the functional
but also to the temporal behavior of an application.

The advantage of transparent distribution for a developer is that
the TDL modules can be specified without having the execution on
a potentially distributed platform in mind. The only place where
distribution is visible is for the system integrator, who must specify
the module-to-node assignment.

The development process for TDL relies on the tool-chain from
Figure 2. It consists of the following functional components: a
TDL compiler, a visual editor fully integrated with the Matlab/
Simulink environment, and a corresponding run-time environment.
The TDL compiler has a plug-in architecture, which allows its ex-
tension with other tools such as automatic glue-code and bus sched-
ule generators for a target platform. Worst-case execution analy-
sis [20] can be plugged into the visual editor to enable schedulabil-
ity analysis within the TDL compiler. In this paper, we focus on the
TDL runtime environment and briefly mention the relevant aspects
of the other tools.



Matlab/Simulink

TDL 
Compiler

ANSI-C code 
generator

plug-in

AST

Visual TDL 
Editor

C Code generation

TDL 
runtime

Bus 
Scheduler 

plug-in
config

config
(wcet)

C Glue code

Bus schedule

AST

E-Code

C functionality

.tdl 
modules

ANSI - C 
Compiler, 

Linker

Executable 
(binary)

Libraries

Platform specifics
(makefiles, OIL,..)

Figure 2: TDL tool-chain for distribution

For distributed systems, the Bus-Schedule Generator tool [6] is a
compiler plugin that automatically compiles offline the communi-
cation schedule. Its configuration file contains the list of computing
nodes, the assignment of TDL modules to nodes, and the proper-
ties of the communication channels (e.g., bus rate, minimum and
maximum packet sizes). The tool analyzes the import relationships
in the TDL modules to identify their remote dependencies and the
set of messages required for exchanging the information between
producer tasks and consumer entities such as tasks, actuators, or
guards. It then tries to generate a TDMA communication schedule
that satisfies the requirements of the TDL modules and their mode
changes. The schedule specifies which node sends information at
which time; the structure of the information depends on the current
modes at run-time [6].

As a first step towards fault-tolerance TDL supports module repli-
cation. The replicas are identified from the module-to-node assign-
ment in the configuration file of the tool. We send the messages
produced in all service-provider modules and we process them in
all their stubs through majority voting. By scheduling the repli-
cated messages as any other message, the tool also achieves tem-
poral isolation between replicas that improves the recovery chances
from transient failures.

4. RUN-TIME MECHANISMS
We introduce in Figure 3 the TDL runtime environment consist-

ing of three logical components deployed on each node: virtual
machine, scheduler, and communication layer. The virtual machine
supervises the logical behavior of the application and its interaction
with the environment. The TDL Scheduler performs the mapping
of platform time to logical time, the invocation of the virtual ma-
chine and the communication layer, and the preemption and dis-
patching operations of the user tasks. The communication layer
handles the distribution aspects.

4.1 E-Machine
For portability reasons, TDL reuses the approach of a virtual ma-

chine, the E-Machine introduced in Giotto [8], to handle the logical
aspects of its runtime environment. In addition to Giotto, the TDL
E-Machine handles parallel and distributed modules. It executes a
small set of instructions (TDL E-Code [17]) related only with the
logical aspects of a module: when and which tasks to release, and
which drivers to execute for the correct information flow between
ports. The functionality of the module runs in the native code of
the platform for maximum performance.

In distributed systems, a service-provider module and its client
modules (there can be more than one module importing a service
provider module) may be placed on different nodes. The TDL com-
piler generates a stub of the service-provider module on each node

Platform (Hardware + RTOS)
Platform Abstraction Layer

E-Machine TDL Scheduler TDLComm

E-
Code

Tasks

Ports

MessagesDrivers

Sensors / Actuators

N
od

e 
co

nf
ig

Bu
s 

sc
he

du
le

M
od

ul
e

Figure 3: Run-Time Environment

that does not contain it but contains one of its clients. A stub mod-
ule is a logical image of a service-provider module. It does not
contain any functionality for tasks, but only their output ports. This
concept enables the seamless distribution of modules in the system
and improves the performance on the nodes containing the client
modules as they do not have to locally execute the service module.
Nevertheless, the communication layer must synchronize the state
(mode, port values, timing) of a service provider module with all
its stubs (see Section 4.3).

From a logical point of view, the E-Machine executes the E-Code
in logical zero time, for each module individually, regardless of its
type, i.e. ”normal” module or stub module. From the platform
point of view, the TDL Scheduler that invokes the E-Machine ac-
counts the time spent interpreting E-Code and adjusts its decisions
accordingly.

The TDL compiler generates an E-Code file per module as a
compact representation of the activities defined in that module and
their timing information. It also includes the dependency informa-
tion related with the import relationships between modules. The
Code-Generator Plugin converts this information into the corre-
sponding drivers and associated glue-code. Thus, the E-Machine
can simply execute the E-Code instructions and call the appropri-
ate drivers to ensure the correct intra- and inter-modules data flow.

4.2 TDL Scheduler
The TDL Scheduler is the actual bridge between the TDL se-

mantics and the underlying platform (real-time operating system,
computing hardware, and distributed system architecture). Its pur-
pose is to run the E-Machine for each module at the right time as
defined by the TDL semantics and then to execute the released tasks
according to a specific scheduling policy. In a distributed setup, it
furthermore has to coordinate the exchange of data between the
nodes via the TDLComm layer.

To support the parallel composition of modules and to execute
them on the same node, we have to allocate a fraction of the CPU
time to each module of the node. Traditionally, we would solve this
problem with clock-driven scheduling [13] via a static time-sharing
mechanism, or CPU partitioning. Within a scheduling cycle of the
GCD of all activity periods from all modules, we would allocate
for each module a time quantum proportional with the maximum
load the module generates on the CPU. However, this approach
introduces a high context-switch overhead on the running system,
because of the infinitesimal time quantum required to implement
this mechanism.

As alternative, we could use a on-line scheduling algorithm, such
as Rate Monotonic (RM) or Earliest Deadline First (EDF) [12]. In
the following, we present a scheduling approach for TDL using
EDF on the global set of tasks from all modules. Conceptually, the
modules are simply logical constructs; hence, from a scheduling



perspective we can treat equally all tasks from all modules. The
only property that matters for EDF scheduling is the deadline of
the task, regardless of its parent module. In addition, as the ap-
plication is strictly time-triggered and we know at compile time all
task and mode periods, we can benefit from this apriori information
to reduce the run-time scheduling overhead by using precompiled
tables. The TDL Scheduler avoids unnecessary context switches
by running only when it has to invoke the E-Machine/TDLComm
or when a task completes. Consequently, it allows a better CPU
utilization than the partitioning approach. Note that its sleeping in-
terval is not constant as it changes with every scheduling decision.

Using the EDF algorithm, we build for every module a set of
dispatch tables DT [M ], one for each of its modes, which captures
at compile-time the dispatching order of the tasks within a mode.
The dispatch table DT [M ]m of a mode m contains a set of entries,
each entry consisting of a task and its relative deadline since the
beginning of the mode. On single node systems, these deadlines
are simply multiples of the task periods; whereas for distributed
systems, the bus schedule reduces the available time for the pro-
ducer task executions by moving their deadlines sooner, at the start
time of the corresponding messages. Note that also other schedul-
ing policies (e.g., power-aware) can be used to build the dispatch
tables.

For each module M , we have an associated dispatch table index
iM , which points to a task entry in the dispatch table of the current
mode DT [M ]m that has a deadline closest to the current logical
time. Each time the E-Machine releases a task, it adds the task to
the set of active tasks Tasksa[M ] of that module. It also resets the
index iM when it performs a mode switch in a module or starts a
new cycle of a mode. The set of active tasks in a module is al-
ways correlated with the dispatch table of the current mode of that
module.

We introduce Algorithm 1 for parallel execution of multiple mod-
ules using a lightweight EDF scheduling with precompiled dispatch
tables. The complexity of the algorithm is O(‖Modules[N ]‖),
where ‖Modules[N ]‖ represents the number of modules on a node
N , because we have to perform EDF scheduling only among a sin-
gle task per module. Note that it is not possible to create a dispatch
table for all tasks from all modules because they can switch their
modes independently. Also, creating dispatch tables for all combi-
nations of modes from all modules is highly unpractical.

We note with t the current absolute logical time and with tm the
absolute logical time when the mode m started its current period.
We use tm to convert from the deadlines relative to the beginning of
the mode to the absolute deadlines required by the EDF algorithm.

The algorithm proceeds through five steps: update the state of
the system (value and time), perform the network communication,
perform the logical actions according to the LET semantics, sched-
ule the active user tasks, dispatch one task, and sleep until the task
completes or a precomputed timeout expires.

Algorithm 1: Task/Bus scheduling
// Step 1 − UPDATE STATE
tbegin ← Get Current Time()
Save Task Context and Preempt(τold)

// account for elapsed time, where t is the logical time
// and δ is the waiting interval from the previous invocation
if (t− tbegin < δ) // a task completed sooner

// update δ to reflect elapsed time
δ ← t− tbegin

end if
Update Time(t, δ)
Update Time(EMachineWait, δ)

// Step 2 − COMMUNICATION
NetWait← NextPacket.time − t mod NetworkPeriod
if (NetWait = 0)

Invoke(TDLComm) // data exchange required
end if

// Step 3 − LOGICAL ACTIONS
if (EMachineWait = 0)

// at least one module has to perform logical activities
Invoke(E−Machine) // returns Time to Next Activity
EMachineWait← Time to Next Activity

end if

// Step 4 − USER−TASKS SCHEDULING
δ ←∞ // retains closest task deadline from all modules
foreach M ∈ Modules // all modules of this node

// skip past entries
increment(iM ) while(t− tm >= DT [M ]m[iM ].dln)
i← iM // seek the first active task
while(i < ‖DT [M ]m‖)

if (δ > DT [M ]m[i].dln − tm and DTm[i].τ ∈ Tasksa[M ])
δ ← DT [M ]m[i].dln − tm
τnew ← DT [M ]m[i].τ
break

else
i← i + 1

end if
end while

end foreach // τnew has the closest deadline from all modules

// Step 5 − DISPATCHING & WAITING
δ ←minimum(δ, EMachineWait, NetWait)
toverhead ← Get Current Time() − tbegin

δ ← δ − toverhead // account for elapsed time
Set Alarm for Sleep(δ) // will sleep after dispatching the task
Dispatch Task(τnew) // start/resume the execution of task τnew

In the step 1, we first preempt a previously running task and save
its current state. The time interval δ represents the sleeping interval
of the TDL Scheduler from its previous invocation. We first ver-
ify that the Scheduler slept for the required interval or that a task
completed sooner and thus the Scheduler was invoked to dispatch
another task. We then update the current logical time t and the time
interval until the next logical activity from a module, i.e. the mo-
ment when the E-Machine has to execute the E-Code of a module.

The bus scheduler tool provides the communication schedule for
each node in the form of a table, which lists the packets and their
timing. Thus, at step 2, we lookup in this table the time of the fol-
lowing packet and compare it with the current time correlated with
the network cycle time. If they match, we invoke the TDLComm
layer to send or receive that packet.

Afterward, at step 3, we evaluate the existence of an immedi-
ate logical activity to perform. In the case, when any module has
such upcoming logical activity (e.g. beginning or end of a task’s
LET, actuator updates, mode switches), we invoke the E-Machine
to execute the E-Code of the appropriate modules.

Reaching the step 4, we proceed to the actual scheduling of the
active tasks from all modules. We process all modules and skip
the entries in the dispatch table of their currently executing modes
that have the deadlines less than the current logical time relative to
the beginning of the corresponding mode. We then select as the
next dispatch-able task the first task that is active in the dispatch
table, as it would have the closest deadline. We cannot increment
the dispatch index at this point as it could be that more tasks have
the same deadline but have not been released yet (the alternative of
keeping track of both released and running tasks requires twice the
amount of memory than the simple set of active tasks Tasksa[M ]).



TDL Scheduler

Fault-Tolerance

Send Receive

Clock 
Synchronization

Encapsulation Extraction

packets

packets

Packet Exchange

Messages Ports

Communication 
Protocol

Optional FT Layer

Bus Schedule

Logical
Time

Mappings

Figure 4: TDLComm services

We update δ with the current closest deadline and the supposed next
task to dispatch τnew. After we iterate through all modules, we
obtain the smallest sleep/dispatch interval until we have to invoke
the scheduler again.

At step 5, we compute the waiting interval as the minimum be-
tween the time until the next dispatching, logical, and communica-
tion actions. We then subtract from the computed δ the overhead
of communication, scheduling, and E-Code execution, to obtain a
more accurate estimation of the time allocated to the next dispatch-
ing task.

With the information about the next task to dispatch and an esti-
mation of its running time, the Scheduler can prepare its next invo-
cation, dispatch the task and sleep. From the calculation of δ, we
can see that the algorithm is invoked repeatedly, but without a fixed
period.

We implemented the algorithm on top of existing real-time op-
erating systems such as OSEK [16] or RT-Linux by enforcing the
dispatching operations through task/thread priorities. In contrast
with classical implementations of EDF on top of fixed-priority op-
erating systems requiring a large number of priority levels [3], our
algorithm can work with just three priority levels: high - for the
task/thread implementing the TDL runtime (scheduler, E-Machine,
TDLComm), medium - for the next/current task to dispatch, and
low - all other active tasks. In this way, we still have linear com-
plexity O(‖Modules[N ]‖) because the RTOS scheduler becomes
a dispatcher of the first active job (TDL scheduler or dispatched
task).

4.3 TDLComm
The TDLComm layer abstracts the physical exchange of infor-

mation between the nodes of a distributed system. From a logical
point of view, using the precompiled scheduling information, the
TDLComm layer performs at run-time three steps: the encapsu-
lation of port values from service provider modules into packets,
the transmission of the packets over the communication medium,
and the extraction of stub-port values from the packets received on
the client node (see Figure 4). Each node contains the subset of
the global communication schedule relevant for its activities. This
subset contains also the failure-management information about the
replicated messages how to consolidate them.

For its time-triggered transmission and reception of packets, the
TDLComm layer relies on the TDL Scheduler to invoke its func-
tionality at moments of time defined by the communication sched-
ule. On the other hand, it provides the clock-synchronization ser-
vice on each node of the system, and introduces constraints on
the scheduling of the tasks that exchange values over the network.
Thus, the close cooperation between the TDLComm layer and the
TDL Scheduler is crucial for a successful implementation of the
transparent distribution concept of TDL.

The TDLComm layer uses an innovative TDMA protocol [6]
that dynamically multiplexes the messages over a static schedule.

To handle the independent mode switches of TDL modules, this
protocol considers the communication period as the smallest in-
terval where mode switches cannot occur, that is the GCD of the
mode-switch periods of all producer modules. The resulting com-
munication period equally divides the period of any mode of a pro-
ducer module into a fixed number of phases. The phases of a mode
are mutually exclusive, and any producer module may change its
mode only at phase boundaries.

According to this TDMA protocol, any node is allowed to send
messages in statically defined slots only. The run-time environ-
ment implements a mechanism for global clock synchronization
over the network [14]. The data exchange model implemented by
the scheduling tool adheres to the Producer-Consumer model. The
nodes that generate information (the producers), trigger the sending
of information over the network. Contrary to the classical Client-
Server model, in the Producer-Consumer model the consumers (the
nodes that need the information) do not send any requests to the
producers.

Messages, Datagrams, and Packets.
A message represents a data exchange between the ports of a pair

of TDL entities from two modules located on different nodes in a
distributed system. It corresponds to a value exchange operation
between sets of ports, discarding the output ports of the producer
entity that are not used by a consumer entity. It has a fixed size
equal with the sum of the sizes of the producer port types, and two
time constraints derived from the availability of the corresponding
port values and the latest allowable receive moment (i.e., the end of
the LET of the producer task).

The algorithm of the bus scheduler tool identifies the messages
from producer tasks per each phase of a mode, and then it associates
a message with the phase at the end of the producer’s task LET. As
the phase and the mode in which a message is produced change at
run-time, we also associate to each message a tag that encapsulates
this information.

A message belongs to a particular task instance; thus, it is not
periodic. The number of messages depends on the periods of the
producer tasks, the number and period of mode switches, and pos-
sibly on the number and periods of the consumer entities [4].

A datagram represents a collection of messages exchanged at the
same time instant. It contains one or more messages; thus, it refers
indirectly to one or more task entities that provide output values
from the same or different modules of a node. A datagram has a
fixed size equal with the sum of the sizes of each of its message
constituents. During the generation of the communication sched-
ule, the scheduling algorithm may grow or shrink the size of a data-
gram by adding or removing messages; however, once a feasible
communication schedule is found and generated, the allocation of
messages to datagrams remains fixed.

We refer to a packet as the unit of information to send on the
communication channel. A packet has a minimum and maximum
size derived from the physical properties of the communication
channel and the low-level data-exchange protocol. Any packet may
contain one datagram only, but more packets may refer to the same
datagram. Thus, we can consider a packet as a physical instance
of a datagram on the communication channel. Note that in contrast
with a datagram, a packet contains actual port-value information,
whereas a datagram acts just as a logical container. The order and
timing of the packets is fixed within a communication round and
expressed statically in the communication schedule. In addition to
the actual message data, a packet may contain control information
such as tags, timestamps, or other communication-protocol related
information.



time
1

1

M1

M2

2 3

2

4

LET Comparator

LET Filter

TDLComm2

bus

TDLComm1

2 4

Node 1

Node 2

stop 
driver

stop 
driver

release driver release driver

terminate driverM1 stub

timeM1

M2

LET task1

LET task2

TDLComm2

bus

TDLComm1
Node 1

Node 2

release 
driver

release 
driver

terminate 
driverM1 stub terminate 

driver

terminate 
driver

buffering buffering

direct r/w direct r/w

stop 
driver

stop 
driver

time
1

1

M1

M2

2 3

2

4

TDLComm2

bus

TDLComm1

2 4

release driver release driver

terminate driverM1 stub
terminate 
driver

direct r/w direct r/w

a) Stop drivers initiated encapsulation b) TDLComm initiated encapsulation

LET Semantics
if M1 and M2 were on the same node

terminations

releases

physical instance

There are no physical tasks

Figure 5: Information exchange between nodes

A packets has two important attributes: direction and time. The
direction specifies the type of operation the TDLComm layer has to
perform with the packet. The time attribute for a sending operation
reflects the logical time when the TDLComm layer of a node con-
taining a producer module has to send the packet; whereas, for the
receiving operation it reflects the logical time when the packet was
already received by the network processor of the node containing
the client module, and stored in the processor’s local buffers or the
main memory. In addition, a packet has an index and a datagram
reference.

Sending information
We identified two means for capturing the information from a pro-
ducer module intended for its stubs. The original approach of TDL
relies on the stop drivers of the producer tasks. In this case, af-
ter the completion of the tasks, their stop-drivers copy the relevant
internal port values to the TDLComm layer as presented in Fig-
ure 5 (a). On the client-node side, the terminate driver of the stub
of the service-provider module performs the port-value copy oper-
ation from the TDLComm layer into its visible ports at the end of
the LET of the producer task. The release driver of the client task
reads the value from the visible output ports of the stub as if the
producer task was running on the same node. With this approach,
there are multiple drawbacks from the additional meta-information
required at the producer module within the task stop-drivers and at
the stub module within the task-termination drivers about the TDL-
Comm data-structures, operational mode of the module, and logical
time. This requires different glue-code (containing the drivers) for
the provider module in the case of single-node versus distributed
systems.

We take a better approach that gives the TDLComm layer di-
rect access to the relevant internal ports at the moments defined by
the TDL Scheduler and the communication schedule as depicted
in Figure 5 (b). Thus, TDLComm reads directly the internal out-
put ports of the producer task, encapsulates them into a packet and
sends the packet to the other nodes. On the client-module side,
the corresponding TDLComm layer invoked by the TDL Sched-
uler at the receiving time extracts the port values from the received
packet and stores them directly into the internal output ports of the
stub module. Hence, the stop-drivers are no longer needed, the
stub task-termination drivers are simply identical with its service-
provider module, and the glue-code of the service provider module
remains the same regardless of the system architecture. Note that
under any circumstances the internal output port values are avail-
able only to the TDLComm layer before the end of the LET of
the corresponding task. All the user tasks in the system can access
only the visible output port values, which retain their previous val-
ues until the termination event of the task (when the termination
driver updates them from the values of internal output ports).

The overhead of copying the data from the main memory to the
network processor memory may be negligible, but on slow systems
it has to be evaluated and considered as networking overhead when
performing the time-safety checking of the distributed system and
at runtime within the TDL Scheduler.

The transmission of the computation results of a producer mod-
ule to its stubs requires a data encapsulation phase. For this pur-
pose, we introduce the Algorithm 2 that computes first the phase of
the current mode of a module and creates a corresponding tag from
the module, mode, and phase. It then starts building a new packet
by matching the set of possible messages with the previously iden-
tified tag. As the tag captures the dynamic state of the module and
there may be more than one message with the same tag, it packs
the tag and the content of the corresponding ports into the packet.
For the case where multiple messages from different modules and
phases are merged into a larger frame, we have to repeat the algo-
rithm for each module.

Algorithm 2: Dynamic packet encapsulation
// t is the current time
// m ∈ Modes[M ] is the current mode of M
// tm is the time when the current mode period started
// d is the datagram corresponding to the NextPacket to send

NextPacket.data← ∅ // first construct a new packet
foreach M ∈ Modules[N ] // all modules on the node N

φm = (t− tm) mod NetworkPeriod // compute phase
tag ← (M, m, φm) // tuple expressing module dynamics
Store Tag(NextPacket.tags, tag) // add tag
foreach msg ∈ d // process all messages

if (msg.tag = tag)
v ← InternalPortValue(msg.PortReference)
NextPacket.data← NextPacket.data ∪ {v}

end if
end foreach

end foreach
// Send NextPacket and advance its index

Receiving information
The extraction of port values from the packets relies on the tag
information from a received packet. Hence, we introduce the Al-
gorithm 3 that first identifies the tag of the received packet and then
decodes the state of the producer module, its mode, and current
phase.

When the node containing a client module and a stub of the ser-
vice provider module receives the packet, the producer module may
have changed into a new mode at the beginning of the communi-
cation cycle. In this case, we change the mode of the stub module
and update its mode start time t′m and phase φ′

m. We proceed to
the extraction of the packet’s content and store the received values



Internal out Visible out

I
D
L
E

I
D
L
E

I
D
L
E

4

Active

1

1

2

1 Act.

3

2
I
D
L
E

2

Fault-Tolerance

Send Receive
Encapsulation

Extraction
packet

Datagrams

Fault-Tolerance

packet

Datagrams

Terminate 
driver

Physical Bus

0ms 2ms 20ms

RefSignal
portsInternal out Visible out

Node 1

TX RX
TDLComm Actions

Data

Control

5ms 8.5ms 10ms

I
D
L
E

Instance number

12ms 15ms 17.5ms

I
D
L
E

Generator mode period Sampler 
mode period

Network period

Deadlines

Terminate 
driver

Filter
ports

8.5ms, 18.5ms, ...

Terminate 
driver

RefSignal 
stub ports

Internal out Visible out

Terminate 
driver

Filter stub
ports

Internal out Visible out

Terminate 
driver

Comparator ports

Internal out Visible out

1

0ms 20ms

Node 2

E-Machine/
TDLComm

TDL Scheduler

8.8ms 10ms

M3: Comparator I
D
L
E

18.8ms

I
D
L
E

Process mode periodNetwork period

M1, M2 Stubs

15.5ms

8.8ms, 18.8ms, ...

Release
driver

E-Machine Actions

Active

M1:Filter task
M2:RefSignal task User space

Kernel spaceTDL Scheduler
E-Machine/
TDLComm

Task releases

Figure 6: Data flow between modules through TDLComm

into the corresponding internal ports of the stub module.
The protocol implemented by TDLComm brings flexibility in

static communication scheduling, by allowing dynamic mapping
of messages over the same frames. Nevertheless, it still provides
deterministic communication patterns and a solid foundation for
transparent distribution.

Algorithm 3: Stub synchronization
// t is the current time
// Mstub is a stub module for M
// m ∈ Modes[M ] is the current mode of M
// m′ ∈ Modes[Mstub] is the current mode of Mstub

// tm is the time when the current mode period started
// t′m is the time when the current stub mode period started
// d is the datagram corresponding to the NextPacket to receive

foreach tag ∈ NextPacket.tags
(M, m, φm)← tag // decode tag
φ′

m = (t− t′m) mod NetworkPeriod // compute stub phase
// synchronize timing of producer and stub
if (m′ 6= m) // producer has changed mode during this phase

t′m ← bt/NetworkPeriodc ·NetworkPeriod
m′ ← m // update mode of stub and its start time
φ′

m ← φm // update mode phase
end if
foreach msg ∈ d // process all messages

if (msg.tag = tag)
v ← FetchPortValue(NextPacket.data)
SetInternalValue(msg.PortReference, v)

end if
end foreach

end foreach // internal ports & mode of stub are synchronized

5. EVALUATION
We take as example the application containing the three modules

from Figure 1. In this simple application, each module has only
one operating mode containing one task. The first module has a
sensor connected to the input of the Filter task, which is invoked
with a period of 5ms. The RefSignal task of the second module
has a period of 10ms and only state ports to retain its state between
consecutive invocations. The third module has no sensor inputs
but imports the other two modules to access the outputs of their
tasks. The Comparator task is invoked every 10ms to perform some
computations and provide their result to the environment via an
actuator.

From a logical point of view, the three module run in parallel
regardless of the underlying platform and its capabilities. The LET
semantics dictate that the first output of the RefSignal goes to the
second invocation of the Comparator (in the second cycle of the
Process mode). Similarly, the output of the second instance of the
Filter reaches the second instance of the Comparator, then the fourth
output of Filter reaches the third output of the Comparator and so
on. This is the so-called unit-delay behavior (see Figure 1).

We consider now the case of a distributed system, where the first
two modules are located on the node 1 and the third module on the
node 2. Figure 6 presents on the upper part the CPU scheduling,
and in the lower part the mechanism for transparent distribution
(without the clock synchronization service).

On the first node, the TDL Scheduler invokes the TDLComm
layer to perform the clock synchronization of the two nodes, and
then it invokes the E-Machine to initialize the ports of the tasks
and release the tasks of both modules. The deadline of the Filter
task is sooner than the deadline of the RefSignal task; therefore, the
Scheduler dispatches the Filter task and keeps the RefSignal task
into the active state. The run-time environment of node 2 performs
the same steps and dispatches the Comparator task.

The two nodes run in parallel, each executing one task until the
moment of 2ms, when the Filter task completes its execution. The
scheduler of the first node is invoked and dispatches the RefSignal
task, whereas the second node continues its computations undis-
turbed. At 5ms, the scheduler of the first node preempts the RefSig-
nal task to invoke the E-Machine that first executes the termination
drivers of the Filter task and then releases a new instance of this
task. At this point both tasks on the first node have the same dead-
line of 10ms. We assume that the scheduler dispatches the Filter
task that completes its computations sooner than its first instance
(around 6.5ms). The scheduler dispatches the remaining RefSignal
task that shortly completes its computations.

Meanwhile, the second node completed the execution of the Com-
parator task around 7ms and idles. We assume that the communi-
cation schedule specifies the sending of a packet from the first node
to the second at 8.5ms. As there is no other active task, the node 1
remains idle until this moment. The scheduler on node 1 invokes its
TDLComm layer to capture the internal output port values of the
two tasks. The results are encapsulated and transmitted over the
network in 300us, reaching the second node at the time of 8.8ms.
The Scheduler of the first node returns to the idle state, whereas the
Scheduler of the second node wakes up and executes its TDLComm



layer to extract the data from the received packet and update the in-
ternal output ports of the two stub modules. Afterward, it reenters
the idle state until the beginning of a new mode cycle.

When the logical time reaches 10ms, on both nodes, the TDL
Scheduler invokes the TDLComm layer for clock synchronization
and then invokes the E-Machine. The virtual machine executes on
the first node the termination drivers of both tasks, thus making
their outputs available to the environment. Afterward, it begins
a new mode cycle in each module and releases new instances of
the Filter and RefSignal tasks. On the second node, the E-Machine
executes the stub termination drivers and makes the computation
results of the two modules from the first node available to the lo-
cal environment. Thus, the release drivers of the Comparator task
read the correct values as if all modules were executed on the sec-
ond node. The new cycle of the third module begins with another
release and dispatch of the Comparator task.

0

5000

10000

15000

20000

25000

30000

35000

CPU cycles

1 2 3 4 5

avg TDL

max TDL

avg overall

max overall

Sets of M1, M2, M3

Sets of M1, M2
0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5

avg TDL

max TDL

avg overall

max overall

CPU cycles

Non distributed

Distributed

Figure 7: CPU utilization

In the second network cycle, assuming that the sensor values re-
quire less filtering, and the comparison takes less time, all tasks
from all modules complete their execution sooner than in the first
network cycle. Nevertheless, the behavior is still the same and the
communication pattern remains unchanged. It also matches the be-
havior of the modules on a faster single-node system, thus, illus-
trating the benefits of our approach for distribution.

In Figure 7, we measured using Avrora [18] the number of CPU
cycles required for the execution of the TDL runtime environment
and the overall utilization. The system under evaluation is an At-
mel AVR microcontroller with TDL running on the bare hardware
(microkernel design). We start with one set of the three modules
on a single node. We continue by adding sets of (M1, M2, M3)
up to 15 modules per node and observe that the CPU utilization
grows linearly with the number of modules to execute. In correla-
tion with previous research for Giotto [10], our measurements in-
dicate aprox. 1.5% CPU utilization on a similar platform, proving
that executing parallel modules increases the development flexibil-
ity at no performance penalty. In the second graph, we distribute
the module M3 on a second node connected via CAN (with our
TDMA protocol on top), and use sets of (M1, M2) for testing. The
CPU utilization on the first node drops significantly and the sys-
tem maintains its observable behavior unchanged. Thus, we can
make better use of the available resources of the target platform in
a distributed system.

6. RELATED WORK
Giotto [7], the precursor of TDL, is primarily an abstract mathe-

matical concept and there exist only simple prototype implementa-
tions, which show some of the potential of LET: static time-safety
checks and platform-independent embedded code (E-Code) exe-
cuted by virtual machines. Its main focus are the single-node sys-
tems with limited support for task-level distribution. The developer
has to annotate the Giotto source code with network specific pa-
rameters such as the hostname and ports; thus, mixing the platform-
independent and platform-dependent code. The actual implementa-
tion of the communication has to be coded manually with so-called
scheduling-code instructions. In other words, no tools automati-
cally generate the message schedules for the bus communication.

Our approach is more realistic and takes into account the com-
plexity of the real-world applications, where entire parts of an ap-
plication are distributed - modules. The key elements for the trans-
parent distribution in this case are the stub module concept and the
TDLComm layer that decouples the distribution aspects from the
rest of the run-time environment and frees the developer from the
burden of developing individual modules towards a distributed so-
lution. The integrated communication and task scheduling make
our approach a feasible solution for distribution, with support for
parallel module execution with data dependencies between mod-
ules regardless of their placement on the network.

TTP [19] protocol and its related tools provided by the TTTech
company approach the problem of building real-time distributed
system with proprietary, expensive, high-confidence hardware that
features membership services, time-triggered transmission of mes-
sages and distributed clock synchronization. In addition, in its cur-
rent state the developer has to consider in advance the platform
topology, the number and type of messages exchanged between the
nodes. The schedule itself is then generated with the TTPplan tool,
but it cannot support multiple application modes. The possibility
of independent mode switches on each node, by arbitrary modules
is simply out of the modeling possibility of the current tools.

Our approach abstracts from the communication infrastructure
through transparent distribution, which shields the developer from
ever defining each message individually or even designing for a
particular distributed platform. Modules can be developed indepen-
dently and later integrated without affecting their timing behavior.

FlexRay [1, 2] is an emerging high-speed fault-tolerant protocol
for control applications. A group of companies including BMW,
Volkswagen, DaimlerChrysler, Bosch, Philips, and Freescale is ac-
tively developing it, with its specifications in the final phase. Apart
from time-triggered operations, its focus is flexibility. Thus, it can
operate in both active star and passive bus topologies, and can ac-
commodate both static and dynamic parts in its communication
rounds. Node may be connected through one or two communica-
tion channels (for redundancy), and may transmit the same data on
both channels, or different data on both channels, in a given current
time slot. However, given its age it is mostly implemented using
proprietary ASIC chips and its adoption in the automotive industry
has still to gain momentum. The development tools for it have also
limited capabilities, comparable with the ones for the TTP proto-
col. Thus, the potential of the protocol remains still hindered by
inappropriate software.

The presented approach is currently under evaluation on this
platform and preliminary results show that it is possible to gain
the benefits of using this protocol and accompanying hardware in
addition to the transparent distribution of the TDL components. A
description of the model-driven development process for a FlexRay
platform using TDL is available in [15].



7. CONCLUSIONS
The presented development methodology goes significantly be-

yond Giotto and relives the developer from the burden of explicitly
designing the application for a distributed system and allows the in-
tegration of an application out of individually developed modules.
It also reduces the dependence on proprietary networking technolo-
gies for real-time systems, while still benefiting from their capabil-
ities when such networking options are available. Future research,
implementation, and testing efforts are required to show the scal-
ability of transparent distribution in complex scenarios. Remain-
ing challenges are better heuristics for generating communication
and task execution schedules to account for power/bandwidth us-
age or other dynamic environments, and strategies for avoiding the
re-generation of schedules when components are added or modi-
fied.

8. REFERENCES
[1] J. Berwanger, C. Ebner, and et al. FlexRay - The

Communication System for Advanced Automotive Control
Systems. In SAE World Congress, Detroit, MI, Apr. 2001.
Society of Automotive Engineers Press. 2001-01-0676.

[2] F. Bogenberger, B. Müller, and T. Führer. Protocol overview.
FlexRay International Workshop: The Communication
System for Advanced Automotive Control Applications, Apr.
2002.

[3] G. C. Buttazzo. Rate monotonic vs. EDF: Judgement day.
Embedded Systems, pages 67–83, Sept. 2003.

[4] E. Farcas. Scheduling Multi-Mode Real-Time Distributed
Components. PhD thesis, Department of Computer Science,
Univ. of Salzburg, Austria, 2006.

[5] E. Farcas, C. Farcas, W. Pree, and J. Templ. Transparent
distribution of real-time components based on logical
execution time. In Proc. of LCTES. ACM Press, 2005.

[6] E. Farcas, W. Pree, and J. Templ. Bus Scheduling for TDL
Components. LNCS - Dagstuhl Conference on Architecting
Systems with Trustworthy Components, May 2006.

[7] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A
time-triggered language for embedded programming. In
Proc. of EMSOFT, LNCS 2211, pages 166–184. Springer,
2001.

[8] T. Henzinger and C. Kirsch. The Embedded Machine:
Predictable, portable real-time code. In Proc. of the PLDI,
pages 315–326. ACM Press, 2002.

[9] C. Kirsch. Principles of real-time programming. In Proc.
International Workshop on Embedded Software (EMSOFT),
LNCS 2491, pages 61–75. Springer, 2002.

[10] C. Kirsch, M. Sanvido, and T. A. Henzinger. A
programmable microkernel for real-time systems. Proc. of
VEE, 2005.

[11] H. Kopetz. The Time-Triggered Model of Computation. In
Proc. of the IEEE Real-Time Systems Symposium, 1998.

[12] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in hard real-time environments. Journal
of the ACM, 20(1):46–61, Jan. 1973.

[13] J. W. S. Liu. Real-time Systems. Prentice Hall, 2000.
[14] G. Menkhaus, M. Holzmann, and S. Fischmeister.

Time-triggered Communication for Distributed Control
Applications in a Timed Computation Model. In 23rd Intl.
Digital Avionics Systems Conference. IEEE Press, 2004.

[15] A. Naderlinger, J. Pletzer, W. Pree, and J. Templ.
Model-Driven Development of FlexRay-Based Systems with
the Timing Definition Language. Mineapolis, May 2007.

[16] OSEK Group. OSEK/VDX Operating System v2.2.3, and
OSEKtime - Time-Triggered OS v1.0, 2005.

[17] J. Templ. TDL Specification and Report. Technical report,
University of Salzburg, Austria, http://www.
softwareresearch.net/site/publications/C059.pdf, 2004.

[18] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: scalable
sensor network simulation with precise timing. IEEE Press,
Los Angeles, CA, 2005.

[19] C. G. TTTech. TTP/C Protocol Specification, Version 1.0.
Wien, Austria, June 2002.

[20] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann,
T. Mitra, F. Muller, I. Puaut, P. Puschner, J. Staschulat, and
P. Stenström. The Worst-Case Execution Time Problem –
Overview of Methods and Survey of Tools. Tech. Report.
Mälardalen University, Sweden, Mar. 2007.


